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H∞ PID Control for Discrete-Time Fuzzy Systems
with Infinite-Distributed Delays under Round-Robin

Communication Protocol
Yezheng Wang, Zidong Wang, Lei Zou and Hongli Dong

Abstract—This paper is concerned with theH∞ proportional-
integral-derivative (PID) control problem for class of discrete-
time Takagi-Sugeno fuzzy systems subject to infinite-distributed
time-delays and Round-Robin (RR) protocol scheduling effects.
The information exchange between the sensors and the controller
is conducted through a shared communication network. For the
purpose of alleviating possible data collision, the well-known
RR communication protocol is deployed to schedule the data
transmissions. To stabilize the target system with guaranteed
H∞ performance index, a novel yet easy-to-implement fuzzy
PID controller is developed whose integral term is calculated
based on the past measurements defined in a limited time-
window with hope to improve computational efficiency and
reduce accumulation error. Based on the Lyapunov stabilitythe-
ory and the convex optimization technique, sufficient conditions
are derived to ensure the exponential stability as well as the
H∞ disturbance attenuation/rejection capacity of the underlying
system. Furthermore, by utilizing the cone complementarity
linearization algorithm, the non-convex controller design problem
is transformed into an iterative optimization one that facilitates
the controller implementation. Finally, simulation examples are
given to show the effectiveness and correctness of the developed
control method.

Index Terms—Fuzzy systems, Round-Robin protocol,
proportional-integral-derivative control, linear matri x inequality,
cone complementarity linearization.

I. I NTRODUCTION

The past decades have witnessed a large amount of research
attention devoted to Takagi-Sugeno (T-S) fuzzy systems. Due
to its powerful approximation ability, the T-S fuzzy model is
known to be effective in describing many complex nonlinear
systems. Generally speaking, any smooth nonlinear function
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in a typical T-S fuzzy system can be approximated by a
set of linear functions being connected together by nonlinear
function memberships through fuzzy sets and fuzzy reasoning
with any given accuracy [1], [2]. In consideration of the special
and convenient structure of such a T-S fuzzy framework, a
convenient way of dealing with complex nonlinear systems is
to obtain the approximated linear subsystems based on the T-
S fuzzy technology and then design the required controller-
s/filters according to the parallel distributed compensation
scheme. As such, a large volume of literature has been
available on the analysis and synthesis problems for T-S fuzzy
systems, see e.g., the technical literature [3]–[16] and a survey
[17].

The original idea of the proportional-integral-derivative
(PID) feedback control dated back to 1910 and, since then,
such a control method has been widely adopted in almost all
sectors of control engineering practices. Despite a variety of
modern control methods developed in the past few decades, the
PID control algorithm has continued to show its overwhelming
popularity as more than90% of industrial controllers are
still based on the PID mechanism [18]. The wide range
application of PID control scheme is mainly due to its easy
implementation, convenient adjustment and clear functionality.
An indispensable procedure for PID control applications isthe
parameter tuning that directly affects the performance of the
controlled system such as stability, transient/steady property
as well as robustness. Thus, a great deal of research attention
has been devoted to the development of adequate parameter
tuning approaches, see e.g. [18]–[23] for some seminal works
on this aspect.

Along with the rapid development of industrialization and
automation, the control problems for nonlinear complex sys-
tems have received an ever-increasing research interest. Con-
ventional PID controllers are generally incapable of dealing
with systems with severe nonlinearities due primarily to the
lack of systematic procedure in adjusting the control parame-
ters. Accordingly, some improved PID control schemes have
been developed to handle the nonlinear control problems and
some representative control strategies include the artificial-
neural-network-based PID control [24], fuzzy PID control
[25], expert-based PID control [26] and adaptive wavelet PID
control methods [27]. In particular, due to its effectiveness in
dealing with nonlinearities and the successful application in
real industrial practice, the fuzzy logic has attracted special
attention in the hope of enhancing the performance of tradi-
tional PID controllers for nonlinear systems.
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The fuzzy PID controller combines both the merits of PID
control and fuzzy control by utilizing the system information
and/or human knowledge to a higher extent. It should be
pointed out that, over the past decades, fuzzy PID control
has become a significant branch of the fuzzy control field,
and a large amount of literature has appeared. For example,
a special fuzzy PID controller has been constructed by using
the error and the rate of change of error as its two inputs in
[28]. Afterwards, in order to improve the transient property
of nonlinear uncertain systems, in [25], the accelerated rate of
change of error has been taken into account as an extra input in
the process of fuzzy PID design. In [29], the T-S fuzzy model
has been employed to generate fuzzy PID control laws where
the robustH∞ control performance has been also achieved.

Time-delays are well known to occur frequently in real-
world systems due to a variety of reasons such as transport
in long pipeline, communication constraint in network, ag-
ing of the devices and so on. The existence of time-delays
influences the evolution of system states, thereby becoming
one of the main sources in degrading system performance
and even resulting in instability. Thus, it is necessary to
take this inevitable phenomenon into consideration when ana-
lyzing/designing control systems with time-delays. It should
be mentioned that, among different types of time-delays,
the distributed time-delays (DTDs) have recently proven to
be particularly prevalent especially in process industry and,
accordingly, the DTDs have attracted much attention from the
research community, where most existing results have been
concerned withcontinuous-timesystems with finite or infinite
DTDs, see e.g. [30]–[32]. Note that, with the popularity
of digitization, more and more discrete-time systems have
been applied in practice, and the analysis/synthesis issues of
discrete-time systems with DTDs have gained some research
interest. For instance, the control problem of discrete-time T-S
fuzzy systems with DTDs has been studied in [11].

On another research forefront, owing to the quick evolu-
tion of the network communication technologies, considerable
research attention has been paid to the networked systems
[33]–[35]. Compared with the traditional control systems,the
utilization of common communication networks offers several
benefits such as low cost, large flexibility, high reliability and
simple installation/maintenance [36], and also leads to certain
unfavorable network-induced phenomena such as channel fad-
ings [11], [37], packet dropouts [3], [38], quantization effects
[39]–[41], sensor saturations [42] and so on. To mitigate
the network congestion and avoid the network-induced phe-
nomena, an effective way is to introduce the communication
protocol so as to schedule the information exchange on a
shared channel.

Recently, the protocol-based networked systems have begun
to stir some initial research interest [37], [41], [43]–[45]. For
example, in [41], the ultimate boundedness control problem
has been investigated for quantized networked control systems
(NCSs) subject to Try-Once-Discard protocol. The quantized
control problem has been studied in [39] for networked
systems with the Round Robin (RR) protocol. Based on a time-
varying system approach, the stabilization problem of NCSs
under two types of stochastic protocols has been investigated

in [46]. Nevertheless, to the best of the authors’ knowledge,
the H∞ fuzzy PID control problem has not been studied yet
for fuzzy systems with infinite-DTDs and RR protocol, which
is probably due to the resultant system complexity, and we are
therefore inspired to shorten such a gap in this paper.

