
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TR/05/84        May   1984 

Principal   Stress  and   Strain 
Trajectories in  Non-Linear 
          Elastostat ics  

 by 

  R.W. Ogden 



PRINCIPAL  STRESS  AND  STRAIN 

TRAJECTORIES   IN   NON-LINEAR  ELASTOSTATICS 

       By  R.W.   OGDEN† 

  (Department  of  Mathematics   and   Statistics,   Brunel  University) 

   [Received       1 

SUMMARY 

The  Maxwell-Lame  equations   governing  the  principal  components  of 
Cauchy  stress   for  plane  deformations   are  well  known   in  the   context   of 
photo-elasticity,   and  they  form  a  pair  of   coupled  first-order  hyperbolic 
partial   differential   equations  when  the   deformation   geometry   is  known. 
In  the  present   paper  this   theme  is  developed  for  non-linear   isotropic 
elastic  materials   by   supplementing  the   (Lagrangean  form  of  the) 
equilibrium  equations  by  a  pair  of  compatibility  equations   governing  the 
deformation.     The   resulting   equations   form  a   system  of   four 
f i rs t -order   part ial   different ial   equat ions governing  the  pr incipal  
stretches   of   the  plane   deformation  and   the   two  angles  which  define   the 
orientation  of   the  Lagrangean  and  Eulerian  principal  axes  of  the 

†Now  at  Department   of  Mathematics,   University  of   Glasgow. 
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deformation.     Coordinate  curves  are  chosen  to  coincide   locally  with  the 
Lagrangean   (Eulerian)   principal   strain  trajectories   in  the  undeformed 
(deformed)   material. 

Coupled  with  appropriate  boundary  conditions   these  equations can 

be  used  to  calculate  directly  the  principal   stretches  and  stresses 

together  with  their  trajectories.   The theory  is   illustrated  by  means 

of  a   simple  example. 

1.        Introduction 

 In   plane  linear  elasticity  the  equilibrium  equations   in  the 

absence  of  body  forces  may  be  written  in  the  form 
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where     σ1   ,σ2       are   the   in-plane  principal   stresses,      (ξ,n)     are 

(orthogonal)   curvilinear  coordinates  corresponding  to  coordinate 

directions  coinciding  locally  with  the  in-plane  principal  directions 

of  stress,   and    ρξ ρη     are   the  radii  of  curvature  of   the  coordinate 

curves   η  =  constant  and  ξ  -  constant  respectively. 

If    θ     denotes   the   direction  of   the   tangent   to  the  coordinate 

curves     n   =  constant  relative  to   the  x1   -  axis   of  an   in—plane 

rectangular  Cartesian  coordinate  system  (x1,x2),   then 
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where   ααß  (α,ß=1,2)  are   the  Cartesian  components  of   the  stress  tensor. 
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We  also  have 
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The   (orthogonal)   coordinate   transformation  between   (x1,x2)   and 

(ξ,n)   satisfies 
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or,   equivalently, 
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For  an  isotropic  elastic  material  equation   (2)   is  coupled  with 

                                   ,
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where     eαß   .   (α,ß=1,2)     are   the  Cartesian  components  of   the   infinitesimal 

strain   tensor   (whose  principal   directions   then  coincide  with   those  of 

the    stress    tensor). 

Equations   (1)   are  known  as   the  Maxwell-Lame   equations  and   they are 

used  as  a  basis   for  comparing  experimental  results  with  theory   in  the 

context  of  photoelasticity;   see,   for  example,   (1).       Assuming   that 

θ,pξ,pn       and  the  principal   strains  are  known  from  experimental 

measurements   equations   (1)    serve   to   determine   the  principal   stresses 

σ1,σ2     and hence  the  stress   trajectories.        Thus   the  properties  of  an 

isotropic   elastic  material   can  be  assessed   in  non-homogeneous 



3 

deformations.        In  this   framework  the  hyperbolic  character  of 

equations   (1)   has  been  remarked  upon  in  (2). 

Clearly,   equations   (1)   apply  to  any  material   in  equilibrium  in 

the  absence  of  body  forces,   as  also  do  equations   (2)   -   (5).        In 

particular,   they  apply  in  non-linear  elasticity. 

