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3MC syndrome has been proposed as a unifying term to integrate the overlapping Carnevale,
Mingarelli, Malpuech and Michels syndromes. These rare autosomal recessive disorders of
unknown cause comprise a spectrum of developmental features including characteristic facial
dysmorphism, cleft lip and/or palate, craniosynostosis, learning disability, and genital, limb and
vesicorenal anomalies. In a cohort of eleven 3MC families, we identified two mutated genes
COLEC11 and MASP1 both of which encode proteins within the lectin complement pathway (CL-
K1 and MASP-1 & −3 respectively). CL-K1 is highly expressed in embryonic murine craniofacial
cartilage, heart, bronchi, kidney, and vertebral bodies. Zebrafish morphants develop pigment
defects and severe craniofacial abnormalities.

Here, we show that CL-K1 serves as a key guidance cue for neural crest cell migration thus
demonstrating for the first time, a role for complement pathway factors in fundamental
developmental processes and the origin of 3MC syndrome.

Introduction
The Carnevale, Mingarelli, Malpuech and Michels syndromes are four rare autosomal
recessive disorders1-4 that were recently postulated to be part of the same clinical entity
termed the “3MC syndrome”5,6. The main features are facial dysmorphic traits including
hypertelorism, blepharophimosis, blepharoptosis, and highly arched eyebrows present in 70
to 95% of patients (Suppl Fig 1). Cleft lip and palate, post-natal growth deficiency, cognitive
impairment, and hearing loss are also consistent findings, occurring in 40 to 68% of patients.
Craniosynostosis, radioulnar synostosis, genital and vesicorenal anomalies occur in 20 to
30% of patients. Rarely occurring features include anterior chamber defects, cardiac
anomalies, caudal appendage, umbilical hernia/omphalocele, and diastasis recti. Thirty two
patients from 20 families have been described so far6,7. The causes of 3MC have thus far
remained elusive.

Here we report the identification of two genes, mutations in which, cause disorders
eponymously described as Carnevale, Malpuech, Michels and Mingarelli syndromes.
COLEC11 and MASP1, encode components of the lectin complement pathway thus
implicating this diverse inflammation/chemotaxis cascade in the aetiology of human
developmental disorders. Furthermore, we show that one of these secreted proteins, CL-K1
serves as a guidance cue for migrating neural crest and other cell types during
embryogenesis.

Results
Genetic studies reveal mutations in COLEC11 cause 3MC

We collected a cohort of patient DNA samples comprising diagnoses of Carnevale,
Mingarelli, Michels and Malpuech syndromes. The families were of Asian and Middle
Eastern origin and four pedigrees were consanguineous in which we genotyped (Illumina
SNP6.0/Affymetrix 250k) all available members revealing two regions of homozygosity
shared by affected individuals. Pedigrees MC1 (Tunisian), MC2 (Bangladeshi), MC4
(Afghani) and MC8 (Saudi)(not shown) shared a homozygous region of more than 2.2 Mb
on 2p25.3 (Suppl Fig 2, Table 1). Two further pedigrees, MC3 (Greek) and MC5 (Italian)
shared a common region of homozygosity on 3q27.3 (2.2 Mb). In the 2p25 interval we
sequenced the open reading frames of 9/15 candidate transcripts (Suppl Fig 2) and
discovered three homozygous non-synonymous mutations and one in-frame deletion in
COLEC11; MC1 - c.496T>C/p.Ser169Pro (exon 8)(Suppl Fig 3); MC2 - c.45delC/
p.Phe16SerfsX85 (exon 2)(Suppl Fig 3); MC4 - c.610G>A/p.Gly204Ser (exon 8)(Table1;
Suppl Fig 3); and MC8 - c.648-650delCTC (p.Ser217del)(exon 8)(not shown). Sequencing
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COLEC11 in further 3MC patients revealed mutations in two probands described in the
original Carnevale and Mingarelli papers1,2. The first of these, MC11 harbored a 27 kb
homozygous deletion encompassing exons 1-3 of COLEC11, predicted to result in a
complete loss of the N-terminal and partial loss of the collagen-like domains of the protein
(Fig 1, Table 1). Sequence analysis of the proximal and distal breakpoints of the junction
fragment detected low copy repeats (LCRs) sequences corresponding to long interspersed
nuclear elements (LINE: respectively L1MA1 and L1MD1). This suggests that non-allelic
homologous recombination (NAHR) between these LCRs is the most likely mechanism
mediating this microdeletion in MC11. The other case, MC10 harbored a homozygous
single base deletion, c.300delT/G101VfsX113 (exon 6) which predicts premature
termination of CL-K1. The localization of mutations in the COLEC11 gene and protein is
summarized in Fig 1. Each mutation segregated with the disease in every family.
Furthermore, none of these base changes were found in ethnically matched control
chromosomes (Table 1) and none are listed in either dbSNP or 1000 Genomes database.
Moreover, the wild-type amino acid residues are highly conserved in evolution (Suppl Fig 4)
and the 27 kb deletion was not present in 286 control chromosomes, nor reported in the
latest release of the database of genomic variants (DGV)(http://projects.tcag.ca/variation/).
Taken together, these data suggest they are causative mutations for 3MC.