In response to the discussions made thus far, our aim in
this paper is to deal with theH∞ fuzzy PID control problem
for discrete-time fuzzy systems subject to infinite-DTDs and
RR protocol. In doing so, we are facing two substantial
challenges identified as follows: 1) how to analyze theH∞

performance of the considered system subject to infinite-
DTDs and RR protocol? and 2) how to design the desired
fuzzy PID output-feedback controller based on the confining
measurement output? These two questions will be answered
in the main results of this paper.The main contributions of
this paper are highlighted as follows. 1) TheH∞ fuzzy PID
control problem is, for the first time, investigated for fuzzy
systems subject to infinite-DTDs and RR protocol scheduling.
2) A novel and easy-to-implement fuzzy PID controller is
constructed to deal with theH∞ control problem. 3) The
parameters of the switching-signal-dependent controllerare
derived by an iterative optimization algorithm.

The rest of this paper is arranged as follows. Section II
describes theH∞ control problem for a class of discrete-
time T-S fuzzy systems with infinite-DTSs and RR protocol.
Section III gives our main results, where the stability and
the prescribedH∞ performance of the considered system are
discussed, and an optimization procedure based on the cone-
complementarity-linearization (CCL) algorithm is proposed to
obtain the parameters of the desired fuzzy PID controller.
In Section IV, numerical examples are presented to validate
the usefulness of the proposed design method. Finally, the
conclusion of this paper is drawn in Section V.

Notations: The notations in this paper are fairly standard.
Throughout this paper,Rn, Z−, andZ+ refer to, respectively,
the n-dimensional Euclidean space, the set of negative inte-
gers and the set of positive integers. For a matrixM , the
notationsMT , tr(M) andλmin(M) denote its transposition,
trace and minimum eigenvalue, respectively. The space of
square summable sequences is represented byl2[0,∞). For
symmetric matricesX andY , X ≥ Y andX > Y are used
to show thatX − Y is positive semi-definite and positive
definite, respectively. The shorthanddiag{· · · } is a block-
diagonal matrix.‖ · ‖ is the Euclidean vector norm. In a
symmetric matrix, an asterisk “∗” denotes a term induced by
symmetry.I and0 represent, respectively, the identity matrix
and zero matrix with appropriate dimensions.mod(a, b) means
the non-negative remainder on division of the integera by the
positive integerb. The symbolδ(i− j) denotes the Kronecker
delta function taking values on0 (when i 6= j) or 1 (when
i = j).

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Plant Model

In this paper, a schematic sketch of the addressed discrete-
time fuzzy systems with infinite-DTDs is shown in Fig. 1,
where the data exchange between sensors and the controller
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is implemented through a shared communication network
equipped with the RR protocol. In what follows, we will
introduce the plant, the communication network, and the
adopted fuzzy PID controller in the state space.
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Fig. 1: The T-S fuzzy systems with a network

The mathematic model of the considered system shown in
Fig. 1 can be described by

Plant Rule i: IF θ1(k) is ϑi1 andθ2(k) is ϑi2 and · · · and
θl(k) is ϑil, THEN






x(k + 1) =Aix(k) +Aǫi

∞∑

ǫ=1

µǫx(k − ǫ) +Biu(k)

+ E1iv(k)

y(k) =Cix(k) + E2iv(k)

z(k) =Fix(k)

x(k) =ϕ(k), ∀k ∈ Z
−

(1)

where r is the number of fuzzy rules;ϑij is fuzzy set;
θ1(k), θ2(k), · · · , θl(k) are the premise variables;x(k) ∈
R

nx is the state vector;u(k) ∈ R
nu is the control input;

v(k) ∈ (l2[0,∞), R
nv) is the external disturbance (com-

prising process noise and measurement noise);y(k) ∈ R
ny

and z(k) ∈ R
nz are, respectively, the measurement output

before transmitted through the communication network and
the controlled output;ϕ(k) is the initial state function which
takes real values on(−∞, 0]. Ai, Aǫi, Bi, Ci, E1i, E2i, Fi

are known constant matrices with appropriate dimensions.
Assumption 1:The constantsµǫ ≥ 0 (ǫ = 1, 2, · · · ) satisfy

the following convergence conditions:

µ̄ ,

∞∑

ǫ=1

µǫ ≤
∞∑

ǫ=1

ǫµǫ < +∞. (2)

Remark 1:In the considered fuzzy system (1), the delay
term

∑
∞

ǫ=1 µǫx(k − ǫ) is the so-called infinite-DTD in the
discrete-time domain. Such a description was first introduced
in [49] and can be regarded as the analogy of the continuous-
time case. Under Assumption 1, the constantsµǫ (ǫ =
1, 2, · · · ) satisfy the convergence condition (2), which is to
ensure the convergence of the terms ofAǫi

∑
∞

ǫ=1 µǫx(k − ǫ)
as well as the Lyapunov-Krasovskii functional (LKF) to be
defined later. It should be mentioned that the available litera-
ture regarding the discrete infinite-DTDs has really scattered
as compared to its continuous-time counterpart, not to mention
the case that the fuzzy PID control problem is also considered
for T-S fuzzy systems.

Through fuzzy reasoning, the final outputs of the fuzzy
system (1) are obtained as follows:







x(k + 1) =

r∑

i=1

hi(θ(k))

(

Aix(k) +Aǫi

∞∑

ǫ=1

µǫx(k − ǫ)

+Biu(k) + E1iv(k)

)

y(k) =

r∑

i=1

hi(θ(k))
(

Cix(k) + E2iv(k)
)

z(k) =

r∑

i=1

hi(θ(k))Fix(k)

(3)

whereϑij(θj(k)) represents the grade of membership ofθj(k)
in ϑij with θ(k) =

[
θ1(k), θ2(k), · · · , θl(k)

]
and the fuzzy-

basis functions are given by

hi(θ(k)) =
ai(θ(k))

∑r

j=1 aj(θ(k))
, ai(θ(k)) =

l∏

j=1

ϑij(θj(k)). (4)

Remark 2:In order to guarantee the non-negativity of the
membership functions

∑r
i=1 hi(θ(k)), it is always assumed

that for ∀k, ai(θ(k)) ≥ 0 (i = 1, 2, · · · , r, but not all zeros),
and we therefore have the conclusion that

∑r

i=1 hi(θ(k)) = 1
and hi(θ(k)) ≥ 0 (i = 1, 2, · · · , r) for ∀k. In addition, the
information about the premise variablesθi(k) (i = 1, 2, · · · , l)
is made available to the system outputy(k) in (3), thereby
facilitating the implementation of the desired fuzzy PID con-
troller.

B. Communication Network

Now, let us introduce the effects induced by the RR protocol
of the communication network. Without loss of generality, we
assume that the sensors can be divided intoM (M > 1)
sensor nodes according to their spatial distribution. Letyī(k)
(̄i ∈{1, 2, · · · ,M}) denote the measurement output of theīth
node before being transmitted. Then,y(k) can be rewritten as
follows:

y(k) =
[
yT1 (k) yT2 (k) · · · yTM (k)

]T
. (5)

In the network environment described in Fig. 1, all the
nodes transmit their information via a shared communication
network. Due to the inherently limited bandwidth of commu-
nication channels in engineering practice, data collisionis very
likely to occur if all nodes are connected to the shared network
and request to send data simultaneously. Clearly, unnecessary
data collisions give rise to network-induced phenomena such
as packet dropouts and communication delays. To resolve
this issue, in this paper, the well-known RR protocol is
employed to determine which node can access network at
each transmission instant. To be more specific, the RR protocol
is a static “scheduling agreement” which allocates the equal
opportunity of accessing the network to every node. Due to
the fixed transmission mechanism, the RR protocol is easy to
be implemented in engineering practice and effective to reduce
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transmission burden. Thus, we deploy the RR protocol in the
sensor-to-controller channel to schedule network resources.

