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ABSTRACT Cosparse analysis model (CAM) provides a new signal processing paradigm for recovering
cosparse signals with respect to a given analysis operator from the undersampled linear measurements in
the context of emerging theory of compressed sensing (CS). The sparse analysis recovery/cosparse recovery
is a key one brought up by this new paradigm. In this paper, we propose a new family of analysis pursuit
algorithms for the sparse analysis recovery problem when the signals obey the cosparse analysis model,
termed as iterative cosupport detection estimation (ICDE). ICDE is an algorithmic framework, which
alternates between detecting a cosupport set of the unknown true signal and estimating the underlying
signal by solving a truncated analysis pursuit problem on the detected cosupport. Further, we propose
effective implementations of ICDE equipped with an efficient thresholding strategy for cosupport detection.
Empirical performance comparisons show that ICDE is favorable in comparison with the state-of-the-art
sparse analysis recovery algorithms. Source code of ICDE has been made publicly available on Github:
https://github.com/songhp/ICDE.

INDEX TERMS Sparse representation, compressed sensing, sparse signal processing, cosparse analysis
model.

I. INTRODUCTION
Data models for sparsity-exploiting applications in image
and signal processing have drawn much attention in last
decade [1], [2]. In the context, the sparse synthesis model
(SSM) [3] offers an elegant approach to lead the era of sparse
representation [4]–[8]. In this model, the unknown signal
x ∈ Rd of interest can be represented as a linear combination
of some atoms of fixed matrix D (column vectors). The
mathematical model of SSM can be denoted as x = Dz,
where D ∈ Rd×n is a overcomplete dictionary (d ≤ n), and
z ∈ Rn is the sparse representation of signal x. The sparsity
k = ‖z‖0 (‖·‖0 is a `0 pseudo-norm counting the total number
of non-zero entries in a vector) assumed to be much smaller
than n. The support is the index set of non-zero coefficients
of z, which synthesize the signal x from atoms of D. The
underlying signal x can be reconstructed by exploring the
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following optimization problem in the classical compressed
sensing (CS) [9], [10] setting:

ẑ = argmin
z
‖z‖0 s.t. y = Mx = MDz, (1)

where M ∈ Rm×d represents a known measurement
matrix/operator, y is the linear measurements/observations,
and m ≤ d . Hence, the signal estimation x̂ is computed
as x̂ = Dẑ. This issue can be expressed as recovering an
unknown high-dimensional signal x from a limited set of
measurements y of a low dimension. Since the problem (1)
is computationally intractable, the optimization problem is
relaxed to basis pursuit (BP) [11]

ẑ = argmin
z
‖z‖1 s.t. y = Mx = MDz, (2)

or other `1 regularizations. Another alternative solution for
(1) is based on the idea of iterative greedy pursuit, such
as orthogonal matching pursuit (OMP) [12], [13], subspace
pursuit (SP) [14], compressive sampling matching pursuit
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(CoSaMP) [15], hard thresholding pursuit (HTP) [16] and
recent work [17].

A. COSPARSE ANALYSIS MODEL
Recently, the ‘‘twin’’ model of the SSM that takes an analysis
point of view, cosparse analysis model (CAM), was proposed
in [3]. We consider the analysis CS problem. For a given
analysis operator/dictionary � ∈ Rp×d , z = �x is supposed
to be sparse (i.e., contain adequately few non-zero coeffi-
cients). Although the two models become interchangeable as
� is invertible (i.e. � = D−1) [18], we will mainly focus
on non-invertible �, e.g., the ‘‘overcomplete’’ case where
p > d . The analysis model is motivated not by a sparse repre-
sentation of x in an overcomplete dictionary D, but rather by
the sparsity of�x for a given analysis operator�. The signal
of interest is said to be cosparse with respect to the analysis
operator � if the analysis coefficient �x contains many zero
entries. Further, the number of zeros l = p − ‖�x‖0 (i.e,
the number of rows in � that are orthogonal to x) is called
the cosparsity of x with respect to �, the cosupport 3
of x is defined by the index set of the zero entries of the
analyzed vector �x, i.e., 3 := {i : (�x)i = 0}. Unlike SSM,
CAM recovers the original signal x directly by performing
optimization

x̂ = argmin
x
‖�x‖0 s.t. y = Mx. (3)

