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Abstract

We employ data‐based approaches to identify the

transmissions of structural shocks among investor at-

tention measured by Google search queries, realised

volatilities and trading volumes in the United States,

the United Kingdom and the German stock market.

The two identification approaches adopted for the

structural vector autoregressive analysis are based on

independent component analysis and the informa-

tional content of disproportional variance changes. Our

results show robust evidence that investors' attention

affects both volatilities and trading volumes con-

temporaneously, whereas the latter two variables lack

immediate impacts on investors' attention. Some

movements in investors' attention can be traced back to

market sentiment.

KEYWORD S

realised volatility, search engine data, structural VAR

J E L C LA S S I F I C AT I ON

G10, G14

EUROPEAN
FINANCIAL MANAGEMENT

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. European Financial Management published by John Wiley & Sons Ltd.

We are grateful for the feedbacks from an anonymous referee. Financial support by the Deutsche For-

schungsgemeinschaft (HE2188/14‐1) is gratefully acknowledged.

mailto:fang.xu@brunel.ac.uk


1 | INTRODUCTION

The Google search engine has become an integral tool to find information for more and more
people around the globe. The aggregate search frequency in Google provides a direct measure
of individual/retail investor's attention (Da et al., 2011). When an individual searches for DOW
in Google, she/he certainly pays attention to it. Empirical analysis has shown that stock return
volatilities and trading volumes are positively associated with Google search queries (Vlastakis
& Markellos, 2012). Moreover, changes in search queries today can help to explain future
changes in return volatility. Dimpfl and Jank (2016) show that search queries Granger‐cause
volatility and including search queries in models of realised volatility improves volatility
forecasts out‐of‐sample. It is, however, unclear what is the propagation mechanism of the
shocks. Does a volatility shock trigger search queries (investors' attention), or/and is it the
increased investor's attention (reflected in a positive shock in search queries) that triggers more
trading and thereby higher volatility?

On the one hand, there are several theoretical underpinnings for the impact of investors'
attention on volatility. If investors pay more attention, new information is quickly incorporated
into prices and, thus, can induce high return volatility (Andrei & Hasler, 2015). Moreover, as
retail investors are often regarded as uninformed noise traders, their trading can lead to ex-
cessive volatilities of asset prices according to the noise trader model (De Long et al., 1990).
Similarly, exogenous shocks of the fundamental prices can be interpreted by noise traders as a
potential future trend in agent‐based models (Lux & Marchesi, 1999). When there is a large
fraction of noise‐trader agents in the market, the volatility of the stock becomes larger. Thus,
the higher the volume of the search queries, the more likely it is that retail investors are actively
trading and the larger are the volatilities of the relevant stocks. On the other hand, volatile
movements in the stock markets have been frequently featured in the news, specially in
downturn periods. This could attract retail investors' attention and increase the count of search
queries for the stock indices. The recursive structural vector autoregressive (SVAR) model in
Dimpfl and Jank (2016), for example, builds upon the hierarchical assumption of an immediate
impact of volatility on search queries.

This paper contributes to the literature by estimating the contemporaneous relationship
between search queries and return volatilities. For such a purpose, ad‐hoc impositions of
triangular structures (e.g., in terms of lower triangular Cholesky factors) for SVAR models leave
no room for the data to object against the model implied hierarchy. In this paper, we use data‐
driven identification approaches, which let data determine the latent structural relationships.
Our analysis is based on daily Google search queries for US, UK and German stock market
indices from 2006 to 2011. Our data exhibit both deviations from a conditionally multivariate
Gaussian model and conditional changes in the covariance structure. Therefore, we exploit the
uniqueness of independent structural shocks (Matteson & Tsay, 2017) and the informational
content of disproportional variance changes of the model implied structural shocks (Bouakez &
Normadin, 2010; Lanne & Saikkonen, 2007; Normadin & Phaneuf, 2004) for SVAR
identification.

Results from both identification approaches and the three markets point to the same
evidence—shocks in Google search queries affect return volatilities immediately, whereas
shocks in volatilities exert an only mild (if any) instantaneous effect on search queries.
Therefore, what underlies the positive correlation observed among search queries and volatility
is the increased investor's attention which triggers more trading and, thus, higher volatility.
Introducing the trading volume as a third variable into the SVARs confirms that search queries
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also affect the trading volume simultaneously. The results from this paper also provide a guide
for the order of the variables in the recursive SVARs, namely, search queries as the first variable
and realised volatility as the second in trivariate SVARs. Using a different ordering of the
variables, the model implied impulse responses are at the risk to provide a misleading per-
spective on impact and dynamic relations within the triad of search queries, volatilities and
volumes.

After highlighting the contemporaneous impact of retail investors' attention on stock
market volatility, we further explore if market sentiment is partially behind movements in
investors' attention. We estimate bivariate SVARs using Goggle search queries on DOW and the
FEARS sentiment index from Da et al. (2015), the latter of which is available for the United
States. The results show that changes in the market sentiment have a significant con-
temporaneous impact on variations in retail investors' attention. De Long et al. (1990) de-
monstrate that changes in investors' sentiment can lead to more noise trading and excess
volatility, if uninformed noise traders base their trading decision on sentiment. Da et al. (2015)
confirm the positive contemporaneous relationship between sentiment and the market vola-
tility empirically. Our results are in line with the view that the retail investor's attention could
be part of this transmission channel.

The remainder of this paper is organised as follows: Section 2 provides a brief formalisation
of the SVAR model and sketches the data‐based identification schemes. Section 3 introduces
the data and provides some preliminary empirical analyses. Section 4 addresses structural and
dynamic empirical relationships in the triad of search queries, realised volatilities and trading
volumes. Section 5 looks at the relationship between search queries and market sentiment.
Section 6 summarises our main findings and concludes.