Let ξ(k) (ξ(k) ∈ {1, 2, · · · ,M}) denote the selected sensor
node at time instantk. Under the effects of RR protocol
scheduling,ξ(k) satisfies the conditionξ(k + M) = ξ(k)
for ∀k ∈ Z

+. Without loss of generality, setξ(k) = k
(k ∈ {1, 2, · · · ,M}). Then, the values ofξ(k) can be
calculated as follows:

ξ(k) = mod(k − 1,M) + 1. (6)

In addition, the zero-holder strategy is adopted in the consid-
ered system to hold the output signal. Accordingly, the update
rule of ȳī(k) is given by

ȳī(k) =

{
yī(k), ī = ξ(k)
ȳī(k − 1), ī 6= ξ(k)

(7)

where yī(k) represents the measurement output after being
transmitted of thēith node.

Now, by defining the overall measurement output (after
being transmitted) as

ȳ(k) ,
[
ȳT1 (k) ȳT2 (k) · · · ȳTM (k)

]T

and

Φī , diag{δ(̄i− 1)I, δ(̄i− 2)I, · · · , δ(̄i−M)I},

together with the zero-holder strategy (7), we have

ȳ(k) = Φξ(k)y(k) + (I − Φξ(k))ȳ(k − 1). (8)

Substituting (3) into (8), the specific form of̄y(k) can be
obtained as follows:

ȳ(k) =

r∑

i=1

hi(θ(k))Φξ(k)

(

Cix(k) + E2iv(k)
)

+ (I − Φξ(k))ȳ(k − 1). (9)

C. Fuzzy PID Controller

So far, we have constructed the underlying fuzzy system
with its outputs restrained by RR protocol. Based on this, we
adopt the following fuzzy PID output-feedback controller:

u(k) =
r∑

j=1

hj(θ(k))
(

KPj,ξ(k)ȳ(k) +KIj,ξ(k)

k−1∑

m=k−N

ȳ(m)

+KDj,ξ(k)(ȳ(k)− ȳ(k − 1))
)

. (10)

whereKPj,ξ(k), KIj,ξ(k) andKDj,ξ(k) are controller gains to
be designed andN ≥ 1 is a given scalar representing time
length.

Remark 3:The advantages/novelties of the proposed fuzzy
PID controller (10) are reflected in the following three aspects.
1) Compared with the non-PID fuzzy control schemes, the
controller (10) can generate control laws by simultaneously
utilizing the current information, the historical information and
the change of information of system outputs. By introducing
the integral-loop and derivative-loop, the robustness of the
controller would be enhanced. 2) The three types of controller
gains are all switching-signal-dependent that are more ben-
eficial to deal with the protocol-induced effects. 3) A fixed

yet adjustable time window is introduced in the integral term
to reduce the underlying accumulation error as well as the
computational burden.

In terms of (9) and (10), we have

u(k) =

r∑

j=1

r∑

s=1

hj(θ(k))hs(θ(k))

×

(
(

KPj,ξ(k) +KDj,ξ(k)

)

Φξ(k)Csx(k)

+
(

KPj,ξ(k) +KDj,ξ(k)

)

Φξ(k)E2sv(k)

+
(

KPj,ξ(k) −KPj,ξ(k)Φξ(k) −KDj,ξ(k)Φξ(k)

+KIj,ξ(k)

)

ȳ(k − 1) +KIj,ξ(k)

k−2∑

m=k−N

ȳ(m)

)

.

(11)

Denoting variables

x̄(k) ,
[
xT (k) ȳT (k − 1)

]T
,

~x(k) ,
[
x̄T (k − 1) x̄T (k − 2) · · · x̄T (k −N + 1)

]T

and substituting (11) into (3), we obtain the closed-loop T-S
fuzzy control system as follows:






x̄(k + 1) =
r∑

i=1

r∑

j=1

r∑

s=1

hi(θ(k))hj(θ(k))hs(θ(k))

×
(

Ãijs,ξ(k)x̄(k) + Ãǫi

∞∑

ǫ=1

µǫx̄(k − ǫ)

+ B̂ij,ξ(k)~x(k) + Ẽijs,ξ(k)v(k)
)

z(k) =

r∑

i=1

hi(θ(k))F̄ix̄(k)

(12)

where

B̂ij,ξ(k) ,
[
B̃ij,ξ(k) B̃ij,ξ(k) · · · B̃ij,ξ(k)
︸ ︷︷ ︸

N−1

]
,

Ãijs,ξ(k) ,

[
Ā1

ijs,ξ(k) Ā2
ij,ξ(k)

Φξ(k)Ci I − Φξ(k)

]

, Ãǫi ,

[
Aǫi 0
0 0

]

,

B̃ij,ξ(k) ,

[
0 BiKIj,ξ(k)

0 0

]

, Ẽijs,ξ(k) ,

[
Ēijs,ξ(k)

Φξ(k)E2i

]

,

Ā1
ijs,ξ(k) ,Ai +BiKPj,ξ(k)Φξ(k)Cs +BiKDj,ξ(k)Φξ(k)Cs,

Ēijs,ξ(k) ,E1i +BiKPj,ξ(k)Φξ(k)E2s +BiKDj,ξ(k)Φξ(k)

× E2s,

Ā2
ij,ξ(k) ,BiKPj,ξ(k) −BiKPj,ξ(k)Φξ(k) +BiKIj,ξ(k)

−BiKDj,ξ(k)Φξ(k), F̄i ,
[
Fi 0

]
.

Before proceeding further, we first introduce the definition
of the exponential stability for fuzzy system (12).

Definition 1: [48] The closed-loop fuzzy system (12) is said
to be exponentially stable if, forv(k) = 0, there exist scalars
α (α > 0) andβ (0 < β < 1) such that

‖x̄(k)‖2 ≤ αβk max
s∈Z−

‖x̄(s)‖2. (13)
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The objective of this paper is to investigate theH∞ fuzzy
PID control problem for discrete-time fuzzy systems with
infinite-DTDs and RR protocol scheduling effects such that
the following two requirements are satisfied simultaneously:

R1) the fuzzy system (12) is exponentially stable; and
R2) for all nonzerov(k) ∈ l2[0,∞) and under zero

initial condition, the controlled outputz(k) satisfies theH∞

performance constraint:

∞∑

k=0

zT (k)z(k) ≤ γ2
∞∑

k=0

vT (k)v(k) (14)

whereγ > 0 is a given scalar standing for the disturbance
attenuation level.

