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1. Introduction 

It is well known that 'preserving' a Mathematical Programming problem prior to optimization 
can dramatically reduce the problem dimension and thus solution time; in some cases it is  
also possible to detect infeasibility, unboundedness (often caused by formulation errors) or 
even solve the model prior to applying the simplex method which can often be costly 
[WILLIAMS, 1990,p35]. Reduction procedures are not only important for the acceleration 
in solution using the simplex solution, but are also critical for efficient performance of 
Interior Point Methods (IPM) [LEVKOV,1992]. 

A method for performing reduction on Mathematical Programming problems, as set out in 
[BRMIWI, 1975], is to scan the matrix a number of times, eliminating redundant constraints, 
deriving bounds on shadow prices for singleton columns, removing or tightening variable 
bounds (and consequently fixing them where possible), replacing singleton rows with simple 
bounds and detecting unboundedness or infeasibility. This is repeated until the matrix has 
been passed twice with no reduction. 

In the following section of this report, our implementation of this algorithm (with 
modifications and additions) is explained with reference to the pseudocode for the main 
program and subroutines provided in Appendix A. In section 3 the data structure we used 
in implementing the Presolve algorithm is presented with some discussion concerning the 
communication with FortLP. Section 4 contains results of various problems (including some 
from netlib) showing the reduction achieved with Presolve. Section 5 discusses the need for 
post processing in order to reconstruct the formally optimal basis starting from the optimal 
solution of the reduced problem and proposes additional reduction procedures which could 
be incorporated into Presolve. The final section contains some concluding remarks and 
discusses the implications of using Presolve for integer programming (at each stage of branch 
and bound). 
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2. Presolve Algorithm 

The presolve program described here is based on the reduction algorithm by Brearley, Mitra 
and Williams [BRMIWI,1975]. For simplification the following primal and dual problems 
are considered throughout this report: 

Primal Problem 
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Although it may seem restrictive to only consider constraints of type "less than or equal to" 
the subsequent rules are easily adapted for "equality" or "greater than or equal to" constraints 
[BRMIWI,1975]. Similarly, a minimisation problem may be dealt with by negating the 
objective row coefficients and maximizing. The variable bounds, l  and u , may be finite or j j

infinite, ie. the variables x  may be considered as free. j

The program consists of five subroutines which perform various types of reduction: namely, 
variables are fixed at their upper or lower bounds; unboundedness or infeasibility is detected, 
redundant rows are set free; variable bounds are tightened. The algorithm is recursive with 
reduction in one pass leading to further reduction in the next (see main program in Appendix 
A). Figure 1 shows the type of reduction performed by each subroutine. 
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      Figure 1 Presolve Subroutines 

2.1 FIXCOL - fixing variables at their bounds 

The subroutine FIXCOL by analysing the upper and lower costs Pj and Qj (defined below) 
together with the primal cost coefficients, fixes the variables (where appropriate) at their 
bounds. 
 
Thus for a particular primal variable k, the lower and upper costs, P  and Q  are given by k k

∑
=

≤≤
m

i
kiikk QvaP

1
                 (2.3) 

where P  and Q  are computed from the lower and upper bounds on the dual variables, P  and k k j
q , as follows: j
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The upper and lower bounds on the dual variables are initially determined by the primal 
constraint types. See figure 2. 
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Figure 2 Relationship between primal/dual variables and constraints 

 
 
 
If the lower cost Pk is less than the primal cost coefficient (dual right hand side value) ck then 
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 This together with the dual constraint ∑  

implies that yk must be zero and wk must be positive in the optimum solution. 
 By the rules of complementary slackness we have 
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As w  is positive, the corresponding primal constraint must be binding, ie. x  = l  therefore the k k k
the variable may be fixed to its lower bound. 
 

 then  This implies that y∑
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i
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.If the upper cost Q  is less than c  must be k k k

positive and w  is zero in the optimal solution. Again from equations (2.5) the variable may be k
fixed at its upper bound, ie. x  = uk k
 
Figure 1 in Appendix A contains the pseudocode for this subroutine. 
If a variable is to be fixed at a bound that is infinite then this implies unboundedness which is 
detected by the program and so the program halts. This is not detailed in Figure 2 of the 
Appendix A. 
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2.2 SNGCOL - 'replacing' singleton columns with bounds on shadow prices 
 
