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Abstract

In this paper new expressions for the field produced by the
diffraction of a cylindrical wave source by a wedge, whose angle
can be expressed as a rational multiple of m, are given. The solutions
are expressed in terms of source terms and real integrals which represent
the diffracted field. The general result obtained includes as special
cases, Macdonald's solution for diffraction by a half plane, a solution
for Carslaw's problem of diffraction by a wedge of open angle 2n/3 , and
a new representation for the solution of the problem of diffraction by

a mixed soft/hard half plane.






1. Introduction

This paper is a sequel to the paper Rawlins (1986), in which the
solution to the problem of the diffraction of a plane wave by a rational
wedge is given in terms of geometrical acoustic terms, and real integrals
representing the diffracted field. Here we shall give an analogous solution
to the problem of diffraction of a cylindrical acoustic wave by a wedge

whose angle can be expressed as a rational multiple of m.

The exact solution of the problem of diffraction by a soft or hard
wedge of any angle, in the two dimensional case of cylindrical acoustic
wave incidence, is due to Macdonald (1902). The solution was given in the
form of a complex contour integral, which was obtained by summing the
Fourier series representation of the Green’s function. For the special
case of a wedge which reduces to a half plane, Macdonald showed how the
contour integral could be reduced to an elegant form involving real integrals.
Though the form of Macdonald's solution is extremely simple the method
used in obtaining it required a considerable amount of analysis. The problem
of the diffraction of a line source by a half plane had been solved earlier
by Carslaw (1899) using a method based on that used by Sommerfeld (1896)
in considering diffraction by a plane wave. Carslaw's solution, though
equivalent to Macdonald's solution, was of a different form. Sommerfeld's
method was heuristic, using the physical method of images in various
mathematical Riemann sheets associated with a multivalued function. Although
the hybridism of the mathematical and physical concepts was considered
abstruse it did produce exact solutions to hitherto insuperable problems
in diffraction theory. Carslaw who was an early convert to Sommerfeld's
method later gave up using the idea of Riemann surfaces and instead used

the more modern approach of using periodic Green's functions. Before giving



up the Sommerfeld approach to solve diffraction problems, he espoused the
cause of Sommerfeld by writing some fairly long expository papers on his
method with applications. In particular he gives in Carslaw (1899), a rather
lucid description of Sommerfelds technique by considering the problem of
diffraction by a wedge of open angle 2n/3 when the normal method of images
breaks down. This particular example is often used elsewhere to describe
Sommerfeld’s method, see Carslaw (1906), p356, Carslaw and Jaeger (1959)
p279. Baker and Copson (1949) p124, however nowhere is the explicit solution
given in terms of sources and images and real integrals representing the
diffracted field. We shall give such a solution here as a special case
of a more general result. Our approach avoids Sommerfeld's use of Riemann
surfaces and simply uses the periodic Green's function for an arbitrary
angle wedge. We then consider the special case of a wedge whose angle
can be expressed as a rational multiple of m. It is then shown, by means
of an appropriate integral representation for a Bessel function, that the
Green's function for a cylindrical line source can be derived from the
plane wave Green's function for a rational wedge. This enables us to
obtain a representation for the Green's function for a cylindrical source,
in the form of source and image terms and real integrals which are convenient
for calculations of the diffracted field. We remark that recently there
has been much work done on asymptotics for the wedge, see Deschamps (1985).
The results presented here offer a new approach, in that a wedge of any
angle can be approximated to any order of accuracy by a rational wedge of
angle pn/q (p and q integers), and the real integrals obtained in this

paper can be asymptotically evaluated without difficulty.



In section 2 we shall give the periodic Green's function for a
cylindrical wave source and a wedge of arbitrary angle. The Green's
function is in the form of a complex contour integral. Some of the
important properties of the Green's function are stated, and appropriate
expression, in terms of this Green's function, are given for various
diffraction problems. In section 3 we shall consider in detail the special
case of evaluating the complex contour integral representation of the Green's
function for a wedge whose angle can be expressed as a rational multiple of =.
In section 4 we shall give expressions for the Green’s function for special
cases of wedge angles. Finally in section 5 we shall give solutions to some
specific problems in diffraction theory which are special cases of the more
general result obtained in section 4. The first problem is the classical
problem of diffraction by soft or hard half plane by a cylindrical source,
whose solution was given the different forms by Carslaw (1899), and
Macdonald (1902), (1915). The second is Carslaw's (1899) didatic problem,
used to describe Sommerfeld's technique of diffraction by an open wedge of

angle 2mn/3, no explicit solution has appeared in the literature for this

problem. The last is a new result for the problem of diffraction by a

soft/hard plane by a cylindrical source.