III. M AIN RESULTS

Firstly, we introduce some lemmas which will be utilized
later. For space saving, we define the following notations:

r∑

i,j,s,t,p,q=1

Hijstpq(k)

,

r∑

i=1

r∑

j=1

r∑

s=1

r∑

t=1

r∑

p=1

r∑

q=1

hi(θ(k))

× hj(θ(k))hs(θ(k))ht(θ(k))hp(θ(k))hq(θ(k)),
r∑

i,j,s=1

Hijs(k)

,

r∑

i=1

r∑

j=1

r∑

s=1

hi(θ(k))hj(θ(k))hs(θ(k)).

Lemma 1: [11] For a symmetric positive definite matrix
S and any real matrixXijs (i, j, s = 1, 2, · · · , r) with
appropriate dimensions, we have

r∑

i,j,s,t,p,q=1

Hijstpq(k)X
T
ijsSXtpq

≤
r∑

i,j,s=1

Hijs(k)X
T
ijsSXijs.

Lemma 2: [49] For constantsai > 0, vectorsxi ∈ R
n

(i = 1, 2, · · · ) and an × n positive semi-definite matrixM ,
if the series

∑
∞

i=1 ai is convergent, we have

(
∞∑

i=1

aixi

)T

M

(
∞∑

i=1

aixi

)

≤

(
∞∑

i=1

ai

)
∞∑

i=1

aix
T
i Mxi.

Now, we are in a position to present the following results
with respect to the exponential stability and theH∞ perfor-
mance of the considered T-S fuzzy system (12).

Theorem 1:Let the controller gainsKPj,̄i, KIj,̄i, KDj,̄i

(j = 1, 2, · · · , r, ī = 1, 2, · · · ,M) and theH∞ performance
indexγ > 0 be given. Assume that there exist positive definite
matricesP > 0, S > 0, andQd > 0 (d = 1, 2, · · · , N − 1)
satisfying











~Q ∗ ∗ ∗ ∗ ∗

0 −Q̃ ∗ ∗ ∗ ∗
0 0 − 1

µ̄
S ∗ ∗ ∗

0 0 0 −γ2I ∗ ∗

PÃijs,̄i PB̂ij,̄i PÃǫi PẼijs,̄i −P ∗
F̄i 0 0 0 0 −I











< 0 (15)

i, j, s = 1, 2, · · · , r, ī = 1, 2, · · · ,M,

where

Q̃ , diag {Q1, Q2, · · · , QN−1} , ~Q ,

N−1∑

d=1

Qd + µ̄S − P.

Then, the controlled system (12) is exponentially stable.
Furthermore, under the zero initial condition, the inequality
∑

∞

k=0 z
T (k)z(k) ≤ γ2

∑
∞

k=0 v
T (k)v(k) is also satisfied.

Proof: In order to analyze the exponential stability with
disturbance attenuation levelγ of the considered system (12),
we choose the following LKF:

V (k) =

3∑

i=1

Vi(k) (16)

where

V1(k) , x̄T (k)P x̄(k),

V2(k) ,
∞∑

ǫ=1

µǫ

k−1∑

i=k−ǫ

x̄T (i)Sx̄(i),

V3(k) ,

N−1∑

d=1

k−1∑

τ=k−d

x̄T (τ)Qdx̄(τ).

Letting ī = ξ(k), along the trajectory of system (12), the
difference ofV1(k) can be calculated as follows:

∆V1(k)

=V1(k + 1)− V1(k)

= x̄T (k + 1)P x̄(k + 1)− x̄T (k)P x̄(k)

=

r∑

i,j,s,t,p,q=1

Hijstpq(k)

(

Ãijs,̄ix̄(k) + Ãǫi

∞∑

ǫ=1

µǫx̄(k − ǫ)

+ B̂ij,̄i~x(k) + Ẽijs,̄iv(k)

)T

P

(

Ãtpq,̄ix̄(k) + Ẽtpq,̄iv(k)

+ Ãǫt

∞∑

ǫ=1

µǫx̄(k − ǫ) + B̂tp,̄i~x(k)

)

− x̄T (k)P x̄(k)

=

r∑

i,j,s,t,p,q=1

Hijstpq(k)

(

x̄T (k)
(

ÃT
ijs,̄iPÃtpq,̄i − P

)

x̄(k)

+ ~xT (k)B̂T
ij,̄iPB̂tp,̄i~x(k) +

∞∑

ǫ=1

µǫx̄(k − ǫ)ÃT
ǫiP

Ãǫt

∞∑

ǫ=1

µǫx̄(k − ǫ) + vT (k)ẼT
ijs,̄iPẼtpq,̄iv(k) + 2x̄T (k)

× ÃT
ijs,̄iPB̂tp,̄i~x(k) + 2x̄T (k)ÃT

ijs,̄iPÃǫt

∞∑

ǫ=1

µǫx̄(k − ǫ)
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+ 2x̄T (k)ÃT
ijs,̄iPẼtpq,̄iv(k) + 2~xT (k)B̂T

ij,̄i(k)PẼtpq,̄iv(k)

+ 2~xT (k)B̂T
ij,̄i(k)PÃǫt

∞∑

ǫ=1

µǫx̄(k − ǫ) + 2

∞∑

ǫ=1

µǫx̄(k − ǫ)

× ÃT
ǫiPẼtpq,̄iv(k)

)

. (17)

We first prove that the fuzzy system (12) is exponentially
stable under condition (15). For this purpose, we denote the
following matrix variables:

Âijs,̄i ,
[

PÃijs,̄i PB̂ij,̄i PÃǫi

]
, ~P , diag {P, I} ,

ζ(k) ,

[

x̄T (k) ~xT (k)
∞∑

ǫ=1
µǫx̄

T (k − ǫ)

]T

,

ζ̄(k) ,

[

x̄T (k) ~xT (k)
∞∑

ǫ=1
µǫx̄

T (k − ǫ) vT (k)

]T

,

Ωijs,̄i ,

[

Ãijs,̄i B̂ij,̄i Ãǫi Ẽijs,̄i,
F̄i 0 0 0

]

,

Ω̄ijs,̄i ,

[

PÃijs,̄i PB̂ij,̄i PÃǫi PẼijs,̄i,
F̄i 0 0 0

]

,

~Aijs,̄i ,
[

Ãijs,̄i B̂ij,̄i Ãǫi

]
, P̄ , diag {P, 0, 0} ,

P̃ , diag

{
N−1∑

d=1

Qd + µ̄S − P,−Q̃,−
1

µ̄
S

}

,

Υ , diag

{
N−1∑

d=1

Qd + µ̄S − P,−Q̃,−
1

µ̄
S,−γ2I

}

.

