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Abstract

In this paper new expressions for the acoustic field produced when a plane
wave source of sound is diffracted by a soft, hard or mixed soft/hard wedge
whose angle can be expressed as a rational multiple of ® are given. The
solution is expressed in terms of geometrical acoustic source terms and real
integrals which represent the diffracted field. The expressions are in a form
which allows easy calculation of the acoustic field. Uniformly valid ex-
pressions for the far field are also given for all values of the angular
variable. The general result obtained includes as special cases, Sommerfeld' s
solution for diffraction by a half plane, Reiche’s result for the diffraction
by a right angled wedge, and a new representation for the solution of the

problem of diffraction by a mixed soft/hard half plane.



1. Introduction

The exact solution of the problem of diffraction by a soft or hard wedge
of any angle in the two dimensional case of plane acoustic wave incidence is
due to Macdonald (1902). The solution was given in the form of a complex
contour integral, which was obtained by summing the Fourier series represen-
tation of the Green's function. For the special case of a wedge which becomes
a half plane, Macdonald showed how the contour integral could be reduced to an
elegant form involving real integrals corresponding to Sommerfeld’s solution
(1896). Sommerfeld obtained the solution for the half plane problem by using
the relatively new concept of Riemann surfaces and multivalued functions.
Sommerfeld (1901), p.38, indicated briefly how, by his method, the solution in

the form of a complex integral could be obtained for a wedge of angle pn/ q

(p, q being positive integers); a Riemann surface of p sheets being required.
Sommerfeld also pointed out that when the angle of the wedge is an irrational
multiple of 7 , a Riemann surface of an infinite number of sheets can be
employed in the same way. Wiegrefe (1912) gave a solution for the problem of
the diffraction of plane waves by a wedge of any angle by this method. His
solution was in the form of a complex integral on which he applied asymptotic
methods to obtain the far field approximation in the form of geometrical
acoustic terms and the cylindrical diffracted wave radiating from the edge of
the wedge. Since then wedge problems have been dealt with in a similar manner,
that is, the solution has been expressed explicitly in terms of the geometrical
acoustic terms and the diffracted field for the situation where the observation
point is well removed from the edge of the wedge. Expressions which express
the solution exactly in the form of geometrical acoustic terms and real integrals
representing the diffracted field are not known except for two special wedge
angles. These are the half plane problem, Sommerfeld (1896) and the right
angled wedge problem, Reiche (1912). The advantage of this representation is
that the solution is readily interpreted physically, and is valid for all

positions of the observation point. This representation also admits uniform
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asymptotic solutions for the total field (valid for all observation angles)

to be obtained simply.

The Sommerfeld technique, which is a combination of the physical method
of images and the mathematical theory of Riemann surfaces, has been considered
abstruse, because a solution is derived heuristically, using the method of
images in various Riemann sheets. Indeed Reiche (1912), who gives a solution
for the diffraction of a plane wave by a right angled wedge (in the form of
geometrical acoustic terms and real integrals which represent the diffracted
field) thanks Sommerfeld for supplying the appropriate 'ansatz' to obtain the
solution! Carslaw (1920), was an early convert to Sommerfeld’s method, but
later gave up using the idea of Riemann surfaces, and instead used the more
modern approach of using periodic Green's functions. However, Sommerfeld's method
gave exact solutions which made apparent the geometrical acoustic and diffracted
wave contributions for the half plane and the right angle wedge. Clearly in
the hands of Sommerfeld the technique was very powerful. Sommerfeld did not,
however, give an explicit solution in the same form for the rational wedge,
although he does seem to have been aware of the qualitative form the solution
would take, see Frank and Von Mises (1943) p.853. It is conjectured that the
reason for this is because his method would involve constructing and manipulating

rather complicated trigonometrical identities.

In this paper we derive the explicit solution for the problem of

diffraction by a rational wedge of angle pn/ q, The solution is expressed in

terms of geometrical acoustic and real integrals representing the diffracted
field. Our approach is to avoid the Sommerfeld use of Riemann surfaces and
simply use the periodic Green's function for an arbitrary angle wedge. Then
we consider the special case of a rational wedge. It is then shown, by means of
some trigonometrical identities, how the complex contour integral can, in this
case, be reduced to source terms and real integrals which are convenient for

calculations. We remark that recently there has been much work done on uniform
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asymptotics for the wedge, see Ciarkowski et al (1984). The results presented
here offer an alternative approach, in that a wedge of any angle can be

approximated to any order of accuracy by a rational wedge of angle pn / q, and

the real integrals obtained in this paper can be asymptotically evaluated
without difficulty. Finally the present results offer an infinite number of
exact wedge problem solutions which can be used for comparison with various

approximate techniques.

In section 2 we shall give the known periodic Green's function for a plane
wave source and a wedge of arbitrary angle. The Green's function is in the
form of a complex contour integral. Some of the important properties of the
Green's function are stated, and appropriate expressions for the solution of
the problems of diffraction by a soft, hard, or one face soft one face hard,
problem are given for arbitrary angle in terms of this Green's function. In
section 3 we shall consider in detail the special case of evaluating the complex
contour integral representation of the Green's function for a wedge whose angle
can be expressed as a rational multiple of 7. In section 4 we shall give
expressions for the Green's function for special cases of wedge angles.
Finally in section 5 we shall give solutions to some specific problems in
diffraction theory which are special cases of the more general result obtained
in section 4. The first problem is the classical solution of Sommerfeld for
diffraction by a soft or hard half plane. The second is Rieche's (1912)
solution for diffraction by a right angle wedge. The solution obtained here
agrees with Reiche's result, and is more compact. The last solution is a new
result for the problem of diffraction by a soft/hard half plane, see
Rawlins (1975).