Expression of COLEC11 in craniofacial cartilage and other tissues
CL-K1 is a member of the protein family of C-type lectins, which contain a collagen-like
domain and a carbohydrate recognition domain, thought to play a role in host-defense8

(PubMed 17179669). CL-K1 is highly conserved with homologs in chimpanzee, dog, cow,
mouse, chicken, and zebrafish (Suppl Fig 5). Combined data from Serial Analysis of Gene
Expression (SAGE) and eNorthern analyses suggest that human tissue expression is highest
in brain, liver, kidney, spleen, lung, skin, breast, ovary, testis and placenta. We demonstrated
broadly distributed expression in mouse tissues including craniofacial cartilage (nasal
septum, meckel's cartilage and posterior palate), heart, bronchi, kidney, vertebral bodies at
E13.5 (Fig 2a). Expression was also observed in palatal structures at E13.5 and E15.5 (Fig
2b).

Next we evaluated the cellular localization of CL-K1 in a murine chondrocyte cell line,
ATDC5. Here we observed specific localization in the golgi apparatus consistent with a
secreted peptide (Fig 2c).

Previous studies reported detection of CL-K1 in the serum8. Using western blotting, we
failed to detect any secreted CL-K1 in the serum of two patients (Gly204Ser), in contrast to
control samples (Suppl Fig 6). This suggests that the missense substitution in these patients
leads to cellular retention of the protein.

Loss of colec11 in zebrafish embryos causes truncal shortening and craniofacial
abnormalities

As nothing is known of the specific role of COLEC11 during embryonic development and in
the absence of an available mouse model, we demonstrated expression in zebrafish embryos
in the pronephric duct, lateral hindbrain and liver (Fig 2d). Next we sought to determine the
effects of loss of function of this protein during zebrafish embryogenesis. Two antisense
morpholinos were designed; one directed against the initiation site (colec11-ATG-MO) and
another against the exon 2-intron 2 splice site (colec11-SPL-MO)(Suppl Fig 7). Injection of
both MOs from 1 to 8 ng doses at the one-cell stage gave rise to morphological
abnormalities which could be reversed upon co-injection with full-length COLEC11 mRNA
(Fig 3e,f). This effect was dose-dependent including, for higher doses (4 ng), heart edema,
pronephric cyst formation, curved body axis, disorganised pigment distribution and high
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mortality (Fig 3a). To ensure that these phenotypes were not the result of morpholino off-
target effects (e.g up regulation of p53), we co-injected p53 morpholino with colec11 MO (4
ng) but could not rescue the phenotypes (Suppl Fig 8 and not shown).

Next we assessed the craniofacial morphology of colec11 zebrafish morphants by staining
the cartilage with alcian blue at 5 dpf with lower (3 ng) doses of MOs to circumvent the high
mortality. Striking differences in the craniofacial skeleton were observed compared with
uninjected/standard morpholino injected embryos, such as reduced mandibular length (e.g.
shortened Meckel and palatoquadrate cartilages), malformation of the anterior neurocranium
with shortening of the trabeculae and the ethmoid plate, shortening and abnormal angulation
of the ceratohyal cartilage (Fig 3b-d).