2 | DATA ‐BASED IDENTIFICATION OF SVARS

This section provides an outline of the vector autoregressive (VAR) model in its reduced form
and in SVAR representation. The identification problem is described and subsequently we
sketch two alternative data‐based identification schemes.

2.1 | The structural VAR

Consider a p‐th order autoregressive model for the K ‐dimensional system of random variables
yt , that is,

⋯y ν A y A y u= + + + + ,t t p t p t1 −1 − (1)

⋯ν A y A y Bε= + + + + ,t p t p t1 −1 − (2)

⇔A L y ν Bε t T( ) = + , = 1, …, ,t t (3)

with vector‐valued intercept terms ν K K, × parameter matrices Ai, the backshift operator L
such that ⋯Ly y A L I A L A L= , ( ) = − − −t t K p

p
−1 1 and IK denoting the identity matrix. By

assumption, the model is stationary, that is, ≠A zdet( ( )) 0 for all ∣ ∣ ≤z 1.
The representations in Equations (1) and (2) differ in terms of their stochastic model

components. Reduced‐form residuals ut in Equation (1) are of mean zero (E u( ) = 0t ) and
subject to contemporaneous correlation with covariance Σ. Residuals εt in Equation (2) are
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orthogonal with E ε( ) = 0t and Cov ε I[ ] =t K . By implication, the covariance matrix Σ aligns with
the decomposition Σ = BB′, where B is a nonsingular K K× parameter matrix. Orthogonalized
residuals εt qualify as ‘structural shocks’ if an identified parameter matrix B benefits from a
sound theoretical underpinning of its implied effect structure, which is typically summarised in
the form of impulse response functions (IRFs). Unlike reduced form residuals ut, the structural
shocks εt cannot be recovered uniquely by means of the ordinary least squares estimation. As
the space of potential covariance decompositions Σ = BB′ is infinite, it deserves further as-
sumptions to identify the structural parameters in B.

To design a space of alternative covariance decompositions, let Q denote a rotation matrix
( ≠Q I I, QQ′ =K K) which is parameterised with (vector‐valued) rotation angle(s) θ, that is,
Q Q θ= ( ). Moreover, D is the lower triangular Choleski factor of Σ, such that Σ = DD′. Then, a
space of covariance decompositions results from rewriting the residual form covariance

θ Q θ DΣ = DQ( ) ′( ) ′ as

∣B B θℬ = { BB′ = Σ, = DQ( )}, (4)

where the representation B θ DQ θ( ) = ( ) points to B θ( ) as a specific member of ℬ. The prime
aim of SVAR analysis is to identify a particular structural matrix B B θ= ( ), as this matrix
formalises the instantaneous impacts of the structural shocks εt on the observable variables in
ut (or yt). Henceforth, the dependence of the structural parameter matrix B on θ is suppressed
whenever appropriate.

2.2 | Marginal effects

Typical parameters of the structural matrix B, denoted bij, quantify the instantaneous impact of
shocks εjt on reduced form residuals uit (or yit). A reformulation of model (2) allows for an
explicit formalisation of the implied contemporaneous linkages among the variables in yt ,
that is,

⋯B y B ν A y A y A y ε= + * + * + + * + ,t t t p t p t
−1 −1

1 −1 2 −2 − (5)

where A B A i p* = , = 1, 2, …,i i
−1 . Unlike the model in Equation (2), the left hand side of

Equation (5) is explicit on the marginal effect patterns that involve the variables in yt con-
temporaneously. To provide these effects in normalised form, define Ωt as the information set
comprising the process information up to time t , that is, y yΩ = { , , …}t t t−1 and let b ij( ) denote a
typical element of B−1. Conditional on Ωt−1, nonlinear transformations of the elements in B−1

describe the marginal causal effects. Consider, for instance, the bivariate case K = 2. From
Equation (5) and

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠B y

b b

b b

y
y= ,t
t

t

−1
(11) (12)

(21) (22)

1

2

we obtain after normalisation

∣ ∪ ∣ ∪E y y
b

b
y ω E y y

b

b
y ω[ Ω ] = − + and [ Ω ] = − + .t t t t t t t t t t1 2 −1

(12)

(11) 2 −1
(1)

2 1 −1

(21)

(22) 1 −1
(2) (6)

Estimates of ωt−1
(1) and ωt−1

(2) in Equation (6) are obtained from the VAR parameters and in-
formation inΩt−1. If B could be observed or properly identified, one can directly recover causal
effects that are typically in the focus of single equation regression models. Conditional onΩt−1,
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the marginal effect of y t2 on y t1 is measured by ∕b b− (12) (11) and the marginal effect of y t1 on y t2 is
measured by ∕b b− (21) (22).

2.3 | Identification

For purposes of structural analysis, triangular‐model structures (i.e., Cholesky factors) have
become popular (Sims, 1980). However, to justify the choice B D= one has to make a‐priori
assumptions to motivate a particular hierarchical model. Kilian and Lütkepohl (2017) provide
an up‐to‐date textbook treatment of identification schemes in SVAR analysis. In this study, we
avoid the setting of a‐priori triangular model structures and use instead data‐based identifi-
cation schemes to uncover structural transmission patterns.

Two specific statistical properties of εt have become prominent in identifying structural
information, namely, (i) independently distributed and non‐Gaussian shocks and (ii) shocks
with informative (i.e., nonproportional) changes in variance. These properties provided the
motivation for two classes of data‐based identification. In this study, we identify structural
models by means of one representative of each class. First, we exploit the independence
property following Matteson and Tsay (2017). Second, we focus on the assumption of gen-
eralised autoregressive conditionally heteroskedastic (GARCH) structural shocks as suggested,
for example, by Normadin and Phaneuf (2004), Bouakez and Normadin (2010) and Lanne et al.
(2017).1 Below are the brief outlines of the two alternative (or complementary) identification
schemes employed in this study.