With relaxation by replacing `0 with `1 norm, resulting with
the analysis basis pursuit (ABP) [19] or `1 analysis minimiza-
tion [20]

x̂ = argmin
x
‖�x‖1 s.t. y = Mx, (4)

or generalized LASSO [21] in the Lagrangian form

x̂ = argmin
x

1
2
‖y−Mx‖22 + λ‖�x‖1. (5)

B. SPARSE ANALYSIS RECOVERY
Just as in the synthesis case, the important alternative option
for recovering cosparse signals is used to a family of
greedy-like algorithms. Nam et al. [3], [22] proposed greedy
analysis pursuit (GAP) as an analysis counterpart correspond-
ing to OMP. A modified GAP algorithm was developed to
solve the weighted regularized L2-minimization problem,
as proposed in Reference [23]. Mohagheghian et al. [24]
proposed an enhanced weighted GAP (ewGAP), an exten-
sion to the GAP algorithm based on synthesis counterpart
Lorentzian norm [25]. Cosparsity-based stagewise matching
pursuit (CSMP) [26] employedmore sophisticated backtrack-
ing methods as an analysis counterpart corresponding to
stagewise orthogonal matching pursuit (StOMP) [27]. Giryes
and Elad and Giryes et al. [28], [29] proposed a family of
analysis pursuit algorithms which can be interpreted as a gen-
eralization of greedy methods to analysis regularizers of the
form (3). Analysis SP (ASP), analysis CoSaMP (ACoSaMP)
and analysis HTP (AHTP) are applied for the synthesis equiv-
alent methods SP, CoSaMP and HTP, respectively.

As discussed above, one important direction to develop
numerical methods for sparse analysis recovery is to employ
synthesis counterpart algorithms. Borgerding et al. [30]
developed a Bayesian approach to cosparse analysis CS based
on the generalized approximate message passing (GAMP)
algorithm. Xie et al. [31] proposed a new method based
on accelerated alternating minimization, which can be inter-
preted as a generalization of synthesis counterpart L1method.
Co-IRW-L1 [32] can be interpreted as a generalization of iter-
atively reweighted L1 (IRW-L1)method to analysis regulariz-
ers of the form (5). Gong et al. [33] developed matching pur-
suit generalized LASSO (MPGL) method, which generalizes
alternating direction method of multipliers (ADMM) [34]
using matching pursuit [12].

C. CONTRIBUTION
Motivated by the aforementioned works, we develop a gen-
eral class of analysis pursuit algorithms, termed iterative
cosupport detection-estimation (ICDE), attempting to pro-
vide analysis versions of the synthesis counterpart algo-
rithms. ICDE alternatively executes its two steps: cosupport
detection and signal estimation. For an incorrect recovery,
cosupport detection refines the index set 3 by pruning some
elements of �x, and signal estimation solves the truncated
ABP optimization

x̂ = argmin
x
‖�3x‖1 s.t. y = Mx. (6)

From the new solution, cosupport detection can prune more
elements in 3 and thus estimate a better x̂. In this wise,
the two steps of ICDE iterate alternatively to gradually refine
3 and improve x̂. In summary, the major contributions of our
work are as follows:

• A new algorithmic framework ICDE is provided for
reconstructing the cosparse signals obey the sparse anal-
ysis model. Moreover, ICDE generalizes L1 norm (6) to
a general cosparsity inducing regularizer.

• Effective implementations of ICDE equipped with an
efficient thresholding strategy are proposed.

• The proposed algorithms have been evaluated and
demonstrated that it can match or even outperform the
state-of-the-art techniques that use a much larger num-
ber of measurements.

D. ORGANIZATION
The rest of this paper is organized as follows. In section II,
after the introduction of synthesis counterpart, the pro-
posed algorithmic framework of ICDE was presented along
with two simple demos. The experimental evaluation of the
proposed approaches was demonstrated in Section III. In
Section IV, we conclude this article with discussions on the
future of the work.

E. NOTATIONS AND PRELIMINARIES
The following notations are used throughout this work:
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• x̂(t): the algorithms presented in this work are itera-
tive and the recovered signal x̂ in current iteration t
is denoted as x̂(t). The same notation is used for other
vectors and matrices.

