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                                ABSTRACT 

We consider the use of  an  orthonormalization method for constructing 

approximations to one of the standard conformal maps for multiply-connected 

domains. The method has been used successfully  in [12], but only  for the 

mapping of doubly-connected domains. Our purpose here  is  to consider its 

application  to the mapping of  domains whose connectivity is greater than 

two. 



 



1.  Introduction 

Let Ω be a finite N-connected domain, N > 2, with boundary 

j
Γ

N

1j
Ω, U

=
=∂  

where Γj;  j = 1,2,...,N, are closed Jordan curves and assume that: 

(a) Γ1 is the outer component of ∂ Ω,, i.e.Γ1 encloses all the other Γ'j s. 

(b) The origin 0 lies in the interior of ΓN, i.e. 0 ∈ Int(ΓN).  Also, let 

Sl,N denote a domain consisting of a circular ring 

R := {w: rN < |w| < r1 } , (1.1) 

slit along N-2 arcs of circles 

|w| = rj;  j = 2,3,...,N-1, (1.2a) 

where 

                       rN<rj<r1;j=2,3,…,N-1.                      (1.2b) 

Finally, let f denote a conformal map of Ω onto a slit circular ring of the 

form S1,N so that Γ1 , ΓN and Γj; j = 2,3,...,N-1, correspond respectively 

to the outer and inner circles bounding the ring (1.1), and to the arcs of 

the circles (1.2). This is one of the standard conformal maps considered, 

for example, in [1: Chap.VI], [3: Kap.V, 5] and [9: Chap.VII]. 

The choice of the mapping function f can be fixed by requiring that Γ1 

and ΓN are mapped respectively onto the outer and inner circles of R, and 

imposing the normalizing condition 

f(ζ) = ζ (1.3) 

where ζ ∈ Γ1 is some fixed point on the outer component of ∂Ω. These 

conditions fix f uniquely, and also determine the value of the outer radius 

r1 of R, i.e. 

r1 =|ζ|. (1.4) 

The conditions also fix uniquely the values rj; j = 2,3,...,N, but these 
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are not known a priori.  (That is,  the radii  rj; j = 2,3,. ..,N,  are 

unknowns of the problem of determining f: Ω → S1,N.) 

In the present paper  we  consider the  use  of  an orthonormalization 

method (ONM) for computing approximations to the mapping function f of the 

form 

,
n
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=

= (1.5) 

where {UJ} is an appropriate set of basis functions. This method has been 

used successfully in [12], but only  in  connection with the  mapping of 

doubly-connected domains, i.e. in  connection  with the case  N=2 where 

Ω = Int(Γ1)∩Ext(Γ2) and the associated canonical domain S1,2 reduces to a 

circular ring of the  form (1.1). The purpose of the present paper is to 

show,by means of numerical examples,that the ONM can also be used for the 

mapping  of  domains whose  connectivity  N  is  greater  than  two. In 

particular, we  show that  the  method is capable of producing accurate 

approximations to f, even  when  the  boundary ∂ Ω contains sharp corners, 

where  branch  point singularities  occur. This is  done in  the  manner 

described for the case N=2 in [12], by introducing into the basis set {UJ} 

"singular"  functions that reflect the asymptotic  behaviour  of f in the 

neighbourhood of every corner where a singularity occurs. 

  We end this introductory section by observing that the problem of 

determining approximations to f: Ω → S1,N has received considerable 

attention   only   in  the  doubly-connected  case, i.e. the case 

Ω = Int(Γ1)∩Ext(Γ2) and f: Ω → S1,2  ∂ R. contrast, the case N>2 has 

received very little  attention from the numerical  point of view. For 

example,  we are aware of only three recent articles which are concerned 

with computational aspects of the mappingof N-connected domains with N>2. 

These are as follows: 

(i)   The paper by Ellacott [2], where the approximation to f: Ω → S1,N, 

N>2 is obtained by using an expansion method based on computing the minimax 
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solution of a real and linear approximation problem. 

(ii) The paper by Reichel [16], where a "fast" iterative method, based 

on  the  integral  equation formulations  of  Symm   [4,5], is used  for 

approximating f: Ω → S1,N, N>2. 

(iii) The  paper  by  Mayo [6], where a numerical  method, based  on  an 

integral equation formulation of Mikhlin [7], is used for the solution of a 

different  but closely  related  conformal mapping problem.   (The problem 

considered by Mayo differs somewhat from ours,because the canonical domain 

used in [6] is a slit disc rather than a slit circular ring.) 

