
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 TR/05/87        April 1987 
 

Geometric Continuous Patch Complexes 

by 

 Jörg M. Hahn 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

z162491x 



Geometric Continuous Patch Complexes 

by 

Jörg M. Hahn 

Department of Mathematics and Statistics 

Brunel University  

Uxbridge UB8 3PH, England 

This work was supported by the Science and Engineering Research Council grant 

GR/D/77148. 

The author is greatly indebted to Dr. J. A. Gregory for the arrangement of 

this project and his invaluable advice. 

Presented at Oberwolfach 10 February 1987. 

Submitted for Publication in Computer Aided Geometric Design. 



 

 



Geometric Continuous Patch Complexes

By 

Jörg M. Hahn. 

Abstract

A theory of geometric continuity of arbitrary order is presented.  Conditions of 

geometric continuity at a vertex where a number of patches meet are investigated. 

Geometric continuous patch complexes are introduced as the appropriate setting for   

the representation of surfaces in CAGD.  The theory is applied to the modelling         

of closed surfaces and the fitting of triangular patches into a geometric continuous 

patch complex. 
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1. Introduction 

       At the conference on surfaces in computer aided geometric design (CAGD) in 

Oberwolfach 1984, [Barnhill '85] presented eight open research questions.  The 

l a s t  t h r e e  o f  t h e m  a r e :  

-    g e o m e t r i c  c o n t i n u i t y  

-   m o d e l l i n g  c l o s e d  s u r f a c e s ,   

-   composing rectangular and triangular patches. 

The keystone of these problems is geometric continuity. The other two problems 

are the challenge for any theory of geometric continuity: the theory must prove its 

usefulness in resolving them. 

The basic concepts of geometric continuity, geometric characterisations of                                       

first and second order continuity and the reparameterization approach for continuity 

of arbitrary order, were already introduced by [Vernon et al. '76].  These ideas      

have been further developed by [Barsky and DeRose '85], [Höllig  '86], and others. 

[DeRose '85] has attempted to build a theory of geometric continuity on manifold 

theoretic terms. 

In fact, differential topology provides the proper means to deal with geometric  

continuity. This must be adapted to the needs of CAGD. 

This article presents a theory of geometric continuity of arbitrary order that 

is capable of resolving the two practical problems above. 

Section 2 starts with the definition of parametric surface patches suitable 

for CAGD.  In section 3, geometric continuity of adjoining patches is introduced, 

based on the existence of a reparameterization. Also more practical characterizations 

are given.  Section 4 defines geometric continuity at a corner.  Thereupon, in 

section 5, geometric continuous patch complexes are introduced as the appropriate 

setting for the representation of surfaces in CAGD.  
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 Section 6 provides the instruments to investigate, in section 7, conditions   

of geometric continuity at a corner. 

 Sections 8 and 9 outline the application of the theory to the modelling of 

closed surfaces and the fitting of triangular patches into a geometric continuous 

patch complex. 

 Finally, an equivalent characterization of geometric continuity in terms of 

geometric invariants is described in an appendix. 

2. Surface Patches for CAGD

 2.1  Definition; A domain is a closed subset. ∆ of RI 2, bounded by a number       

of edges E  that are regularly Ci
k

 -parameterized as E (s), s Є [0, 1].                          i

A C
k

 -patch is a map p : ∆  →  that is k-times continuously differentiable on ∆ 3RI

and whose differential ∂p has rank 2 for all points of ∆  . 

The tangent sector of p at a boundary point C of  ∆  is the set of all  tangent 

vectors (p o c)'  (0) of curves c : [0,1] → ∆  starting at C = c (0). 

 2.2 Remarks:  The rank condition excludes cones, cusp ridges and other kinds 

of singularities. It guarantees that the tangent plane )RI(p 2
X∂  is well-defined for 

all X Є ∆ and that the tangent sector at a convex corner is convex. 

 The definition allows for self-intersections, mainly because there is no 

practicable criterion to exclude them, and because they can occur in some appli-

cations. This causes no problems in theoretical considerations, if an intersection 

point is treated separately according to the different leaves it belongs to, i.e.  

if the intersecting leaves are considered being disjoint.  That is the reason why 

the tangent plane was attributed to. the point of the domain rather than to its 

image on the surface. 