In order not to disrupt the flow of the arguments in the main body of the
paper, various proofs of results needed have been placed in appendixes at the

end of the paper.
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2. Periodic Green's function for a wedge.

The periodic Green's function G (1,0,0,;k) for a two dimensional wedge

situated in the space O < r < o,2r — a < 0 < 2x, see fig 1. where (r, 0) are

cylindrical polar coordinates has been shown by Carslaw (1920) to be given by

sinC/a dc (1)

cosC/a—cos(0-6,)/a

Gy (1,0,0,5k)=— [eKT€0sE
2ai

where the contour of integration C is such that the starting point is given
by i® + cq and the termination point is given by i® + co where - n < ¢; <0,

T < C2 < 2m, see fig 2.

éﬁ =
r C
] |—
) oo 0=0 == -
< =
—
/
—]
O=c
fig 1. fig 2.

It has also been shown by Carslaw that Gy (I, 6, 0 ; K) has the following properties:

P 1o 18 \
i V> +k*)G, =0,whereV’ =——+-——+——;
M )Ga o’ ror 1’ ob’

(11) G(l(raeaeo;k):Ga(rae+2a;k);

(111) G (1,0,0,:k) 1s finite and continuous; > (2)
) ikrcos(@—eo)
(iv) Gy (1,0,0,:k) ~e asr—>wld—0,|<n
~0 asr—w [0 —0y[>n J

The Green's function given above enables one to derive solutions to various
diffraction problems in wedge shaped regions. To be specific we shall discuss

acoustic waves. The solution Up or ug of the problem of a plane wave:
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ikrcos(6—-0
u,=e ( 0) (3)

(with harmonic time variation eth assumed, but not shown explicitly, in the
rest of the paper) diffracted by a rigid wedge (bup /90 = Ofor 6 =0and 0 = o)
or a soft wedge (Ug =0Ffor 6 =0and 6 = o) is given by

u, =Gy (r,0,0;k)+ G (1,0,-0,: k), (4)
or

ug =G (1,0,0,:k) -G (1,0,-0,;k), (5)

respectively.

The solution Up /g of the problem of a plane wave (3) diffracted by a
wedge whose face 0 =0 is rigid (6uh/s/60 =0) and whose face 0 = o is soft
(uh/s =0) is given by
Ups :Gza (r,O,Go;k)+G2a(r,9,—90;k)—Gza(r,9,2a—Oo;k)—Gza(r,G,—Z(x+60;k)
(6)

3. Plane wave Green's function for a rational wedge.

If the wedge angle o is a rational multiple of mwi.e. pn/ q where p and

q are integers the plane wave Green’s function (1) becomes

ey L ikrcos ( gsin( ¢ g/p) 7
GPcF(r’ S 000 = le cos( ¢ q/p) — cos(( 6 - 6,)a/p) d )

where the contour of integration is as shown in fig 2. By using the identity

gsin(_¢ a/p) _ “Z‘ sin(_¢7p)
cos( £ q/p) —cos(( 6 —06,)a/p) = cos( £ /p) — cos (6 -0, N 27T m J
q
see appendix A, we can write (7) in the form
q-1
Gpr (r,0,0,:k) = z I (kr, 0 -6, + 2 mp/q), (8)
q m=0
ko pSnET®)
L (kr.w) =L [oiKrcos .
Where p(kr¥) 2mi ie cos(£ /p) —cos(y/p) d¢’ ©)
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The identity
1 . R_2 . (. (p-2-n)
~sin({/p) a, () sin(¢'/p)+ > an(\ll){sm(é (p—n)/ p)—Sln(J ]}
p n=0 p

cos(¢ /p) —cos(y /p) - (cosg —cosvy)
where an(y)=sin(( + Dy 7/ p)/{psin(y 7/ p),

derived in appendix B, enables us to rewrite the integral Ip(kr, y) given by

expression (3) in the form

Ieikrcosc sin(¢'/p) d

1
I,(kr,y) =a —
p( V) p-1 ) 2w (cos¢ —cosy)

kS I ¢ ikrcos¢ {sin(¢ (p—n)p) —sin({ (p—2-n)p)}
+1qz=:0an (W)%ie (cos ¢ —cosy) de- (19)
—ikr cos vy

Multiplying both sides of the equation (10) by e and then differentiating

the resulting expression with respect to kr gives

0

S [e—ikrcos WIp(kr, W)}ze—ikrcos Qap_l(w)zLJ’eikrcos § sin( ¢ /p)dce
n

C

. p—2 .
e KOs G5 a ()5 [HK1908 fsin £ p - ) —sin o — 2= )/ ) JC,
n=o0 T C
differentiation under the integral sign being permissible since the resulting
expressions are uniformly convergent with respect to kr.

We now use the easily proved result, Erdelyi (1953),(pp.19-21 (23))
—ivm /2

1 eikI‘COS 4 sin v¢d(e = £ sin VT[Hg}z) (kr) , (11)
2m g 2

where Hs,z)(kr) is the Hankel function of the second kind.