The above three references also contain numerical examples, but these 

involve only the mapping of domains with smooth boundaries. One important 

objective of the present paper is to provide further "test" examples, 

particularly for the mapping of domains with non-smooth boundaries, and 

thus to stimulate further work in the area. 

2.  The orthononnalxzation method (ONM) 

The details of the ONM given in this section are essentially the same 

as those given in [12], in connection with the mapping of doubly-connected 

domains. As was observed in [12], the  method  follows  easily  from  the 

theory  contained in [1: Chap.VI],[3:Kap.V, 5]and [9: Chap.VII]. 

Let f : Ω → S1,N, where Ω and S1,N are respectively the N-connected 

domain, N>2, and the slit circular ring introduced in Section 1, and 

observe that f can be expressed as 

f(z) = z exp{A(z)} , (2.1) 

where 

A(z) := logf(z) - logz , (2.2) 

is analytic and single-valued in Ω. Also, let L2(Ω) be the Hilbert space 

of allsquare integrable functions which are analytic and possess a single- 

valued indefinite integral in Ω, and denote the inner product of L2(Ω) by 

(.,.), i.e. 
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dxdy.v(z)Ω u(z)v)(u, ∫∫=
(2.3) 

Finally, let 

H(z) := A'(Z) 

= f'(z)/f(z)  - 1/Z  , (2.4) 

and assume that all the components Γj ;  j = 1,2,...,N, of Ω are piece- ∂

wise  analytic.    Then,  the  following  results  are  either  proved  in 

[3: pp.245-251], or else can be deduced easily from results which are given 

there;  see also [12: pp.685-689]. 

R2.1 (Complex form of Green's formula) 

Let u,v ε L2(Ω) be continuous on ∂ Ω apart from a finite number of 

branch point singularities of the form 

(z - z0)α  ,Z0 ε ∂ Ω,  -1/2 < α <0 . (2.5) 

Then, 

)6.2().()(',)()(
2
1),( zvzdzzzu
i

vu == ∫ Ω∂
μμ  

R2.2.   For each function u ∈ L2 (Ω),which is also continuous on əΩ apart 

from a finite number of singularities of the form (2.5), 

dz.zlogΩ u(z)i)H(u, ∫∂=                              (2.7) 

where H is the function defined by (2.4).�

R2.3.  Recall  that  0 ∈ Int(ΓN)and let αj ∈ Int (Γj) =2,3,...,N-1,  be 

N-2 points lying respectively in the interiors of the simply-connected 

domains bounded by the curves Γj;  j = 2,3,...,N-1.  Also, let 

Mj:= r1/rj; j= 2,3....,N                              (2.8) 

Then: 

(2.9a)1,N2,3,...,j;)dzz2logA(z)(Ω
jαz

1

2i

1
jMlog2 π −=+∫∂ −

=
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and 

∫∂ −= Ω ,
2

Hdzzlog
z

1

i

1
NlogM2π

(2.9b) 

where A and H are the functions defined by (2.2) and (2.4), and ||.||2= (.,.)�

Let {  } be a complete set of the space Ljη 2(Ω),and assume that the 

basis functions ηj satisfy the additional continuity requirement stated in 

R2.1 and R2.2. (As will be seen later, it is always possible to construct 

such basis sets.) Then, the results R2.2 and R2.3 suggest the following 

procedure for computing approximations to the mapping function f and to the 

quantities Mj;  j = 2,3,...,N: 

(i)  Orthonormalize the set n

1jj
η

=⎭
⎬
⎫

⎩
⎨
⎧  bymeans of the Gram-Schmidt process 

to obtain the orthonormal set 
n

1j

*
j

η
=⎭

⎬
⎫

⎩
⎨
⎧ . 

(ii)  Approximate the function H by the Fourier series sum 

(z),*
j

η)*
j

η(H,(z)nH
n

1j
∑=
=

 

where the Fourier coefficients (H, ) are know by means of (2.7) *
jη

(iii) Approximate the mapping function f by 

fn(z) = z exp{An(z)}, 

(2.10) 

(2.11a) 

where 

dt;z
ζ (t)nH(z)nA ∫=

 

see Eqs (2.1) and (2.4), and recall the normalizing condition (1.3). 