• |x|, ‖x‖`p , xT : the absolute value, `p norm and trans-
pose of a vector x, respectively. ‖x‖1 is the `1 norm that
sums the absolute vector values and ‖x‖2 is the euclidian
norm. ‖x‖0, though not rally a norm, is the `0 norm
that counts the total number of non-zero entries of a
vector.

• T , AT : index set T , the matrix AT refers to restricting
rows from A indexed by T , whereas it has taken the
columns in the synthesis case. The same convention is
used for vectors.

• A†: the Moore-Penrose pseudoinverse of matrix A ∈
Rm×n. A† = AT (AAT )−1 for m ≤ n; A† = (ATA)−1AT

for m ≥ n.
• [1, p] denotes the set of integers {1, 2, · · · , p}.
• TC , [1, p] \ T : the complement of set T in
set [1, p].

• supp(x): the support set of a vector x, i.e. the index set
corresponding to the nonzeros of x, supp(x) = {i : xi 6=
0}.

• cosupp(x). the cosupport set of a vector x with respect
to analysis operator �, i.e. the index set corresponding
to the zeros of �x, cosupp(x) = {i : (�x)i = 0}.

• H (x, k): the hard thresholding operator that sets all but
the k largest entries of a vector x to 0 for the synthesis
cases.

• H (�x, l): the hard thresholding operator that sets the
smallest l (in magnitude) entries of a vector �x to 0 for
the analysis cases.

II. PROPOSED ANALYSIS PURSUIT ALGORITHMS
A. ITERATIVE SUPPORT DETECTION
Before introducing the analysis counterpart methods,
we recall their synthesis versions. Since the failed signal
recovery of BP, Wang and Yin [35] present an algorithmic
framework to improve the BP constructions, called iterative
support detection (ISD). Earlier work [36] developed a sim-
ilar approach termed Iterative Detection-Estimation (IDE).
ISD iterates between two steps: support detection and signal
estimation. Starting from the detected support I = ∅ and
the iteration number t = 0, ISD iterates between two main
steps:
1) Signal reconstruction:

solve the truncated BP problem with T = IC :
x̂(t) = argmin

x
‖xT ‖1 s.t. y = Ax;

2) Support detection:
detect the support set I using x̂(t) as the reference.

The reliability of ISD depends on the support detection,Wang
and Yin proposed several detection strategies for different
kinds of sparse signals. One of the general support detection
strategies is based on thresholding

I (t) = {i : |x̂(t)i | > β t max |x̂(t)|}, β ∈ (0, 1). (7)

Algorithm 1 ICDE-L1 Algorithm
Input: Measurement matrix M , analysis operator �, mea-

surements y, thresholding parameter β.
Output: The reconstructed signal x̂.
1: Initialization:
2: t = 1 //iteration number
3: 3(0)

= [1, p] //initial cosupport set
4: x̂(0) = argminx ‖�x‖1 s.t. y = Mx //initial signal
5: while halting criterion false do
6: 3(t)

= [1, p] \ {i : zi ≥ β max zj, z = |�x̂(t)|, i ∈
[1, p], j ∈ 3(t−1), β ∈ (0, 1]}

7: x̂(t) = argminx ‖�3(t)x‖1 s.t. y = Mx
8: t = t + 1
9: end while
10: return x̂(t)

B. ITERATIVE COSUPPORT DETECTION-ESTIMATION
Armed with the synthesis counterparts, we can ‘‘translate’’
each synthesis step into an analysis one and devise the analy-
sis versions of the ISD. The proposed algorithmic framework
describes as follows:
Input: measurement matrixM , analysis operator�, measure-
ments y.
1. Initialize x̂ = 0 or other estimation and set the iteration
number t = 1;
2. While the stopping criterion is not met, do
i) 3(t)

← cosupport detection using �x as the reference;
ii) x(t)← signal estimation by solving the truncated ABP (6)
for 3 = 3(t);
iii) t ← t + 1.