(i) Independent components
Independence based identification builds upon a fundamental result of Comon (1994)
stating that a vector of independent components εt allows the unique recovery of B from
reduced form residuals ut, if at most one independent component εit exhibits a Gaussian
distribution. For an intuitive illustration, let's assume that a false member of the class of
covariance decompositionsℬ in Equation (4), denoted

∼
B , is used for the structural analysis.

Then, the corresponding structural shocks read as

≠
∼ ∼

ε B u B Bε Jε ε˜ = = = ,t t t t t
−1 −1

where u Bε=t t and ≠
∼

J B B I= N
−1

. By implication, if the elements in εt are independent and
non‐Gaussian by assumption, the elements ε̃k t, in ε̃t obtain as linear combinations of εk t, and,
therefore, lack independence. Put differently, to recover the true independent, non‐Gaussian
shocks εt from reduced form residuals ut, it is essential to employ the correct structural
matrix B. On the basis of the uniqueness of independent non‐Gaussian components, several
approaches have been suggested for SVAR identification. These approaches differ with
respect to the investigated space of structural matrices (e.g., the comparison of alternative
recursive structures in Moneta et al., 2013) and the rigidity of underlying parametric model
assumptions (e.g., the imposition of distributional assumptions to enable (pseudo) ML es-
timation in Gouriéroux et al., 2017; Lanne et al., 2017). As our daily data provide huge
sample information and exhibit heterogeneous second‐order properties, we refrain from

1
For the implementation of data‐based identification and further computations we use the R‐package ‘svars’ (https://CRAN.R-project.org/package-svars, Lange
et al., 2019, see also Lange et al., 2020). We use the modules ‘id.dc’ (independence of non‐Gaussian shocks) and ‘id.garch’ (conditionally heteroskedatic shocks).
The module ‘id.dc’ builds upon the function steadyICA from the R package steadyICA (Risk et al., 2015).
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parametric pseudo ML estimation. Instead we pursue a semiparametric estimation by tar-
geting at implied shocks εt which provide weakest evidence against the null hypothesis of
independence in terms of a suitable test statistic. More specific, we follow Matteson and Tsay
(2017) who suggest to obtain an estimate of the structural parameters from solving the
minimisation problem

∈B ε ε B θ u^ = argmin {Joint dependence of elements in , with = ( ) },B t t tℬ
−1 (7)

where the degree of dependence is quantified in terms of the so‐called distance covariance
statistic of Székely et al. (2007). Henceforth, we denote the structural matrix estimates based
on an independence assumption as BDC .

(ii) Heteroskedastic shocks
Rigobon (2003) has pioneered the identification of heteroskedastic structural shocks.2

Going beyond the stylised covariance break model of Rigobon (2003), the second identi-
fication scheme that we employ in this study builds upon patterns of GARCH variances
(Bollerslev, 1987) as proposed by Normadin and Phaneuf (2004), Lanne and Saikkonen
(2007) and Bouakez and Normadin (2010). In this framework, time‐varying covariances are
formulated as

∣( )E u u

B B

Ω = Σ

= Λ ′,

t t t t

t

′
−1 (8)

where ( )s sΛ = diag , …,t t K t1,
2

,
2 is a diagonal matrix and sk t,

2 denotes GARCH‐type conditional
variance processes capturing the conditional second order properties of the structural
shocks. Assuming a parsimonious GARCH(1,1) specification and noticing that⎡⎣ ⎤⎦ ∀E ε ε k= Var[ ] = 1t kt

2 , by assumption, the individual conditional variances
∣ε sVar[ Ω ] =kt t k t−1 ,

2 exhibit a dynamic structure as

s γ g γ ε g s k K= (1 − − ) + + , = 1, …, .k t k k k k t k k t,
2

, −1
2

, −1
2 (9)

Under suitable distributional and parametric restrictions ( ≥γ g> 0, 0k k and γ g+ < 1k k ),
the GARCH processes εk t, are covariance stationary (Milunovich & Yang, 2013). Sentana and
Fiorentini (2001) have shown that the structural parameters in B can be determined un-
iquely by means of (quasi) ML estimation, if at least K − 1 structural shocks exhibit dynamic
GARCH‐type variance patterns. Henceforth, we denote the structural matrix estimates based
on changes of variance as BGARCH .

Irrespective of an applied identification scheme, any identified matrix B is unique only up to
the ordering and signs of its columns. With ⋅b i denoting a typical column of B it is immediate to
observe that the reduced form covariance (Σ) allows for a representation ∑ ⋅ ⋅b bΣ = BB′ =

i

K
i i=1
′ .

In the bivariate case, for example, the matrices ⋅ ⋅b b[ ]1 2 , ⋅ ⋅b b[− ]1 2 or ⋅ ⋅b b[− ]2 1 imply the same
covariance BB′ = Σ. Hence, the explicit exposition of structural parameter estimates deserves a
suitable guideline. We follow the convention to document impact effects of positive shocks. In

2
For simplicity of demonstration of this identification scheme, assume that there are two distinct covariances (denoted as Σ(1) and Σ(2)) that characterise the

reduced form residuals ut across two disjoint subsamples. From these subsamples, one can estimate two sets of ∕N N( + 1) 2 empirical (co)variances. The two

covariance matrices allow for a reparameterization as Σ = BB′(1) and B BΣ = Λ ′(2) , where Λ is a diagonal matrix. This representation comprises

N N N N+ = ( + 1)2 unknown parameters that formalise the structural model. Hence, it becomes possible to map the estimated (co)variances one‐to‐one into
the parameter space of the structural model. For a unique mapping, however, it is essential that the diagonal elements in Λ are distinct from each other.

Otherwise single structural shocks remain unidentified.
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case that a particular structural matrix candidate obtained from SVAR estimation has a ne-
gative diagonal element (i.e., b < 0ii ), ⋅b i is multiplied with minus one. To achieve a unique
column ordering, we choose from the set of alternative column orderings the one which implies
the largest sum of diagonal elements of B (Lütkepohl & Netšunajev, 2017). Hence, an identified
structural shock is supposed to exert the strongest effect on the particular variable to which it is
primarily associated.