In order not to disrupt the flow of the arguments in the main text
of the paper, various proofs of results needed have been placed in appendices

at the end of the paper. We remark in particular that in appendix A we
derive a useful integral representation for the Hankel function HE/Z)(Z),

largz|<m/2, Rev>-1. This integral 1s closely related to a result given
by Macdonald (1897), which does not seem to be well known. Macdonalds
derivation does not give precise ranges of validity, and Watson's treatise on

Bessel functions seems to have overlooked this integral representation.
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2. Periodic Green's function for a wedge

The periodic Green's function G(r, 0, 1), 0,;k) for a two dimensional
wedge situated in the space 0<r< o, 21 — a<0<2m see fig 1, where
(r,0) are cylindrical polar coordinates has been shown by Carslaw (1920)

to be given by

1 sinnl/a
G (1,0,1,,00;k) = — | HJ[kR dg, 1
(5:0:%5,003) 201 J; o [KRE)] cosnl/a — cosmos—0,)/a : o
where R( §) = \/r2 + 1y — 2r, cos (o and the square root is defined by

—m/2<arg R({) <n/2. The contour of integration ¢ is such that the
starting point is given by i + c,and the termination point is given by

lo+c, where—-mn<c; <0, m<c, <2n. The contour of integration c

lies below the branch point {= a = cosh™'((t* +15)/2ry), and does not

intersect the branch cut : Re{=0 a<Im{<x, see fig 2.
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It has been shown by Carslaw that G_,(r,0,1,,0,;k) has the following
properties

2 2
(i) (V2 +k?) Gy = 0, where V2 58—2 f10 , iza—z ,
or ror = 09
for all points (r,0) = (1, ,60),
(11) Ga(r,e,r ,Go;k) = Ga(r,9+2a, rO,OO;k) ,

(ii1) Ga(r,e,r ,Oo;k) is finite and continuous for all (r,0) # (r,,0,),
. 2
(iv) Gy (n0.1.00:k) ~ HED[kRO-0,)], as (1.0) — (1.0, @)

~ 0, as r — oo,
u i iv v 1v uti
The Green's function en above enables one to derive solutions

to various diffraction problems in wedge shaped regions. To be specific

we shall discuss acoustic waves. The solution U, or U, of the problem of
a cylindrical wave*
2
U, — HPKRO-6,)]. (3)
diffracted by a rigid wedge (0U,/00 =0 for 6 =0 and 6 =a) or a soft

wedge (US =0 for 6=0and O = a) is given by

Uy =G, (1.0,79,0:k) +G_(r,0,r ,=0,:k), (4)

or
U, =G, (1,0,1,,0:k) -G (,0,1,,-0,:k), (5)

respectively.

The solution Uy, of the problem of a cylindrical wave (3) diffracted

by a wedge whose face 6 = 0 is rigid (6Uh/S |00 =0) and whose face 0 = a is
soft (Uh/S =0) is given by

Uh/S=G2a(r,9,r ,Go;k) + Gza(r,—e,ro,eo;k)

—Gza(r,e,r ,2a—90;k) - Gza(r,e,r ,-2a+90;k). (6)

. . . .. 1
(*Footnote: The wave is assumed to have time harmonic variatione wt , but

will not be shown explicitly in the rest of the paper).
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3 Line source Green's function for a rational wedge

If the wedge angle a is a rational multiple of m i.e.,
o=pn/q where p and q are integers the line source Green's function

(1) becomes

_ q sin (q¢/p) dc
“pr 0000t =onip LMo IR O ) = cos (0-0)a/m) @
q

By using the integral representation for the Hankel function, (A.4) of

appendix A with v = 0, we have

i otk (12412 ik2rr
0 — ( 0 ))—i- Ocos(; dt

e 2 t t - (8)
0 +1ic t

2 1
HE RO = —|

where ¢>0 and the contour of integration is as shown in fig 5.

Substituting the representation (8) into the expression (7), and
interchanging the order of integration (which is permissible since

integrals are uniformly convergent) gives

i t+ k2(r2+r02) 2
1 0 S I‘ dt
Gpn (0.1900:k) = —[ e 2 t Gpr (0 90>—) L))
d q
where
a1 1krcosC q sin (q(/p) dg |
Gp(;t (r,0,19,00:k) _—2nip'[ cos(Cq/p) — cos ((0— eo)q/P) (10)

is the plane wave Green's function for a rational wedge. It has been
shown Rawlins (1986) that the integral (10) can be written in the alternative

form:

1 ikrcos(6 0, +2nmp/q)
G_(r,0,0,;k) = > H[n—|0-0,+2nmp/q+2npN|]e
pm 0 N 0

e m

q

o)
i

0



9.