The subroutine SNGCOL detects singleton columns. A singleton column in the primal problem 
is a column of the A matrix with just one non-zero coefficient. Assume that a  is the non-zero ik
coefficient of a singleton column k and that xt has lower and upper bounds lk and uk where l u≠k k 
(l =u  is not considered as in this case x  would be fixed). The subroutine aims to fix the k k k
variable x  (if possible) at one of its bounds. Suppose that x <u  and if a contradiction occurs k k k

then xk must be equal to its upper bound. Then in the dual problem, yk=0 and  from (2.5). 0w k ≥
 + wThus the dual constraint is a  v  = c . k k k k
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k
l a

c
v ≥If a  < 0 then  (since w >0). This gives a lower bound on v , and if this is greater lk k 1

than the existing lower bound p  then the lower bound is tightened. If, however, this is greater 1

than  there is a contradiction and so x  is fixed to its upper bound. 1q k (since w
lk

k
l a

c
v ≤If a  < 0 then > 0). This gives an upper bound on v  and if this is less than lk k 1

the existing upper bound 1q  then the upper bound is tightened. If, however, this is less than   1p
there is a contradiction and so x  is fixed to its upper bound. k
 
An alternative algorithm would be to attempt (where possible) to fix x  at its lower bound. In k

this case the opposite assumption, namely lk<x  is made (ie.  w0,yk ≥ =0) and a similar k k

argument follows as above. If a >0 then  may be tightened or x  may be fixed to its lower 1qlk k

bound and if a  < 0 then pi may be tightened or xlk k may be fixed to- its lower bound. To use both 
algorithms as suggested by [BRMIWI,1975] would involve storing two sets of  and  since if 1p 1q

 was tightened by the first algorithm this new p  could not be used in the second algorithm. 1p 1

This seemed unduly complicated in practice so our implementation handles the first (upper 
bound) algorithm. 
 
Singleton columns are detected but are not removed. This is because there may be another 
singleton column with a non-zero entry in row 1. The algorithm may tighten  or  again for 1p 1p
another column j ≠  k. Then on the next pass these new bounds may be used to fix the variable 
at its upper bound. 

 on each pass. An alternative method may be to 
lk

k

a
c

Our current implementation calculates 

store these values together with the indices l and k to avoid duplicating these calculations. In 
addition if for a singleton column with its non-zero entry in row 1 >  then all singleton 1p 1p
columns with non-zero coefficients in row 1 may also be fixed. We have chosen not to implement 
this because this assumes that the A matrix and the objective coefficients remain unchanged. As 
discussed later further procedures, such as the identification and reduction of doubleton rows, 
may be added to our code which do alter these values. Therefore we chose a more flexible 
approach in our implementation. 
 
Figure 2 in Appendix A specifies the pseudocode for this second subroutine, SNGCOL. 
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2.3 REDROW - detecting redundant rows 
 
This subroutine detects redundant rows in the primal problem by analysing the lower and upper 

, on constraint bounds and sets these redundant rows free. Lower and upper bounds, L  and Ui i
ththe i  constraint are calculated by taking into account the variable bounds as follows. 
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If  the constraint is redundant and so is set free. This also implies that the corresponding ii bU ≤

 then the dual variable vi can be fixed to its lower bound, i.e. qi is set equal to Pi. If Li>bi  constraint i can not be satisfied and the problem is declared infeasible. Furthermore, if L =bi i

, j∈Nthen row i is redundant and all x ,  are fixed at xiPj∈j j = l  and all x  are fixed at x =u . j j j j j

 
The pseudocode for this subroutine is provided in Appendix A (figure 3), As mentioned 
previously, this only details the pseudocode for the case where the primal constraints are as 
shown in (2.1). Other cases are considered in [BRMIWI,1975]. 
 