Hence

0 —ikrcos y 1 . [ m | —ikrcos y,; (2)
m[e Ip (kr, \V)J = Eap—l (y)sin (gje H% (kr)

(p—n)

+L'pz_:2 {an(w)sin {n_nJ einn /(2p)—ikrcos \|IH(2) (kn)
21 A= p D
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—a__ (y)sin((n + Dwp)e (DT A2p) —ikreos "’H(:2)_1_n: (kr)} . (12)

It is shown in the appendix C that

ikrcos
Iy(oo,w) = 3 H [y + 2mpN]] K755, (13)
N
1 x>0
where y[x]|= 1 _o/| is the Heaviside step function, and summation is over
2
0x<0

all integer values of N which satisfy the inequality = 2> |\|/ + 27cpN| .
Thus integrating equation (12) with respect to kr, and using the result (13)
gives

Ip (kr, y) = z H[n - ‘\If + 2mpN ‘]eikrcos v
N

. . kr .
N lelkrcos v, (y)sin m |~ i /(2p) J‘ o~ ixcos Yy (2) (x)dx
2 p-1 p & 1

p

. 3 . k ;
L ikrcos pZ 1 2 (y )sin nm | inn /(2p) f e T IXCOS Wy @ (X)dX
o Z 5 J ® -0

p

i(tn +1)m /(2p) kJ; o TiXCos Yy (2) ) (dx . (14)

—an_l(\u)sin(( n+1)n/p)e (p—1-n
p

o0

The integrals appearing in the above expression can be shown to converge,

see appendix D. The integrals are a generalisation of Schwarz functions, see
Luke (1962), chapter 10, where extensive properties and asymptotic results are
given.

Substituting the expression (14) into the expression (8) gives

& ik 0-0,+2 /
Gpr (r,0,00:k)= 3% > Hlx~[0 -0, +27mp /q+27tpN|]e1 reos( 8=6 +2mmplg)
q m=0'N

_1 . .
+l pz e1krcos( 0-0,+2tmp/q) ,  (9— 0, +2mmp /q)sin(lje in /(2p) ’
2 p_l D
m=0
kr - ixcos( 9—60+2n mp/q)
.[ © H2 (X)dX
- P
q-1  p-2 ikrcos( 0—0,+27 mp/ .
+ L )3 PIS (9% P/ an (-0, +27 mp/q)sin (ﬂ}elnn /(2p)
2im=0 n=l )

kr —ixcos( 9—60+2n mp/q) @)
[e Hp-n) &
© p
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PN
—a. (6-6,+2mmp/q)sin((n+1)xn /p)el(n +1)/(2p)

T 15
J~e—1xcos( 6-00 +2m mp/q) H((i)flfn) (x)dx (15)

0

p
where the summation over N is for those integer values of N which satisfy
-1 <0-0,+2nmp/q+2npN< 7.

More explicitly we can write:

(16)

q- ikrcos( 6—0 +2 1 mp/
G pr (1. 0,0, :k) = ZO§ H[z—-[0-0,+2mmpq +27pN||e reos( 6-0+2 m mp/q)
q m=

1_ q-! lkaOS( 0-6,+2m mp/q) —in /(2p) sin( 6 — 0, + 21 mp/q)sin( = /p)
2p m=o

sin( 0 — 6, + 2 © mp/q)/p)
kr _ixcos(0—-0 ,+21 mp/
. I e ( 0 P q)H(lz) (x)dx
o0 P

| q-1 p-2 eikrcos( 9—90+27t mp/q)

_+_ _—
2ip 2o = sin((0 — 0, + 2 nmp/q)/p
LT /(2p)sm((n+1)(e 0, +2n mp/q)/p)sin(nx /p).
kr —ixcos(0— 9 +21 mp/q (2)
[« Hioom %
o0
. 1(n+1 )TE /(2p)31n(n(6 9 +27 mp/q)/p)sm((n + 1)7'E /p)
kr _ixcos(0— —0,+2m mp/q) ey
: I e ~|p) ®dx
J Lp_n)

b (17)

where the summation over N is for all integer values of N which can make
the argument of the Heaviside step function non negative. Thus the solution

u(r,0) to the problem of diffraction of the plane wave ug(r, 9) = etkr €0s©@-00)

by a soft ug or hard up wedge of open angle a =pn/q is given by
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ug(1.0) = Gpp (0.0, :k) — G 7 (1.0.-6 1K)

q q
and (18)
uy (1,0) = Gp  (1,0,0():k) + G  (1,6,-0:k)
q q
respectively, where Gpg is given by the expression (17). Similarly the
q

solution to the problem of diffraction of the plane wave ur, ) = e'Kr €0s(®-00)
by a soft/hard ug /s h (r, 0) of open angle o =pn/Qq is given by
u gy (0.0) =Gy (1.0,00:K) + G, (10,-0,:K)

q q
2pm 2pr_, .
_G2 (r,0,—— . 03k - G2 (r,0,— . —0¢:k) (19)
q q
where Gan(", 0, 6, ; K) is given by the expression (17) with p replaced by 2p.
q
By using the asymptotic results of appendix D we have for kr—oo:
q-1 [ ] ikrcos( 00, +2m mp/q)
GM(r,G,GO;k)=mZ_O§Hn—‘G—OO+21tmp/q+21tpN‘ e
q =
o4 a=l ikreos(8-6,)+2 zmplq) sin(6 — 8, + 2 % mp/g)sin( « /p)
fp mzo sm((9—90+2nmp/q)/p) |cos((9—90 + 2 mmp/q)/2) |
v 2kr | cos((0 -6, +2nmp/q)/2) | '
—iv
I € dv
o0
im .
o4 qil piz e1krcos( 0—90+21r mp/q)
+ . ;
\/Ep m=0 n=1 sin(©® —60 + 2 tmp/q)/p)| cos((0 —OO + 2 mp/q)/2)|
«/2kr‘cos((9—60+2 T mp/q)/2)‘
w2
+sin((n+1)(0 -0, + 2w mp/q)/p)sinnn /p) | e Vv
o0
2k 0-0,+2 /q)/2)|
~sin(n(8 -0, + 2w mp/qYp)sin((n + ) /p) | rleos((0=0g+2mmplay2)| v2 4 }
0
+0((kr)™2). (20)