1 92! ikrcos (0-0, +2mmp/q)—in/(2p) sin (-0 +2mmp/q)sin (x /p)
(§ 0 0

2p m—o sin ((6—6 +2mm p/q)/p)
l]-r —1ixcos(0 —90 +2nmp/q)
e

H(12 ) (x)dx

t—— 2 .
2ip h—opn=1 Sin((6-8y+2mmp/q)/p)

p
| q-lp-2 eikrcos(@60+27tmp/q){

kr .
i —1xcos(0 -0, +2nmp/
+emn/(2p)sin((n+1)(6—9O +2nmp/q)/p) sin(n w/p) J.e 1xcos(§ =0 + 2mmp/q) H((f))—n) (x)dx
, / p
DT EP) G010 - 0, + 21 m p/g)/p) sin(n +1)7/p)
kr .
—1xcos(6—90+2nmp/q) )
Ojoe |y G0 (11)
p
where the summation over N is for all integer values of N which can
1 x>0
make the argument of the Heaviside step function H[x]=% x=0; non negative. Thus
0 x<0

on substituting the expression (11) into (9) and interchanging the order of

integrations results in having to evaluate integrals of the form:

2,2, 2 5
_l(HM) ikzrrocosw krr,
2 t .

—1Xcos 2 dt
t t e WHE,) (x)dx T

0
1
L j € 0
mT1 .
00+1C

which is shown in appendix B to 'be equal to

Vs

© cosh vt
_Ze 2

2) :
_— H( kR (m—it)]dt .
T 0 cosh t+cosy 0 (kR (m=i0)]

Thus

q-1
G . (0, 00:k)= ¥ 3 Hn—|0—0, +2nmp/q+2npN|]HP kRO =0, +27mp/q)]
pr ©0.19 8¢ 0 0 0
— m= 0N
q

| a=1 sin(©—0, +2nmp/q)sin(n/p) - cosh (tp) HS [kR(x i)

_R_pm _ o sin((0 —90 +2mmp/q)/p) J.0 cosht+cos(0 —90 +2mnmp)
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TP m=0 sin(@—eo +2nmp/q)/p)

[ -1 sin@-0, +2xmplg)sinp) cosh(t/p)ng)[kRQr—it)]
dt
chosht+cos@—90+2nmp/q)

1 a-1 p-2 sin((n+1)(9—90 +2nmp/p)/ppin(m/p) cosh((p—n)t/p)}g)[kRQt—it)] dt
) . |
TP m=0 n=1 sm(@—90+2nmp/q)/p) )

cosht+ cos(B—GO +2nmp/q)

sin(n@—GO +2nmp/q) /p)sin(n+1)n/p) &~ cosh((p-1-n)t/p) Hg2) [kRr—it)] dt

b

sin(@—@o +2nmp/q)/p) o cosht+cos(6—60+2nmp/q)
(12)
where the summation z is performed for all values of N which satisfy the
N
inequality —n<6—60 +2nmp/q+2apN<m.

Thus the solution U(r,0) of the problem of diffraction of the cylindrical

source Uy = Hy @ [kR(O—OO)] by a soft or hard wedge of open angle a=pn/q is

given by
Uq(1,0) = GM(r,O,r ,GO;k) - G]:E(r,e,r0 —GO;k), (13)
q q
and
Uh(r,e) = Gpn(,0,15,00:K) + G pr (r,0,1, —Oo;k), (14)
q q
respectively where GM is given by the expression (12). Similarly the solution
q

of the problem of diffraction of the line source Uy = Ho® [kR(0-00)] by a
wedge whose face 6 = 0 is soft, and whose other face 6 = pm/q is hard is
given by

Uy (0) =G o (0500k) + G (10,5 2pm 0, :K).
q q q
_Ggpﬂ(raear ,2p;n+90;k)_Gm(raea2Pl—60 9k)a (15)
q q q q
where G2 7I(r,@,r ,Oo;k) is given by the expression (12) with p replaced by 2p.
q
An asymptotic expression for GM(r,G,r ,Oo;k) can be obtained, from the

q

0’

expression (20) of Rawlins (1986), by applying the techniques outlined in the

appendix C. Thus for kr > o we have
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q-1

G (O 6r:k)= 3 SH[7=|0-0, + 2nmp/q+2rpN| JHO[KRO =0, +21mp/q)]
pn 0,70 0 0 0
_q m=0N
i 9-1 sin(@ -0, + 2rmp/q)sin(m/p) ) _ikrR 0-96 +27rmp/q)cos}ﬁd§

P 1y — o SInO —60 +2nmp/q)/p)| cos((0 —60 +2nmp/q)/2| 7
i a-1 p=2 1
+— X X =
TP =0 n=15nO- 90 +2nmp/q)/p)| cos((0 — 90 +2nmp/q)/2|
%) _ikr ©-6, +2nmp/q)cos}£d§
+sin((n+1)((0 —60 +2mmp/q)/p)sin(nm/ p) _[ e

[o0)

—sin(n(0 -0, +2n mp/q)/p)sin((n + 1)/ p) _[ e

0

%) _ikR 0-6, +2nmp/q)coshc§d§ }

+0( (kR)™2 ), (16)
where

2 lrro |cos(6—60 +2nmp/q)/2 |
R(G—GO +2nmp/q)

a(eo)zsinh‘l (17)
The integrals appearing in the above expression (16) can be further
expressed in terms of Fresnel integrals, whose properties are well known,

for details see Jones, (1986) , p558.