3. Geometric Continuity of Adjoining Patches

 In practice it is impossible to describe a complicated surface by a single 

patch.  Instead, the surface will be composed of several patches.  This imposes the
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the question of how to glue them together. 

 The only reasonable assumption is that, locally, a point of the composed 

surface cannot be distinguished from a point of a patch.  The characteristic shared 

by all points of patches is that they admit locally a parameterization. 

 Thus, geometric continuity is, in essence, the existence of a (local) 

reparameterization.. 

 This is also the principle that underlies the work of [Vernon et al. '76 ] 

and others. The exposition here builds on [Gregory and Hahn '86], particularly 

in employing the machinery of (total) derivatives. 

 3.1  Definition Let ∆1 and ∆2 be domains with edges E1 (S) and E2(s) 

respectively. 

A C
k

-connecting diffeomorphism from E1 to E2 is a C
k

-diffeomorphism φ defined 

in a neighbourhood of E1 such that φ ( E1 (s)) = E2(s) and φ maps interior points 

of ∆1 into the exterior of ∆2. 

Two C
k

 -patches p1 : ∆1 → 3RI  and p2 : ∆2 → 3RI   join with geometric continuity (GC
k

 )

along edges E1 , E2, if there exists a C
k

 -connecting diffeomorphism φ from E1 to 

E2 such that the derivatives up to order k of patch pi and the composed map p2   ο φ 

coincide along edge E1  : 

  .  ]1,0[sandk,....,0jfor,)s(E|)p(j
)s(E|pj

12
1

1 ∈=φ∂=∂ o
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With this definition, the map defined in a neighbourhood of edge E by 
 

   
⎪⎩

⎪
⎨
⎧

∈φ∉φ
→

2Δx)(,1Δxfor,(x)2p
1Δxfor,(x)1p

X
o

is a C
k

-parameterization of the union of (the ranges of) the patches p1, p2 near 

the common boundary curve p1 ο E1(s) = p2 ο E 2 (s), see fig.1 . 

 It would be somewhat awkward if always the entire connecting diffeomorphism 

needs to be known.  Evaluating  via the chain rule shows that only its )2(pj φ∂ o

derivatives along the edge are required, and these can be provided much easier. 

 3.2 Lemma:

 Let E1(S) and E2(s) be edges of domains ∆1 , ∆2  respectively.  Furthermore let 
U(s) be a C

k-1
-vector field along E1  (S), transversal and inward pointing, and let 

V(1) (s),..,V
(k)

  (s) be vector fields along E2(s) such that V
(j)

 (s) is C
k-j

 and 
V(1)  (s) is transversal to E2(s) and outward pointing. 

Then there exists a C
k

 -connecting diffeomorphism φ from E1 to E2  with 

  .k1,..,jfor(s)(j)vU(s))(U(s),...,(s)1E
j ==φ∂  

Proof: If all vector fields are C
k

 , then a diffeomorphism can be defined 
simply  by 

   ∑
=

+=+φ
k

1j
.(s)(j)v

j!

jt(s)2E:tU(s))(s)1(E  

To construct a diffeomorphism under the weaker continuity conditions, define integral 

operators for univariate functions f : 

   

.k2,..,for,).[f](s,
t

0

1)(I:t)(s,[f])(I

ts

s
f:t)(s,I[f] ,

=−=

+
=

∫

∫

lll

These satisfy   ,jfor,0[f](s,0))(Ijt

j
l

l <=
∂

∂
   and     f(s)[f](s,0))(I

t
=

∂

∂ l
l

l
 . 

Define C
k

 -maps   recursively by )(
2
lφ

  
,)t,s)](0(.,)1(

2t
)(v[)(I)t,s()1(

2:)t,s()1(
2

),t,s]()1(v[I)s(2E:)t,s()1(
2

−φ
∂

∂
−+−φ=φ

+=φ

l
l

l
lll

   

   (k)   for 2=l  k  
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By induction one shows that 

    .kjfor(s)(j)v(s,0)2jt

j
≤=φ

∂

∂  

Similarly there is a C
k

 -map such that 1φ 1φ  (s,0) = E1 (s) , U(s)0),(s1t
=φ

∂
∂  

and .kj2for0(s,0)1jt

j
≤≤=φ

∂

∂  

Then  : =  ο   is a Cφ 1φ
1

1
−φ

k
 -diffeomorphism in a neighbourhood of edge E1 and has the 

prescribed derivatives.                                                                                   //// 

 Combining lemma 3.2 with the chain rule and observing that only derivatives 

in a transversal direction need to be known (differentiate along the edge), gives 

the following handy characterization of GC
k

, here only written for k=1,2. 