A second complement-related gene on 3q27 also causes 3MC
Homozygosity mapping in two further 3MC families not mutated for COLEC11, share a
region of identity-by-descent on 3q27 spanning 2.2 Mb, which contained 16 candidate genes
(Suppl Fig 9). One of these, MASP1 (Mannose-associated serine protease 1) codes for a
protein also in the lectin complement pathway. MASP-1 binds to MBL (Mannose binding
lectin) and serves to form C3 convertase, C4bC2b by cleaving C29. Another isoform
(referred to as MASP-3) contains the same heavy chain as MASP-1 but a completely
different serine protease domain10 encoded by a single exon (exon 12).

On screening MASP1 (NM_139125, NCBI) in the two 3q27-linked families we discovered
two homozygous missense mutations in the affected patients from MC3 (c.1489 C>T/
p.His497Tyr)(Suppl Fig 10) and MC5 (c.1888T>C/p.Cys630Arg)(Suppl Fig 10), alleles of
which segregated with the disease in each pedigree. Additionally, we screened two more
families from Brazil6,11 (previously reported as having Michels/3MC syndrome) and found
the same missense mutation in both MC6 and MC7: c.1997G>A/p.Gly666Glu -
homozygous in each affected person (Suppl Fig 10). These mutations reside in exon 12, in
well conserved amino acid residues (Suppl Fig 4). In addition all these variants are predicted
to be damaging (Polyphen – data not shown)) and were not found in at least 506 ethnically
matched control chromosomes (Table 1). The localization of mutations in MASP1 gene and
protein are summarized in Fig 1.

Loss of masp1 causes craniofacial abnormalities and pigment defects
Next, we examined in zebrafish the effects of loss of masp1 in vivo. Two antisense
morpholinos were designed; one directed against the initiation site (masp1-ATG-MO) and
another against the exon 3-intron 3 splice site (masp1-SPL-MO) (Suppl Fig 7). Injection of
both ATG and splice MOs at the one-cell stage gave rise to pigment (Fig 4a) and
craniofacial cartilage defects (Fig 4b) similar to those seen in colec11 morphants.

Combinatorial loss of colec11 and masp1 reveals epistasis
Given the similar phenotypes arising from mutation of either COLEC11 or MASP1, we
tested for epistasis between the two genes. Suboptimal doses (a dose below which no
phenotype is observed when injected alone) of both colec11 and masp1 MOs were injected
into one cell-stage zebrafish embryos and we found that ~73% (16/22) of embryos had
severe craniofacial abnormalities and some developed clefts in the anterior neurocranium/
ethmoid plate (Fig 4b). These results suggest that both gene products likely function in the
same pathway consistent with a recent study in which these proteins directly interact12.

COLEC11 and MASP1 are likely guidance cues for neural crest cell migration
Owing to the pigmentation defect observed in the zebrafish morphants, and because the
majority of the head skeleton derives from cranial neural crest cells (CNCC) that migrate
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from the dorsal aspect of the neural tube into the frontonasal process and the pharyngeal
arches, we next investigated whether CL-K1 and MASP-1 proteins were involved in CNCC
migration. We performed sox10 in situ hybridization in colec11 and masp1 zebrafish
morphant embryos at 10 somites and 24 hpf respectively. An abnormal distribution of the
CNCC in the hindbrain was observed in 10 somite-stage embryos with massive expansion of
cells across the midline compared to controls (Fig 5a). At 24 hpf, the organisation of
streaming NCC through the somites is severely disrupted in the colec11 morphants and
obviously truncated in the masp1 morphants (Fig 5b). In addition, we injected SOX10-eGFP
zebrafish with colec11 and masp1 MO and observed at 48 hpf, ectopic NCC in the head,
trunk and periphery (Fig 5c,d). Together these data suggest that CL-K1 and MASP-1 likely
behave as early guidance cues to direct the migration of neural crest cells during embryonic
development.

COLEC11 likely functions as a chemoattractant
To further substantiate our CNCC migration observations in fish and to understand the role
of CL-K1 on cell migration we injected 10μm beads soaked in recombinant CL-K1 into the
head region of zebrafish at 18 somites (n=30). At 24 hpf, we observed (by in situ
hybridization) NCCs associated with CL-K1 beads (Fig 6a) but not with control beads.

