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L. INTRODUCTION

Many statistical models have been proposed in which underlying exponential
distributions are assumed. Applications of such models occur in a large
number of areas, for example in reliability and life-testing investigations
and in the study of the pattern of intervals between point events in a
series of events when a Poisson process is often postulated. The methods
of statistical inference for such models are usually simple to apply
but unfortunately are sensitive to departures from the exponential form.
In a significance testing situation this leads to a difficulty in
interpretation since the true observed significance level may differ
appreciably from that calculated on the assumption of an underlying

exponential distribution, if the assumption is incorrect.

To overcome this drawback, distribution-free tests have been proposed
in which the observations are first ranked and the ranks then replaced
by exponential scores which are the expected values of the order
statistics in a sample from the standard exponential distribution.
This guarantees the validity of the test, whatever the form of the
underlying distribution. In addition there is no loss of efficiency
in very large samples when the underlying distributions are exponential,
and often more generally, when the distributions belong to a Lehmann
family which includes the Weibull distributions with common power

parameter and hence the exponential distribution as a special case.

In this report, we describe a number of statistical tests based on
exponential scores, some new, some well-known, many of which have been
proposed and evaluated within the last ten years. The purpose of this
is to demonstrate the wide area of application of exponential scores
procedures. The procedures which are described deal with goodness of
fit tests for the exponential distribution, the comparison of two
samples with and without censoring, and the comparison of k>2 samples,
and finally tests for trend and serial dependence alternatives against
a renewal process for the intervals in a series of events. Some
of the research findings related to powers of some of the tests are
discussed, these findings being based on a series of investigations
made by the author over the period 1975-1978.



2. THE EXPONENTIAL SCORES AND SOME PROPERTIES

In this section we present some properties of the exponential scores
which will be needed in the later development. Let X;,X,,...,X,
represent a random sample of observations from the unit exponential

distribution with p.d.f.

f(x) = e~ , x >0 (2.1)
and c.d.f.

F(x) =1-¢™*, x>0 (2.2)

If Xy <X <..<X(, denote the ordered observations in the

sample, the p.d.f. of X is
g, (x) = n ("3 ) (F(x)1 11— F(O} T (x)
—n(r Ji— eyt x>0 (2.3)

If we set e, , =E(X()),we have

r—1

€ n :n(n_l)J:Ox(l—e_x)r_le_x(n_r+1)dx (2.4)

The {e,,} form the set of exponential scores.

In order to find a useful computational form for e, ,, it is best to

first find the moment generating function of X.),which we denote by

MX(r) (t). We have

t T
My, (0 =EE™)
_n(n—l)ro X (1o Xyr~! —x(n—r+1)d
=n\,_; 0e( e ") e X

= n(?—_ll)J; (1_Z)r—1 27Tt 4z

:n(?__ll)l“ X)) (n—r—t+1)

I'(n—t+1) (2:3)
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Where F(r):j:xr‘le‘xdx is the gamma function. Using the

recurrence relation I'(r) =(r-1) I'(r-1), (2.5) becomes

n!

My, (t) = (n_r)l{(n —t)(n—t=1)..(n-r—t+1)}? (2.6)
Since
dm. ©
L: MX (t) L_F 1 +...+;
dt M- \n-t n-t-1 (n—r—t+1)
and € n ={de(r)(t)/dt}t:0, we obtain
1 1 1
er’”zﬁ+n—1+”'+n—r+l’ r=1,...,n (2.7)

The calculation of the exponential scores using (2.7) is straightforward
and table 1 gives values of e, , for n = 2(1) 10 and r = 1(I)n . For
larger values of n the approximation

_ r n+1
e, ~F—|=lo 2.8
nn (n+1) g(n+1—rj (2.8)

is usually adequate.

TABLE 1

Values of the exponential scores {e, ,}.

] 2 3 4 5 6 7 8 9 10
1 [0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111 0.100
2 |1.500 0.833 0.583 0.450 0.367 0.310 0.268 0.236 0.211
3 1.833 1.083 0.783 0.617 0.510 0.435 0.379 0.336
4 2.083 1.283 0.950 0.760 0.635 0.546 0.479
5 2.283 1.450 1.093 0.885 0.746 0.646
6 2.450 1.593 1.2 0.996 0.846
7 2503 1.718 1.329 1.096
8 2.718 1.829 1.429
9 2.829 1.926
10 2.929
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Treating the set of values {e,,} as a finite population of scores,

the low order moments of this population are readily found as follows
(Cox (1964)). From (2.7) we may write

1
€in =Cr11 n_1+—, I'Zl,...,n (29)
B 9 n

n
where ¢€;,=0 for any n. Thus if we let slyn:Zem,

r=1
we have

= 1
S1,n ZZ(er—l,n—l +;jzsl,n—l +1 (2.10)
r=1
With Sl,OZO' Thus

n
Sl,n:Z(sl,j_sl,j—l):n (211)
j=1

n
Similarly if we let sz,n=Zein, we have
r=1

n 1 2
Son = Z(er—l, n—1 +Hj

= Szjn_1+2—— (212)
with s,,=0. Thus

n

= 1
SZ,H:Z(SZ,j_Sz,j—l):Z(Z_Ej (2.13)