 3.3     Corollary: Two patches p1, p2 join GC1 along edges E1(S), E2 (s) iff 

there exists a C0 -vector field U(s), transversal along E1(S) and inward pointing, 

and a C0 -vector field V(s), transversal along E2(s) and outward pointing, such that 

.  V(s)(s)2E|2pU(s)(s)1E|1p ∂=∂  

The patches join GC2 iff these vector fields are C1 and in addition there exists 

a C°-vector field W(s) such that 

.)s(W)s(E|p))s(V),s(V()s(E|p))s(U),s(U()s(E|p
2

222
2

11
2 ∂+∂=∂  

The GC1-condition accords with that of [Herron '85] . The GC2-condition is the 

starting point for the construction of C2-polygonal patches in [Gregory and Hahn '87] 

of these proceedings. 
 3.4   Example:

 Let p1, p2 be patches on the unit square or the triangle with vertices (0,0), 

(1,0), (0,1). 

Then with U(s) = (1,0), V(s) = (v1(s),v2(s)), W(s) = (w1(s),w2(s)), the conditions 

for GC2 along edges (0,s), (s,0) (s € [0,1]) are (∂1,0   etc stands for partial 

differentiation): 
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.(s,0)2p0,1(s)2w(s,0)2p1,0(s)1w

(s,0)2p0,2(s)2
2v

(s,0)2p1,1(s)2(s)v12v(s,0)2p2,0
2(s)1vs)(0,1p2,0

,(s,0)2p0,1(s)2v(s,0)2p1,0(s)1vs)(0,1p1,0

,(s,0)2ps)(0,1p

,0(s)2v

∂+∂+

∂+

∂+∂=∂

∂+∂=∂

=

<

 

These conditions with 'shape parameters' v1,v2,w1,w2 are similar to those derived 

by [H811ig '86], following [DeRose '85]. 

 In view of lemma 3.2, the connecting diffeomorphisms could be suppressed in 

the following considerations, replacing them by a set of vector fields.  They are 

used, however, mainly because they provide a more concise notation. 

4.   Geometric Continuity at a Vertex

 Now consider a number of C
k

 -patches pi : ∆i.→ 3RI  , i=1,..,n, meeting at a 

common vertex  and such that subsequent patches join with GC3RIQ ∈
k

 , i.e. there 

are corner points Ci of adjacent edges Ei +, E.i+, Ei-  of ∆i. such that pi (Ci) = Q, i=1,..,n 

and pi, pi+1  join GC
k

 along the edges Ei+., Ei+1- for i=1,..,n-1, see fig.2 . 

 

Fig. 2
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 4.1   Definition:   The patches p1, . . . ,pn meet with geometric continuity

(GC
k

) with a (convex/non-convex) corner at Q, if in addition the union of the 

tangent sectors of pi at Ci (i=1,. . ,n) is a proper subset of the tangent plane at 

Q (convex or non-convex). 

The patches p1 , .., pn  surround the vertex Q with geometric continuity (GC
k

) , if 

also pn ,p1 join GC
k

 along edges En+ , E1- and the tangent sectors of the patches 

do not overlap. 

The patches p1,..,pn join with geometric continuity (GC
k

) at the vertex Q, if either 

they meet GC
k

 with a corner at Q or they surround Q with GC
k

. 

 4.2   Remark:  If patches p1 ,..,pn join GC
k

 at a vertex Q  , then their union 

admits a C
k

 -parameterization around the vertex, e.g. the inverse of the orthogonal 
projection to the tangent plane at Q. 

5.   Geometric Continuous Patch Complexes

 Now the definition of a surface appropriate for CAGD can be given. 

5.1  Definition:  Let ,  i=1 ,..,N be C3RIiΔ:ip →
k

 -patches and let Eij.., j=1,..,N  

denote the edges of ∆i . 
A connecting relation is a relation ~ between the edges that is symmetric, non- 

reflexive and such that an edge is related to at most one other edge. 