(iv)  Approximate the quantities Mj;  j = 2,3,...,N, by: 

(2.11b) 

  

1N2,3,...,j;/2 π)dzzlog2(z)nA(Ω
j

αz

1

2i

1
exp{n}

j
M −=+∫∂ −

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦
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⎢
⎢

⎣

⎡

             (2.12a) 

and 

(2.12b) 

see Eqs (2.9). 

{ } ;/2 π
2

nHdzzlogΩ z

1

i

1
expn

NM
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −∫∂=  
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3.  Computational details 

The details of the ONM procedure of the present paper can be deduced 

easily from those given in [12], in connection with the mapping of 

doubly-connected domains. However, for the sake of completeness, we also 

give a summary of these details here. 

3.1   Choice of the basis set {η j} 

Let αj∈ Int(Γj);j=2,3,. . . ,N, be N-l points in the interiors of the 

curves ΓJ ; j = 2,3,...,N. (In particular, since 0 ∈ Int (Γj) We may take 

αN := 0.)  Then, it is well-known that the functions 

(3.1)
,2,3,...mN,2,3,...,j;m)jα(z

0,1,2,...,m;mz

⎪⎭

⎪
⎬
⎫

==−−

=

and 

form a complete set with respect to the space L2(Ω); see e.g[3: p244]. 

That is, the set (3.1) provides a basis for the ONM. However, for the 

reasons explained in [12], the use of this basis is not recommended in 

cases where the domain under consideration involves "singular" corners. 

(By singular corners we mean corners where the function H has branch point 

singularities.)  In such cases the basis set  should  be constructed  as 

describedin [12], by introducing appropriate "singular" functions into the 

set (3.1).  These singular functions are determined as follows: 

Let part of a boundarycurve Γj (j = 1,2,...,N)consist of two analytic 

arcswhich meet at a point zc and form therea corner of interior angle wπ , 

wherew := p/q > 0 is a fraction reduced to its lowest terms. (By interior 

angle we mean interior to the domain Ω.) Then, it can be shown that the 

asymptotic expansion of H in the neighbourhood of zc involves terms that 

can be written in the following form: 
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if zc Γ1  , (3.2a) 

if zc Γj ,  j ≠ 1,N ,     (3.2b) 

if zc    ΓN                   (3.2C) 

{ }

[ ]{ }
{ }⎪

⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−

−−−

−

=

,r1/z)(1/z
dz

d

,
r
)jαc1/(z)cz1/(z

dz

d

r)cz(z
dz

d

:(z)cη  

where, in general, 

r = k + ℓ/w ;  k = 0,1,2,...,  1 < 1 < p . (3.2d) 

If however zc ∈ Γ1 and both arms of the corner are straight lines, then 

   r = ℓ/w ;  ℓ = 1,2,... .                             (3.2e) 

This shows that if p≠l then a branch point singularity occurs at the point 

zc. In such a case, the basis set is formed by introducing into the set 

(3.1) the first few singular functions of the sequence (3.2), corresponding 

to the first few fractional values of r. 

Further details concerning the construction of appropriate basis sets 

for dealing with corner and other singularities in expansion methods for 

numerical conformal mapping can be found in [8,10,12,15]. Here, we only 

note the following in connection with the use of the ONM. 

(a) If the domain Ω has M-fold,M>2, rotational symmetry about the origin, 

then the number of basis functions used in the ONM can be reduced consid- 

erably, in the manner indicated in [12]. 

(b) The function H may also have "pole-type" singularities, i.e. singular- 

ities that occur off the boundary curves in compl(ΩU∂Ω).The problem of 
dealing with such singularities is studied in [13,15], but only in 

connection with the doubly-connected case N=2. 

3.2 Evaluation of inner products 

The main computation involved in the construction of the ONM approxim- 

ations (2.11) and (2.12) occurs in the orthonormalization of the basis set 

{η j}
n
1 j=   and, in particular, in the evaluation of the inner products (η r,η s) 

Since the basis functions (3.1) and (3.2) satisfy the boundary continuity 
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requirement needed for the results R2.1 and R2.2, these inner products are 

expressed as 

(3.3)(z),sη(z)sμ'dz,(z)sμΩ (z)rη
2i

1
)sηr,(η =∫∂=  

and are then computed by Gauss-Legendre quadrature.  Similarly, each of the 

inner products (H,n*j)nvolved in the approximation (2.10) is computed by 

applying to the contour integral 

(3.4)dz,zlogΩ
*
jηi)*jη(H, ∫∂=

 

the Gaussian rule used for the evaluation of (3.3). Finally, the same 

Gaussian rule is used for evaluating the contour integrals involved in the 

approximations (2.12). 