Whenv(k) = 0, we have

∆V1(k) =

r∑

i,j,s,t,p,q=1

Hijstpq(k)

× ζT (k)
(

~AT
ijs,̄iP

~Atpq,̄i + P̄
)

ζ(k). (18)

Considering Lemma 1, it can be obtained that

∆V1(k) ≤
r∑

i,j,s=1

Hijs(k)

× ζT (k)
(

~AT
ijs,̄iP

~Aijs,̄i + P̄
)

ζ(k). (19)

Furthermore, one also has

∆V2(k)

=V2(k + 1)− V2(k)

=
∞∑

ǫ=1

µǫ

k∑

i=k−ǫ+1

x̄T (i)Sx̄(i)−
∞∑

ǫ=1

µǫ

k−1∑

i=k−ǫ

x̄T (i)Sx̄(i)

= µ̄x̄T (k)Sx̄(k)−
∞∑

ǫ=1

µǫx̄
T (k − ǫ)Sx̄(k − ǫ). (20)

In addition, it follows from Lemma 2 that

−
∞∑

ǫ=1

µǫx̄
T (k − ǫ)Sx̄(k − ǫ)

≤ −
1

µ̄

(
∞∑

ǫ=1

µǫx̄(k − ǫ)

)T

S

(
∞∑

ǫ=1

µǫx̄(k − ǫ)

)

. (21)

Thus, we have

∆V2(k) ≤ µ̄x̄T (k)Sx̄(k)

−
1

µ̄

(
∞∑

ǫ=1

µǫx̄(k − ǫ)

)T

S

(
∞∑

ǫ=1

µǫx̄(k − ǫ)

)

,

(22)

and the difference ofV3(k) can be also calculated as follows:

∆V3(k)

=V3(k + 1)− V3(k)

=

N−1∑

d=1

k∑

τ=k−d+1

x̄T (τ)Qdx̄(τ) −
N−1∑

d=1

k−1∑

τ=k−d

x̄T (τ)Qdx̄(τ)

=
N−1∑

d=1

x̄T (k)Qdx̄(k)−
N−1∑

d=1

x̄T (k − d)Qdx̄(k − d). (23)

Taking (19), (22) and (23) into consideration, it is easy to
see that

∆V (k) ≤
r∑

i,j,s=1

Hijs(k)ζ
T (k)

(

ÂT
ijs,̄iP

−1Âijs,̄i + P̃
)

ζ(k)

,

r∑

i,j,s=1

Hijs(k)ζ
T (k)Ψijs,̄iζ(k). (24)

From (15) and the Schur Complement Lemma, we know
that∆V (k) < 0. Then, it can be concluded from Theorem 1
of [48] that, in the case ofv(k) = 0, the fuzzy system (12) is
exponentially stable.

Next, we will analyze theH∞ performance for the closed-
loop system (12) under zero initial condition. Firstly, we define
the following index function:

Jn =

n∑

k=0

(
zT (k)z(k)− γ2vT (k)v(k)

)

=
n∑

k=0

(
zT (k)z(k)− γ2vT (k)v(k) + V (k + 1)− V (k)

)

+ V (0)− V (n+ 1) (25)

wheren is a non-negative integer. Obviously, our target is to
show thatJn < 0.

SinceV (0) = 0 andV (n+ 1) ≥ 0, we have

Jn ≤
n∑

k=0

(
zT (k)z(k)− γ2vT (k)v(k) + ∆V (k)

)

=

n∑

k=0

r∑

i,j,s,t,p,q=1

Hijstpq(k)

(

x̄T (k)F̄T
i F̄tx̄(k)

− γ2vT (k)v(k) +
(

Ãijs,̄ix̄(k) + Ãǫi

∞∑

ǫ=1

µǫx̄(k − ǫ)

+ B̂ij~x(k) + Ẽijs,̄iv(k)
)T

P
(

Ãtpq,̄ix̄(k) + Ẽtpq,̄iv(k)

+ Ãǫt

∞∑

ǫ=1

µǫx̄(k − ǫ) + B̂tp~x(k)
)

+ x̄T (k)
(N−1∑

d=1

Qd

+ µ̄S − P
)

x̄(k)−
∞∑

ǫ=1

µǫx̄
T (k − ǫ)Sx̄(k − ǫ)
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−
N−1∑

d=1

x̄T (k − d)Qdx̄(k − d)

)

. (26)

By further utilizing the inequality (21), we have

Jn ≤
n∑

k=0

r∑

i,j,s,t,p,q=1

Hijstpq(k)

(

x̄T (k)F̄T
i F̄tx̄(k)

− γ2vT (k)v(k) +
(

Ãijs,̄ix̄(k) + Ãǫi

∞∑

ǫ=1

µǫx̄(k − ǫ)

+ B̂ij~x(k) + Ẽijs,̄iv(k)
)T

P
(

Ãtpq,̄ix̄(k) + Ẽtpq,̄iv(k)

+ Ãǫt

∞∑

ǫ=1

µǫx̄(k − ǫ) + B̂tp~x(k)
)

+ x̄T (k)
(N−1∑

d=1

Qd

+ µ̄S − P
)

x̄(k)−
N−1∑

d=1

x̄T (k − d)Qdx̄(k − d)

−
1

µ̄

(
∞∑

ǫ=1

µǫx̄(k − ǫ)

)T

S

(
∞∑

ǫ=1

µǫx̄(k − ǫ)

))

=
n∑

k=0

r∑

i,j,s,t,p,q=1

Hijstpq(k)ζ̄
T (k)

(

ΩT
ijs,̄i

~PΩtpq,̄i +Υ
)

ζ̄(k)

≤
n∑

k=0

r∑

i,j,s=1

Hijs(k)ζ̄
T (k)

(

Ω̄T
ijs,̄i

~P−1Ω̄ijs,̄i +Υ
)

ζ̄(k).

(27)

From the Schur Complement Lemma and condition (15),
it is easy to see thatJn < 0 holds. Lettingn → ∞, we
derive that

∑
∞

k=0 z
T (k)z(k) ≤ γ2

∑
∞

k=0 v
T (k)v(k), which

completes the proof.
In Theorem 1, with given controller gains andH∞ distur-

bance attenuation levelγ > 0, we have provided sufficient
conditions to guarantee that the closed-loop system (12) sat-
isfies requirements (R1) and (R2) based on the linear matrix
inequality (LMI) technique. Next, we will work on the design
of the required fuzzy PID controller parameters.

Theorem 2:Let the scalarγ > 0 be given. Assume that
there exist positive definite matricesP > 0, L > 0, S > 0,
Qd > 0 (d = 1, 2, · · · , N − 1) and matricesKPj,̄i, KDj,̄i,
KIj,̄i (j = 1, 2, · · · , r; ī = 1, 2, · · · ,M) satisfying











~Q ∗ ∗ ∗ ∗ ∗
0 −Q̃ ∗ ∗ ∗ ∗
0 0 − 1

µ̄
S ∗ ∗ ∗

0 0 0 −γ2I ∗ ∗

Ãijs,̄i B̂ij,̄i Ãǫi Ẽijs,̄i −L ∗
F̄i 0 0 0 0 −I











< 0 (28)

i, j, s = 1, 2, · · · , r, ī = 1, 2, · · · ,M,

PL = I (29)

where ~Q and Q̃ are defined in Theorem 1 and

Φ̄s,̄i ,
[
ΦīCs 0

]
, Bi ,

[
BT

i 0
]T

,

Ẽijs,̄i , Ei,̄i + BiKPj,̄iΦīE2s + BiKDj,̄iΦīE2s,

Ãijs,̄i ,Ai,̄i + BiKPj,̄iΦ̄s,̄i + BiKDj,̄iΦ̄s,̄i + BiKPj,̄iI

− BiKPj,̄iΦ̃ī − BiKDj,̄iΦ̃ī + BiKIj,̄iI,

B̂ij,̄i ,

N−1∑

ι=1

BiKIj,̄iĪι, Ei,̄i ,

[
E1i

ΦīE2i

]

, Φ̃ī ,

[
0
ΦT

ī

]T

,

Ai,̄i ,

[
Ai 0

ΦīCi I − Φī

]

, I ,
[
0 I

]
,

Īι ,
[
0ny×[(ι−1)ny+ιnx] I 0ny×[(N−1−ι)(nx+ny)]

]
.