A geometric continuous (GC
k
) patch complex consists of patches p1 ,..,pN and a 

connecting relation ~ such that 
(i)    join GC

2i
p,

1i
p

k
 along   whenever  

2j,2i
E,j,1i

E
1

,j,iE~j,iE
2211

(ii)  if a number of patches subsequently join GC
k
 with a common vertex, then they 

  join GCk at this vertex. 

 5.2  Remarks:  Every point in the union of the patches of a GC
k
 -patch complex 

admits locally a C
k

 -parameterization, i.e. the union of these patches is an 'immersed 

C
k
 -surface with piecewise C

k
 -boundary1 in the sense of differential topology, of 

e.g. [Hirsch '76]. 
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The term 'complex' indicates that a patch complex consists of dissimilar parts, 

namely patches and connecting relations. An assembly of patches can give rise     

to different patch complexes, depending on the connecting relations imposed. 

6. Jets

 6.1   Definition:  Let  f  be a C
k

 -function and X a point of its domain. 

The  k - je t   o f  f  a t  X  i s  the  se t  o f  a l l  de r iva t ives  up  to  o rder  k  a t  X  :  

 

Jets have been used in differential topology with a slightly more abstract  

.k,..,0)jX|f
j(:X|f

kj =∂=

definition, of [Hirsch '76].  They are like a high level programming language 

adapted to deal with geometric continuity, instead of the intermediate level language 

of (total) derivatives or the machine language of partial derivatives. 

 6.2 Notes:  Many useful properties of jets are directly inherited from 

propert ies  of  the underlying funct ions:  

The composition of jets ,Y|gkj,X|fkj where f(X) = Y, is defined by 

   .
X|f)(gkj:X|f

kjY|gkj oo =  

This is well-defined since all derivatives occuring within the right-hand side of 

this formula can be computed by repeated application of the chain rule, involving 

only der ivat ives  up to  order  k  of   f  and g  ,  which are  given by their  k- je ts .  

For instance, the GC
k

 -condition (def. 3.1) can now be written as 

   .(s)1E|
kj(s)2E|2pkj(s)E|1pkj φ= o  

The composition of jets is associative.

The neutral element with respect to jet composition is the jet of the identity map 

at the point in consideration; 

.X|fkjX|idkjXfkjX|f
kjY|idkj == oo  

A je t  j
k

 f | X is  lef t - inver t ible ,  i f  there  exis ts  a  je t  j
k

 g | Y such that  

     .Y|idkj.
X|f

kjY|gkj =o

Similarly, Y|gkj    is right-invertib1e.

A jet is   invertible,   if i t  is left- and right-invertible.  
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Note that a jet X|f
kj  is left-invertible (right-invertible) if the differential 

∂f|X is one-to-one (onto). 
 
7.   Conditions of Geometric Continuity at a Vertex
 Let p1,.,pn be patches surrounding a vertex Q = pi(Ci) with GC

k
 . 

The GC
k

 -conditions between subsequent patches are, at the vertex: 

,
1C|2,1

kj
2C|2Pkj

1C|1Pkj φ= o     

   ,
1nC|1n,nφkj

nC|npkj
1nC|1npkj

−
−=

−− o  

,
nC|1,nφkj

1C|1pkj
nC|npkj o=     

where   (mod n) are the connecting diffeomorphisms. n1,..,i,i1,i =+φ

Substituting subsequently gives 
  .

1C|2,1kj..
1nC|1n,nkj

nC|1,nkj
1C|pkj

1C|pkj 11 φ
−−φφ= oooo

Since the jet is left-invertible, the following necessary condition follows: 
1C|pkj 1

 7.1   Theorem

 The  connecting diffeomorphisms i1,i+φ  between subsequent patches pi .(i=1,..,n 

(mod n)) surrounding a vertex Q = pi(Ci) with GC 
k
satisfy: 

  .
1C|idkj

1C|2,1
kj..