When performing the above quadratures care must be taken to deal with 

the integrand singularities that occur when, due to the presence of a 

corner at zc, the basis set contains singular functions of the form (3.2). 

The effects of such integrand singularities can either be reduced 

sufficiently or, in many cases, removed completely, by using suitable 

parameterizations of the boundary curves Γj. The details concerning the 

choice of appropriate parameterizations can be deduced from the examples 

given in [10,11,12]. 

3.3 Convergence - Error estimates 

  It follows at once from (2.10) that 

0,HnHn
lim =−

∞→
 

and, in the space L2(Ω), this norm convergence implies that Hn(z) → H(z) 

uniformly in every compact subset of Ω.  Hence, we have that fn(z)→ f(z) 

uniformly in every compact subset of Ω.  In addition,  for the doubly- 

connected case, Ω = Γ∂ 1UΓ2, we have a result due to Gaier [3] which estab- 

lishes the uniform convergence in Ω = ΩU∂ Ω, of the ONM approximations {fn} 

corresponding to the use of the  set(3.1), i.e. of the set 
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Zj;  j=0,1,2,....,   z-j;j=2,3......, 

This result is proved in [3: p. 250] under the assumption that the two com- 

ponents Γ1and Γ2of əΩ   are analytic Jordan curves, and also in [14] under 

the somewhat less restrictive assumption that the mapping function f is 

analytic on ∂Ω  = Γ1UΓ2 (we point out that the poor of [3] is not for the 

ONM, but for an equivalent variational method.)Unfortunately, even for 

the doubly-connected case, we do not know of any theoretical results which 

establish the uniform convergence of {fn}in Ω , in  cases  where the compon- 

ents Γj of  ∂Ω  are general piecewise  analytic  Jordan  curves.  We do have, 

however, a reliable method for computing estimates of the maximum error in 

the modules of the approximate conformal maps. This is done as follows: 

As was previously remarked, the normalizing condition (1.3)implies 

that the outer radius of the ring R is 

r1 = |ζ| . (3.5) 

Therefore, the radii rj; j = 2,3,...,N-1, of the circular arcs correspond- 

ing to the boundary curves Γj; j = 2,3,...,N-1, and also the inner radius 

rN of R can be approximated respectively by 

}{ j
nr = |ζ|/Mj

{n}  J=2,3,.....N                           (3.6) 

where M {n}
j
 are the appproximations given by  (2.12)                         

Let 

(3.7a),(z)nf1r
1σz

max:{n}
1ε −=

 

and 

(3.7b)N,2,3,...,j,(z)nf
{n}
jr

jσz
max:{n}

jε =−=

 
where σ j;  j = 1,2,,..,N, are N sets of "test points" on the boundary 

curves Γj;  j = 1,2,...,N, respectively.  Then the quantity 
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{n}
j
ε

Nj1
max:nE ≤≤

=        (3.8) 

gives an estimate of the maximum error in |fn(z)|.  We expect this to be a 

reasonable estimate because, in general, the approximations Mj{n};j = 2,3, 

. . . ,N, are much more accurate than |fn(z)|, z  ∂ Ω. 

3.4 Optimum number of basis functions 

The ONM is programmed so that it computes recursively a sequence of 

approximations {fn}, where at each stage the number n of basis functions 

used is increased by N. (As before, N denotes the connectivity of Ω.) The 

algorithm also includes a criterion for terminating the process at some 

"optimum" value n = nopt which gives a "best" approximation fnopt in some 

pre-defined sense. This optimum number is determined in a manner similar 

to that used in [8,10,12], by means of the following process: 

A minimum number nmin:= kN, k>l, of  basis functions to  be used  is 

defined and, for each ℓ.N, ℓ>k, the error estimate En is computed in the 

manner described in Section 3.3.  If when n = (ℓ+l)N the inequality 

E(ℓ+l)N < EℓN, (3.9) 

is satisfied, then the approximation f(ℓ+2)N is computed. When for a 

certain ℓ, due to numerical instability, (3.9) no longer holds then the 

process is terminated and ℓN is taken to be the optimum number nopt of 

basis functions. To safeguard against "slow" convergence, the process also 

includes a maximum number nmax of basis functions to be used. If the 

inequality (3.9) is still satisfied when ( +l)N = nl max, then we terminate 

the process and write n pt = n
*
o max. 