Then, the closed-loop fuzzy system (12) is exponentially
stable. Furthermore, under the zero initial condition, the
inequality

∑
∞

k=0 z
T (k)z(k) ≤ γ2

∑
∞

k=0 v
T (k)v(k) is also

satisfied. In this case, the desired fuzzy PID controller gains
can be obtained directly asKPj,̄i, KDj,̄i andKIj,̄i.

Proof: To keep the integrality of the variable matricesP ,
L, S, Qd (d = 1, 2, · · · , N − 1), we rewrite some matrices as
follows:

B̂ij,̄i =

N−1∑

ι=1

BiKIj,̄iĪι,

Ãijs,̄i =Ai,̄i + BiKPj,̄iΦ̄s,̄i + BiKDj,̄iΦ̄s,̄i + BiKPj,̄iI

− BiKPj,̄iΦ̃ī − BiKDj,̄iΦ̃ī + BiKIj,̄iI,

Ẽijs,̄i = Ei,̄i + BiKPj,̄iΦīE2s + BiKDj,̄iΦīE2s.

Then, pre-multiplying and post-multiplying the inequalities
(15) bydiag

{
I, I, I, I, P−1, I

}
and its transposition, respec-

tively, and lettingL = P−1, we obtain (28) readily. The proof
is now complete.

By far, it is infeasible to derive the desired fuzzy PID
controller parameters directly by the LMI approach because
of the matrix equality (29) in Theorem 2, which renders
the problem non-convex. To get over the difficulty, the CCL
algorithm is utilized whose main idea is given as follows:

PL = I ⇐⇒







tr(PL) = n
[
P ∗
I L

]

≥ 0

whereP > 0 andL > 0 are matrix variables with dimensions
n× n. Then, the problem in Theorem 2 can be reconstructed
as solving (28) and

[
P ∗
I L

]

≥ 0. (30)

in the case oftr(PL) = n. If the solution of the above problem
exists, the conditions in Theorem 2 are solvable.

Finally, in terms of the above discussions, Algorithm 1 is
given to tackle the considered problem.

Note that Algorithm 1 can be applied to handle theH∞

fuzzy PID control problem with a given disturbance attenu-
ation level γ. Next, by following the similar idea proposed
in [8] and based on Theorem 2 and Algorithm 1, we provide
Algorithm 2 to further obtain the suboptimal performance of
γ for the considered fuzzy PID control problem.

Remark 4:In this paper, the Lyapunov stability theory and
LMI technique have been employed to deal with the fuzzy
PID control problem subject to DTDs, where the LKF (16) has
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Algorithm 1:
Step 1. Setc = 0. Obtain a set of initial solutions(P(0), L(0), S(0),

Qd(0),KPj,̄i(0), KIj,̄i(0),KDj,̄i(0)) by solving (28) and (30).
Step 2. Solve the optimization problemmin tr(PL(c) + P(c)L) subject

to the constraints (28) and (30) to derive a feasible solution
(P,L, S,Qd, KPj,̄i, KIj,̄i,KDj,̄i). Settc = |tr(PL)− n|

wheren , nx + ny.
Step 3. Substitute the obtained matrix variables(P, L, S,Qd,KPj,̄i,

KIj,̄i,KDj,̄i) into (15). If the inequality (15) is satisfied and
tc is less than a small constant numberδ > 0, these obtained
variables are the desired feasible solutions of our problem. Exit.

Step 4. If c > H, whereH is the maximum number of iterations
allowed. Then, output the feasible solutions. Exit. Else, set
c = c+ 1 and (P(c), L(c), S(c), Qd(c), KPj,̄i(c), KIj,̄i(c),
KDj,̄i(c)) = (P, L, S,Qd,KPj,̄i,KIj,̄i, KDj,̄i).
Go to Step 2.

Algorithm 2:
Step 1. Choose a sufficiently large initialγ > 0, such that there exists a

feasible solution to (28) and (30). Setγmin = γ.
Step 2. Setc = 0. Obtain a set of initial solutions(P(0), L(0), S(0),

Qd(0),KPj,̄i(0), KIj,̄i(0),KDj,̄i(0)) by solving (28) and (30).
Step 3. Solve the optimization problemmin tr(PL(c) + P(c)L) subject

to the constraints (28) and (30) to derive a feasible solution
(P,L, S,Qd, KPj,̄i, KIj,̄i,KDj,̄i).

Step 4. Substitute the obtained gain matrices(KPj,̄i, KIj,̄i,KDj,̄i)
into (15). If the inequality (15) is satisfied with respect to
the variablesP , S, Qd, then decreaseγ to some extent and
setγmin = γ. Go to Step 2. If (15) is infeasible within the
maximum number of iteration that is allowed, then exit.
Otherwise, Setc = c+ 1 and go toStep 3.

been utilized to derive sufficient conditions. Such a methodis
widely used which shows the advantages of low computational
burden and easy implementation. The conservatism of this
method is mainly from that a common LKF is used to
analyze all fuzzy subsystems and a delay-independent LKF
is used to tackle the delay-induced effects. To further reduce
the conservatism, one can choose the piecewise LKF, fuzzy
LKF and delay-dependent LKF at the cost of increasing the
computational complexity. In this regard, we refer readersto
[3], [4], [8], [15], [50] for more details.

Remark 5:The CCL algorithm, which was first introduced
into control areas in [51], is regarded as an effective tool to
address some control problems (see e.g. [11], [52]). There
are two popular choices of the initial values in Step 1 of
Algorithm 1. One is to choose random values such as identity
matrices [53] and another is what we have adopted in this
paper, namely, choosing a set of feasible solutions according to
some related linear matrix inequalities (e.g., (28), (30) in this
paper). From our experience, the second method would be very
helpful for improving the subsequent optimization processand
finding the satisfactory solutions, since such initial values are
closely relevant to the considered problem.