 
2.4 REMBND - tightening variable bounds 
 
The subroutine REMBND removes or tightens the primal variable bounds. This subroutine is not 
performed in the first pass as it is necessary to compute variable bounds by considering the 
bounds on the constraints which are not determined until the subroutine REDROW is executed. 
 

th New variable bounds are constructed by examining each constraint. Let us consider the i
constraint, then for the kth variable we have 
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If these new bounds are tighter than the existing ones the variable bounds are updated. If a new 
lower bound is computed which is greater than the upper bound (or a new upper bound is found 
which is less than the lower bound) infeasibility is detected and the program stops. Furthermore, 
if a new lower/upper bound is calculated to be equal to the upper/lower bound the variable is 
fixed at this bound. 
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It may be argued that a redundant variable bound should be simply removed rather than tightened 
as this may result in acceleration in the simplex algorithm as there will be less bounded 
variables. However, it is preferable to obtain a tighter formulation of the problem especially for 
discrete programming problems discussed later and for this reason variables are not set free. In 
addition this avoids the spurious unbounded condition which may occur from freeing variables, 
as discussed by Tomlin and Welch [TOMWEL, 1983a]. 
 
The pseudocode for subroutine REMBND is provided in the Appendix A (figure 4). 
 
 
2.5 SNGROW - replacing singleton rows by simple bounds 
 
The final subroutine, SNGROW is the dual case of SNGCOL. Here singleton rows are replaced 
by simple bounds. 
 
A singleton row i such as  implies new bounds for the variable xikik bxa ≤ . k

That is, 
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Thus, if these bounds are tighter than the existing variable bounds, u  and 1  then the variable k k
bounds are updated and the singleton row is set free. If the new bounds conflict with the old 
ones, infeasibility is detected and the program terminates. 
 
The pseudocode for this subroutine is provided in the Appendix A (figure 5). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7 



3.  Presolve Data Structure & Communication with FortLP 
 
The Presolve algorithm is included, as an option, in FortLP's optimization framework. FortLP's 
data structure consists of packed columns but, since many of the Presolve subroutines involve 
row-wise operations, a new data structure is used which enables both column and row scanning. 
Thus, the Presolve data structure comprises linked lists for both rows and columns. Each list has 
a header which refers to the first non-zero elements of each row or column, so the i-th element 
of the column\row header refers to the first element of the i-th column\row. Other arrays contain 
the right hand side (rhs) values, column and row types, primal and dual variable bounds. 
 
The A matrix is stored column-wise and row-wise. The first array stores the non-zero values (in 
column order); the second array holds the column indices for these non-zero values; the third 
array is a column linked list with an additional column header containing the locations of the first 
elements in the columns; the fourth array holds the row indices for these non-zero values and 
the fifth array is a row linked list with an additional row header locating the first non-zero 
entries in the rows. 
 
The example below illustrates the data structure used to store the given A matrix. 
 
Example Presolve Data Structure 
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From the column header, the first non-zero entry in column 1 is located in position 1 of the 
column link array. In fact all information relating to this entry is found in position 1 of all the 
arrays. Thus its value is in position 1 of the non-zero array. The column and row entry arrays 
indicates that this non-zero entry is in column 1 and row 1. The column link array has a 2 in 
position 1 indicating that the next non-zero entry in this column is located in position 2. Hence 
position 2 of all the arrays provides information about this entry. If a column (or row) link array 
has a zero entry then there are no more entries in the column (or row), so the zero in position 
2 of the column link array marks the end of column 1. 
 
The row linked list together with its row header stores the A matrix in a similar way but row-
wise, so, for example, from the row header the first entry in row 3 is located in position 5. This 
has value 1 (from position 5 of the non-zero array), is in column 2 (from the column entry array) 
and the next element in this row is stored in position 8 (from the row link list). 
 
The Preserve program contains subroutines (Inipre and Outpre) that provide communication 
with the FortLP optimizer. The first of these initializes the Presolve data structure and copies the 
upper bound values of the variables, the rhs values, the A matrix coefficients (including the 
objective row), the row and column types from FortLP. 
 
As Presolve occurs after set-up, the lower bounds on the variables are zero. Upon completion 
of the Presolve subroutine, the updated information is communicated back to FortLP so in order 
to maintain the set-up conditions the variable bounds must be translated so as to restore the lower 
bounds to zero. Thus, the upper bound value for each variable communicated back to FortLP 
is Presolve's upper bound value minus the lower bound value. In addition, the FortLP array 
(RLOFXV), storing the original lower bounds before set-up, is^updated with the new lower 
bound from Presolve. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

9 



4. Results 
 
Table 1 below provides the results from applying Presolve to various problems including some 
netlib problems. It provides the number of redundancies detected, variable fixed and variable 
bounds tightened together with the problem statistics. 
 