4.  Numerical examples 

Many numerical examples illustrating the application of the ONM to the 

mapping of doubly-connected domains, including domains with sharp corners, 

can be found in references [12,13].  Here, we present six examples whose 
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purpose is to confirm our claim that the ONM can also be used for the 

mapping of N-connected domains with N>2. 

In each example, we identify the domain under consideration by listing 

the equations  of  the boundary curves Γj ; j = 1,2,...,N, where as before: 

(a) Γ1 denotes the outer boundary component which is mapped onto the outer 

circle of the ring R. (b)ΓN denotes the  inner  boundary  component which 

contains the origin in its interior, and which  is mapped on to the inner 

circle of R. In each case, we also list the following: 

Special points:  These  are the  point  ζ∈ Γ1,  used  in  the normalizing 

condition (1.3), and the points αj ∈ Int(Γj); j = 2,3,...,N-1, which occur 

in the basis set (3.1),  the  singular functions (3.2b) and the approxim- 

ations (2.12a). 

Basis sets: Here, we list the singular functions used for augmenting the 

set (3.1), and also indicate the simplifications that occur when the domain 

under consideration has rotational symmetry. 

Boundary test points: These are  the  N sets of boundary points  σ j; 

j = 1,2,...,N, used for computing the error estimates (3.7) and (3.8); see 

Section 3.3. 

In each example, the inner products (3.3), (3.4) and the contour 

integrals in (2.12) are computed, as indicated in [12: 5], by using a 

composite Gaussian rule based on the 48-point Gauss-Legendre formula. As 

was remarked in Section 3.2, if the basis set contains singular functions 

of the form (3.2) then the resulting integrand singularities are treated by 

using special parametric representations for the curves Γj. These repres- 

entations can be deduced easily from those given in the examples of 

[10,11,12]. 

In each case,the numerical results presented are the values nopt, Enopt

and ; j =2,3,,...,N, giving  respectively  the  optimum number of {nopt}
jr

basis functions, the estimate of the maximum error in modulus of the ONM 

approximation fnopt, corresponding ONM approximations to the radii 
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rj ;  j = 2,3,...,N;  see Sections 3.3 and 3.4.   In presenting the 

results 

we use the following abbreviations: 

ONM/MB:  Results obtained by using the ONM with "monomial basis" {3.1). 

ONM/AB:  Results obtained by using the ONM with "augmented basis",formed 

by introducing into the set (3.1) singular functions of the form (3.2). 

All computations were carried out on a CYBER 170-720 computer, using 

programs written in single precision Fortran. Single length working on the 

CYBER 170-720, is between 14 and 15 significant figures. 

Example 1  Ellipse/3 circles;  see Fig.1(a). 

Boundary curves: 

Γ1  := {(x,y): x = 2cosx, y = sinτ, 0 < τ < 2π} , (4.1a) 

Γ2,3  := [z: z = ±1 + 0.25 , 0 iτe < τ< 2Π} , (4.1b) 

Γ4  := {z: z = 0.25  0 iτe < τ< 2π} . (4.1c) 

Special points:   ζ = 2,   α2,3= ±1. 

Basis sets:  Because the domain has twofold rotational symmetry about the 

origin the monomial set is taken to be: 

)2.4(
.,...3,2,1;)()1()(

,,...2,1;
1

3
1

2

12

⎪⎭

⎪
⎬
⎫

=−−+−

±±=
−−−−

−

mzz
mz

mmm

m

ααand 

Since the domain does not involve corners, we do not need to use an 

augmented basis in this example. 

Boundary test points:  These are defined by(4.1)withτ=0( π/16)2Π. 

Numerical results: 

r1 = |ζ| = 2 . 

ONM/MB:  nopt = 48,   E48 = 9.0 x 10-8

r {48}
2

}=r {48}
3

=1.435 887 996,     r  =0.443 083 306 (4.3) {48}
4
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The plot of the approximate image domain is given in Fig..1(b). 

The values (4.3) should be compared with the approximations 

~

2r = = 1.4362,   = 0.4430, 
~

3r
~

4r

 

o
 
btained by Ellacott [2]. 