Remark 6:When utilizing the CCL algorithm, the conser-
vatism is mainly from the fact that it is numerically difficult
to let tr(PL) strictly equal ton. From our experience, such a
fact would directly affect the feasibility of the CCL algorith-
m. For example, for a rather complex system, the iterative
operation sometimes would enter into a very slow process
after some iterations, and as the iterative times increase,the
change oftr(PL) would be very small. In this case, it is

hard to find the satisfactory solutions. Even so, the CCL
algorithm is shown to be an effective method with relatively
low conservatism to deal with the nonlinear matrix inequality
since no extra inequality constraints are introduced in the
algorithm [8]. Another important feature of the CCL algo-
rithm is the computational complexity which is proportional
to the iterative times, the total row sizeM of the LMIs
and the total numberN of scalar decision variables [11].
In this paper, the variable dimensions can be obtained by
x(k) ∈ R

nx , u(k) ∈ R
nu , y(k) ∈ R

ny , z(k) ∈ R
nz and

v(k) ∈ R
nv . Thus, in one optimization of Algorithm 1, we

haveN = 3rMnuny+0.5(N+2)[(nx+ny)
2+(nx+ny)] and

M = (N +4)(nx+ny)+ r3M [(N +2)(nx+ny)+nv+nz],
where r is the number of fuzzy rules;N is the length of
integral window andM is the number of sensor nodes. It
can be observed that the computational complexity is largely
dependent on the system complexities (such as the dimension
of the system state, number of fuzzy rules). Moreover, note
that the system under consideration is time-invariant. As such,
our proposed algorithm can be implemented in an offline
manner and the computational complexity would not affect
the applicability of the proposed control scheme.

Remark 7:Until now, theH∞ fuzzy PID control problem
has been solved for a class of discrete-time fuzzy systems
subject to infinite-DTDs and RR protocol. This is a nontrivial
problem with two difficulties identified as follows: 1) how to
formulate a mathematical model to account for the compli-
cated signal transmission behavior? and 2) how to develop an
appropriate methodology to design the PID parameters with
guaranteedH∞ performance of the control fuzzy systems. The
main novelties that distinguish this paper from the existing
ones are that: 1) the fuzzy PID control problem is, as the first
attempt of this kind, investigated for systems with infinite-
DTDs under the RR protocol, which caters for the engineering
practice; 2) a novel and easy-to-implement fuzzy PID control
algorithm is developed to deal with theH∞ control problem;
and 3) an iterative optimization algorithm is proposed to derive
the parameters of the switching-signal-dependent controller. In
the following section, three numerical examples are given to
verify the proposedH∞ fuzzy PID control algorithm.

IV. SIMULATION EXAMPLES

In this section, we present three simulation examples to
demonstrate the validity of the proposed fuzzy PID control
scheme for T-S fuzzy systems with a network.

A. Example 1

We consider a delayed discrete-time fuzzy system (1) with
the following parameters:

A1 =

[
1.01 0.1
0.2 0.2

]

, B1 =

[
0.7 0.5
0.3 0.2

]

, E11 =

[
0.1
0.1

]

,

A2 =

[
1 0.3
0.1 −0.2

]

, B2 =

[
0.4 0.7
0.5 0.5

]

, E12 =

[
0.2
0.2

]

,

Aǫ1 =

[
0.05 0.01
0.1 0.01

]

, C1 =

[
0.9 1
1 0.7

]

, E21 =

[
0.1
0.1

]

,

F2 =
[
0.4 0.3

]
, C2 = C1, F1 =

[
0.5 0.6

]
,
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E22 =

[
0.1
0.1

]

, Aǫ2 =

[
−0.35 −0.38
−0.2 0.1

]

,

h1(θ(k)) =
1− sin2(x1(k))

2
, h2(θ(k)) = 1− h1(θ(k)).

Choose the constantsµǫ = 2−3−ǫ (ǫ = 1, 2, · · · ) and it is
easy to see that̄µ =

∑
∞

ǫ=1 µǫ = 2−3 <
∑

∞

ǫ=1 ǫµǫ = 2 <
+∞, which satisfies the condition (2).

Assume that sensors can be divided into two nodes, i.e.,
y(k) =

[
y1(k) y2(k)

]T
. Under the effect of the RR protocol,

only one node is permitted to access the network at each time
instant. Our aim is to design a fuzzy PID controller with the
form of (10) such that the closed-loop T-S fuzzy system is
exponentially stable and also satisfies a guaranteedH∞ norm
boundγ = 0.8.

First of all, we set the initial values asx(0) =
[
0.1 −0.1

]T
, x(s) =

[
0 0

]T
for all s ∈ Z

−, and the noise
as

v(k) =
0.5 sin(k)

k
− 1.2e−k.

Based on the controller gains obtained via Algorithm 1,
simulation results are given in Figs. 2-4. Fig. 2 shows the
state evolution of the open-loop system, which is obvious-
ly unstable. Fig. 3 plots the state response of the con-
trolled system, from which we can see that the system
controlled by the fuzzy PID controller is exponential con-
vergence. The selected node under RR protocol is depicted
in Fig. 4. By simple computation, we obtain thatγ∗ ,√
∑kf

i=0 z
T (i)z(i)/

∑kf

i=0 v
T (i)v(i) = 0.2247 (wherekf de-

notes the terminal time of control) which is less than the
prescribedγ = 0.8.

To further check theH∞ performance of the closed-loop
system, we set the initial condition asx(0) =

[
0 0

]T
. Then,

Fig. 5 depicts the state evolution of the controlled system when

v(k) 6= 0. The ratio of

√
∑

k
i=0

zT (i)z(i)
∑

k
i=0

vT (i)v(i)
is shown in Fig. 6,

from which we can see that the prescribedH∞ performance
is satisfied. All simulation results validate the effectiveness of
our proposed method.
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Fig. 2: State evolutionx(k) of the open-loop system

In order to further verify the effectiveness of the utilized
algorithm, we list the values oftc = |tr(PL)−nx−ny| under
two different choices of initial values in Step 1 of Algorithm
1. We name that chose random values as case 1 and chose
feasible solutions as case 2. Then, the comparison results are
given in Table I. In fact, it is expected thattc can be optimized
as small as possible. From Table I, we can see that under
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Fig. 3: State evolutionx(k) of the closed-loop system under
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]T
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0 50 100 150 200
Time k

-0.02

-0.01

0

0.01

V
ar
ia
b
le

va
lu
e

x1(k)

x2(k)

Fig. 5: State evolutionx(k) of the closed-loop system under
x(0) =

[

0 0
]T
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∑

k
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vT (i)v(i)

the same iteration times, the optimization results in case 2
are better than those in case 1, showing the advantage of the
adopted method.

B. Example 2

It is well known that a useful feature of the PID controller
is to track a reference signal. In fact, the results obtainedin
this paper can be easily applied to handle the tracking control
problem. In this example, let us consider the tracking control
problem by using the proposed fuzzy PID controller.
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TABLE I: The values oftc = |tr(PL)− nx − ny| under two
different cases

iteration times 1 2 5 30
tc (case1) 0.1287 0.0097 0.0022 4.6× 10−4

tc (case2) 0.0106 0.0034 7.3× 10−4 3.5× 10−4

Consider a fuzzy system whose model is given in Example
1, and without loss of generality, we set the controlled output
as z(k) =

∑2
i=1 hi(θ(k))Cix(k). We aim to forcez(k) to

track a reference signalyr(k) which is generated by the
following model:

{

xr(k + 1) =Arxr(k) +Brr(k)

yr(k) =Crxr(k)
(31)

where xr(k) ∈ R
nx , r(k) ∈ R

nu and yr(k) ∈ R
ny are,

respectively, the state, the energy-bounded reference input and
the output;Ar , Br andCr are constant matrices withAr being
Hurwitz.