Like ISD, ICDE is an algorithmic framework. The imple-
mentation of ICDE depends on cosupport detection which
requires an effective reference and an efficient detection strat-
egy. We employ the gradient step of iterative thresholding
algorithms as the reference. Iterative thresholding algorithms
are simple and versatile sparse reconstruction methods, such
as iterative soft thresholding (IST) [37], iterative hard thresh-
olding (IHT) [38], and a large class of iterative shrinkage
thresholding algorithms (ISTA) [39], [40]. As to signal esti-
mation, the truncated least-square solution

x̂ = argmin
x
‖�3x‖22 s.t. y = Mx, (8)

is much easier to solve than (6). The answer to (8) is obvious
since x̂ satisfies the linear equation [3][

y
0

]
=

[
M
�3

]
x. (9)

The approximate analytical solution is

x̂ =
[

M
√
λ�3

]† [
y
0

]
=

(
MTM + λ�T

3�3

)−1
MT y, (10)

where λ is Lagrange multiplier. For high-dimensional signals
it is efficient to solve by some numerical algorithms (e.g.,
the conjugate gradient method [29]). Therefore, we present
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two signal estimation methods, and term the resulting algo-
rithms ICDE-L1 and ICDE-L2 respectively. We introduce
the implementation of ICDE-L1, ICDE-L2 equipped with an
efficient thresholding policy. The complete description of the
proposed algorithms is presented here:
Step 1: Initialization:
Initialize the recovered signal x̂(0),
initialize cosupport set 3(0)

= [1, p],
and set the iterative counter t = 1.
Step 2: Cosupport detection:
Update signal approximation:
x̂(t) = x̂(t−1) +MT (y−M x̂(t−1)).
Detect the cosupport set 3(t):
3(t)
= [1, p] \ {i : zi ≥ β max zj, z = |�x̂(t)|, i ∈ [1, p], j ∈

3(t−1), β ∈ (0, 1]}.
Step 3: Signal estimation:
Estimate the signal x̂(t) by solving (6) or (8) on the detected
cosupport 3(t).
Step 4: Halting:

Check whether the halting condition is False. If so, update
t = t+1 and back to Step 2. The detailed steps in implemen-
tation of ICDE-L1, ICDE-L2 are presented in Algorithm 1
andAlgorithm 2 respectively. For ICDE-L1, we needABP (4)
solution as the initialization of x̂ and the gradient step is
redundant. Like ISD, ICDE is an algorithmic framework,
which generalizes support detection in synthesis cases to
cosupport detection for the analysis counterpart. Further-
more, ICDE adopts the two-stage thresholding [37], [41],
[42] to solve the analysis pursuit problem. The first stage
thresholding is the cosupport detection to make sure that
the analyzed signal �x is sparse. the second stage thresh-
olding employs the truncated L1/L2 optimization (6)/(8)
to refine signal reconstruction. Hence, greedy-like analysis
pursuit algorithms such as GAP, ASP and AHTP can be
treated as special cases of ICDE. Comparing ASP/AHTP and
ICDE/GAP, the former employ the hard thresholding to find
the cosupport set 3 and demand the prior knowledge about
the true cosparsity level l. It is not acceptable for the problems
that the true cosparsity level l is not available. ASP andAHTP
fix the cardinality of cosupport set 3 and remove previous
false detections. GAP iteratively maintains a cosupport of
gradual decreased indices by thresholding

3(t)
= 3(t−1)

\ {i : zi ≥ β max zi, z = |�x(t−1)|,

i ∈ 3(t−1), β ∈ (0, 1]}. (11)

However, ICDE refines the cosupport set 3 that is not nec-
essarily decreasing or nested over the iterations. This is
useful since it is very hard thing to completely avoid false
detections. ICDE and GAP directly detect the cosupport of
the true cosparse signal by referencing the analyzed vectors
�x while ASP and ACoSaMP augment the cosupport by
handpicking the least values of the ‘‘correlation’’coefficients
�MT (y−Mx).