The  objective  of   the  present  paper   is  first  to  provide  a 

Lagrangean  formulation  of   the  equilibrium  equations,   analogous   to 

(1),   for  non-linear   elastic  materials   and   secondly  to   supplement 

these  with  appropriate  compatibility  equations.        The  resulting 

system  of   four  equations  with  four  dependent  variables  forms  a 

first-order  system   (not,   in  general,  hyperbolic). 

For  any  given  non-linear  isotropic  elastic  constitutive  law  the 

equations  may  be   solved  for  the  deformation  when   suitable  boundary 

condit ions  are  prescribed.  

The  specialization of   the  above-mentioned  compatibility  conditions 

to   the  case-of   linear   isotropic  elasticity  yields   a   second-order 

equation  coupling     θ     with   the  principal   infinitestinal   strains    e1 ,e 2. 

With  equations   (1)   and  Hooke's  Law  this  forms  a  system  of  three 

equations   for    e1   ,e2      and   θ. 

The  equations   that  we  have  obtained  for  non-linear  elasticity  are 

new;     moreover,   their  specialization  to  the  linear  case  has  not, 

apparently,   appeared   in  the   literature  previously. 

The  formulation  of   the  equations  provided  here   is  particularly 

suited  to  the   calculation  of   stress  and   strain  trajectories  in  a 
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deformed  elastic  material.       It  has   the  advantage  that  it  requires 

the  constitutive  law  of  an   isotropic  elastic  material  to  be  expressed 

in  terms  of   the  principal  stretches   of  the  deformation   (which  have 

immediate  physical   interpretations).       Moreover,   the  equations  are  in 

a   form,  which  facilitates  the  numerical  computation  of   solutions   to 

boundary-value problems. 

The  use  of   the  equations   is   illustrated  by   their  application  to 

a  simple  problem  whose   solution  does  not  require  a  numerical   treatment. 

From  the  computational  viewpoint  the  equations  and  boundary  conditions 

have   some   novel   features,   and   it   is  appropriate   to  deal  with  these   in 

a  separate  paper .  

2.        Deformation  and  stress 

  Let    B0⊂E3,     where     E3    denotes  a  three-dimensional  Euclidean 

space,   be   the  region  occupied  by  the  considered  material  body   in  some 

reference  configuration.        Let  
 
denote  the  deformation  of 3

0 EBB:x ⊂→

the  body  from    B0     onto  the  region     B    in  some  current  configuration. 

We  label  points   in     B0     and     B     by  their  position  vectors        and   ~   ~X x

respectively  relative   to  an  appropriate  choice  of  origin,   so  that 

                                             .0B~x,
~

(X)~x~x ∈=                                                            (7)

 
The  boundaries  of     B0    and     B     are   denoted  by     ∂B0    and   ∂B 
respectively - 

The  deformation  gradient  tensor  is  defined  by ~A

                                               ,~XGrad~A =                                                       (8)        

where  Grad  denotes   the  gradient  operator  with  respect   to 
 
and ~X
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is  subject   to   det   A > 0.    Polar   decomposition  of   A     yields ~ ~

               A = RU = VR  , (   9   ) 

Where    is  a  proper  orthogonal  tensor  and    and    are   positive ~R ~U ~V

definite   symmetric   tensors   (respectively   the   right   and   left   stretch 

tensors). 

We   may   represent     and     in   the   spectral   forms ~U ~V
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where  λ1,  λ2,  λ3   are   the   principal   stretches ,    and ))3(
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~v(  are   two   sets   of   orthonormal   vectors   defining 

respectively   the   Lagrangean   and   Eulerian   principal   directions   (i.e. 

the   principal   axes   of   the   Lagrangean   and   Eulerian   strain   ellipsoids), 

and 

                                                                                        (11) .3,2,1i)i(
~~Ru)i(

~v ==

It   follows   from   (9) -  (11)   that 

)3(u)3(v)2(u)2(v)1(u)1(vA ⊗λ+⊗λ+⊗λ= ~~3~~2~~1~  .  (1 2 )  

For an incompressible material 

det    =    det      ≡   λ~A ~U 1   λ2    λ3   = 1 .  ( 13 ) 

for   each   point   of  B0 . 