-12-

Special cases of wedge angles.

P=1
o G (2)
G _(9r,0.:k)= > YH[n-|0-0, +2nmp/q+2npN|H"[kRO—-0, +2mmp/q)] (18)
pr 0,70 0 0 0
— m=0N
q
g=1

G (1.0,10,00:k) = 3 H[n-|6-00 +2mpN|] Hg @) [kR(0-60) ]

N
1 sin(0—8g)sin(n/p) X cosh(t/p) Ho® [kR(n—it) ] i
mp  sin(0—0q)/p) 0 cosht + cos(0—0¢)

1 piz sin(n +1) (0—00)/p) sin(nn/p) I cosh(p—n) (t/p) Ho® [kR(n—it) ] "
™ T sin(0-0()/p) 0 cosht + cos(0—0¢)

_sin(n(0—0¢)/p)sin((n + Dr/p) r cosh((p—1-n)t/p Hp® [kR(z-it)] N 1)
sin((6-0¢)/p) .0 cosht + cos(0—-0) '
p=2
2n -]
G=E(1,0,10,00:k) = > 3 Hln—|0—00 +4nN [] Ho D [kR(0 -8 +47m/q)]
d m=0 N

1 qz_zlcos [(6—90 +47tm/q)]°j3 cosh(t/2) H()(z) [kR(m—it)] (20)
™ m=0 0

2 cosh t + cos(0 -0 +4nm/p)

The last expression (20) can be put in an alternative form by using

the results of appendix D. Thus

q-1
Gon(r,0,10.00:k) = >, > Hn—|6-00+4mm/q+4nN|] H0(2) [KR(O—60 +4mm/q) ]
q m=0 N
i 4! —ikR(0-0,,+4mm/q) cosh
+5 Y sgn[cos{ (0—00 +4nm/q)/2} ] jg(eo) e 0-9 R qu’
nm:O 0

where£(8) = sinh_l 2,/1rg | cos® -0 +4mm/q)/2
R(O-0g +4mm/q)



13-

4. Some Specific problems in diffraction theory

Macdonald's Solution for a half plane.

In terms of the Green's function, the solution for the problem of
diffraction of a cylindrical wave Ug(r,0) = Ho(® [kR(0-0¢)]by a soft,

or hard half plane is given by

Up (1,0,10,00,) = G2g(r,6,10,00:k) — G2gr,6,10,00:k) ,

22
US(raear():OO:) = G2n(ra9:r,0,60§k) _Gznraear,()’eo;k) 5 ( )
respectively.
Putting q - 1 in the expression (21) gives
G (r,0,10.00:k) = Y Hln—|6-00+47N|] Ho @) [kR(©-60) ]
N
| E00)I
+~sgn[cos((0-00)/.2)] [ oIKR(O=0g)coshs . (23)
T
1124 0-00)/2
where  £(0g) = sinh 1] V"0 €05 =60) (24)
R(6-60)

Now for 0<6,<2n , and 0<0<2m, then |0-0,|<2n, so that the argument of

the Heaviside step function in (23) can only be positive if N = 0. Hence

Gog (1,0,79,00:k) = H[n—|0-00|1Ho PKR(O-0¢) ]

>

+_sgn{ 00, )} |§(e)| ikR(0-6)))coshg .

- i _ 0) 1kR(6-0_)cosh
= Hj cos M H (2) [kR(e_e ) ] + l sgn | cos (6 9o) J‘lé( )|e ( 0) édé
2 0 0 T 2 0

If cos((0-6(0)/2>0 than

Gy (1,0.15.00:k) = HyP[KR(©-0()] + Li("o) ikr(0-09)coshC ;.
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Now using the fact that

Hy P [kR(0-6,)] = .

i _[ e—lkR(e—GO)coshi dc |

we can write
Gor(r,0,1,0 ;k) :i{J‘OO +.[§(90) } e—lkR(G—GO)coshgd&,
T —0 0

RGNS
i J~ e—lkR(@—G )coshéd& (25)

—00

If cos(0—-0()/2) <0 then

e—lkR(O—GO )cosh§

i &0
G2r (r.0.1.00 :k) :;E( 0) dg,

&0¢) e_ikR(e_e Ycosh &

T

d¢ (26)

—00

Hence for any sign of cos(0—-0()/2 we have

Gzn(raear() 990 ak) =

iJ-Z;(OO) e—ikR(e—OO )cosh&dg 27)
T Y—0

The expression for Gpg (r,0,r9,—00'k) can be found in exactly the same

manner for 0<0+0,<4n 1i.e.
Gor (1,0,10,-00:k) = HIn[|8+08¢ | 1Ho) [kR(®+60)]