By denoting the error variablee(k) , x(k)−xr(k), we can
obtain the augmentation system as follows:






η(k + 1) =

2∑

i=1

hi(θ(k))

(

Ãiη(k) + Ãǫi

∞∑

ǫ=1

µǫη(k − ǫ)

+ B̃iu(k) + Ẽ1iv̄(k)

)

y(k) =

2∑

i=1

hi(θ(k))
(

C̃iη(k) + Ẽ2iv̄(k)
)

ze(k) =

2∑

i=1

hi(θ(k))F̃iη(k)

(32)

where

η(k) ,
[
eT (k) xT

r (k)
]T

, ze(k) , z(k)− yr(k),

Ãi ,

[
Ai Ai −Ar

0 Ar

]

, Ãǫi ,

[
Aǫi Aǫi

0 0

]

,

B̃i ,

[
Bi

0

]

, Ẽ1i ,

[
E1i −Br

0 Br

]

,

C̃i ,
[
Ci Ci

]
, Ẽ2i ,

[
E2i 0

]
,

F̃i ,
[
Ci Ci − Cr

]
, v̄(k) ,

[
vT (k) rT (k)

]T
.

By introducing the new state variable, the considered track-
ing control problem is transformed into a stabilization onefor
the augmentation system (32) sinceη(k) → 0 implies that
ze(k) → 0. Note that the augmentation system (32) has a
similar form with (3) and thus, the obtained results such as
Theorem 2 and Algorithm 1 can be easily applied to deal
with the considered tracking control problem by some minor
changes. For saving the space, the details are omitted here.

Set the model parameters of (31) as

Ar =

[
0.3 0.1
0.2 0.5

]

, Br =

[
0.5 0.3
0.6 0.2

]

, Cr =

[
1 0.5
0.6 1

]

.

Chooseγ = 1 and set the reference inputr(k) as

r(k) =







[
0.1 sin(0.1k)
0.1 sin(0.1k)

]

, 0 ≤ k ≤ 260
[
0.05 cos(0.05k)
0.05 cos(0.05k)

]

, 400 ≤ k ≤ 800

0, otherwise.

Based on the obtained controller gains, the controlled out-
put z(k) is shown in Figs. 7-8. By computation, we have

γa = 0.7140 < 1 (γa ,

√
∑kf

i=0 z
T
e (i)ze(i)/

∑kf

i=0 v̄
T (i)v̄(i))

which validates that the prescribedH∞ performance is satis-
fied.
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Fig. 7: Controlled outputz1(k)
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Fig. 8: Controlled outputz2(k)

To further display the disturbance attenuation capability
and the tracking performance of the controlled system, we
provide some comparison results in Table II which gives the
attained disturbance attenuation levelγa under different given
γ. From this table, we can see that by choosing a smallerγ,
the controlled system will have a better tracking performance.
All simulation results presented in this example validate that
the proposed controller performs very well for the tracking
control problem.

TABLE II: The values ofγa under differentγ

γ 1 2 3 3.5
γa 0.7140 0.9678 1.0238 1.0336

C. Example 3

In this example, we aim to control a network-based truck-
trailer system by using the proposed fuzzy PID controller. The
modified system model is represented by [8]:

x1(k + 1) =

(

1−
v0t0
L0

)

x1(k) +
v0t0
l0

u(k) + 0.1v(k)
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x2(k + 1) =
v0t0
L0

x1(k) + x2(k) + 0.1v(k)

x3(k + 1) = v0t0 sin

(
v0t0
2L0

x1(k) + x2(k)

)

+ x3(k)

wherex1(k) is the angle difference between the truck and the
trailer; x2(k) is the angle of the trailer;x3(k) is the vertical
position of the rear end of the trailer;u(k) is the steering angle;
v(k) = 2 sin k

k
is the energy-bounded external disturbance;l0 =

2.8m is the length of the truck;L0 = 5.5m is the length of
the trailer;t0 = 2s is the sampling time; andv0 = −1m/s is
the constant speed of backing up.

The measurement output and controlled output are given as
follows:

y(k) =Cx(k) + E2v(k), z(k) = Fx(k)

where

C =

[
7 −2 0.03
5 −1 0.03

]

, F =
[
0.1 0.3 0.1

]
,

x(k) =
[
x1(k) x2(k) x3(k)

]T
, E2 =

[
0.1
0.1

]

.

By employing the fuzzy modeling technique, we use the
following 3-rules T-S fuzzy model to represent this nonlinear
system according to the operation point0 rad, ±π

6 rad, and
±π:






x(k + 1) =

3∑

i=1

hi(θ(k))
(

Aix(k) +Bu(k) + E1v(k)
)

y(k) =Cx(k) + E2v(k)

z(k) =Fx(k)

where

A1 =






1− v0t0
L0

0 0
v0t0
L0

1 0
v2

0
t2
0

2L0

v0t0 1




 , A2 =






1− v0t0
L0

0 0
v0t0
L0

1 0
3v2

0
t2
0

2πL0

3v0t0
π

1




 ,

A3 =






1− v0t0
L0

0 0
v0t0
L0

1 0
v2

0
t0

200L2

0

v0
100L0

1




 , B =





v0t0
l0

0
0



 ,

E1 =
[
0.1 0.1 0

]T
, θ(k) =

v0t0
2L0

x1(k) + x2(k).

The aim of this example is to design the proposed fuzzy
PID controller such that requirements R1) and R2) are satisfied
simultaneously.

Setγ = 2 andx(0) =
[
0.1 −0.1 0.1

]T
. By applying the

controller gains obtained via Algorithm 1, simulation results
are given in Figs. 9-10. Fig. 9 shows the open-loop state
evolution which is obviously unstable. Fig. 10 plots the closed-
loop state evolution from which we can see that the controlled
system is stable, implying that the backing up is achieved suc-
cessfully. By simple computation, we haveγ∗ = 0.2517 < 2
which means that requirement R2) is satisfied. To further check
theH∞ performance of the controlled truck-trailer system, we
list the attained disturbance attenuation levelγ∗ in Table III
under different energy-bounded noises. The results show that
the obtainedγ∗ under different cases are all smaller than the
given γ = 2 that verifies the good disturbance attenuation
capability.
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Fig. 9: State evolutionx(k) of the open-loop system
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Fig. 10: State evolutionx(k) of the closed-loop system

TABLE III: γ∗ under different noises

noisev(k) sin k
k

5
k2

5e−0.1k

γ∗ 0.6707 0.1113 0.5739

V. CONCLUSION

This paper has been concerned with theH∞ fuzzy PID
output-feedback control problem for discrete-time T-S fuzzy
systems subject to infinite-DTDs and RR protocol. A shared
communication network has been used to deal with the signal
transmissions between the sensors and controller, where the
data exchange has been guided by the underlying RR protocol.
A novel and easy-to-implement fuzzy PID controller has been
developed to stabilize the considered fuzzy system, under
which the prescribedH∞ performance requirement has been
also achieved. Based on the CCL algorithm, the controller
gains have been obtained. Finally, the effectiveness of our
proposed design scheme has been verified by three simula-
tion examples. Further study includes the fuzzy PID control
problem for nonlinear systems with time-varying delays and
other network-induced effects (e.g. event-triggered mechanism
effects [54]–[56] and quantization effects [39], [57], [58]).
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