We presented an ICDE-L1 demo that reconstructs a
cosparse vector with p = 220, d = 200, l = 190,

Algorithm 2 ICDE-L2 Algorithm
Input: Measurement matrix M , analysis operator �, mea-

surements y, thresholding parameter β.
Output: The reconstructed signal x̂.
1: Initialization:
2: t = 1 //iteration number
3: 3(0)

= [1, p] //initial cosupport set
4: x̂(0) = 0 //initial signal
5: while halting criterion false do
6: x̂(t) = x̂(t−1) +MT (y−M x̂(t−1))
7: 3(t)

= [1, p] \ {i : zi ≥ β max zj, z = |�x̂(t)|, i ∈
[1, p], j ∈ 3(t−1), β ∈ (0, 1]}

8: x̂(t) = argminx ‖�3(t)x‖22 s.t. y = Mx
9: t = t + 1
10: end while
11: return x̂(t)

m = 60, β = 0.5 (detailed experimental setting in
section III). In this setting, it is generally considered hard to
reconstruct a cosparse signal with 30 non-zeros in �x from
only 60 measurements. As depicted in the first subplot of
Figure 1, ABP fails to reconstruct the cosparse signal due
to insufficient measurements. However, ICDE-L1 exhibits
an exact reconstruction after merely four iterations. Given
an original cosparse signal x, if 3 = cosupp(x), then the
solution of (6) is, obviously, equal to x. Furthermore, exact
recovery can happen even if3 includes few spurious indices,
as illustrated in the 3rd, 4th subplots of Figure 1, where the
true analysis vectors �x are marked by black point and the
recovered �x̂ are marked separately by red circle and blue
star, denoting true and false non-zeros, respectively. Green
lines represent the thresholds. As shown in the title of each
subplot, we define the quadruplet ‘‘(total, good, bad, miss)’’
and ‘‘Err’’ as follows:
- total: the number of total nonzeros of the recovered�x̂, total
= good + bad.
- good: the number of true nonzeros of the recovered �x̂.
- bad: the number of false nonzeros of the recovered �x̂.
- miss: the number of undetected nonzeros in the true�x, p−l
= good + miss.
- Err: the relative error ‖�x̂−�x‖2/‖�x‖2.

We now turn from ICDE-L1 demo to ICDE-L2 demo as
shown in Figure 2. From the upper left subplot, different
from ICDE-L1, ICDE-L2 detects a large number of ‘‘bad’’
coefficients. However, most of the ‘‘good’’ coefficients were
relatively large in magnitude. The detection yielded new
cosupport 3 which was sufficient to let (8) return a lot
better solution x̂ presented in the 2nd subplot. This solution
further detected a tighter threshold to yield smaller ‘‘bad’’
coefficients. Particularly, most of the ‘‘good’’ coefficients
with big magnitude had been exactly detected. The suc-
ceeding iterations1 had exhibited better solutions that the
‘‘good’’ coefficients well matched the true signal and the
‘‘bad’’ coefficients were converging to zero. The final solu-

1We omit the 3rd-4th iterations in Figure 2 for consistency with Figure 1.
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FIGURE 1. An ICDE-L1 demo that reconstructs a cosparse vector with
p = 220,d = 200, l = 190,m = 60, β = 0.5. For the convenience of
visualization, we create plots using the analyzed vectors �x instead of x.

FIGURE 2. An ICDE-L2 demo that reconstructs a cosparse vector with
p = 220,d = 200, l = 190,m = 80, β = 0.5. For the convenience of
visualization, we create plots using the analyzed vectors �x instead of x.
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FIGURE 3. Influence of thresholding parameter β for ICDE-L1 recover
cosparse signals with p = 200,d = 200, l = 180: comparisons in terms of
recovery rate and number of iterations.

tion had exactly the same ‘‘good’’ coefficients as well as
the ‘‘Err’’ almost as low as the double precision. Comparing
with ICDE-L1 from Figure 1 and Figure 2, ICDE-L2 seems
to resolve more easily but requires more iterations and
measurements.

III. EXPERIMENTAL RESULTS
In this section, we carry out comparative experiments with
GAP, ABP and ASP, which some of the experiments per-
formed in [3], [29] for both synthetic and real-world datasets.
GAP appears to be the state-of-the-art in terms of recovery
performance. The code of GAP and ASP is available on the
author’s homepage. The super greedy version of GAP with
the same thresholding parameter to ICDE-L2 was adopted
hereafter. The truncated ABP problem (6) can be solved
by a modification of MATLAB CVX package [43]. All the
algorithmic implementations were tested in MATLAB 2018b
running on Windows 7 with 2.8GHz Intel i7-7700HQ Quad
Core CPU and 16GB of memory. A MATLAB package with
code in this paper is available as open source software at
https://github.com/songhp/ICDE.