 
(a) (b) 

FIGURE 1

Example 2 Ellipse/2 circles;  see Fig.2(a) 

Γ1:= {(x,y): x = 2cosτ, y = sinτ, 0 < τ < 2π}, 

Γ2 := {z: z = 1.2 + 0.3 , 0 iτe < τ < 2π} , 

Γ3 := {z: z = 0.5 , 0 iτe < τ < 2π}. 

(4.4a) 

(4.4b) 

(4.4c) 

Special points:  ζ = 2,   α2 = 1.2. 

Basis sets:   Since in this case the domain does not have rotational 

symmetry, the monomial basis is given by (3.1) with N = 3, i.e. 

⎪⎭

⎪
⎬
⎫

=−−−
=

.2,3,...m;m1.2)(z;mz

.0,1,2,...m;mzand 
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The domain does not contain corners and, as in Example 1, we do not 

need to use an augmented basis. 

Boundary test points: These are defined by (4.4)with τ =0 (π/8)2π . 

Numerical results; 

r1, = |ζ|= 2. 

OHM/MB:   nopt = 48,   E48 = 4.1 x 10-5

r {48}
2

= 1.621 941 59,   r {48}
3

= 0.851 773 08 . (4.5) 

The plot of the approximate image domain is given in Fig.2(b). 

The values (4.5) should be compared with the approximations 

~
2r  = 1.621 941 60,   

~
3r  = 0.851 773 07 , (4.6) 

obtained by Reichel in [16}. (Because of the different normalizing 

condition used in [16], the approximations (4.6) were obtained by 

multiplying those given in [16] by 4/3.) 

 

 

(a) (b) 

FIGURE 2 

Example 3  Square/3 circles;  see Fig.3 (a) 

Boundary curves: 

1Γ := {(x,y): 1x1 = 2, |y| < 2} U {(x,y): 1x1 < 2, |y| = 2} 
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2,3Γ := {z: z = ±1 + 0.2eiτ, 0 <τ < 2π} , 

    := {z: z = O.4  0 4Γ iτe < τ < 2π}. 

Special points:   ζ, = 2,   α2,3= ±1. 

Basis sets:  Because of the twofold symmetry, the monomial basis is taken 

to the set (4.2). 

The domain does not involve "singular" corners; see Section 3.1. 

Therefore,as in Examples 1 and 2, we do not need to use an augmented 

basis. 

Boundary test points: Thirty-two equally spaced points on each boundary 

curve. 

Numerical results: 

                               r1= |ζ| =2 . 

ONH/MB:   = 52,   E
∗

nopt 52 = 4.3 x10-5,

r {52}
2

= r {52}
3

 = 0.954 497 52,   r {52}
4

= 0.403 650 33 . 

The plot of the approximate image domain is given in Fig.3(b). 

 

 

(a) 
FIGURE 3 

(b) 

Remark 1. The numerical results of Examples 1-3, illustrate the high 

accuracy that can be achieved by the ONM/MB, when the domain under consid- 
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eration does not involve "singular" corners. 

 

Example 4  Circle/2 circles/Square;  see Fig.4(a). 

Boundary curves; 

1Γ  := {z: z = 2e , 0 iτ < τ < 2Π} , 

2,3Γ  := {z: z = ±1 + 0.4e , 0 
iτ < τ < 2π} 

4Γ   := {(x,y): 1x1 = 0.2, |y| < 0.2} U {(x,y): |x| < 0.2, |y| = 0.2} 

Special points:   ζ, = 2,   α2,3= ±l. 

Basis sets:  Because of the twofold symmetry, the monomial basis is taken 

to be the set (4.2). 

The singular functions corresponding to the branch point singularities 

at each of the four corners of the square Γ4 are given by (3.2c) with 

r = k + 2ℓ-/3,  k = 0,1,2,……,  1 <  l < 3 . 

Because of the  symmetry, for each value of r, the  singular functions 

associated with the four corners of 4Γ  can be combined into two "symmetric" 

singular functions; see [12: Ex.5.3]. In this example, the augmented 

basis is formed by introducing into the set (4.2) the eight symmetric 

singular functions corresponding to the values r = 2/3, 4/3, 5/3, 7/3. 

Boundary test points: Thirty-two equally spaced points on each of the 

boundary curves. 

Numerical results: 

r1= lζl = 2 . 