It is anticipated that further improvement may be obtained by the addition of other reduction 
procedures, in particular the elimination of doubleton rows (see section 5). 
 
Further results are needed which report the time and number of iterations required to solve these 
models with and without Presolve. However, as the communication with FortLP was not 
complete at the time of writing and as FortLP has now been replaced by FortMP, these results 
were not complete. Once Presolve is incorporated into the new FortMP, these tests will be 
performed. 
             TABLE 1 
Problem Rows Columns No. of No. of No. of No. of Rows Columns
Name     non- Redundant Fixed bounds (reduc (reduced
      zeros Rows columns tightened ed model 
              model)   
afiro 28 32 88 4 0 32 24 32 
25fv47 821 1571 11127 43 27 1254 778 1544 
ganges 1310 1681 7021 185 184 1032 1225 1497 
8800 261 87 1000 99 9 60 162 72 
gray2 35 48 144 0 0 24 35 48 
gray9 63 96 288 0 0 48 63 96 
bsc 439 209 1604 160 0 95 279 209 
egout 99 144 392 24 24 55 75 117 
modglob 292 422 1390 2 33 289 290 389 
brandy 221 249 2150 70 44 101 221 151 

 
Tightening bounds on variables may result in setting bounds on variables which were originally 
free. This may cause the simplex algorithm to take longer, so further investigation is required 
and it may be preferable not to communicate these tightened bounds back to FortLP. For 
example, our preliminary tests (not reported here) showed that for a problem such as gray2, 
where the only reduction performed was the tightening of bounds, the simplex algorithm took 
longer with the reduced model. In addition, the tightening of a bound may suggest that the 
variable can be freed. For example, if a variable originally has the conventional bounds [0,∞) 
and at the end of the reduction procedure has the new bounds [5, ∞) say, then the variable will 
always be greater than the original lower bound so it may be set free. 
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5. Post Processing and Scope for Future Work 
 
 
5.1 The need for post processing 
 
It is well known that applying the simplex algorithm to a reduced problem may result in a 
solution that is not formally optimal [TOMWEL, 1983b]. That is, the objective function has the 
correct optimal value, but the basis is incorrect. This occurs when the problem has a degenerate 
optimum solution, ie. there is a redundant constraint which is binding at the optimum solution, 
so the optimum basis is not unique. Thus solving the reduced model may result in a solution with 
an alternate basis to that obtained by solving the original problem and so there may be different 
dual values present. If dual optimality is required (for example for post optimal analysis) then 
the dual simplex algorithm may be applied to obtain the 'formally' optimal solution. The solution 
to the dual problem in this case will have alternate basic solutions so cycling will occur which 
is computationally costly. Another cause for this lack of 'formally' optimum solution may occur 
when a bounded variable is non-basic in the optimum solution of the original problem and the 
bounds of this variable are tightened by the reduction procedure. Then in the reduced problem 
this variable will be non-basic but at a new upper or lower bound. This means that the solution 
to the reduced problem is optimum but not basic. To overcome this it is necessary to take the 
optimal basis of the reduced problem, restore the bounds on the variables and perform invert. 
The variables which are at their new tightened bounds will give primal infeasibility with the 
original problem and so it is will be necessary to continue using dual simplex to obtain the 
formally optimal solution. This too may be very computationally costly. 
 
Tomlin and Welch propose an alternative method for obtaining a, formally optimal solution by 
reconstructing the original constraints and variables (Ibid.). Currently, our code does not include 
a postsolve procedure. Clearly there is a need for such an addition but this requires further 
study. 
 