For an isotropic elastic material the nominal stress tensor  ~S

may be written     

                                              S = TRT                                                                  (14) 
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analogously  to   (9),  where is  the   (symmetric)   Biot   stress ~T

tensor  and  T  denotes   the   transpose  of  a  tensor   (see,   for example, 

)~3(    and   
~
))4( .       Since  the  material   is  isotropic   (relative  to   B0.), 

  is  coaxial  with and  hence we  may write ~T ~U
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where     t1   ,t2 , t3     are  the  principal  Biot  stresses,   and 
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 If  the  elastic  material  possesses  a  strain-energy  function    W 
per  unit  reference  volume  then 

  
A
WS
∂
∂

=                                                                         (17) 

For    W    to  be  objective   (i.e.   indifferent  to  superimposed  rigid-body 

rotations)  we  must  have 
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Further,   for  an  isotropic  elastic  material    W    depends  on        only ~U

through    λ1,λ2,λ3,    and  is   indifferent  to  interchange  of  any  pair 

of     λ1 , λ2 , λ3.     In  this  case  we  write 

W ( λ1, λ2, λ3)  =  W ( λ1, λ3, λ2 )  = W ( λ3,  λ1, λ2 ), (20) 

and  then 

      
iλ

W
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 For  an  incompressible  material  equation  (13)  applies  and 

equations    (17),    (19)   and   (21)   are  replaced  by 
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respectively,  where  p  is  a  Lagrange  multiplier. 

Let   (X1,X2,X3)  and  (x1,x2,x3)  denote  rectangular  Cartesian 

components  of    X    and    X    respectively.      Henceforth  we  restrict 

attention  to  plane  problems  in  which    x1,x2     depend  only  on    X1,X2, 

and    x3    =  λ3.X3,   where    λ3    is  a  constant.  We  may  then  represent 

the  vectors
 
,     i  =  1,2,3,    in  terms  of  their ,~vand~u
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The  labels  'L'   and   ' E'  refer  to  'Lagrangean1   and  'Eulerian1   respectively, 

and    θL    and   θE       describe  the  orientation  of  the  Lagrangean  and 

Eulerian  principal  directions  in  the  considered  plane   (being  measured  in 

the  anticlockwise  sense  from  the  X1-axis). 

From  (12),   (16)   and   (25)   it  follows  that  the  non-vanishing 

Cartesian  components  of   A    and    S    are  given  by 
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A33   = λ3   , (27) 
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    (28)          

S33    =  t3   . (29) 

3.      The  governing  equations 

For  the  plane  deformation  considered  above  the  equilibrium 

equation may  be  written  in  the  form 
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when  there  are  no  body  forces.       Substitution  of  the  expressions   (28) 

into  (30)   followed  by  elimination  of  terms   involving   cos θE   and 

sin θE   then  yields  the  equations 
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This  prompts  the  introduction  of   (orthogonal)  Lagrangean  curvilinear 

coordinates   (ξ,n)   such  that 
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analogously  to  (4)  and  (5).  Note  that the Jacobian determinant of 

the  transformation  between  (X1 ,X2 ) and (ξ,η) has value unity. The 

equilibrium  equations   (31)   now  take  on  the  form 
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 with     t1   ,t2   ,   θL    and     θE       regarded  as   functions  of  the  independent 

     variables   (ξ, η). 

When  the  constitutive  law  is  given  in  the  form  (21)   then   (34)   may 

be  rewritten  with     λ1   , λ2   θL     and     6„    as   the  dependent  variables.       If 

the  deformation        is    known  then  the  associated  values  of     λ~X 1, λ2,  θL , 

and     θE    are  uniquely  determined  by  the  gradient        (subject  to ~A

),
2Eθ0,

2Lθ0 π
≤≤

π
≤≤   but,   in  general,   an  with  in-plane  components ~A

(26)   constructed  from  given  values  of     λ1   , λ2   θL   and    θE    need  not  be  the 

gradient  of  a  deformation  function 
 
To  ensure  that is   a ~X ~A

deformation  gradient  we  require  that   the  compatibility  equations 

                     0
X
A

X
A,0

X
A

X
A

2

11

1

12

2

21

1

22 =
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

                                                        (35) 

hold. 