3 | DATA AND PRELIMINARY ANALYSIS

In this section, we introduce the data and conduct a preliminary analysis with recursive SVARs.
Our analysis focuses on the US stock market index (the Dow Jones Industrial Average—DJIA),

the German stock market index (DAX) and the UK stock market index (FTSE 100). The daily realised
volatilities for the three indices are obtained from Oxford‐Man Institute.3 It is the sum of the squared
intraday log‐price changes of the index over 10min intervals (Andersen et al., 2001; Barndorff‐Nielsen
& Shephard, 2002). Daily data on trading volumes have been obtained from Datastream. It is the total
number of shares traded from the underlying stocks of the corresponding index per day in millions.
With regard to data on Google search queries, those for the keywords “DOW” (US search queries)
from the 3 July 2006 to the 30 December 2011 are from Dimpfl and Jank (2016). Search queries for
the keywords “FTSE” (UK stock market) and “DAX” (German stock market) from the 3 July 2006 to
the 30 June 2011 are from Dimpfl and Jank (2011).4 These are the longest time series of search
queries daily data that we can obtain for each market and that were directly downloaded from Google
trend.5 The time periods of available data on search queries determine the sample period of the SVAR
models in the analysis.

Table 1 presents descriptive statistics for search queries (SQ), realised volatilities (RV) and
trading volume (VO). For RV, the raw data are heavily skewed and have excessive kurtosis.
Applying the log transformation, however, reduces the skewness close to zero and the kurtosis
close to three. The log transformation also helps to reduce the high skewness and larger
kurtosis of SQ. We use all variables in natural logarithms in our analysis. The estimated AR
coefficient matrices in the (reduced form) VAR models are similar to those in Dimpfl and Jank
(2011) and Dimpfl and Jank (2016). They are not reported here for space considerations.

The linear relation between structural shocks and observable variables is unique if the
former are independent and non‐Gaussian distributed. Hence, the applicability of the identi-
fication of independent components relies on the testable assumption of non‐Gaussianity.
Unreported diagnostic results from Jarque‐Bera tests of the null hypothesis of joint Gaussianity
of the reduced form model residuals (i.e., p‐values < 0.01%) indicate that model residuals are at
odds with the assumption of joint Gaussianity.6 As alternative recursive models imply quite

3
We downloaded the data from https://realized.oxford-man.ox.ac.uk/ and multiplied them by 100 so that the scale is comparable to the one from realised

volatilities in Dimpfl and Jank (2016).
4
We were not able to use the Google search queries for the keywords “CAC” (French search queries) as daily data on trading volumes for CAC 40 is not

available in Datastream for the time period considered.
5
We are grateful to Thomas Dimpfl and Stephan Jank for providing us with these data. They downloaded the data from Google trend directly when it was

possible to download daily data for a period of more than 270 days. From October 2018, daily Google trends data are only provided for a 270‐day period and a

direct combination of each 270‐day data set is not feasible, as each data set is standardised with regard to a particular reference date.
6
An implicit indication of leptokurtic model residuals and hence of non‐Gaussianity obtains from the estimation of GARCH‐type variance processes in the

context of identification via heteroskedasticity. As displayed in Table 7, all GARCH processes fitted to respective structural shocks indicate clear evidence for

GARCH and, hence, against both marginal and joint Gaussianity.
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distinct hierarchical/causal patterns of shock transmission, it is interesting to unravel in how
far these transmissions apply to independent shocks or only to orthogonalized model residuals.
Accordingly, independence diagnosis provides indicative information on alternative variable
orderings in the VAR model. We use distance covariance statistics to assess the dependence of
orthogonalized model residuals implied by lower triangular covariance factors under two and
six alternative variable orderings in bi‐ and trivariate VARs, respectively.7 Given strong evi-
dence against multivariate Gaussian models, it is not surprising to see that most variations of
variable orderings in lower triangular models obtain orthogonalised model residuals which lack
independence.

As can be seen in Table 2 for all markets, orderings with SQ not in the first position obtain
strong evidence against the null hypothesis of independence (p‐values < 1%). For the few cases
where the null hypothesis of independence cannot be rejected, SQ is in the first position
throughout and RV is ordered second. Hence, from the set of potential hierarchical models the
particular order where shocks to SQ have an immediate impact on the remaining variable(s) of
the dynamic system seems best in line with the assumption of independent shocks. Specifically,
for such triangular covariance decompositions the p‐values for the German market with the
order—(SQ, RV)—in the bivariate VAR and the order—(SQ, RV, VO)—in the trivariate VAR
are in excess of 10% and 5%, respectively. The p‐value for the US market with the order—(SQ,

TABLE 1 Descriptive statistics

This table reports the statistics for search queries (SQ), realised volatilities (RV) and trading volumes (VO). Data
for RV is multiplied with 1000 to facilitate visualisation.

DOW DAX FTSE

SQ RV VO SQ RV VO SQ RV VO

Raw data

Min. 0.294 0.272 52.64 0.437 0.447 1.593 0.523 0.703 66.77

Max. 11.27 767.3 673.0 8.675 689.6 494.0 8.257 1261.6 2757.3

Mean 0.999 18.24 234.0 1.000 17.52 136.5 1.000 20.70 1282.1

SD 0.458 1.202 0.344 0.318 1.014 0.373 0.318 1.052 0.385

Skewness 5.206 8.299 1.474 6.802 9.201 2.155 5.967 12.94 0.283

Kurtosis 48.14 113.02 6.089 66.66 131.04 11.00 54.29 250.74 2.525

Data in natural logarithms

Min. −1.225 −8.210 3.963 −0.829 −7.713 0.466 −0.648 −7.260 4.201

Max. 2.422 −0.265 6.512 2.160 −0.372 6.203 2.111 0.232 7.922

Mean −0.131 −4.841 5.395 −0.069 −4.666 4.849 −0.067 −4.592 7.091

SD 0.458 1.202 0.344 0.318 1.014 0.373 0.318 1.051 0.385

Skewness 1.248 0.415 0.163 2.374 0.460 −1.016 2.300 0.585 −1.215

Kurtosis 5.690 3.114 3.810 12.86 3.601 18.58 11.24 3.793 7.768

7
For testing independence of orthogonalized model residuals, we use the default implementation of the ‘gmultidcov’ function in the R package steadyICA (Risk