We use standard independent and identically distributed
Gaussian sensing matrix M ∈ Rm×d and a random tight
frame. The analysis operator � ∈ Rp×d was generated as
a random almost-uniform almost-tight frame and �T is a
random tight-frame with normalized columns. We generate
a l cosparse signal x in the following way. Firstly, randomly
choose l indexes in [1, p] denoted by 3. Secondly, form a
random vector v with Gaussian iid entries. Finally, project v

FIGURE 4. Influence of thresholding parameter β for ICDE-L1 recover
cosparse signals with p = 240,d = 200, l = 180: comparisons in terms of
recovery rate and number of iterations.

onto the orthogonal complement of the subspace generated
by �3.

The signal dimension d is fixed to 200. We then varied the
number ofmmeasurements. The cosparsity l of the recovered
signal, and the analysis operator size p are selected according
to the following formulas:

m = δd, l = d − ρm, p = σd . (12)

which is consistent with the notation of phase transition [37]:
δ = m/d is the normalized measure of problem indeter-
minacy and ρ = (d − l)/m is the normalized measure of
the sparsity. In all cases, algorithm performance was quan-
tified by recovery rate, i.e., the rate of perfect recovery on
100 times Monte Carlo problem instances. A relative error
‖x̂(t) − x̂(t−1)‖2/‖x̂(t)‖2 less than 10−2 implies a perfect
recovery of x.

A. INFLUENCE OF THRESHOLDING PARAMETER
We tested the influence of thresholding parameter β by
varying β from 0.5 to 0.9. Firstly, we evaluated the ICDE-
L1 algorithm. The plots of influence of thresholding param-
eter β for σ = 1, 1.2 are presented in Figure 3 and
Figure 4, respectively. It is clear that the larger threshold-
ing parameter exhibits better reconstruction performance but
needs more iterations, especially for large σ . On the other
hand, the improvement of recovery performance is limited
to large β. In these cases, small β is particularly reasonable
when the number of iterations is fairly small. We then turn
to ABP, which was inferior to ICDE-L1. There has been
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FIGURE 5. Influence of thresholding parameter β for ICDE-L2 recover
cosparse signals with p = 200,d = 200, l = 180: comparisons in terms of
recovery rate and number of iterations.

FIGURE 6. Influence of thresholding parameter β for ICDE-L2 recover
cosparse signals with p = 240,d = 200, l = 180: comparisons in terms of
recovery rate and number of iterations.

a great improvement in terms of recovery rate from ABP
to ICDE-L1. Secondly, we tested the ICDE-L2 algorithm,
as depicted in Figure 5 and Figure 6. The ICDE-L2 tests

FIGURE 7. Comparison of phase transitions of ABP, ASP, GAP and ICDE
for cosparse vectors with d = 200, β = 0.7.

came to similar conclusions to the ICDE-L1 tests. An increase
in the parameter gave rise to an increase in performance in
terms of recovery rate. An excessively small β leaded to
too many false detections and subsequently low recovery
quality, while an excessively large β could induce a large
number of iterations. Large β is particularly reasonable when
measurements size is fairly small. It is also worth noting that
the iterating times are much smaller than the sparsity of �x,
especially for large σ . We then turn to comparisons to GAP
and ASP. ICDE-L2 was on par quality-wise with GAP and
better than ASP for large β.