Comparison  of   (35)   with   (30)   and   (26)   with   (28)   shows   that   (35) 

can  be  recast  immediately  as  equations  for     λ1   ,λ2   ,θL    and    θE ,    namely 
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Through   (21), equations  (34)   and   (36)   form  a  set  of   four 

first-order  partial  differential  equations  for     λ1, λ2 ,θL       and 

θE   when  the  material  has  no  internal  constraints,   and,  by 

(24),   for  one  of    λ1  and   λ2       together  with    p,θL   and     θE

when  the  material   is   incompressible.       Equations   (34)   form  a 

hyperbolic  system  when  θL   and    θE       are  known,   (ξ, η) 

being  characteristic  coordinates  associated  with  families  of 

characteristic  curves   locally  tangential   to     u(1) and     u(2) and 

defined  by 

ξ  =  ξ(X1,X2  )  =  constant, η =  η( X 1    ,X2  )   =  constant                     (37) 

in  any  plane   section    X3    =  constant  of   B0,  subject  to  (32) or 

(33).       Let   such  a  section  be  denoted  by    0B      and  its 

curvilinear  boundary  by   0B∂  

The   tangent  to  a  characteristic  η  =  constant     is  given  by 

                                           L
1

2 θtan
dX
dX

=                                                         (38)

 and  that   to  ξ   =  constant   by 
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L
1

2 θcos
dX
dX

−=                                                     (39) 

 

Equally,   (36)   form  a  similar  hyperbolic  system  when  θL

and     θE       are  known.       However,  when  taken  together  as  equations 

for     θL,θE, λ1     and     λ2   .     (34)   and   (36)   are  not  in  general 

hyperbolic.        Indeed,   if   the  original  equations   for   x1   and    x2 

are   (strongly)   elliptic,   as   is  often  assumed,   then   so  are 

equations   (34)   and   (36)   jointly.     In  this  case  the  coordinates 

(ξ, η)   are  not  associated  with  characteristics,  but  merely  with 

the  Lagrangean  principal  directions. 

The  formulation  of  a  boundary-value  problem  is  complete 

when  a  pair  of  suitable  boundary  conditions  is  prescribed  on 

0B∂ .    As  we   shall  see  in  Section  4,   such  a  pair  may  be  recast  as 

two  equations   linking     λ1   ,λ2   ,θL  and  θE - (or  λ1-,p,θL     and     θE      as 

appropriate)   on   0B∂       (or  its  image  under   (37)).  

4.       Boundary  conditions 

(a)     Boundary  condition  of  traction

Let    N    denote  the  unit  outward  normal  to     0B∂  ,    Then,  by 

(16)   with   (25),  we  may  write  the  boundary  traction  as ~T

                                                  (40)(2)
~v)(2)

~u~N.(2t(1)
~v)(1)

~u~N(1t~N
T

~S~T +≡=

 
per  unit   length  of    0B∂    for  the  plane  problem  under  consideration. 

The  traction  on  a  plane X3 = constant   is  .  
)3(

~v3t



12. 

Let        have  Cartesian  components   (-  sin θ,  cos θ, 0)     and  the ~N

tangent  vector        to  0B∂~M      have  corresponding  components 

(cos  θ,  sin θ,  0) .     Then  (40)   yields 

t1sin(θL  -θ)cos θE     -  t2 cos(θL  -θ) sin  θE  =  τ1   , 
(41) 

t1   sin(θL-θ)sin θE  +  t2    cos(θL -θ)cos   θE  =  τ 2 ,   
  

 

where τ1τ2 are the Cartesian components of  which, together ~τ

with θ, are known as functions of X1 and X2 on 0B∂  (in the 

case  of  dead  load  tractions). 

We  also  have     t3   =   ∂W/∂λ3,     and  for  plane   strain  this  equation 

specifies   the  normal  stress  required  to  maintain  fixed    λ3. 