This expression is uniformly valid up to order of (kr)™,. The integrals are

related to the Fresnel integral.
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4. Special cases of wedge angles

P=1
Q=0 ik 0-0, +21 m/
Gun (n6,0,:k = 3 S H[r-|0-0,+2nmqg +an\]e”""s( o*2m ma) (21)
q m=0N
"
qg=1

Gp n(r,0,00;k) = X H[n—|0-00 +27npN Heikrcos( 0-6¢)
N

1 ikrcos( 6—00)—i 7 /(2p) sin( 0 — 00 )sin( 7t /p)
+—ce :

2p sin((0 -0 0 )/p)
kr —j _
. j e eos(0-09) H(12) (x)dx
* p

| p-2 e1krcos( 9—90)

4 in 7 /(2p)
2ip n=1 sin(( 6 - 90 )p)

{sin((n +1)(0-06 0 )p)sin(n T /p) e

kr .
J- e—lXCOS( 9—90 )H(z)_n
* p

(x)dx

—sin(n(8—8,)/p)sin((n + r/p)el@+DT/2p)

kr _ixcos( 0-0
e (0-90), 2

(o } (22)
@ p

"

P=2

ikrcos( 6—90+4 T m/q)

q-1
G, (1,0,8,:k) = ¥ ZHn—‘9—60+4nm/q+4nNHe
m=0N

2n
q

1 9-1 ikrcos( 6-0,+4 m m/q—in /4 sin(0 -0 +4n m/q)
+— X e , :
4 m=0 sin(( 6 — 60 + 4 © m/q)/2)

kI _ixcos®-0,.+4 mm/
e % q)H(lz)(X)dx.
0 2
1

2 _.
which on using the result Hf) x) = 1(ij ¢ * becomes
5 T X
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q-1 . _
Gyp(1.0,00:K) = 3 SHn—|0-0+4mm/q+4nN [|ekreos®-0g+4mm/q)
T m=0N
q
L] ! ikrcos(0—6,+4 T m/q)+in /4 Sin(0—6 +4 T m/q)
e .
242 mm=0 sin((0 -6, +4 m m/q)/2)
kjf ix2c0s2((0-0,+4 T m/q)/2) dx
e —
% Jx
q-1 . B
= > ZH[n—|9—00 +47tm/q+41tN|]elkmOS(9 90 +4mm/q)
m=0N
1 qil ikrcos(6—60+4nm/q)+in/4 [ ©0-0 +4nm )/2]
+— XY e sgnlcos(0—60,+4 tm .
Jr =0 & 0 1
\/2kr‘cos(6—90+4nm/q)/2‘ _
[ e Vv (23)
o0
=1 x>0
where sgn[ x] = 4= 0 x =0, is the signum function.
=-1 x<0

We remark in passing that the integral in the last expression can be

expressed in terms of the Fresnel Integral.

5. Some specific problems in diffraction theory
Sommerfeld’s solution for a half plane.

In terms of the Green's function the solution for the problem of

diffraction of the plane wave ug(r,0) :elkrcos(é)—eo) by a soft, or hard,

half plane is given by
uy (1,0) = G, (r,e,eo;k) + GZn(r,O,—GO;k) ,
ug (1,0) = G27t (r,O,OO ; k) — G2n(r,0,—90 ; k).
Now from (23) with q =1 we get

(24)

G, (1,6,00:k) = XH[n—|p -6 +47cN|]eierOS(9—90)
N

1 ikrcos(0-0,)+in /4 V/2kr|cos(6-0,))/2 —iv2

+——¢

Tn sgn[cos(B —00)/2” dv;
T o

and since 0<0,<2n,0<0<2m then -2n<0-0,<2m.
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The argument of the Heaviside step function can only be positive
if N = 0. Hence

Jn
. sgn[cos((6—0,)/ 2)”‘\/%‘005(9—90 )/ 2)‘ e_ivz i

o0

ikrcos(0—0,) 1 ikrcos(6—0,)+im /4
G, 1 (1,6,0):k) = H[n—|6 -6, |le 07y —e 0 .

ikrcos(6—0 O) 1 ikrcos(6—60)+i /4

= H[cos((@—@o)/Z)]e +Te
T
V2kr [cos((0-6,)/2)| .,
sgn[cos((0—9,))/2] j e IV dv.

If cos((6—-0,)/2)>0 then

ikrcos(6—0 ikrcos(0-0,)+i t /4
G, (1,0,0,:k) =e (0=9) sl (0=0) .