 
5.2 Other reduction procedures 
 
Alternative procedures exist for reducing LP problems. For an extensive review and discussion 
of such procedures see (KALITEZI,1983). In addition Williams [WILLIAMS, 1982] proposes 
a revised procedure for implementing the algorithm provided by [BRMIWI, 1975] which consists 
of two phases. In the first phase bounds on variables are tightened and bounds on shadow prices 
are relaxed while in the second phase bounds on variables are removed (where possible) and 
bounds on shadow prices tightened. The procedure involves the scanning of columns which may 
result in the tightening of variable bounds, the fixing of variables and the detection of singleton 
columns and at the end of each pass rows are scanned which may detect redundancies, 
infeasibility or singleton rows. Unlike our algorithm, when a singleton column is detected it is 
replaced by shadow price bounds. This subroutine does not fix variables as in our algorithm. A 
further subroutine is included in Williams' procedure which is the dual of REMBND. This may 
tighten or remove bounds on the dual variables. This procedure involves the freeing of variables 
in phase two which may lead to a spurious unbounded condition as mentioned earlier and as 
discussed by [TOMWEL, 1983a]. 
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More recently there have been other developments. For example, the elimination of duplicate 
rows [TOMWEL,1986]; the nullification of balancing constraints [ANDBAR,1992]; elimination 
of doubleton rows and rows with all but one element of the same sign [IBM, 1992]. 
 
The detection of duplicate rows [TOMWEL,1986] involves identifying constraints which are 
identical except for a scalar multiple. This is carried out by making a single pass of the matrix, 
scanning the non-fixed columns. Rows are partitioned into potential duplicates by assigning a 
scalar factor to each row and dividing all elements in the row by this factor. At the end of the 
pass, the duplicate rows in the A matrix are found, redundancies eliminated and infeasibility 
detected. This algorithm is not costly computationally as it only involves one pass of the matrix, 
but the amount of reduction achieved by this procedure is more limited than those detailed in our 
Presolve algorithm. It could be argued that the existence of duplicate rows in a model are a 
result of bad formulation. However, detecting such redundancy prior to optimization provides 
some defence. The same is true for the detection of infeasibility or unboundedness. 
 
The nullification of balancing constraints algorithm [ANDBAR, 1992] implemented by Andre and 
Barbulescu is concerned with performing linear transformation on the coefficient matrix to 
globally eliminate continuity constraints. Such a process may also increase the density of the 
matrix, yet dramatically reduce the number of iterations in the simplex algorithm (op. cit. p22). 
Andre and Barbulescu propose a method for avoiding an increase in the CPU time by using a 
stop criterion defined by Knolmayer [KNOLMA, 1982]. Such a measure can determine whether 
the total CPU time will be increased if the presolution is continued and if an increase is predicted 
the presolution process may be halted and the optimization commenced. 
 
The elimination of doubleton rows involves identifying equality constraints with exactly two non-
zero coefficients, substituting for one of these non-zero elements and setting the row free. For 
 

k
ij

ik

ij

i x
a
a

a
b −example, if  is a doubleton row then xikikjij bxaxa =+  is substituted with  j

In performing this substitution the coefficients in the A matrix must be altered. This involves 
scanning the coefficient matrix row by row and locating constraints with the substitution element. 
When such a row is found the other doubleton coefficient must be obtained and updated. This 
may result in increasing the number of non-zeroes in a row. Nevertheless, results from OSL's 
preprocessing routine EKKPRSL (see Appendix B) indicate that this type of reduction is most 
beneficial. However, as such a procedure may increase the density of the matrix and requires 
a simultaneous row scan and double column scan it has greater complexity. Therefore the CPU 
time of the Presolve algorithm is increased, but in addition the CPU time of the optimizer is 
decreased. 
 
The elimination of equality rows with all but one element of the same sign, for example 

bxaxaxa nn =−−− ...
2211     

 
is a similar to the doubleton row elimination algorithm though involving multiple column and 
row scans. In this case the complexity in implementing this procedure is greater than that of the 
doubleton row. These two algorithms require more computational effort that the Presolve 
algorithm implemented in FortLP (described earlier), but produce greater levels of reduction. 
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5.3 Implementation considerations for the doubleton reduction procedure 
 
The doubleton row reduction procedure consists of the following steps: 

(i) identify a doubleton row and flag it 
(ii) substitute for the first variable 
(iii) store doubleton column links 
 

The first step is easy to implement with our existing data structure and subroutines GETFRW 
(get the first non-zero element in the row) and GETNRW (get the next element in the row): for 
each row simply perform GETFRW followed by GETNRW to obtain the second non-zero 
element in the row. If this is the last element then it is a doubleton row and so flag it. It is 
preferable to define a new row type to identify doubleton rows rather than just freeing them as 
this makes it easier to restore the eliminated variables after optimization. 
 