(b)     Boundary  condition  of  place

If     xα     =  xα   (X1   ,X2  ),     α  =   1,2,     is  prescribed  on   0B∂      then 

                                    ~~~RUM~~AM~X)Grad~M( ≡≡

is known and directed along the tangent  to the deformed boundary 

(i.e.      is   an  embedded  vector).    We  may write  the  boundary  condition ~M

as 

                                                                   (42),~w
)2(

~v))2(
~u~M(2

)1(
~v))1(

~u.~M(1 =λ+λ

with       prescribed  on   ~W 0B∂  .   In  Cartesian  components  this  takes  the 

form 

λ1cos(θ -θ)cosθE     -  λ2sin(θL  -θ)sinθE  =  w1 ,  

λ1cos(θL-θ)sinθE  +  λ2   sin(θL -θ)cosθE   =  w2  , 

        (43) 

analogously  to   (41). 
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In  principle  the  four  dependent  variables  can  be  found  from 

the  above  equations  and  boundary  conditions.  The  two  boundary 

conditions  interconnect  these  variables  at  each  point  of  the 

boundary     .B0∂        The  analytical  solution  of  the  equations  is 

illustrated  in  Section  6  for  a  simple  problem, while  details  of 

the  numerical  solution of  boundary-value  problems  are reserved for 

a  subsequent   paper. 

Once     λ1,   λ2,   θL and  θE    have  been  determined,   the 

deformation  function  is  obtained  by  integration  of   ~Xd~A~xd =     using 

(26)   and   (32). 

5.       Eulerian  formulation 

Here  we  provide  an  alternative  formulation  of  the  governing 

equations  based  on  the  current  configuration  with  coordinate 

curves  along  the  Eulerian  principal  axes.     Analogously  to   (32)  we 

have 

                          

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=
∂
∂

=
ξ∂

∂

−=
∂
∂

=
ξ∂

∂

,θcos
*η

x,sin θθ
*

x

,θsin
*η

x
,cos θθ

*
x

E
2

E
2

E
1

E
1

                         (44)

where  the  current  curvilinear  coordinates   (ξ*,n*)   are  such  that 

.0
ξ
*η

η
*ξ,λ

η
*η,λ

ξ
*ξ

21 =
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂                               (45) 
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In  terms  of  the  principal  components    σ1,σ2    of  the  Cauchy  stress 

tensor    J-1    AS   ,   the  equilibrium  equations   (34)   may  be  rewritten  as 

 

                                       

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=
ξ∂

∂
+

η∂
∂

=
∂
∂

+
∂
∂

,0
*

θ)σ-( σ
*

σ

,0
*η

θ
)σ-( σ

*ξ
σ

E
21

2

E
21

1

                               (46)           

which,   in  different  notation,  are  the  same  as  (1).   The  compatibility 

equations   (36)   may   similarly  be  expressed  in   terms   of    ξ*    and    n*. 

In  the  linear  theory  (ξ*,n*)  are  identified  with  (ξ,n)  and  we 

introduce  the  principal  infinitesimal  strains    e1  =  λ 1-  1, e    =  λ2  -  1 

with    λ3     fixed  as  unity.       From  (36),  we  then  obtain 

                                        

⎪
⎪

⎭

⎪
⎪

⎬

⎫

∂
∂

−+
ξ∂

∂
=−

∂
∂

∂
∂

−−
∂
∂

=−
∂
∂

,
η
θ

)e(e
θ

)θ(θ
η

,
ξ
θ

)e(e
η
θ

)θ(θ
ξ

E
21

1
EL

E
21

1
EL

                       (47)           

correct to the first order in    e1   ,e2      and their derivatives.      This 

means  that,   to  this  order,     θ      cannot  be  identified  with    θE.   However, 

elimination  of    θL      between  the  two  equations  in  (47)  yields 

 .0θ)ee(
η

θ)ee(
η

θ)ee(2e
η
e E

21
E

21
E

2

212
2

2

2
1

2

=
ξ∂

∂
−

∂
∂

−
ξ∂

∂
−

ξ∂
∂

−
∂ξ∂

∂
−−

ξ∂
∂

+
∂
∂

                    (48) 

Equations   (46),  with  (ξ*, η*)  replaced  by  (ξ, η),  and  (48),  together 

with  the  constitutive  relat ions 

σ α   = 2μe α    + λ(e1  +e2)     α = 1,2, 



15 

for  a  linear  isotropic  elastic  material,  where    λ    and    μ    are  the 

Lame  moduli,  form  a  coupled  system  of   three  equations  for     e1,e2 

and    θE   .       Note  that       e1    +  e2       also  satisfies  Laplace’s  equation 

                                              0)2e1e(2η

2

2

2
=+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

ξ∂

∂  

6.       Illustration :  flexure  of  a  rectaneular  block 

  We  consider  a  plane  strain  problem with     λ3    =   1     for  a  body  whose 

undeformed  plane   section  is  defined  by 

- A ≤ X1 ≤ A,     - B ≤ X2, ≤ B . 