Next we investigated the behaviour of human cells in culture by seeding flasks with HeLa
cells containing ~3 mm disks of LMP agarose mixed with recombinant CL-K1. For controls,
BSA and recombinant α1-anti-trypsin (A1AT) was substituted for CL-K1. After 24 hours of
growth all CL-K1 agarose disks were invaded by streams of migrating HeLa cells (Fig 6b,c).
In contrast, none of the control disks had significant cell invasion (Fig 6b,c,).

To confirm the effect of CL-K1 on migrating neural crest cells we utilised a quail neural
tube explant assay13. Fertilised quail embryos (n=4; 16-20 somites) were dissected, the
neural tubes isolated and carefully placed onto glass coverslips adjacent to which
recombinant CL-K1-agarose was spotted as described above. The explants were incubated
for 24 hours whereupon streams of NCCs (labelled with HNK1; Suppl Figure 11) were
observed to preferentially migrate into protein-containing agarose spots but not into
controls. These results demonstrate that CL-K1 likely behaves as a chemoattractant
molecule with effects on migrating NCCs (Fig 6d).

DISCUSSION
We have identified two genes COLEC11 and MASP1 which when mutated cause four
syndromes: Carnevale, Mingarelli, Malpuech and Michels. Mutations in MASP1 have also
recently been reported in two families with Carnevale syndrome14. Both these genes were
mutated in all 16 patients (from 11 families) tested. We identified six different mutations in
COLEC11 and three different mutations in MASP1, all of which were found in the
homozygous state. For each gene, there were patients presenting with each of the four
diagnoses (Suppl Table 1), thus confirming that these disorders are allelic variants of the
same disease category and should henceforth be referred to as the 3MC syndrome or the
more descriptive Craniofacial-Ulnar-Renal Syndrome. Furthermore, we could not discern
any consistent differences in the presenting phenotype between patients carrying the
respective gene mutations (Table 1 and Suppl Table 1).

COLEC11 was first identified in 2006 as a new member of the collectin family, named CL-
K1 (collectin kidney 1)8,9, and reported to be ubiquitously expressed. It is a secreted protein
that contains two characteristic domains; a collagen-like domain and a carbohydrate
recognition domain similar to another member of the collectin family, MBL (mannan-
binding lectin), a serum protein15 that binds to various ligands leading to opsonization and
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activation of the complement cascade eventually forming the membrane attack complex for
cell lysis. CL-K1 could act through the lectin complement pathway, similar to MBL.
However, measurement of serum complement (C2, C3 and C4) levels in two unrelated
patients were found to be normal indicating that downstream complement factor processing
remains intact possibly through activation by the classical and alternative pathways.
Moreover, we have observed that a mutation in COLEC11 caused depletion of CL-K1 in the
sera of two patients, indicating that it must have direct roles, independent of downstream
complement cascade activation, in 3MC.

MASP-1 is a serine protease that binds to MBL, as well as MASP2, and triggers
complement activation by cleaving C2 to form C3 convertase, C4bC2b9. MASP1 codes for
three different isoforms: The long MASP-1 is isoform 1 with a light chain containing the
serine protease domain encoded by exons 13 to 18. MASP1 isoform 2, also known as
MASP-3, has the same heavy chain as isoform 1 but a different serine protease domain
encoded by the single exon 1210. It is also purported to process IGFBP516,17. A third
isoform has been recently identified and is composed of a single shortened heavy chain18,19.
All our MASP1 3MC patients had mutations in exon 12. It has been proposed that this
isoform lacks processing abilities such that upon binding to MBL it does not cleave C2 or
C420, or even inhibits formation of C3 convertase9. Compared to the other isoforms,
MASP-3 expression appears ubiquitous18,21. CL-K1 is highly conserved between vertebrate
species which clearly share a common origin (Suppl Fig 5).