The second step involves a simultaneous column scan for the two variables in the doubleton row. 
For example, assume there is a doubleton row in row i with non-zero entries in columns j and 
k. Then for each non-zero element in column j (ie. i1alj ≠ ) the 1th element in column k must be 

.
ij

ik
ljik a

a
aa −updated. If the corresponding element a  is non-zero then it is replaced by  ik

 

ij

ik
lj a

a
a−If however, it is zero then a new entry  must be added to the data structure. 

 

In addition the right hand side value b, must be similarly replaced by .
ij

i
ljl a

bab −  

These substitutions are also performed in the objective row. Adding a new entry to the A matrix 
is easily carried out in our data structure by adding the new entry at the end of the arrays and 
updating the linked lists. This however must be communicated back to FortLP. The addition of 
new non-zero elements to the right hand side vector may be necessary as a result of existing 
procedures in our algorithm. This is communicated back to FortLP by allowing extra storage in 
the necessary arrays. A greater allowance will be needed to account for the additions created by 
this substitutions. 
 
The third step is required so that the eliminated variables may be reinstated after optimization 
by re-substitution. For each doubleton row, the column entries, j and k are stored so that a 
record is kept of which variable has been substituted. Then after optimization it is easy to scan 
this information and obtain values for the missing variables by back substitution. Obviously, this 
information must also be communicated and stored within FortLP's data structure. 
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6. Final Comments 
 
Our implementation of the presolve algorithm detailed in [BRMIWI, 1975] performs considerable 
reduction on the test problems. It is anticipated that dramatic speed up of solution will be 
achieved once this is fully incorporated into the new optimizing system FortMP (which replaces 
FortLP). The elimination of doubleton rows may later be implemented to achieve further 
reduction and subsequent acceleration in solution. The merit of all reduction procedures depend 
on the balance between the reduction obtained and the time or cost expended in achieving this 
reduction. Providing that the combined CPU time of the presolver, the solver (with the reduced 
model) and the postsolver (if used) does not exceed the CPU time of the solver (with the original 
problem), the reduction algorithm is worthwhile. 
 
The new FortMP handles ranges on constraints. These may be dealt with by adding bounds on 
slack (or surplus) variables corresponding to the appropriate row. These can be simply read in 
together with the model and no further changes will be required to the Presolve algorithm. 
 
A Postsolve procedure is necessary for obtaining 'formally' optimal solutions. This is particularly 
important when meaningful dual values are required, for example for post-optimal analysis. The 
techniques used in basis recovery in IPM may be used in implementing such a procedure. 
 
The presolve procedure may be extended to be used in Discrete Programming, in particular at 
each stage of the Branch and Bound (B & B) algorithm since at each node of the B & B tree an 
LP problem must be solved. However, in order to deal with integer variables some modifications 
are needed. In the subroutines where new bounds are computed, these bounds must be rounded 
to the appropriate integer value (ie. the new lower bound lk is rounded to (lk+ 1-∈) and the upper 
bound uk is rounded to (uk+∈) where e is a small number). Also the replacement of a singleton 
column by a shadow price bound is not valid for integer variables unless the non-zero coefficient 
in the singleton column is in a row where all non-zero entries correspond to integer variables and 
the coefficient is a divisor of all these non-zero entries as well as the right hand side value 
[WILLIAMS, 1982]. The tightening of bounds of variables is more important for integer 
problems and so unlike our suggestion in section 4 all new bounds should be communicated to 
the optimizer and variables should not be freed. 
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begin 
    if j is a singleton column then 

 if alj > 0 then 
 

lj

j

a
c

  {Calculate new lower bound newp = 

 for shadow price} 
if newp > p1 then 
   p1 = newp    {Tighten bound} 
 endif 
 if newp > q1 then 
    xj = uj    {Fix variable to its upper bound } 
    update rhs values 
    reduct = 1 
 endif  

    else 

lj

j

a
c

  {Calculate new upper bound  newq = 

 for shadow price } 
 if newq < q1 then 
   q1 = newq    {Tighten bound} 
 endif 
 ifnewq , p1 then 
      Xj = lj    {Fix variable to its lower bound} 
    update rhs values 
    reduct = 1 
  endif 
endif 

    endif 

 
                                       Figure 2 Subroutine SNGCOL 
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                        Figure 1 Subroutine FIXCOL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Begin 