Jr
| meos((e_eo)/z)e—”zdv

ierOS(e—eo)-l-i /4 \/Ercos((e -0,)/2)

_° - {_J;O+OJ; }e_ivzdv )

. ~ 2kr 0-0.)2
/4 ikrcos(0-0,)) cos(0-6¢)2) iV
Gzn(r,e,ﬁo;k): T e | e dv.
n — o0

If cos((0—-6()/2)<0 then
—/ 2krcos((9—90)/2)

e 1T/4 ikrcos(6-6,)
(S

_iv2
Gy (500038 = = | e Vv,
ei /4 ikI‘COS(e—eo) R 21(1‘008((9—90)/2 _iv2
= e e dv.
Jn S

Hence for any sign of cos((06—0,)/2) we have

T4 ikrcos(0-6,) Y 2KTeOS(O=09))
e I e dv.
Jr J

o0

G27'C (raeaeo;k) =

The expression for Gpr(1,0,-0,;k) can be found in exactly the same way for

0<0+0, <4r, i.e.
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G (1,0,-0, :k) =H[m — [0+ 0,[1e KOO0 4 pipm —jo 1 0, —4nfy eIkre0sO+00)

(6+6,)

in/4 +ikrcos(6+6,) 2krlcos—05

45 ’ sgn{cos O+ 60)} 2 _Wzd

— e v,
Jn 2 L
in/4 Pirleos 0100,
= H[cos((0 + 90)/2]+e_e1krcos(6+60) sgn{cos((eJr—zeo))}j 2kr|cos e "V dv
n %0

/4 ikrcos(040,.) /2K 0+40,.)72) .
e el cos(0+ O)J- rcos(( O) )G_IVZdV.

Vo oo

GZT[ (raea_e() 9k) =

Hence the solution of the problem of diffraction of a plane wave by a soft

or hard half plane is given by

in/4
W) = RE e11<rcos(9—90) J«\/2krcos((6—90)/2)e_ivzdV

NES
1 AT /4 eikrcos((6+00)/2) v 2krcos((0+6,)/2) V2

Ju >0

where the upper sign is for the soft half plane and the lower sign is for the

v, (25)

hard half plane. This result agrees with that of Sommerfeld’s.

Reiche's solution for a right angle wedge.

In terms of Green's function the solution for the problem of diffraction

of the plane wave ug(r,0) = elkrcos(e—eo) by a soft, or hard wedge of open

3m . .
angle oc:7 is given by

ush (r,0) = Gﬂ(r,O,OO;k) F Gﬁ(r,e,—eo ;K) (26)
2 2
G135 (1,6,0,;k) 1s given, from (17) after some simplification, by
2
ikrcos(6-0,)
Gﬂ(r,e,eo;k)=ZH[n—|9—90+6nN|]e 0
2 N

—ikrcos(6-6
+ Y Hn-[0-0, +(3+6N)x[Je ' reos(-0)
N
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eil<rcos(e—90)—i7t/6 [ sin(6 —0,,) _lee—ixcos(G—eo)HQ)(X)dx
1

WA 2sin((0 - 0,)/3)
3
—ikrcos(0—-0¢)—in /6 kr
e sin(B6-6,) ixcos(6-6(),(2)
WA 25in((0 - 0,)/3) lj Je Y (dx
0 3

ikrcos(6 —0,) —1m/3 kr .
¢ " cos((8 - 0,)/3) [ xe0s(0-00 )H(ZZ) (x)dx

243 <

® 3

+

. ~ . kr
e Kreosl8=00) =S (B 0,)3) J eeost9=00) 1P gya

24/3 2

* 3
Now using the trigonometric identity S.m—w—l = cosz—w, and the fact that
2siny/3 3

for —%<6—90<3§,—n<6—60+6nN<n will only be satisfied by N=0,

and —n<0-0,+(3+6N)t<m is not satisfied by any N, then
2

ein /6 ~ikreos(8-69) K jy050-9,)

+ cos(2(0—0,)13) [e

H (12) (x)dx

243
3
—in /6 —1krcos(0 —0,) kr . 3
;8 cos(2(0-0,)/3) [ ¢ 1xcos(® OO)H?) (x)dx
243 : !

—in /3+ ikrcos( 0 —0) kr

+ cos((0—0,)/3) [e™ X000 (x)ay

2+/3 3
—in /3—ikrcos( 0 —0g)kr .
e ixcos( 0-0¢) 72
- cos((0—-0¢)/3 e H” (x)dx 27
23 (( 0) )o{) 3 (x) (27)

Similarly for 0<0+6,<3n can be shown that
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ikrcos(6+6)) —ikrcos(0-0())

Gy (1,0,-0, k) = H[n—|0+0, [Je L H[n—|0+6, +3x e
2
—im /6 + ikrcos( 0+ 0) .
S cos2(0+0,)3) [ e XOS(9F00) O ()4

243 o 3

—in /6 —ikrcos( 0 +0,) kr .
cos(2( 0+ 0,)/3) | eXOS(O+00)H® (ax

243 o :

—in /3 +ikrcos(0+6,) kr .
ez\/g cos((6+0,)/3) | o ~1xcos(8+6) H(22)(X)dx
! 2

3
e_m/3—ikrcos(9+60)kr i 040
S5 Co©+00)3) Ojo eXe0s(9H90) 5 () dx (28)

3
If we now substitute (27) and (28) into (26) for the soft case, we get precisely

—+

+

the result obtained by Reiche. However, our result is more compact because of

the use of the Heaviside step functions.

Diffraction by a hard/soft half plane.

In terms of the Green's function, the solution for the problem of

diffraction of the plane wave u(r,0) = elkrcos(G—eo) by a hard/soft half

plane is given by

Upys (1,0) = Gup (1,0,0 5 K) + Gy (1,0,—0 5 k) = G 4 (1,0,47— 0 ; k) — G (1,0,—47+ 0, ; k) .