ONM/MB:   = 52,   E
∗

nopt 52 = 3.6 x 10
-2, 

r {52}
2

= r {52}
3

}= 1.107 54.....  r {52}
4

= 0.329..... 

ONM/AB:   nopt = 44,   E44 = 8.3 x 10
-7 , 

{44}
3r

{44}
2r = = 1.107 585 361,   {44}

4r  = 0.333 126 300 . 
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The plot of the approximate image domain is given in Fig.4(b). 

 

 
 

(a) (b) 

FIGURE 4 

Example 5  Square/2 squares/Circle;  see Fig.5(a) 

Boundary curves: 

Γ1: = {(x,y): |x| = 2, |y| < 2} U {(x,y): 1x1 < 2, |y| = 2} , 

Γ2,3   := {(x,y): lx±l, = 0.4, |y| < 0.4} U {(x,y): lx±l < 0.4, |y| = 0.4}, 

Γ4:= {z: z = 0.2eiπ, 0 < T < 2π} . 

Special points:   ζ , = 2,   α2,3 = +1 . 

Basis sets:  Because of the symmetry the monomial basis is taken to be the 

set (4.2). 

The singular functions corresponding to the branch point singularities 

at each of the eight corners of the squares Γ2 and T3 are given by (3.2b) 

with 

 

r = k + 2ℓ/3,  k = 0,1,2,...,  1 < ℓ < 3 . 

Because of the symmetry, for  each  value of r, the singular functions 

associated with the eight corners can be combined into four "symmetric" 
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singular functions.   In this example the augmented basis is formed by 

introducing into the set (4.2) the sixteen symmetric singular functions 

corresponding to the values r = 2/3, 4/3, 5/3, 7/3. 

Boundary test points:   Thirty-two equally spaced points on each of the 

boundary curves. 

Numerical results: 

r1= |ζ| =2 . 

ONM/MB:   = 52,   E
∗

nopt 52 = 4.7 x 10-2, 

     r {52}
2

 =r {52}
3

  =1.075….. r{52}
4

 =0.290...... 

OHH/AB:   nopt = 40,   E40 = 5.5 x 10-4, 

r
{40}
2

 = r {40}
3

 = 1.078 579 57     r{40}
4

= 0.291 814 83. 

    

The plot of the approximate image domain is given in Fig.5(b). 

 

 

(a) (b) 

FIGURE 5

Example 6 Cross/3 circles; see Fig.6(a) 

Boundary curves: 

U
4

1j jγ:1Γ =
=  

where 
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1γ  := {(x,y): x∈[-3,-1]U [1,3], |y| = 1} , 

2γ  := {(x,y): 1x1 = 1, y∈ [-3,-l] U [1,3]}, 

3γ    := {(x.y) :1x1 < 1, |y| = 3} , 

4γ   := {(x,y): 1x1 = 3, |y| < 1} , 

Γ2,3 := {z: z = ±2 + 0.25e
lτ  0 < τ < 2π} , 

Γ4:= {z: z = 0.4e
1T, 0 < τ < 2Π>. 

Special points:   ζ, = 3,   α2,3 = ±2. 

Basis sets:  Because of the symmetry the monomial set is taken to be the 

set (4.2) . 

The singular functions corresponding to the branch point singularities 

at each of the four re-entrant corners of the cross are given by (3.2a) 

with 

r = 2ℓ/3;       ℓ  =1,2.........., 
Because of the symmetry, for each value of r, the singular functions 

associated with the four re-entrant corners can be combined into two 

"symmetric" singular functions.  In this example the augmented basis is 

formed by introducing into the set (4.2) the eight symmetric singular 

functions corresponding to the values r = 2/3, 4/3, 8/3, 10/3. 

Boundary test points:   Fifty-six equally spaced points on each boundary 

curve. 

Numerical results: 

r1 = |ζ| =3 . 

ONM/MB:   nopt = 32,   E32 = 9.5 x 10-1

r{32}
2

 =r{32}
3

 =2.576 ….., r{32}4  =0.607 

ONM/AB:   = 52,   E
∗

nopt 52 = 2.0 x 10
-4
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r{52}
2

 = r{52}
3

= 2.646 750 76,   r }{5
4

2 = 0.671 826 15. 

The plot of the approximate image domain is given in Fig.6(b). 

 
 

 

(a) (b) 

FIGURE 6 
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