B. PHASE TRANSITION CURVE
In this subsection, we evaluated the recovery performance
using the empirical phase transition curves (PTC) for ICDE,
GAP, ASP and ABP. Figure 7 depicts the recovery perfor-
mance of the five tested algorithms. For point in the grid
(δ, ρ), it represents the probability of the cosparse signal
recovered perfectly. For each problem sampling ratio δ =
m/d , we interpolate the results over all uncertainty ratios
ρ = (d − l)/m to locate where successful recovery takes
place with a probability of 50%. As a result, we plot the
PTC showing the boundary above which most recoveries fail
and below which most recoveries succeed. Not surprisingly,
the recoverability of the ABP method was the worst. In the
case of p = d , ICDE-L2, GAP and ASP achieved comparable
recoverability starting around δ = 0.18, while ASP achieved
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FIGURE 8. Shepp-Logan phantom reconstruction with size of 256× 256:
comparisons in terms of PSNR (dB).

better performance for some small δ cases. ICDE-L2 and
GAP exhibited almost the same recoverability, which was

much higher than that of ASP in terms of phase transition
for the case p = 1.2d . ICDE-L1 uniformly obtained the best
performance in the five tested algorithms and left significant
gap between other algorithms. To sum up, Figure 7 depicts
that these transitions comply with the following hierarchical
sequence in recovery performance: ICDE-L1 > ICDE-L2 ≈
GAP > ASP > ABP.

C. ANALYSIS-BASED COMPRESSED SENSING
We considered the Shepp-Logan phantom image reconstruc-
tion problem as an ideal example that the cosparse analy-
sis model offers effective algorithms to reconstruct partially
observed cosparse signals. The image can only be indirectly
observed by means of its two-dimensional Fourier transform
coefficients that can only be directly observed along a small
number of radial lines. We can recover the original image
by the limited observations from two dimensional Fourier
radial-line measurements y = Mx, using an analysis oper-
ator � composed of two dimensional horizontal, vertical
and diagonal finite-differences. To evaluate analysis-based
compressed sensing, we performed comparison experiments
by varying the number of radial observation lines for the
256 × 256 Shepp-Logan phantom image reconstruction
problem. Due to the large size of the recovery problem,
ICDE-L1 was time consuming and was omitted in these tests.
Figure 8 depicts recovery peak SNR (PSNR) versus number
of radial lines for ICDE-L2, GAP and ASP. The figure shows
that ICDE-L2 achieved almost superior performance than
GAP and ASP except for few radial lines, both in noiseless
Figure 8(c) and noisy cases Figure 8(d). The original phantom
image was presented in Figure 8(a) gave recovery PSNR
approximately to 100 dB for all numbers of radial lines above
15. We obtained a perfect recovery using only 15 radial lines,
i.e. only m = 3782 out of d = 256 ∗ 256 which is less than
5.77% of the image size. The corresponding sampling loca-
tions were presented in Figure 8(b) using two-dimensional
Fourier transform.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we generalized the Iterative Support Detec-
tion (ISD) and proposed an algorithmic framework, Itera-
tive Cosupport Detection-Estimation (ICDE) for the sparse
analysis recovery problem. ICDE can detect a cosupport
set using the analyzed coefficients as a reference and then
estimate the recovered signal by solving a truncated L1 or
L2 optimization problem on the cosupport set, and repeat
these two iterations for a small number of iterations. We
proposed two implementations of ICDE, accompanying a
cosupport detection strategy. Numerical experiments on both
synthetic and real-world datasets show that the proposed
methods compare favorably with the state-of-the-art meth-
ods. The encouraging performance of the proposed methods
prompts us to pursue further studies: 1).This paper dedicates
efforts to devising numerical algorithms which are highly
reproducible and provide experimental studies as constructive
guidelines for practical applications, further, the theoretical
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investigation of ICDE can be developed for future research.
2). ICDE requires reliable cosupport detection from inexact
recovery. We present a thresholding strategy with not neces-
sarily decreasing or nested cosupport. This method exhibits
efficient performance for the cases in which the analyzed
coefficients follow a fast-decaying distribution of non-zeros.
Therefore future investigations can take advantage of the
informative prior about the true signal to devise more effec-
tive cosupport detection methods. 3). In signal estimation
stage, we employ the truncated L1 or L2 optimization prob-
lem to update the reconstructed signal. ICDE-L1 performed
significantly better than ICDE-L2. Since ABP is not the only
algorithm for cosparse signal recovery, another line of future
investigation is to apply ICDE to other reconstruction algo-
rithms such as the smoothing-based accelerated alternating
minimization [31], reweighted approaches [23], [32], match-
ing pursuit generalized LASSO [33], sophisticated cosparsity
inducing function [24], [44], [45], and many others.
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