1nC|1nn,
kj

nC|n1,
kj =φ

−
−φφφ ooo

 7.2    Example:  Assume three patches are defined on the unit square or the 

triangle with vertices 0 = (0,0), (1,0), (0,1) and surround a vertex with GC2, 

with connecting diffeomorphisms ψ,, Xφ ,  from edge (0,s) to (s,0).  Then the necessary 

condition reads:  

    ,0(0)))(ψ( =φX  
   ,id000ψ =φ∂∂∂ oo X  

   .)0|0|,.0|0|(
0ψ2 φ∂∂φ∂∂∂ XX o  

    ).0|.0|(0|
2

0|ψ
2 φ∂φ∂∂∂+ Xo

   .0(.,.)0
2

0
2

0ψ ≡φ∂∂∂+ Xo  
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Writing in terms of shape parameters  ( i =1,2,3), where  iτ,iσ,iρ,iω,iμ,iλ

λ1 : = v1(0), µ1 : = v2(0),  ω1  : = v ' (0),  ρ1 1 : = v ' (0), σ2 1 : = w1 (0), τ1: = w2 (0) 

describe φ according to example 3.4, and similarly λ2 ,…, τ2 and λ3 ,…, τ3  describe 

X and ψ respectively, gives, after some calculation: 

μ1 μ2 μ3       = -1  , 

λ 
i μi+1          = 1  ,   for i=1,2,3 (mod 3)  , 

0.2σ3μ3ρ2λ22μ3τ
2
2λ

0,2τ2σ3λ3ω2λ22μ3σ
2
2λ

01ρ3μ1ω2ω3μ1μ2σ3μ1λ3ρ2λ

01ρ3λ2ρ1μ2ω2τ1λ2σ3λ1λ3ω2λ

0,1τ3μ1σ2ω
2
12λ2σ3μ

2
1λ

,01τ2λ2ρ1μ12λ2ω12λ2τ
2
1λ2σ3λ

2
1λ

=++

=+++

=++++

=+++++

=++−

=++++

 

The first two equations are the GC1-conditions and accord with those of [Höllig '86]. 

Note that the GC2 -conditions are easily satisfied if 0iiii =τ=σ=ρ=ω , 

i.e. the necessary condition for higher order geometric continuity is satisfied 

automatically, if the GC1-condition is met and the higher derivatives of the 

connecting diffeomorphisms vanish at the corner points. 

In the applications (Sec. 8 and 9) connecting diffeomorphisms will be constructed 

that satisfy the condition of theorem 7.1 .  Then patches are defined appropriately 
such that abutting patches join GC

k
 with these connecting diffeomorphisms. From 

the explicit construction of these patches it will be clear that GC
k

  is also 
achieved at the vertices. 

However, GC
k

 at the vertices is guaranteed more generally by the following theorem. 

Since it is mainly of theoretical interest, the proof is sketched only. 

7.3 Theorem:

Let 2RI⊂Δ be domains with corners Ci of adjoining edges , (s)iE,(s)iE −+

s ∈ [0,1], , and let )0(iE)0(iEiC −=+= i,i 1+φ  be kC -connecting diffeomorphisms 

from o , i =1,..,n  (mod n). +iE t iE
1−+
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Assume that the jets at the corners satisfy 

1C|idkj1C|2,1φkj,1nC|1nn,φkj
nC|n1,φkj =⋅⋅−− ooo  

and that the tangent sectors (in 2RI ) of 

,nCatnΔ  

,nCatnn 11, −−φ  

,22,11, nCatnnnn −−−− φφ o  

⋅   ⋅   ⋅ 

11,22,11, Catnnnn φφφ ••
−−− oo  

  

do not overlap, see fig . 3 . 

 
Fig. 3 

Then : 

The disjoint union of the domains iΔ , modulo boundary identifications, can be given 

a kC -differentiable structure such that a function on this space is kC   iff its 

restrictions to  are iΔ
kC and join kGC . 

More precisely: 

Let :  =  be the disjoint union of the domains.  The projection of  oΔ iΔ1,..,ni

•

=
U

oΔ  onto the quotient space Δ   ,  obtained by identifying  with ,   )s(iE + )s(iiE −+
gives rise to embeddings .ΔiΔ:iπ →
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Then A admits a C
k

-differentiable structure such that a function p :  is 3RI→Δ
k  iff the functions are  3RIi:ip:ip →Δπ= o kC and  join 

1ip,ip
+

kGC  with C

connecting diffeomorphisms  ii ,1+
φ

Proof :    The crucial step is to construct a coordinate chart around the vertex 
C : = . )iC(iπ