The identification of mutations in COLEC11 and MASP1 was surprising as no complement-
related components have previously been implicated in the pathogenesis of developmental
disorders. This raises the possibility of a role for further constituent proteins in embryonic
development. In contrast to MASP-1, little is known of the precise function of CL-K1 and
we therefore sought to understand its role in early developmental processes. CL-K1
expression is widespread and seemingly abundant in ectodermal tissues. Strikingly, the
craniofacial disruption observed in zebrafish morphants (and humans) was reminiscent of
neural crest migration disorders. As we observed expansion of migrating streams of CNCC
in colec11 and masp1 morphants this indicates that these proteins probably act as guidance
cues. To this end, we show that CL-K1 has chemoattractant properties affecting migrating
NCCs. It remains to be determined how CL-K1 influences migrating cell populations and
whether or not it directionally stabilizes cell protrusions promoted by cell contact as recently
published for the chemokine Sdf122.

CL-K1 and MASP-3, members of the lectin activation pathway are clearly important
secreted proteins with novel functions which we now demonstrate here for the first time,
include the orchestration of cell migration during vertebrate embryogenesis. This is further
supported by the expression of colec11 along the path of migration of NCCs. The
consequence of absence of these proteins during development culminates in multisystem
abnormalities including craniofacial defects, skeletal, renal and neuronal aberrations in
humans. It is important that we now turn our attentions to the more fundamental roles for
this complex cascade in regulating embryogenesis in general and craniofacial development
in particular.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Mutation summary. Location of the 5 different mutations identified in COLEC11 gene and
protein. Location of the 3 different mutations identified in MASP1 gene and protein.
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Figure 2.
Immunolocalization of CL-K1 protein with polyclonal antibody a. in mouse embryo whole
sections (scale bar: main panel 1 mm, inset panels 500 μm); CL-K1 (DAB) is expressed in
the developing murine nasal septum (I), cartilage primordium of the basisphenoid bone (II,
arrow), Meckel's cartilage (II, mc), myocardium (III), bronchioles and vertebrae (IV) at
E13.5. b. CL-K1 is highly expressed in the palatal mesenchyme (arrow) and epithelium
(arrow head) at E13.5. Later, at E15.5 CL-K1 is downregulated in the fused palatal shelf
(asterisk) while expression is maintained in the palatal shelf epithelium (arrow head) (scale
bar: 500 μm). c. ATDC5 cells showing immuno-colocalisation of endogenous CL-K1 and
Golgi marker 58K (scale bar: 10 μm). d. colec11 in situ hybridisation at 10s, 24 hpf, and 48
hpf stages. At 10s, expression is localised to the cranial paraxial mesendoderm (arrow heads
and transverse section, inset). The eyes are demarcated by asterisks and the relative position
of the section marked by a dotted line. Scale bar: 100 μm. At 24hpf, transcripts are detected
in the glomeruli (arrow heads) and cranial ventral midline (arrow). Inset shows a dorsal
flatmount at 24 hpf highlighting expression in the glomeruli and pronephric ducts (PNDs,
black arrow). At 48 hpf, colec11 remains in the glomeruli (arrow head), weakly in the PNDs
(black arrow), and strongly in the liver (white arrow). Scale bar: 200 μm.
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Figure 3.
a. General morphology of colec11 zebrafish morphants at higher (4 ng) and lower (3 ng)
doses of colec11 MO. Higher doses give rise to pronephric cysts, curved body axis, and
cardiac oedema not present at 3 ng doses. A dose dependent loss of medial trunk
pigmentation (insets – 1.5x magnification ) was observed (scale bar is 500 μm) b. Alcian
blue cartilage staining in colec11 morphants (3 and 4 ng) at 5 dpf showing generalised
cartilage defects (scale bar: 200 μm) c. Palate measurements in the colec11 morphants (3
ng) demonstrate shortening of length and width of the ethmoid plate, abnormal Meckel's
cartilage (mc) and abnormal angulation of the ceratohyal cartilage (ch). Scale bar: 200 μm.
d. Graph of ethmoid plate length and width measurements expressed as a ratio against