(29)
Now using (22) with p=4 we get
Giar (1,0,0,:K) = > H[m—[0 -0, + 8 N|]e'Krc0s(0=00)
N
—j ) kr
L © /8 oikrcos(6-6) sin(0—6,) je_iXCOS(B_GO)H(Z)(x)dX
82 sin((0—0,)/4) 1
0 4
i - : i kr
N cikrcos(6-0) | 1 sin((0 —0,)/2)e '™ /s J‘e—ixcos( 0-00) @ (x)dx
8i sin((0 — 0, )/4) J2 3
0 4
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. koo
— sin((0-0,)/4)e! ™ [ e_IXCOS(O_GO)H(Iz) (x)dx
© 2
ikrcos(0—9,) o kro
+ & ! {sin(S(O—OO)M)em 4 [ emixeos(0=00) 5 ()4
8i sin((0-0,)/4) 1
o0 2

. Jinfskr .
B Sm((e—GO)/2)e /8 J'e—IXCOS(G_e())H(IZ)(X)dX }

V2
o0 4
For —2n<0-0,<2n the only value of N which satisfies

-n<0-0,+81N<n is N=0. Hence

G47I (r,@, 9() ,k) = H[TE- | 0 —90 |]eikrcos(6—60)

im fasi 09— ] kr
e in /a+ikrcos( 0) 51T1(3(9—90)/4) _q J'e—lxcos(G—OO)H@)(x)dX
8 sin((0 —0,)/4) L
0 2

e tkreos(8-6o) cos((9—0,)/4) {ein /8 lj-re—ixcos(e_go)H(z) (x)dx — (1 - 2005(—(e %) D e 8
3 2

+_
4i V2

00 4

kr
. J‘e—1xcos(9—90)H(lz)(X)dX },

Y 4
where we have used the trigonometric identity sinwy/sin(y/4) = 4cosy/4cosy/2. If

we also use the identity sin3yin3y/—1 = 2cos’y

we have

G4y (1,6,6,;k) = H[n —|0 _90|]eikrcos(6—90)

—im /4+ikrcos(0-0,) kr
+§ " cos((0-0y)/2) [0SO =00) @ oy
© 2

o —im/atikrcos(6-0,)
— cos((0—0,)/4){ .

+
42

kr . ;
'Je—lxcos(e—eo) e—ln/8H(32)(X)_em/8(1—2003((9—90)/2)H(12)(X) dx ..

4 4

o0

(30)
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By using the result

kr o —ixcos(0-00) 4

kr

—ixcos(0-0,); _ (e
j e OTHS (x)dx = j T
o0 4 o0

=—¢€

. kr —ikrcos( 6—6
elﬂ/4cos(6—90) [e (
o0

we have the alternative representation

G4y (1,6,0,:k) = H[xn _|9 _90|]eikrcos(e—eo) +§
kr

I e—lxcos(O—GO)H(lz) (x)dx
0 2

e —157 /8

42

H<12> (kr)cos((0 —0,)/4)
n
o 1krcos(0—6)—in /8

NG

cos((0—-0,)/4).

kr
. [exeos(9=0,) {1 —2c0s((B—0,)/2+cos(0—8,) +4#}
1X

o0
In an analgous manner it is not difficult to show that

G4 (1,0,-0,:k) = H[n _|9 n 90|]eikrcos(9+eo)

—7t/4

kr
cos((8+0,)/2 [ e XCOSOH00)H® ()ay

2

+

o0

o—im /4+ikrcos(0+0,)

+
442

cos((0+0,)/4).

ry
o0

i H@) )],

—i7/4—ikrcos( 9—90) i) (ko) —1t/4 kjre—lxcos( 0— 60) ﬁ?)( %) 9% dx.

0 ) H iz) (x)dx

—in /4+1ikrcos(0—0,)
cos((6—-0,)/2).

kr . .
{ J‘e—lxcos( 6+90)[e—1nan(32> x) — olm /8(1 — 2cos(( 0 - 0,)/2)H f) ) de};

(31
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Gy (1,0,41 0, k) = H[n— |0+, — 4r [ Kre0s(0+00)

e—izn+ikrcos(9+60) kr
.2 cos((0+6,)2) [ OO 00H® ()
o 2
e —imm/+ikrcos(0+6()
_ cos((6+06,)/4).
" ((6+6,)/4)
r _im .
je—lxcos(0+60) e SHS)(X)—GIE /8(1—2005((6+90)/2)H(]2)(X)dx : (32)
o0 ’ '
13: +ikrcos(0—0y) kr
G (1. 0—4m+0,:K) = cos((8-6,)/2) [ OO0 )H® x)ax
o 2
—ij’“rikrcos(e—eo)
_ 2 cos((6—06,)/4).
™ ((6-06¢)/4)
kr in
J —ixcos(0-0,)| .~ s H<2>(X) e 8 (1-2cos((0-0 )/2))H<2)(x) dx. (33)

o0

Substituting the expressions (30) to (33) into (29) gives
up/s (1,0) = H[n—|6—60|]eikrcos(9_90) FH[-6+6, Jeikrcos(0+0,)

_ H[n—|9 +0, _4n|]eikrcos(9+90)
o 1m/a+ikrcos(0—-0,,)

+_
22

kr
je—lxcos(e—eo)

cos((6—-0,)/4)

lT[
8 H(Z)(x) (1—2cos((6—6,)/2))e H(z)(x) dx

m+1krcos(6+9 )
2\/_ cos((6+6,)/4).
‘ in
J‘e—1xc0s(6+90) 8 H(z)(x) (1-2cos((0+6,)/2))e 8 H(z)(x) dx b, (34)

00

As a check on the result (34) we see that it satisfies the reduced wave equation
(V? +k*)Up /g =0 and the boundary conditions dup/q/00 =0 at 6=0, and

Uy /s =0at 6 = 2n. By using the asymptotic result in appendix D it is also not
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difficult to show that as kr — o

ikrcos(6-0,) ikrcos(0+6,)

up/s (1,0) = Hn—0-0, []e +H[m—[0+6,[le

— H[m—[0+0, — 4nf]e'<T05(0+00)