 For j=l to n do 

    If Xj is not fixed then 

  Initialize bounds Pj = Qj = 0 
  While there is a non-zero element  in column j do ija

Get  ija

If row i is a non-redundant constraint then 
If  >0 then ija
   P   {calculate Pj and Qj} 

iijjj

iijjj

qaQQ

paP

+=

+=

else if  <0 then ija

   
iijjj

iijjj

paQQ

qaPP

+=

+=

endif 

    end if 

 enddo 
   If P >  then   {xj is fixed at its lower bound} jj c

     Fix xj = lj 

     reduct = 1 

 else if Qj< Cj then  {Xj is fixed at its upper bound} Fix xj = uj 

reduct = 1 

 endif 

  endif 

enddo 

  end 
 

         
   Figure 1 Subroutine FIXCOL 

 
 
 



 
begin  

 1..mi=∀     Initialize L(i)=U(i)=0 
      for i=l to m do 
 

If row i is a non-redundant constraint then  
   while there is a non-zero element aij in row i do  

       If column j is not fixed then 
   if aij > 0 then 
 

      Li = Li + a lj  ij  
      Ui = U + aij uj  s

 else if aij < 0  
       Li = i + aij uj   L
       Ui = Ui + aij   lj  

endif  
         endif  

       endo 
     If Ui  bj then ≤ 

       free constraint i   {constraint i is redundant}  
                  q j   =   pi     {Fix dual variable to lower bound}  

          reduct = 1 
  else if Li > bi then 
 

         Problem is infeasible  EXIT → 
else if Li = bj then  

   for j=l to n do 
     if xj is not fixed then 
         if aij > 0 then  

                          xj = lj  
else  

 xj =u j 
  end if  

 update rhs values  
 reduct = 1  

     end if 
  enddo 
 

endif  
   enddo  

 end 
 

        Figure 3 Subroutine REDROW 
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begin 
      for j 1 o n do  =  t
          for i = l to m do 

if aij > 0 then 

 
          Figure 4 Subroutine REMBND 
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   )L(b
a
llnewu jj
ij

j −+=  

else if aij < 0 then 

   newl = lj + )U(b
a
l

ii
ij

−  

endif 
         endo 
         if (newl > uk) or (newu < lk) then 

The problem is infeasible →  exit 
            endif 
         if newl > lk then 

 lk = newl    
        endif 

  if newu < uk then 
   uk = newu 

   endif 
    if uk = lk then 

    xk = uk 
    update rhs values 
    reduct = 1 
endif 

       endo 
 end 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

begin 
      if i is a singleton row then 
         if aik > 0 then 

 

 newu = 
ika

b i  

 if newu < lk en  th
    The problem is infeasible  EXIT 

Figure 5  Subroutine  SNGROW 
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→
endif 
if newu < uk then 
   uk = newu 
endif 

       else if aik < 0 then 

ik

i

a
b   newl = 

 if newl > uk then 
    The problem is infeasible  EXIT →
endif 
if newl > lk then 
   lk = newl 
endif 

     endif 
endif 

         end 



 
 
 
  

             
 
 
 
 
 
 
 
 
 
 
 
 
 

        Figure 6 Presolve Main program 
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Initialize 
while pass<2 do 
       call fixcol 
       ca  sngcol ll
      If tpass ≠ 1 then 

call rembnd 
      endif 
      call redrew  
      call sngrow 
      If reduct = 0 then 

pass = pass +1 
      else 

pass = 0 
      end if 
      tpass = tpass +1 

       enddo 



 
     Results from EKKPRSL (OSL’s reduction subroutine) 

A
PPEN

D
IX

 B
 

      Level 1 reduction includes the elimination of doubleton rows 
         Level     2   reduction includes the elimination of rows will all but one element of the same sign (but not doubleton row elimination) 
      Level 3 reduction includes everything. 
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