et al., 2015). Respective p‐values are determined by means of a permutation test with 999 replications (‘permTest’).
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RV, VO)—is about 5%. With these exceptions, however, hierarchical models generally fail to
yield structural shocks which can be reasonably considered as independent. Hence, it is of
further interest to investigate if unrestricted covariance decompositions allow the retrieval of
unique independent structural shocks.

4 | DATA ‐DRIVEN SVARS

In this section we discuss the model selection, present structural parameter estimates and
results from the data‐driven SVARs. We also show some further model diagnostics which
underpin the informational content of independent components and disproportional covar-
iance changes for model identification.

4.1 | Model selection

Empirical estimates from the two alternative identification approaches (BDC and BGARCH ) are
quite similar for all markets under scrutiny. For all markets, bivariate specifications identified
by the two alternative data‐based identification schemes obtain shocks with almost complete
correlation, that is, correlation estimates which are beyond 0.99 throughout. With regard to the
trivariate specifications, even the smallest correlations between shocks implied by BDC and
BGARCH are 0.9768, 0.9453 and 0.9991 for the DOW Jones, DAX and FTSE market, respectively.
Moreover, two structural shocks retrieved from trivariate models correlate strongly with their
counterparts obtained from bivariate specifications. In this regard, the smallest (out of two)
correlation statistics are 0.995, 0.983 and 0.971 for the Dow Jones, DAX and FTSE market,
respectively. This supports the robustness of the underlying shocks identified by means of
SVARs of alternative dimensions K = 2, 3.

TABLE 2 Diagnostic results

This table reports diagnostic results for orthogonalized model residuals from lower triangular models applied to
distinct variable orderings. Orderings are indicated in the first line. Distance covariance test statistics (stat.) and
p‐values are multiplied by 100. Abbreviations: RV, realised volatilities; SQ, search queries; VO, trading volumes.

(SQ,
RV)

(RV,
SQ)

(SQ,
RV, VO)

(SQ,
VO, RV)

(RV,
VO, SQ)

(RV,
SQ, VO)

(VO,
RV, SQ)

(VO,
SQ, RV)

DOW

stat. 0.244 3.715 0.149 0.702 2.849 2.488 3.247 2.030

p‐value 0.500 0.100 4.900 0.100 0.100 0.100 0.100 0.100

DAX

stat. 0.027 2.239 0.127 0.800 1.831 1.700 2.274 1.537

p‐value 24.9 0.100 7.20 0.100 0.100 0.100 0.100 0.100

FTSE

stat. 0.431 3.576 0.653 0.510 3.025 3.103 2.858 0.804

p‐value 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
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As the identified structural parameter matrices BDC and BGARCH are quite similar for all
markets and VAR dimensions, the following discussion of empirical results refers mainly to the
implications of BDC . We provide further diagnostic outcomes subsequent to the discussion of
estimation results.

4.2 | Structural implications of identified models

The estimation of the structural relations confirms that retail investors' attention (measured by
Google search queries) affect stock return volatility contemporaneously, whereas effects of
volatility on search queries are negligible. This evidence is robust and can be found for all three
stock indices and both identification schemes. Table 3 summarises the estimated structural
relations for shocks in SQ and RV. All matrices are close to a lower triangular matrix. Nu-
merical values of the upper right estimates are very close to zero albeit statistically significant in
some cases. This result confirms the adopted variable ordering for a recursive SVAR model, as
indicated by the preliminary analysis.

Our results are consistent with the existing theories. In the noise trader model of De Long
et al. (1990), when noise traders are present, asset prices become excessively volatile such that
they move more than can be explained by changes of fundamental values. In the agent‐based
model of Lux and Marchesi (1999), exogenous shocks of the fundamental prices can be in-
terpreted by noise traders as a potential future trend. If there is a large fraction of noise‐trader
agents in the market, the volatility of the stock increases. In the model of Andrei and Hasler
(2015), when investors pay more attention to news, new information is quickly incorporated
into prices and, thus, induces high return volatility. All these theoretical models are supporting
our results. Google search queries approximate the retail investors' (noise traders') attention.
The higher the volume of search queries, the more interest (retail) investors show. As more
(retail) investors trade, the volatility increases.

TABLE 3 Estimated structural relations in bivariate structural vector autoregressive models

The table reports the estimates of the structural parameters in B (standard errors in parentheses) determined by
means of Distance Covariance criteria (DC; left hand side) and generalised autoregressive conditional
heteroskedasticity (GARCH) method (right). The search query (SQ) is the first and the realised volatility (RV)
the second variable in the analysed series yt . Parameter estimates with 5% significance are highlighted.