—ikR(6 +60 )coshg

+ H[n—0+00 —4n] JHoD[KRO+00)] + ~sgn[cos(®+00)/2)] j'ﬁ(_eoﬂe dé
T ©

(28)

o124 rrgcos((8+60)/2
where £(—0() = sinh { R(0+00) } (29)
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Hence

Gy (1,0,10,~00:k) = Hlcos((0+00)/2)]Ho@ kR0 +00)]

—1kR(0 +60 )coshé

+ 1 sgn[cos((0+0()/2)] J.é(_eo ) e dg
7[ 0

_ i jé(_OO)e_ikR(e-"eO)COShédg;_ (30)
T Y-

Thus the solution of the problem of diffraction of a cylindrical wave
by a hard or soft half plane is given by substituting the expressions

(27) and (30) into (22) giving

g >
€2))

- 0 ) -ikR(6-0 cosh . 0 ) -ikR(6-0 cosh
Uh(r’g’ro’eo) -1 J’EJ( O)e 0 édé N i &( 0)e ( 0 éd
T —

T —00

- 6 ) -ikR(0-0 )cosh - 6 ) -ikR(0-0 )cosh
Ug(r.0.1,.0,:k) = = f:)o)e =% éd& -1 _a(O)e (0% édé

T

2
T 00

where F,(i?) are given by (24) and (29) respectively. This result agrees

with that of Macdonald (1915).
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Solution of Car slaw's problem for a wedge angle a = 2 /3.

The solution for the problem of diffraction of a cylindrical wave
U,(r,0,1,,0,) = Ho(z)[kR(G—OO)] by a soft or hard wedge of open angle
o = 2n/3 is given by
Ug(r,0,109,00) = G, (1,0,10,00:k) — G o, (1,0,1,-0( ;k),
B B
(32)
Up(r,0,19,00) Gy (1,0,19,00:k)—G o, (1,0,1,—00 k),
3 3

where, from the expression (21) with q = 3,

G n (0.1.00:k) = > H[x—| 00 +4m | | JHo®) [kR(®-0))]
3 Ny
+ 3 Hln—| 660 +4n/3+4nNy | THo?) [kR(O -0 +47/3)]
Nj
+ 3 Hln—| 660 +8n/3+4nN3 | JHo?) [kKR(O-6( +87/3)]
N
2

: 1 |
+ L sen [cos( (0 ~00)2) ] J~s1nh [2\/% | cos((6-6¢)/2 1] e—lkR(O—GO ) coshgGlé
T

0

: 1 )
+ - sgn [cos( (0 —00 +41/3)/2) ] J‘smh [2,/11) [cos((6—6/) +4m/3)/2| ]
n

o0

—1kR(0-0 +4m/3)cosh &
e 0 dg

i inh —1[2 0-0_ +871/3)/2
+  sgn [cos ( (00, +8x /3)2)] jsnl [ Vrﬁ)|cos( (66, +87/3)/21]
T

©

(33)
—ikR( 0-0

. €

+8m /3)cosh &
0 d

3
It is not difficult to show that for —2n/3<0-0p <2n/3 then N; = 0, N, = 0,
Ni; = -1. Hence
Gon (1,0,10.80:k) = HoP)[kR(®-00) ]
3
+H[n-]0-0¢ +4n/3| THo® [KR(O-00 +41/3 ) ]
+H[m-0-0, —4m/3|THeP [KR (0-0¢ + 47/3 )]
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. o |
+ 1 senfcos((0-09)/2)] J-smh [2,/rrg| cos((60-0)/2)]_~ikR(0-6)coshg &
T

0

. e )
+ L sgnfcos((0-0g +4n/3)/2)] Ismh (21| cos((0-0¢ +/4n/3)12[]
s [e 0]

e—ikR(e—OO +4nn/3)cosh

dg
. . i
+ L sgn [cos ((0—00 —4m/3)/2)] jimh (21 [ cos (08 +4m/3)/2[]
T
. e—lkR(e—OO +8nm/3)cosh dz. (34)

We also have from the expression (21),

Gn (1,0,10,-080:k) = 3 H[n—|0+0¢ +4nN7 | JHo®) [kR(0+0¢) ]
3 N,

+ Y Hn—|0+60 +4n/3+4nNy | THo) [kR(0+0( +4n/3)]

N>
+ Z H[n—[0+00 +8n/3+4nN> | ]Ho(z) [KR(0+60( +87/3)]

N3

i sinh ~1[2. [rr, | cos((0+0,))/2)[] —ikR(0+0,y)cosh&
+ — sgn[cos((0+0()/2)] .[ 0 0 e 0 dz