Choose a neighbourhood Ω of  C in Δ such that 

iinn ,11, +− φφ •• oo is defined on  for   i  = 1, . .  ,  n-1,   )(i
1 Ωπ−

and  is defined on .           . ⎟
⎠
⎞⎜

⎝
⎛ −φ=φ 1

n1,:n,1 )(i
1 Ωπ−

The vertex condition implies that 
,
,1C|)211nn,(kj

1C|n,1
kj φ⋅⋅−φ=φ oo  

i.e.   the boundary data  )s(E|)nn(kj,)s(E|n
kj

1
211,

1
1,

+
− φφ

−
φ •• oo  are consistent 

and there exists a kC -diffeomorphism φ  ,  defined on an open set containing  , )(i
1 Ωπ−

that matches these boundary data. The sectors  )) (Ω1
i(πi1,i1nn,,)) (Ω1

1(π −
+φ⋅⋅−φ−φ oo  

(i = 2,..,n-1)    and       cover a neighbourhood of   (in )(n
1 Ωπ−

nC 2RI and have     

disjoint interiors, due to the non-overlap assumption. 
The map  defined by Cψ

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Δπ∈−πφ

−=Δπ∈−π+φ⋅⋅−φ

Δπ∈−π

=ψ

)1(1Xfor,))X(1
1(

,)1n,..,2i()i(iXfor,))X(1
i(i,1i1n,n

,)n(nXfor,)X(1
n

:)X(C oo

 
maps Ω homeomorphically onto this neighbourhood, i.e. Cψ  is a coordinate chart 

around the vertex. 
For an edge point 0s,(s))i(Eiπ ≠+ ,  a coordinate chart iψ  is given by 

  
⎪⎩

⎪
⎨
⎧

∈−
+φ

++∈−
+=

,)i(ΔiπXif(X))1
i(πi1,i

,)1i(Δ1iπXif,(X)1
1iπ:(X)iψ

and for  not on an edge,    is a coordinate chart.  All these )X(i,)i(iX 1−πΔπ∈ 1

i
−π

charts have kC  coordinate changes. 

The conclusion for functions on Δ follows since a function p on Δ is kC  
iff its local representations   are 1p −ψo kC  for all coordinate charts . 1

i,i,C
−πψψ=ψ

       / / / /  
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Note that if patches  surround a vertex with ip kGC , then   is a 1
Cp −ψo

kC -reparameterization around the vertex. 

This theorem gives the connection to [DeRose '85]. The manifold Δ can be 

given even a -structure, of. [Hirsch '76], This is the domain manifold on which ∞C

DeRose's 'abstract  spline'  is  defined. The difference is,  that  for his theory 

this manifold must be known, thus moving the problem of geometric continuity to that 

of finding an abstract manifold, while here geometric continuity is treated only    

in terms of patches and connecting diffeomorphisms and the manifold Δ need not   

be considered. 

8. Geometric Continuous Patch Complexes for Modelling Closed Surfaces

Now the theory is applied to the problem of closed surfaces. 
kC Surface is a kGC -patch complex whose connecting 8.1 Definition: A closed 

relation links each edge with exactly one other edge. 

8.2 Generating a closed surface;    Consider a closed surface defined by a 

network of control-points with 4-sided meshes where an arbitrary number of meshes 

is allowed to meet at a control-point.  This network is approximated by a kGC -patch 

complex consisting of rectangular patches, each patch corresponding to a 4-sided 

mesh, and the connecting relation linking edges that correspond to coinciding     

sides of the respective meshes.  The details of this construction are given in 

[Gregory and Hahn '87b] 

The major step is to determine the connecting diffeomorphisms: 

The necessary condition (theorem 7.1) for the connecting diffeomorphisms of n 

rectangular patches surrounding a vertex with kGC , means for the first derivative, 
written in terms of shape parameters i,i μλ , as in example 7.2 : 

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛⋅⋅⎟

⎠
⎞

⎜
⎝
⎛

−
−⎟

⎠
⎞

⎜
⎝
⎛

10
01

01μ
11λ

01nμ
11nλ

0nμ
1nλ  
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A symmetric solution of this equation is 

1i,
n

2cos2i −=μ
π

=λ , 

and the condition for the whole k-jets is met,  if  the higher order derivatives 

vanish at (0,0). 