DC GARCH

DOW SQ ⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

0.1614

0.3006 0.6124

−0.0010
(0.0002) (0.0072)

(0.0272) (0.0138)

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

0.1719 0.0173

0.2412 0.6485

(0.0220) (0.0074)

(0.0468) (0.0200)
RV

DAX SQ ⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

0.1442

0.1873 0.5124

−0.0070
(0.0003) (0.0056)

(0.0201) (0.0072)

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

0.1581

0.2015 0.5099

−0.0076
(0.0225) (0.0082)

(0.0409) (0.0213)

RV

FTSE SQ ⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

0.1501 0.0243

0.3154 0.5016

−
(0.0011) (0.0061)

(0.0201) (0.0131)

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

0.1496 0.0253

0.3173 0.4964

−
(0.0184) (0.0083)

(0.0410) (0.0205)

RV
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Introducing trading volumes as a third variable into our system confirms that shocks in
search queries affect trading volumes on impact. Table 4 summarises the estimated struc-
tural relations (B matrices) of the trivariate SVARs comprising SQ, RV and VO. The re-
lationships between the first two variables (SQ and RV) documented in Table 4 are very
close to those characterising the bivariate systems (documented in Table 3). Whereas
shocks in SQ affect RV contemporaneously (see estimates of b21), shocks in RV exert only
weak impacts on SQ (see estimates of b12). Now consider impacts on VO. Shocks in SQ affect
VO significantly in all three markets (see estimates of b31). Moreover, there is some evidence
of significant impacts of shocks in RV on VO for Dow Jones and DAX as implied by BDC

(see estimates of b32).
Now consider the impacts of shocks to trading volumes (see estimates in ⋅b 3). In this regard,

we do not find any significant impact from shocks in VO on SQ. This result is intuitive.
Information about trading volumes is not a popular topic on mass media, as such changes in
trading volumes would not draw the attention of the retail/noise investors immediately and
thereby affect search queries. Shocks in VO show significant impacts only on RV of FTSE. The
weak indications of impacts of the VO on RV are consistent with the evidence from the
literature that information on trading volumes does not improve the accuracy of volatility
forecasts (e.g., Brooks, 1998).

Though estimates of the structural matrix B demonstrate contemporaneous instantaneous
effects of structural shocks on the variables of a dynamic system, their numerical interpreta-
tions are limited. In contrast, the model‐implied marginal effects as displayed in Equation (6)
allow for a direct interpretation of effects among the variables conditional on the history Ωt−1.

TABLE 4 Estimated structural relations in trivariate structural vector autoregressive models

This table reports the estimated structural relations (B matrices) of the trivariate SVAR models, with standard
errors in parentheses. The search query (SQ) is the first, the realised volatility (RV) the second, the trading
volume (VO) the third variable in the analysed series yt . Parameter estimates with 5% significance are
highlighted.

DC GARCH

DOW SQ ⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

0.1610

0.3070 0.6083

0.0928 0.0731 0.2042

−0.0026 0.0054
(0.0004) (0.0083) (0.0043)

0.0169
(0.0313) (0.0163) (0.0342)

(0.0072) (0.0115) (0.0050)

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

0.1736

0.2433 0.6359

0.0800 0.2153

0.0146 0.0134
(0.0247) (0.0138) (0.0098)

0.1352
(0.0554) (0.2279) (0.1561)

0.0465
(0.0249) (0.0509) (0.0801)

RV

VO

DAX SQ ⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

0.1439

0.1872 0.5055

0.0902 0.0914 0.2416

−0.0071 0.0022
(0.0004) (0.0056) (0.0067)

−0.0104
(0.0196) (0.0103) (0.0576)

(0.0108) (0.0275) (0.0112)

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

0.1494

0.1948

0.1007

−0.0080 −0.0037
(0.0317) (0.0265) (0.0077)

0.4818 0.1503
(0.0642) (0.2592) (0.1532)

0.0174 0.2557
(0.0587) (0.0659) (0.1372)

RV

VO

FTSE SQ ⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

0.1496 0.0235

0.3074 0.4895 0.1232

0.0489 0.2324

− 0.0099
(0.0011) (0.0061) (0.0069)

(0.0204) (0.0138) (0.0321)

0.0190
(0.0100) (0.0147) (0.0029)

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

0.1430 0.0281

0.3068 0.4754 0.1445

0.0447 0.2337

− 0.0118
(0.0195) (0.0107) (0.0127)

(0.0410) (0.1116) (0.0505)

0.0103
(0.0190) (0.0136) (0.0537)

RV

VO
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Table 5 summarises the model‐implied marginal effects for all markets and models.8 As all
variables are measured in natural logarithms, the documented estimates allow for an inter-
pretation as elasticities conditional onΩt−1. Changes in SQ have almost a doubled effect on RV.
When the Google search volume on the stock index (relative to the total search volume)
increases by 1%, RV increase by 1.3%–2.1% depending on the market. This result is found in
both bivariate and trivariate SVARs. In addition, when the relative search volume increases
by 1%, VO of the corresponding index increases mildly by about 0.2%–0.4%.

As the next, we look at the long‐term impact of the identified contemporaneous
structural relationships. This can be observed through IRFs, which trace the effects of the
identified structural shocks on the variables of the system over time. Figure 1 shows the

TABLE 5 Estimated marginal effects

This table reports the estimates of marginal effects as defined in Equation (6). More specific, let
ω j, = 1, …, 5t

j
−1
( ) , denote quantities that are available from sample information Ωt−1 and estimated reduced

form model parameters. Then, bivariate structural vector autoregressive models (SVARs) have the following
structure

←

←

a ω

a ω

SQ = RV + ,

RV = SQ + .

t t t

t t t

SQ RV −1
(1)

RV SQ −1
(2)

Structural relations in trivariate SVARs are of the form:

← ←

← ←

← ←

a a ω

a a ω

a a ω

SQ = RV + VO + ,

RV = SQ + VO + ,

VO = SQ + RV + .

t t t t

t t t t

t t t t

SQ RV SQ VO −1
(3)

RV SQ RV VO −1
(4)

VO SQ VO RV −1
(5)

Significant parameters at the 5% level are highlighted in bold face. Standard errors are in parentheses.