L 0

. 1
+ L sgn[cos((0+6¢)+4n/3)/2)] ISlnh [ZVHO |COS((O+90+/4“/3)|2|] '

T 0

e—lkR(@—i—OO +4n/3)cosh§dé

: 1
+ L sgn [cos ((0+0¢ +81/3)12)] j;mh [2,rrg [ cos ((0+0 +8m/3)/2]]

n

' e—lkR(+90 +8nn/3)cosh dz. (%)

For the range of values 0<0+0p <4n/3 it 1s not difficult to show that

N; = 0, N, takes no values, N3 = -1, so that

Gor (1,0,10,-00;k) = H[n—[0+00 | Ho®) [kR(8+00) ]
3
+ H[n— |0 +0¢ — 41/3)]Ho P [KR(®+ 00 —47/3) ]

) 1
+ L sgn [cos ((0+0,+)/2)] J'Slnh [2 /I‘I‘0| cos ( (9_,_9() /2]
T o0

—1kR(0+0,)cosh
IRRO+0Jeoshe
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o0

e—ikR(+6 0 +47/3)cosh éd&.

. o
+ L sgn [cos ((0+0 +4m/3)/2)] fsmh [2yrrg | cos (840 +4n/3) )/2 ]
T

+ L sgn [cos ((0+0( —471/3)12)]
T o0
—1kR(0+60, —47/3)cosh &

e 0 d

£ .

jsinh_l[ZH] cos ((0+0—47/3) )/2]]

(36)

Substituting the expressions (34) and (36) into (32) gives the solution

to the problem of diffraction of the cylindrical wave U.,(r,0,r9,0) by a

soft or hard wedge of open angle 2n/3.
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Diffraction by a hard/soft half plane

In terms of the Green's function the solution for the problem

of the diffraction of the line source Uy(0,5,0,) = H,®)[KR(0-0,)]

by a hard/soft half plane is given by
Uh/s (r,0,1,,0,) = G4n (r,0,1,,0:k) + G4n (r,0,14,-0,;k)

—G47I (r,e,ro,47t—60;k)—G47I (r,0,1),-4m+0;k) .
By putting p = 4 in the expression (19) we obtain

G, (0 ,4n-60;k):% H[n—|e—90+8nN|]H(§2) [KR(O-0,,)]
. sin(0-0,) - cosh(t/4)HO(2)[kR(n—it)]

_47:\/5 sin((O—OO)/4) 0 cosht+cos(6—90)

| |sin(0-0,)/2) = cosh(3t/4)H0(2)[kR(n—it)]
47 ﬁsin((e—eo)/4) 0 cosht+cos(6—60)

dt

o cosh(t/Z)HO(z)[kR(n—it)]
- dt
cosht + cos(G—GO)

0

| |sinG3(0-0,)/4) = cosh(t/2)HO(2)[kR(n—it)]
47 sin((@—@o)/4) 0 cosht+cos(6—90)

dt

sin((0-6,,)/2) o cosh(t/4)HO(2)[kR(n—it)]
- ﬁsin((e—eo)/4) o cosht+COS(9—90)

dts.

(37)

(38)

For —2n<0-0( <2n the only value of N which satisfies —n<6-00+8t N < is

N = 0. Hence

G, (1.0.5.0,:k) = H{n— 00, | ]H(?) [KR(O~0,)]

cosh (t/2)H 0(2) [KR (1 —it)]
cosht + cos(O—GO)

dt

S ey 8

L [1 sin(3(e—eo)/4)]
4

4n _sm((e—eo)m)
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« cosh(3t/4)H (2 [KkR (n— it
—Qcos((e—ﬁ )/4) | cosh UM, IR ~10)]
47 0

0

dt

cosht + cos(e—eo)

o cosh(t/4)HO(2)[kR(n—it)]

V2
+500s((0-6)/4) (1—2cos((9—90)/2))! cosht + cos(®0,) (39)
= H[n—-[0-6, N| ]H(()z) [KR(O—-6,)]
i o cosh(t/4)H0(2)[kR(n—it)]
— —cos((0-9 )/2)j dt
27 0 0 cosht+cos(6—60)
o cosh(3t/4)H @) [kR (n it
2 -0 )/4) [ Oy THREZOT
47 0 0 cosht+cos(9—90)
72 o cosh(t/4)H0(2)[kR(n—it)]
+ - cos((0-0)/4) (1—2cos((6—60)/2))£ cosht + cos(0-0,) dt . (40)
In a similar manner it is not difficult to show that
G, (r.0.15:0,:K) = H{n—[0+0 | ]H(()z) [KR(O+0,)]
{ o cosh(t/2)HO(2)[kR(n—it)]
— —cos((0+0 )/2)j dt
27 0 7 Cosht+cos(6+90)
= cosh(3t/4)H, () [kR (n - it
Y2 (040 )/4) | Oy HREZOT
47 0 0 cosht+cos(9+00)
A o cosh(t/4)HO(2)[kR(n—it)]
+4—ncos((9+90)/4) (1—2cos((9+60)/2))j dt. (41)