Suppose  this  section  is  deformed  into  a  sector  of  a  circular  annulus 

in   such  a  way  that  straight   lines  X1    =  constant   become  circles 

r  =  constant     and  straight  lines    X2  =  constant    become  radial  lines 

θ  =  constant,  where    r    and    θ    are  plane  polar  coordinates.       For  an 

incompressible  material   the  deformation  is  described  by 

                                     ,αXθ,
α

2Xβr 2
12 =+=                                             (49) 

where    α    and    ß    are  constants  (to  be  determined  by  the  boundary 

conditions).       For  detailed  discussion  of   this  deformation  we  refer  to 

(4)  -  (6). 

It  is  easily  shown  from  the  above  that     θL   =  0,θE    =  θ   and 

  From (32)  we  deduce  that  the  coordinates r1
12 α=λ=λ −

(ξ,η)   can  be   identified  with   (X1,X2).       The  compatibility  equations 
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(36)  are  automatically  satisfied  and  the  equilibrium  equations 

reduce   to 

                                         .0
X
t,t

X
t

2

2
2

1

1 =
∂
∂

α=
∂
∂

                                               (50)             

On    X1    =  constant     the  traction  is     t1       in  the  radial  direction,   and 

on     X2    =  constant     the  traction  is     t2       in   the θ-direction. 

 We  introduce  the  notation    λ  -  λ1    =  1/αr    and  write 

Ŵ (λ)   =   W (λ, λ -1,1), 

so  that,  by  (24), 

λ1 t 1 -λ2  t2 =  λ '(λ), Ŵ

where  the  prime  denotes  differentiation  with  respect  to     λ. 

On  changing  the  independent  variable    X1  to   λ   and   eliminating 

t2    between   (50)1  and  (51) ,   we  obtain 

                                     )(Ŵt
d

td
1

1 λ=+
λ

λ  

(51) 

  
and  hence 

    λ t 1   =  (λ)   +  γ Ŵ (52) 

where    γ    is  a  constant.       The  stress     t2       is  then  expressed  as  a 

function  of     λ    by  means  of   (51) and   (52) 

At  this  stage  there  are  three  unknown  constants,     α,ß,γ ,     to  be 

determined. 

Suppose  that  we  impose  the  boundary  conditions 
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t1 =  0    on    X1  =  ±A. (53) 

Then,   from  (52)   we  obtain 

,)(Ŵ)(Ŵγ −+ λ=λ=−  (54) 

where 

                2
1

A))2β2( α±α=±λ                                                            (55) 

thus  providing  two  equations  linking    α,ß    and  γ . 

Because  of   (53)   it  follows  from  (50)   that  the  total  load  on  the 

boundaries    X2    =  ±B    vanishes.  The  moment    M    of  the  tractions on 

X2  =  ±B    about  the  origin    r  =  0   is  given  by 

                                               ∫−= A
A .1dX2rtM

 

Expressed  in  terms  of  the  independent  variable    λ,   this  can  be 

rewritten  as 

                                                ,γ}dλ(λλŴ{3λ2α
1M λ

λ +−= ∫ +
− 

or,   equivalently,  as 

                                                   .d)('Ŵ2
22

1M λλ−λ∫ +λ
−λα

=                                           (56)

This  provides  a  third  equation  relating    α, ß    and    γ    to  the 

boundary  tractions. 
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For  the  neo-Hookean  or  Mooney  strain-energy  functions  we 

have 

                                        )2(µ
2
1Ŵ 22 −λ−λ= −  

and   the  following  explicit   results   are  obtained.        Equations   (54) 

yield 

β2 =   (1+4α2 A2  ) / α 4      , 

,]A41A21[µ 22α+−α−=γ  

while  the   relationship  between    M     and     a     is   calculated  from   (56)   as 

2222
2 A41µA]A41A2[n1

2
µM α+

α
−α++α

α
=  
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