Bivariate SVARs Trivariate SVARs

←aRV SQ ←aSQ RV ←aRV SQ ←aVO SQ ←aSQ RV ←aVO RV ←aSQ VO ←aRV VO

DOW DC 1.862 −0.0016 1.8876 0.3446 −0.0075 0.1216 0.0269 0.033

(0.17) (0.012) (0.2318) (0.0451) (0.0137) (0.0176) (0.0213) (0.1672)

GARCH 1.4033 0.0267 1.1452 0.3706 0.0193 0.0646 0.0503 0.5563

(0.1936) (0.0117) (5.478) (0.2549) (0.0858) (0.1296) (0.4323) (0.8617)

DAX DC 1.2993 −0.0138 1.3352 0.3847 −0.0155 0.1861 0.0086 −0.0556

(0.141) (0.0111) (0.2394) (0.1133) (0.0129) (0.0563) (0.0277) (0.2597)

GARCH 1.2742 −0.0148 0.8992 0.6136 −0.0165 0.0464 −0.0046 0.6005

(0.2891) (0.0174) (12.5775) (1.9496) (0.0714) (1.0361) (0.3779) (0.6333)

FTSE DC 2.1013 −0.0484 1.9087 0.2247 −0.0508 0.0496 0.0696 0.4484

(0.1497) (0.0136) (0.16) (0.088) (0.0138) (0.0267) (0.0321) (0.1518)

GARCH 2.1218 −0.0509 1.9829 0.2362 −0.0609 0.0357 0.088 0.5183

(0.2514) (0.0188) (0.3565) (0.6992) (0.0428) (0.128) (0.894) (0.1652)

8
The marginal representations involve a rescaling of the elements of structural shock vectors εk t, by the structural volatilities.
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FIGURE 1 Impulse response functions (IRFs) for the trivariate structural vector autoregressive (SVAR)
model. This figure displays IRFs for the trivariate SVAR model (implied by BDC for the Dow Jones) and the 95%
bootstrap confidence intervals. The R‐package ‘svars’ supports the analyst with tools of bootstrap inference
which are commonly used in (structural) VAR analysis. We opt for a recursive design moving block bootstrap
approach. Brüggemann et al. (2016) have shown the asymptotic validity of moving block bootstrap designs for
inferential analysis in SVAR models. The chosen block length is 30 which is between 2.17% (Dow Jones) and
2.38% (FTSE) of the overall available sample information. The number of bootstrap replications is 1999
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IRFs for the trivariate SVAR model as implied by BDC for the Dow Jones.9 A shock in SQ
has a significant impact on RV up to around 90 days and on VO up to around 35 days. The
magnitude of the impact on RV is almost five times larger than the one on VO. A shock in
RV also has a significant impact on the VO lasting for about 10 days. There are no further
significant IRFs among other variations of the pairing of the variables. This evidence
confirms that the contemporaneous relationships among the variables dominate the sub-
sequent dynamics (IRFs).

It is then not surprising to see that a recursive SVAR model with a different variable
sequence than the one suggested by the data‐driven approach produces different IRFs, which
can be misleading. Figure 2 shows the IRFs from a recursive SVAR model using the ordering
(RV, SQ, VO). This structure implies that RV have an impact on the other two variables and SQ
have an impact on VO. Indeed, the IRFs (Row 1 Column 2) show that RV have a lasting
significant impact on the SQ up to 40 days, which are entirely different from the corresponding
ones in Figure 1 showing no significant impacts. This result is purely driven by the assumption
that RV affects SQ in the recursive structure. Considering the IRFs of RV to shocks in SQ, the
initial zero response (due to the assumed recursive structure) gives way to significant responses
from 10 days onwards which is due to lagged impacts of SQ on RV (significant AR coefficients).
Also the exclusion of contemporaneous impacts of SQ on RV seems to weaken the magnitude
of the IRFs compared with results from the unrestricted structural model evaluation displayed
in Figure 1.

4.3 | Further diagnostics

This subsection provides further diagnostics which highlight the informational content of the
adopted data‐driven SVAR models. We first discuss results from independence tests applied to
model implied shocks and subsequently comment on the informational content of estimated
GARCH models as given in Equation (9).

Considering the results of independence tests in Table 6, it turns out that the estimation of
structural shocks in a data‐based manner results in independent shocks for most cases. Unlike
the lower triangular models, structural models implied by BDC obtain for four out of six
specifications, p‐values of the distance covariance in excess of 10%. Although one should be
careful in interpreting these supremum p‐values in the usual way as evidence in favour of the
null hypothesis, it seems that identified shocks are not only orthogonal but also independent
and unique in this sense. Subjecting the structural shocks identified by means of patterns of
conditional heteroskedasticity to independence testing is largely in line with the outcomes for
the independence‐based identification. For three systems (bivariate: DAX and FTSE; trivariate:
FTSE) we find that the hypothesis of independent structural shocks cannot be rejected with
10% significance.

Sentana & Fiorentini (2001) have shown that assuming conditionally heteroskedastic
structural shocks allows the full identification of the structural model if at least K( − 1)

processes εk t, are well described by (G)ARCH processes. For the emergence of stylised
patterns of volatility clustering, it is essential that the news response parameter (i.e., γ in
Equation 9) is positive (and significant). To diagnose if the SVAR model is fully identified

9
IRFs from other market indices and the GARCH identification method lead to the same conclusion that the contemporaneous relationship among the variable

dominates the IRFs.
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under conditionally heteroskedastic shocks, Table 7 documents GARCH parameter esti-
mates and respective standard errors. As all documented estimates γ̂ are significant at
conventional levels, it follows that the respective SVARs are fully identified for both di-
mensions (K = 2, 3) and all markets.

FIGURE 2 Impulse response functions for the recursive structural vector autoregressive model, with the
ordering of search queries (SQ), realised volatilities (RV) and then trading volumes (VO). See notes in Figure 1
for details on bootstrap inference

274 | EUROPEAN
FINANCIAL MANAGEMENT

HERWARTZ AND XU



5 | MARKET SENTIMENT

The previous analysis has highlighted the contemporaneous impact of retail investors' attention
on stock market volatility. This section explores what might trigger changes in retail investors'
attention. De Long et al. (1990) demonstrate that changes in investors' sentiment can lead to
more noise trading and excess volatility, if uninformed noise traders base their trading deci-
sions on sentiment. Da et al. (2015) confirm the positive contemporaneous relationship

TABLE 6 Independence diagnostics for identified shocks

This table reports the results of independence test. Statistics (stat.) and p‐values are multiplied by 100.
Abbreviation: SVARs, structural vector autoregressive models.