cosht+cos(6+60)
G (r.04m-0 :K) = H[m—[0+0 —d4r|JH® [KR@O+0 )]
4z (00:47-0; 0 0 0

: ” cosh(t/2)H0(2)[kR(n—it)]
— —cos((0+6 )/2)j
27 0

0

dt

cosht + cos(0+00)
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« cosh(3t/4)H (2 [KR (n—it
+£cos((9+9 )/4) | cosh U, 7R (=101
47 0 0 cosht+cos(9+90)

dt

- h(t/HH D TKR (x—it
—4£cos((9+eo)/4)(1—2cos((e+90)/2))j cosh (V) T LkR (=10
T

v cosht+ cos(9+90)

dt.  (42)

) x cosh(t/2)H0(2)[kR(n—it)]
Gy (ROry 4T +6:k) =~ = cos((6-6)/2)

dt
0 cosht+cos(6—90)
o < cosh(3t/4)H, P [KkR (n—it)]
+ 2= cos((0-0,)/4) | 0 dt
47 0 0 cosht+cos(9—60)
7 o cosh(t/4)H0(2)[kR(n—it)]
—4—005((6—90)/4)(1—2cos((6—60)/2)) dt. (43)
T

, cosht+ cos(G—GO)

By substituting the expressions (40) to (43) into (37) gives the
solution for diffraction by a hard/soft half plane as :

Uy (10.5,6) = H[n=[0-0, | ]H(()z) [KR(O—0,))]+ H[7—[0+0,| ]H(()2) [KR(O+0,)]

~ H[n-6+0, —4n| ]H(()z) [KRO+6,))]

B ) T cosh(3t/4)Ho P [kR (n-it)]
mcos((@ 90)/4)£ cosht + cos(0-0) a

R T cosh(3t/4)Ho@ [kR (n—it)]
\/ﬂ cos((0+00)/4) (J; cosht + cos(0+0¢) at

cosh(t/4)HO(2)[kR(n—it)]
cosht + cos(@—OO)

+

| .
\/ﬂcos((e—eo)/@ (1—200s((6—90)/2))! dt

cosh(t/4)H0(2)[kR(n—it)]
cosht + cos(0+00)

+

\/;_ncos((6+60)/4) (1—2cos((9+90)/2))]§ dt. (44)
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Appendix A.

Here we derive a contour integral representation for Hv(z)(z) for

v>-1,—n/2 <argz < m/2,namely

vm i(argz —m/2) 2
H (2)(Z)=ZVC 2 L °° e_l(H_Z /Ay _dt (A.1)
v wi J=tIC nas
From Watson (1944) p 179 we have the integral representation
2) 1 e ™1 5(u—u_1) du
— . 2 _ —
HV (z) = — IOelO uv+l ,—m2 <argz <2, (A.2)
Pi‘“u’ u—- ?nﬂ-!\ﬂ,
_e Y
£, :—J
where the contour of integration is shown in fig 3. Let zu=2te_in/2
then
vm
Aiad -n/2
H D -_[2 Ve > ijooe(argz g )e—i(t+22/4t)$ (A3)
v -2 mi - i(argz +m/2) v+l ‘

Since -m/2 < argz < m/2, then -7 < argz < — /2 < 0 and 0 < argz + w2 <,

which means that the upper limit of integration lies in the lower half

t - plane, and the lower limit of integration lies in the upper half t-plane.

;= pRawa \Lmt

Provided Re v> -1 we can apply Jordan’s lemma

to distort the path of integration to run along » Re b
a path parallel to the real axis at a distance
c>0as t— oo, see Jeffreys and Jeffreys (1956)
p 392. Thus

Fleye
oit+z2ay dt 9T

pelargz—m/2)
i (VL

o
1 YO+1C
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(argz +m/2) - i(t + zz/t)
_ Ve 2 L (e e 2 _de (A.4)
i Yo + ic (vl

-m/2 < argz < w/2,¢>0,Rev>-1.