 

Diffeomorphisms with jets of this kind at the corners can be taken as 

connecting diffeomorphisms.  To fill in abutting meshes by patches p, q where 

the common side of the meshes corresponds to say edge (0,s) of  p and edge   

(s ,0) of  q  ,  and where at  the vertices (corresponding to s=0, s=1) n0 and n1  

meshes meet respectively,  the connecting diffeomorphism can be set as 

r),
1n

2cos β(s)
0n

2πcos(s)2r(α(s:s)(r, −
π

−+=φ , 

where α  and β   are  kC -funct ions such that  

 α(s),  β(s)  ≥  0 , 

 α(0)  =  β(1)  =  1  ,  α(1)  =  β(0)  =  0 

and all derivatives up to order k at  0 and  1  vanish. 

If, for each side of the network, a connecting diffeomorphism of this form 
is chosen, then the meshes can be filled in by patches that join kGC , with these 

connecting diffeomorphisms,  Moreover, all vertices are surrounded with kGC , 

i.e. the patches form a kGC   patch complex. 

9. Filling a Triangular Patch into a Geometric Continuous Patch Complex
9.1   The problem:  Assume that patches form a kGC -patch complex around a 

triangular hole with vertices see fig.4 ,  such that:  iQ

 (i) patches , i=1,2,3 (mod 3) abut onto the triangular hole with ip

adjoining edges (s), s ∈  [0,1] where ie

 (ii) ,  and possibly more patches, meet ip,ip
1−

kGC  with a non-convex corner 

at . iQ
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Fig. 4 

The hole is to be filled in by a patch P  , defined on an equilateral triangle    

with vertices  and edges iC 1isCiCs)(1(s)iE ++−= . 

9.2 Outline of the construction:   In order to have kGC -joins with the 

abutting patches , the patch P must satisfy the conditions ip

(1)      ,(s)iE|i
kj(s)ie|ipkj(s)iE|pkj φ= o

with connecting diffeomorphisms iφ  from (s) to (s). iE ie

Necessary for the existence of such a patch is that its jets are well-defined 

at the corners, i.e. 

iC|1i
kj(1)1ie|1ipkj

iC|i
kj(0)ie|ipkj −φ

−−=φ oo  . 

This is equivalent to the condition of theorem 7.1 for the patches surrounding     

the vertex , which here says that iQ

(2)  . 
iC|i

kj(0)ie|i1,i
kj

iC|1i
kj φ−φ=−φ o

where  is the jet composed of the jets of the connecting diffeo- (0)ie|i1,i
kj −φ

morphisms between subsequent patches ,..,  meeting at . ip
1ip
− iQ

Now the triangular patch P can be obtained as follows: 

Construct kC -connecting diffeomorphisms iφ  satisfying (2).  Then the boundary data 

(1) are consistent with a kC -function on the triangle. Any interpolant to these 
boundary data joins kGC  along the edges and also at the corners.  The details of 

this construction are given in [Hahn  '87].
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9.3  Example: In the special case where the triangular hole is surrounded  

by rectangular patches meeting with C2,2-parametric continuity, a triangular 

patch with GC2-joins is explicitly: 

)
i ib,i(biP

j jb
ib

(X)P
3

1 213

1

3

3

∑
= ++

∑
=

=  

where (b1,b2,b3) are the barycentric coordinates of  X with respect to 

C1, C2, C3 and    )s,0(ip)t,s(iP =

(

)0,0(ip
4
ts

)0,0(ip
2

st)0,0(ip
2
ts

)0,0(ip
2
t)0,0(ipst)0,0(ip

2
s

)0,0(ipt)0,0(ips

)0,0(ip

)t1,0(ip)t1('

)t1,0(ip)t1(
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2
s

))t1,0(ip)t1()t1,0(ip(s

)t1,0(ip
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i

p)s(

)s,0(ip)s(2)s,0(ip
2
t
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Here α,β are C3-functions as in paragraph 8.2 To guarantee second order 

differentiability of the patch P  ,  i t  must be assumed that the abutting patches 

are C4 . 
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Appendix; Differential Geometric Invariants

First and second order geometric continuity of curves and surfaces have been 

described by many authors using geometric invariants (tangents, curvatures).  A 

parameterisation independent characterization of higher order geometric continuity 

is provided by the covariant derivative from differential geometry, of [DoCarmo '76] ,  

[Spivak '79], [Kobayashi et al. '63]. 