cranial length and width, respectively, in the presence or absence of colec11 morpholino.
There is clear evidence of significant morphological effects on both length and width,
indicating shortening in both axes. (con length 3.164 ± 0.062 N=8, colec11 MO length 3.702
± 0.245 N=8, con width 2.563 ± 0.0441 N=8, colec11 MO width 2.819 ± 0.168 N=8, each
value indicates the mean ± SEM). e. Alcian blue cartilage staining of colec11 morphants
rescued with human RNA COLEC11 (75 pg) compared to colec11 morphants (3ng), control
uninjected and COLEC11 RNA injected alone embryos (scale bar: 200 μm). pq:
palatoquadrate, mc: Meckel's cartilage. f. Graph showing the length ratio of both pq
cartilages plus mc standardised over the cranial length. Con (0.821 ± 0.004, n=51), colec11
MO (0.896 ± 0.009, n=50), COLEC11 RNA (0.844 ± 0.007, n=21), colec11 MO plus
COLEC11 RNA (0.820 ± 0.014, n=16). Values shown as mean ± SEM. Data was analysed
by one way ANOVA with Tukey's Multiple Comparison Test comparing column data
against control measurements. Morphants have a significantly shorter pq+mc length
compared to uninjected controls (p<0.001), whilst no significant (ns) difference was
observed in controls versus colec11MO plus COLEC11 RNA or versus COLEC11 RNA
injected alone.
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Key angles and measures are indicated to illustrate cartilage defects. ep = ethmoid plate,
t=trabeculae, n=notochord, bp=basal plate, pq=palatoquadrate, cb=ceratobranchials
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Figure 4.
a. General morphology of masp1 zebrafish morphants showing pigmentation defect (arrows;
scale bar; main panel = 500 μm; inset = 200 μm) b. Alcian blue cartilage staining at 5 dpf
showing cartilage defects in masp1 morphants (6 ng) (panel second from left). Alcian blue
staining in morphants double-injected with suboptimal doses of colec11 (2 ng) and masp1
(3ng) MO (panel far right). We observed a cartilage defect only in double-injected
morphants compared with single suboptimal injections of either colec11 or masp1 MO
(panels third and fourth from left).
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Figure 5.
a. SOX10/MyoD in situ experiments on zebrafish colec11 and masp1 morphants showing an
abnormal distribution of the CNCC in the hindbrain of 10 somite-stage embryos, with a
massive expansion of cells across the midline compared to controls (left panel, white
arrowheads). b. Streaming of NCCs into the head and through the somites (arrow heads) is
also disrupted in colec11 and masp1 morphants at 24 hpf, as indicated by aberrant sox10
expression. (scale bar: main panels 200 μm, inset panels 100 μm) c. Expression of
Sox10:eGFP (green) in the head at 24 hpf highlights disorganised NCCs in colec11 and
masp1 morphants (scale bar: 100 μm). d. At 48 hpf, clearly defined tracks of Sox10:eGFP
(white arrow heads) are detected migrating through tail somites of uninjected control
embryos, however both colec11 and masp1 morphants show abnormal and ectopic migration
of NCCs throughout the tail. Scale bar: 100 μm.
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Figure 6.
Cell migration assays. a. Zebrafish in vivo NCC chemo-attraction assay. Embryos were
implanted with either BSA or CL-K1 coated micro beads (red) into the head of 18 somite
stage embryos that were subsequently grown to 24 hpf. In situ hybridisation for sox10 (blue)
reveals preferential migration of NCC towards beads coated with CL-K1 but not BSA
(inset). Scale bars: main panels 100 μm, inset panels 50 μm. b. Recombinant protein assays:
representative images of control agarose spots containing either PBS, BSA, alpha-1
antitrypsin (A1AT), or CL-K1. White dashed lines represent the border of the spot. No cells
migrated under the control agarose spots. In contrast HeLa cells were attracted to the CL-K1
containing spot, clearly migrating through the agarose (black arrowheads). Scale bar: 200
μm. c. Chart showing the average number of cells moving across the agarose border in five
independent experiments. d. Quail neural tube assay: CL-K1 and PBS control agarose spots
were placed on coverslips to which explanted neural tubes were carefully laid adjacent to
(but not touching) the spot. NCCs migrating away from the neural tubes actively invaded
CL-K1- but not PBS-containing spots, of which there was little to no migration. Scale bar:
200 μm.
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