~
Tme
N Eoptene
\\ < ~
<
Rt
fig 5.
Appendix B
Here we derive an alternative representation for the double
integral
i 2 9 5 ikzrrOCOS\ll
1 ——(t+k“(r +1, )/t)
[=— 0 e 2 e t
i “o+1ic
K2rr
—ixcosyy; (2) dt
joo t e H, P odxp ==, 0<v <t (B.1)
2
k Ir cosy k2rr
_ t —ixcosy ; (2) .
Let I1 e Ioo t e Hv (x)dx ; (B.2)

then by using the integral representation, Lebedev (1965) pl17-118

s

2 :
Hv(z)(z)=—2e _ I(:O e_IXCOShucoshvudu,ImZSO, |[Re v <1, (B.3)
Ti

2
k
the expression (B.2) can be written (since Im[ trr0]<0)

as

v ik 2 rrg
2¢ 2 .[OO e t emix(cosyteoshu)y Loooy vudy

b
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ikzrro coshu

Vm
- _ = o coshvu du . B.4
i I 0 (coshu + cosyo B4

Substituting the last expression (B.4) into (B.1) and interchanging

the order of integration gives

) %1 i t+k2(r +rg+2rrocoshu)
- Ty o coshvu | T 4 5( : )
T 0 coshu+cosy |mi ©*°
dt
"t du,
v
—2¢ 5 coshvu ) 27 9
I ————  Hy [k\/r +1 +2rrpcoshu] du,
T 0 coshu + cosy
vl
2e 5 o coshvu
= - j —— = H,” [kR(r—iu)] du. (B.5)
T 0 coshu + cosy
Appendix C
Here we evaluate the integral
i 20 9o ikzrrocosq/
1 0 _E(t+k (r" +ry)/) X [t n _iv2 dt
I = —| e e t I\/HO |COZ\|’|e dv — (1.0)
T Joo+ic 0 t

We can rewrite this as (v = k,/2rr,/t | cosy2 |u)

iy 2 2
—12k“rrcod
—l (t+k2(r +rg 2rr0c05\|/o/t) | —O(\lf/z)uz
_ 1 J‘O e 2 |cosy|k‘/2rr j e
i Jootic 2 0%
du 3
t3/2 ’
i
v 1w -5 (t+k2(R2(\y)+4rr0c0s2(\|1/2)u2)/t) dt
= kJ2I‘I’0 |COSE| .[)0 E J.oo+ic t3/2 u ,

ﬁz)[k(Rz(\lf) + 4rrgcos (\|1/2)u2)2]
e Trr cos Y |.[ —in/4 0 . du.

K2 (R2(y) + 4rrgeosZ (y/2)u?)*]
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1

5 .
But since H,” (z) = 1(£j e " then we get
> nz

2

1
, -ik(r? (y)+4rr,c08” (y/2)u?)?
I = em/42 m|cos£| Jl ©
\ = » 2 2 215
(r= () +4rrgcos“ (y/2)u”)2

Now let 2,/rr, [cosy/2|u = R(y)sinh& , then

cin/4 J. —ikR (y) cosh E"dé ,

(2.0)
1| 24/11, [cosy /2
where &, = o | cosy/2| 3.0)
R(y)
Appendix D.
We shall here give an alternative representation for the integral
o cosh t/2 (2) )
I= ———— H k(r© +ry +2rrg cosht)] dt ,
J‘0 cosht+cosy 0" Ik( 0 0 )]
w Ho(z) k(r2+ 2 +2rrg cosht)] ¢
= —(smht/2) dt
0 cosht + cosy
Let v =2,/1r, sinh (t/2) then since cosht =1 + 2 sinh 2t/2 we get
o HyP[ky(r+1))% +v?] dv
1=2m, | 02[ v 02) v (D.1)
0 v + 411y cos” (y/2)

We now use the representation, see appendix A,

1 2 dt
0 E(t—X /t)T

Hy® (x) = i e

c—ioo

in the expression (D.l) giving
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e 2.,
mi Jeio '[ v? +4rr; COS Zy/2) t

—au 2 _ 2
o € du o —ou o —(u?+A LN o — A%t
J.o du Io © =

2
Jn ro e~ ATt gt |® eAza J'oo e—AzX dx  +mo eAz(x
- 2 o Jx A

Hence

k2V2/2t i Jn ke4k2rr0 cosz(\y/2)/2

1 2.2
1 0 Et—1<2(r+r0)2/2t oKV /2td a

00
o © dtJ.Oe

—(t+a)u2du

0 —0W

€ dw
A

2.2
kw/?_tdw

2y vV +dmycos’(y/2) 2 1 roﬁcoswm ’

t2 [cosy/2|

so that

5 o e
2 |COS\|I/2| 2\/%|cosw/2|m C—iw

i (t—k2 {r2 +rg ~2rr, cosw+w2}/t) dt

372

\/; Kk I Hl(z){k(r +r02 2rr()cosw+w )}
I _ dw
24/11y [cosy /2 1 ’

|cosy/2| olcosy /2 k2(r +r0 2rr0005\|/+w ya
(See appendix A). Thus
e—lk(r +rg—2rrocosq/+w )
dw

|COS\V/2 '[2\/ [cosy /2 (r +r2 2rr0cosw+w)

In the last integral we make the change of variable w = R( )

i —ik h
_ 1 J-oo e 1 R(\V)COS @dg’

|cosy /2| ‘&

_ 2,/ cosy/2
Where & = sinh™! cosy/2],
R(y)

sinh& so that
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