+ \/ZCOS(MJ sgn_cosﬂwj_ e
v 4 L 2 ]

+ \/ECOS(MJ sgn COS(MJ e
yio 4 L 2 ]

and provided 0+0() # = this can be written

0-0
akeleos U0

i _
p +ikrcos(0 QO)J. iV gy
o0

IT | ikrcos(0—0 N ©=9) .,
. ( o)J- 2kr|cos 5 |e_1V dv: (35

00

ikrcos(6-90,) ikrcos(6+60,)

up/s (r,0) =H[7t—|9—90|]e +H[n—|6+60|]e

— H[n—[0+0, —4nf]e'Krc0s(0+00)

LTl minle cos(0—0,)/4 _cos((0+6,)/4 -
Jikr  An 20 cos((0-04)/2  cos((B8+6,)/2) )
And as kr - 0
u,, (r,0) = ™ %y(%) {cos ® _460) reos 260)} (ko) +0(kn) ")

. 0 +
= %ﬁy(%) cos%cos%(%) +O(kr)%)

and by means of the duplication formula for the Gamma function it can be shown

that F(%)F(%) =21 so that

_ 0 4
U, (1,0) = el”/gi.cosﬁcosi(ﬁj +o((kn) ). 37)
F[‘) 4 4\ 2
4
Thus our solution satisfies all the criterion of Peters and Stoker's [1954]
uniqueness theorem, so the expression (34) is indeed the solution of the stated

boundary value problem.
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Appendix A.
Here we prove the identity
. q-1 .
qsinqy  _ S Siny q=1. (A.1)

cosqy —cosqgx m_()cosy—cos(x+2nm/q)’ B

Proof.

From Bromwich (1964), p211, we have

m=o
Taking logarithms of both sides of (A.2) and differentiating the resulting

q-1
IT {cosy—cos[x + 27 mj}= 21_q(c0s qy —cosgx). (A2)
q

expression with respect to y gives the identity (A. 1).

Appendix B.
Here we prove the identity
p—2
Lsin(y/p) ap-1(x)sin(y/p)+ X an()fsin(y(p—n)/p)=sin(y(p—2-n)/p)}
p _ n=o
cos(y/p)—cos(x/p) COSY—COSX
| B1)
where ap (X) = s1n((r‘1+1)x/p)’ and the summation term vanishes for p=1.
psin(x/p)
Proof.
We can write the expression (A.2) in the form
p—i
cosy—cosx = 2P7' 11 {cos(y/p) —cos((x+2mn) /p}
n=o0
p—1
: 2Py {cos(y /p)—cos((x+2mn)/ p)}
= n=l ,p>1  (B.2)
cos(y/p)—cos(x/p) COSy—COSX

where the product is taken as unity for p=1. We can also write

—1 P 1— P~ 2
2P7H 1T {cos(y/p) —cos((x +2mn)/p} = 2P TI g% —2zcos((x +2mn)/p)+1(, (B.3)
n=i n=i

where z = eiy/p'

But it can be shown (see Lemma B at end of this appendix) that

1 p=!1 2p—2
— I g*-2z cos((x+2nn)/p)+1}= Z an(X)Zn , (B4)
P n=i

n=o0

,p=1
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sin((n+1)x/p)

here a =
v n (x) psin(x/p)

, n=01..,(p-2),(p-1),

= a'2p—2—1’1 (X)7 n=p, (p + 1)5:(213 —3),(2p _2)

Hence from (B.2), (B.3) and (B.4) we have

2 iy(n-+1-p)/p Liy/p _—iy/
iy(n+1- i —i
1sin(y/p) z an(x)e? p P{ey p_1y P}
P _ =0
cos(y/p)—cos(x/p) 2i(cosy —cosX) ’

= pf ap(x) (@YP)/P _o—iy(p-1)/py_  iy(p—2—n)/p _—y(p-2-1)/py, vap )@Y/ P 1Y/ Py

n=o

2i(cosy —cosx)

p—2
= Y an () {sin(y(p—n)/p)—sin(y(p—2-n)/p)} +ap_,(x)sin(y/p)

n=o0

(cosy—cosx)

which completes the proof of the identity (B.1)

Lemma B.

1 P! 2p—2

—H {22 —2cos(( x+2mn)z/p)+ 1}: Z ap (x)z"

p n=i n=o0
where ap(x) = SMOEDXTP) o1 (p=2).(p=1),

psin(x/p)
= azp—z—n (X)a n= pa(p + l)aa(zp _3)(2p _2)

Proof

We assume that

1 z?P —27P cosx+1 | dz
Then apn(x) = §> 5 -]
c\z" —2zcos(x/p)+1)z

where ¢ encloses z=0.