Bivariate SVARs Trivariate SVARs

DOW DAX FTSE DOW DAX FTSE

Distance covariance

stat. 0.240 −0.029 −0.064 0.122 0.080 0.046

p‐value 0.300 62.8 87.7 8.00 14.7 26.9

GARCH

stat. 0.501 −0.020 −0.062 0.465 0.362 0.068

p‐value 0.100 57.7 84.4 0.100 0.700 19.0

TABLE 7 GARCH parameter estimates

This table reports the GARCH estimates. Note they do not comprise an unrestricted intercept as the
unconditional variance of the structural shocks is normalised to unity by assumption. Abbreviation: SVARs,
structural vector autoregressive models.

DOW DAX FTSE

γ̂ ĝ γ̂ ĝ γ̂ ĝ

Bivariate SVARs

ε1 0.1331 0.8007 0.2227 0.7099 0.1358 0.8027

(4.6E−04) (1.1E−03) (3.6E−04) (6.5E−04) (4.3E–04) (1.0E–03)

ε2 0.0167 0.9764 0.0366 0.9456 0.0086 0.9750

(9.2E−05) (2.7E−04) (2.3E–04) (7.5E−04) (5.0E–05) (5.9E−04)

Trivariate SVARs

ε1 0.1591 0.7690 0.2139 0.7167 0.1284 0.8081

(5.5E–04) (1.2E−03) (3.2E−04) (5.8E−04) (3.7E−04) (9.5E−04)

ε2 0.1378 0.0010 0.1532 0.6920 0.3616 0.2133

(8.4E−04) (2.4E–02) (6.3E−04) (2.3E–03) (1.9E−03) (8.1E−03)

ε3 0.0124 0.9842 0.0415 0.9404 0.0120 0.9656

(3.0E−05) (5.9E–05) (3.2E−04) (9.7E–04) (7.3E−05) (7.4E−04)
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between sentiment and the market volatility empirically. This section shows that the retail
investor's attention can be part of this transmission channel. Changes in the market sentiment
have a significant impact on variations in retail investors' attention.

We adopt the FEARS sentiment index of Da et al. (2015) in SVAR models. This index is
more transparent compared with market‐based measures and available at a higher frequency
compared with survey‐based sentiment measures. It reveals market‐level sentiment by ag-
gregating the internet search volume of queries related to households' sentiment about the
economic conditions. Search queries with strongest historical correlations with the market—
such as gold prices, recession, GDP, bankruptcy, unemployment—are used to construct the
index. Data for this index is only available for the United States, however, and can be obtained
from Joseph Engelberg's website.10

We use the FEARS index based on the top 25, 30 and 35 search terms, which are denoted as
FEARS25, FEARS30 and FEARS35, respectively. It is calculated as the sum of daily log changes
of top search terms, each of which is adjusted (winsorized, deseasonalized and standardised;
see Da et al., 2015 for details). We winsorized and desasonalized the daily changes of SQ on
DOW in the same way,11 to obtain an adjusted SQ growth, denoted SQG. Table 8 provides the
descriptive statistics of the series. The various FEARS indices have similar distributions with a
minimum around −1.6 and maximum around 3. The SQG series has a minimum around −0.33
and a maximum about 0.43. Bivariate SVAR models with SQG and FEARS are then estimated
and the estimated marginal effects (see Equation 6) are shown in Table 9.

We have robust evidence for the impact of FEARS on SQG. The estimated marginal effects
are significant and vary between 0.08 and 0.12 depending on the FEARS index (FEARS25,
FEARS30, or FEARS35) and the identification method (DC or GARCH). As both variables are
growth rates of internet search terms, this indicates that a 1% increase in aggregated search
terms revealing sentiment leads to around 0.1% increase in search on DOW in the United
States. In contrast, impacts of SQG on FEARS are subject to high estimation uncertainty and
lack significance. The evidence from the bivariate SVAR models confirms the con-
temporaneous impact of market sentiment on retail investors' attention.

6 | CONCLUSION

This paper fills the gap of literature on the relationship between investor attention and stock
market activities by identifying the underlying structural transmission among Google search
queries, realised volatilities and trading volumes in the US, German and UK markets. We adopt
data‐based approaches to structural VAR identification. Unlike the a‐priori imposition of tri-
angular (i.e., hierarchical) model structures, the data‐based identification allows to estimate the
structural model parameters in an unrestricted manner. We consider the two identification
strategies to provide complementary information. One is identification through the in-
dependence of non‐Gaussian structural shocks and the other is identification via conditionally
heteroskedastic structural shocks. Our results show the important role of the investor attention
in stock markets. Whereas shocks in investor attention affect volatilities and trading volumes
immediately, shocks in volatilities and trading volumes do not exert an instant impact on

10
https://rady.ucsd.edu/faculty/directory/engelberg/pub/portfolios/research.htm

11
We do not standardise this series, noticing that standardisation is used in Da et al. (2015) to make their series of search terms comparable. As we have only

one search term regarding a stock index (SQ), this step is not necessary.
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investor attention. Our results are largely robust across the three markets, with alternative
identification schemes and using bivariate or trivariate SVAR models. Although our analysis
does not fully support the assumption of a hierarchical model, our results provide important
guidance on the hierarchical structure of the variables if a recursive SVAR model were used.
Finally, our bivariate SVAR models with FEARS indices in the United States and growth rates
of search queries on DOW support the view that market sentiment has an impact on retail
investor's attention.
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