A. 1 Definition:    Let p : be a 3RI→Δ kC -patch with unit normal vector field

N : . 3RI→Δ

If X(t) is a curve in A and W(t) (in  is a )RII 3 tangent vector field along X(t), 

i.e. there is a vector field U(t) (in  such that W(t) = )RII 3 )t(U)t(X|p∂ , then the 

covariant derivative of W is the tangent component of the ordinary (euclidean) 

derivative: 

))t(X(N))t(X(N,)t(W
dt
d:)t(W

dt
D

>=  . 

Here < • , • > denotes the euclidean scalar product in 3RII . 

The covariant differential of order j  (j ≤ k) of the normal field at a point 

X ∈ Δ   acts on a j-tuple of tangent vectors  and is defined recursively in(W,..,W j1 )RII 3

by 

,)jW),..,0(iW
dt
D,..,W(X|

j

i
NjD

0t|))t(jW),..,t(W())t(X|NjD
dt
D:)W,..,W(X|NjD

0t|))t(X(N
dt
d:0t|))t(X(N

dt
D:)W(DN

2
2

1

2
1

j1

1X|

∑
=

−−

=
−=

====

 

where X(t) is a curve in  Δ with X(0) = X and W1 = ⋅)Xp( o  (0), and (t), i=2,..,j iW

are tangent vector fields along X(t) with (0) =  iW i .W

The following theorem develops an idea of [DeRose '85]. 

A, 2 Theorem;

Assume kC -patches p1, p2 abut with a com on boundary curve m

p1 (E1(s)) = p2 (E2(s) , s ∈ [0,1] . 
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Then p1,p2 join kGC  along E1,E2 iff the common boundary curve is not a ridge 

(i.e. the tangent sectors of p1 at E1(S) and of p2 at E2(s) do not overlap) and 

there exist normal vector fields N1,N2 of p1,p2 respectively such that 

.]1,0[s,1kj0,)s(E|NjD)s(E|NjD
2211

∈−≤≤=  

Proof:   The condition on the covariant differential is necessary for kGC , since 

it is independent of parameterization. 

To prove sufficiency, let W(s) be a tangent vector field along E1(S) transversal                

to p1  Eo 1(S) and pointing towards patch p1.  Choose coordinate transformations 

ξ1(s,t),ξ2 (s,t) such that 

,)0,s()p(
t

)s(W)0,s()p(
t

,)0,s(E)0,s(,)s(E)0,s(

2211

2211

ξ
∂
∂

==ξ
∂
∂

=ξ=ξ

oo  

and 

)iip(
tdt

D
jt

j

2

2

ξ
∂
∂

−∂

−∂
o (s,0)  = 0 for j = 2, .., k, i = 1,2 . 

Note that p1 o  ξ1(s,t) is defined for t ≥ 0 and p2 o  ξ2 (s,t) for t ≤ 0. The cross-

boundary derivatives of p1 o  ξ1(s,t) at (s,0) are 

( ) ,sW)0,s()iip(
t

=ξ
∂
∂

o  

,)0,s(iN)0,s()iiN(
t

,)s(W)0,s()iip(
t i2

2

ξ>ξ
∂
∂

<−=ξ
∂
∂

ooo  

and - by induction - the higher derivatives can be written in terms of derivatives 

of iip
tdt

D
ξ

∂
∂

o    (which vanish) and iiNjt

j
ξ

∂

∂
o  which can be entirely expressed by 

covariant derivatives of .  Since these are iiN ξo

,))s(W,..,)s(W()s(iE|iNjD)0,s()iiN(jdt

jD
=ξo  

the derivatives of p1  ξo 1 and p2  o  ξ2 coincide up to order k along (s,0), 

i,e,  p1,p2  join kGC with connecting diffeomorphism  .                            
1

12
−ξξ o //// 

 In case k=1, the condition of the theorem is known as tangent plane continuity.  

For k=2 the covariant differential DN is the shape operator (up to sign). Several                     

authors have based their definition of GC2 on the shape operator [Jensen '85] 
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or equivalents as the principal curvatures and directions [Vernon et al '76], 

[Herron '86], or the Dupin indicatrix  [Kahmann '83]. 

However, the theorem is not used in the construction kGC  patches. Rather it 

provides a test for kGC , since the covariant derivatives in a transversal direction 

can be computed straightforwardly. 
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