Let z= elt then

21 .
an (x) = 1 J~ cospt —cos x el(p_n_l)tdt,
27p 0 cost—cos(x/p)

2
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1 _[27[ (cosptcos(p—n—1)t—cosxcos(p—n—1)t)dt

- 21p 0 cost—cos(x/p)
L JZn(COS ptsin(p—n—1)t—cosxsin(p—n—1)t)dt
2mp cost—cos(x/p)

0
Since ap(x) is real, one would expect (or demand) that the second integral in

the above expression should vanish. That the second integral of the above ex-
pression does vanish follows (analytically) from the fact that this integral can

be expressed in integrals of the form

2m sin mt .
J- dt, m an integer,
o °os t—cos(x/p)
and since
| 2 S . nx
= — Z sin—cosnt,
cost—cos(x/p) sin(x/p) el p
2n
and I cosntsinmtdt= 0, forallm,n,
0
2n i
then J~ sinmt dt _0.
cost —cos(x/p)
Thus
1 27T{cos(2p —n—1)t+cos(n+1)t—2cosxcos(p—n—1)t}dt
ap(x) = I :
4mp 7 cost—cos(x/p)
But
2n 0 27
J- cosmt y dt = — 2/ Z sin X jcosmtcosntdt ,
Ocos t—cos(x/p) sin(x/p) b P 7o
o sinm(x/p)
sin(x/p)
‘ 2n T m=n
since I cosmtcosntdt = .
0 m#n
0
Thus
ar (x) = 1 {sin((2p—n—-1)x/p)+sin((n+1)x/p—2cosxsin((p—n—-1)x/p)}
n = — b

2 psin(x/p)
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sinx cos((p—n—1)x/p)—cosxsin((p—n—1)x/p)

psin(x/p)
sin((n+1)x/
_ S DXIP) g (p-2). (p-1).
psin( x/p)
a2p_2_n = an n= 0717""(p _2)9 (p _1)'
Appendix C.

Here we prove that

Iy (o,y) = 3 Hlm—|y + 2npN[] K €08V
N

=1 x>0

where H[x] =% x =0, 1is the Heaviside step function.
=0 x<0

Proof

lsin(Q/p)
p

de.
cos(&/p)—cos(y/p)

. 1 ikr cos §

Iy(0,y)= lim —|e
p( V) kr—)oo27TiJ.
c

We distort the path of integration c so that it takes the form c¢' shown in

the figure (3) below

oW
W

m

=

\

-

fig 3

Clearly the path c' lies in the shaded region where the integral is uniformly
convergent. We have distorted the contour ¢ so that it crosses the line
O<Rel<m and therefore if any of the zeros of cos({/p)—cos(y/p), viz
C=x(y+2npN)where N is integer, are crossed then they will give rise to

pole contributions.
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ikr 2
Iy (c0,y) = 3 H[m |y + 2npN][] e!KT €SV +2TPN)
N

SIH(C /p)
cos(Q /p)—cos(y/p) 4

4 lim Lj oikrcos G
kr— oo 2mi’C

where summation of N is for those integer values of N which satisfy the

inequality — <y +2npN<n. We can nowfurther distort ¢' to take up the

paths of steepest descent through £ =0 and € = n. Then an application of the

1
method of steepest descent shows that the resulting integral is 0((kr) 2).

Hence

Ip (0,9) = 3 Hlx |y + 21 p N[ KISV
N

Appendix D.
Here we prove that the integral

kr .
J. e XCOSVHD (x)dx D.1)
e}

converges for all kr>0, -1<v<]1.

Proof

Clearly it is sufficient to prove the convergence of the integral

w .
1= [ e XeoVH{P odx, D2)
0
This integral can be evaluated exactly as follows.

We use the Hankel function representation Watson (1944) (p.180 (11))
vn
e 2

i

H(Z) (x) = J‘we—ix cosh t=Vt g

, Xx>0,—-1<Rev<l,
—0o0

in (D.2) and interchange the order of integration giving

oIV 1 .
= ( ) .[ J“éo—lx(cosh t+COS W) 4 dt,
T
ivn
_e? _[OO e Mt dt
m Y., cosht+cosy
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Now let ¢' =y then

I_231\%/2 o yVdy
n 0 1+2ycosx|1+y2’
ve
2 g —nT<Y<T,
_ 2'e .s1.n \yv’ (D.3)
sinve siny  —1<v<l,
see Erdelyi (1954) (p.309 (12)).
Some asymptotic results.
As kr—o0 we can replace Hg,z)(x) in (D.1) by its asymptotic form.
ke
If 1= [ e eosVE@ xx, v>o0,
o0
1 .
then I =kr I ¢ ~ikrcos ‘VHS) (kru)du .
e @)
By using the asymptotic form for H(z) (kru) we have
—1(kru———n/4)
—kr.[ —ikrucosy / 2 du+0((kr) 3/2),
nkru
as kr—oo,
2kr G+ ) —ikru(i+cosy) du —3
= |7 [e V) == 1 0((kr) 2 ),
T 0 \/E
iy . 1.
_ 2kr elvzem/4j' e—12krcos2(\|//2)Ud_u+0((kr)—3/2 ).
n o Ju
1
Let +/2kr (:os%u2 = v then
2 elV +lTC/4 <2 |COS\|//2|
J=—- —iv? dv+0((kr) "2 ), (D.4)
|COS\|I/2|
kr — o0, cosy/2 # 0.
ivn

o2 /4 ikr(l+cosy)
~ = +0((kr) "2 ), (D.5)

\/;(cosw/z)zx/%

kr — oo,cosy /2 # 0.
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The full asymptotic expansion is given by Luke (1962) (p.244 (7)).

For kr small we write

I J~ kr_—ix cos \|!H$}2) (x)dx = J~0 o—ixcos \yng) (x)dx - I: —ixcos \yng) (x)x
o0 0 r

and using (D.3) we have

J= Ore IXCOSHS,Z)(X)dx—Ze il

sinvt  siny

Now using the small argument asymptotic form for the Hankef function (v > 0)
gives

2eivn/2

kr _; _ i
J:izL(V)jo e TIXCOS Y TV SIW L 0xYy
T

sinvmt  siny

‘ 2vr(v)
=1

v -2 s
n(l-v) sinvr  siny '

(D.6)
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