J=1 J=1

Expressions (2.11) and (2.13) give the sum and sum of squares of the

set of exponential scores {e ,} for fixed n. If we let p,(e)

and Grzl(e) denote the mean and variance of the scores {e, ,}, we have

S
Lo _q (2.14)
n

mn(e)=

and

2
S n—c¢
o2(e)=—— {sm— 1’“}— o (2.15)
n-1 n



3. ASSESSMENT OF FIT

As a first application of the use of exponential scores, we consider
the problem of assessing the fit of a two-parameter exponential

distribution with p.d.f.
f(x)=olexp{~(x—p)/c}, X > (3.1)

mean pu+o and variance o°, given a random sample of observations
X{,X5,....,.X, drawn from a single population.
If the true underlying distribution is exponential, the random variables
z; =(X;-w)/oc i=12,...,n are independently and identically
distributed having the standard exponential distribution with p.d.f.
f(z) =exp(-2z), 0 <z<o. Thus if X, <X <..<X(,), denote the
ordered observations in the sample, we have E(X(; =p+0cE(Zg;),
that is

E(X@)=pn+oei,, i=12,..,n (3.2)
Ignoring the random variations, we have the approximation

X ®u+oe; ,, i=12,.,n. (3.3)

It follows that if the assumption of an exponential distribution is

correct, a plot of X;) against ¢;, should give an approximate

straight line relation. Further, if a straight line is fitted to the
points, the intercept and slope of the line provide 'preliminary’

estimates of the location parameter p and the scale parameter o,

respectively.

The above plotting procedure only provides an informal graphical
assessment, of fit of the two-parameter exponential distribution. A
formal test of fit may be made using the statistic
W, = n(i—X(l))2
1= n —, (3.4)
(n—-1)(X; -X)

i=1

which was proposed by Shapiro and Wilk (1972). This statistic arises



as the ratio of two estimates of the variance o, the first being
the square of the slope of the line fitted to the points (X, €j,)
by generalised least squares, the second being the usual sample
n —_—
variance estimate (n—l)_IZ(Xi—X)2 which provides an unbiased
i=1
estimate of o> whatever the underlying distribution. It should be
noted that although the exponential scores do not enter explicitly
into the expression for W, the derivation of the statistic does

utilise the scores and their properties.

Tables of percentage points of the distribution of W, when the
population has an exponential distribution are given by Shapiro and
Wilk (1972) and their upper and lower 10%, 5%, 1% points are shown

in table 2 for n = 5(1) 10(2) 20.

In the case when a single parameter exponential distribution with
u=0 is fitted, a test of fit statistic utilising exponential scores
1s

n n
W2=Zei’n X(l) / ZXI (35)
i=1 i=1

This statistic was proposed by Jackson (1967) who showed that when the
exponential distribution holds, the mean and variance are given by

+e —erzln(1+n_1)

’n(n-lil) (3.6)

n
E(W,)=2- n_len,n, var(W,) =

For n>10, a reasonable approximation is obtained by taking

1
{W, —E(W,)}/{var(W,)}? to be distributed as N(0,1).



TABLE 2
Upper arid lower 1000% points of the distribution of the W,

statistic when the population has a two-parameter exponential

distribution.
Lower 7 Points Upper 7 Points

n o=0.01 0=0.05 o =0.10 a=0.010 «=0.05 o =0.01
5 0.091 0.119 0.144 0.555 0.668 0.860
6 0.067 0.096 0.117 0.429 0.509 0.678
7 0.059 0.081 0.099 0.347 0.416 0.571
8 0.051 0.071 0.085 0.293 0.350 0.485
9 0.044 0.063 0.075 0.255 0.301 0.402
10 0.040 0.057 0.068 0.218 0.253 0.339
12 0.036 0.049 0.057 0.172 0.202 0.272
14 0.032 0.043 0.050 0.142 0.165 0.213
16 0.028 0.037 0.044 0.119 0.136 0.177
18 0.025 0.033 0.039 0.102 0.116 0.148
20 0.023 0.030 0.035 0.088 0.100 0.129

Example 1. The following data show the ordered times required in

hours for a sample of 20 jobs on drill presses in a certain machine
shop. An assessment of the fit of an exponential distribution is

required.

Job time (hours): X 03 05 06 07 08 11 13 15 18 22
Exponential score : e, 005 010 0.16 0.22 0.28 035 0.42 049 0.58 0.67

Job time (Hours): X 24 29 33 38 42 47 55 63 7.7 9.9
Exponential score : e, 077 088 100 115 1.31 151 176 2.10 2.60 3.60

A plot of x(;) against €;,, 1s shown in figure 1 and indicates that the fit
of an exponential distribution is satisfactory and that the location parameter

may be taken to be zero.
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Figure 1. Exponential score plot for assessment of fit

Applying the Shapiro-Wilk test of fit, we have

_ 0
n=20,x=3075x3 =03, (x-xf =13342  and

i=1

- 20(3.075-0.3)°
' 19(133.42)
Reference to table 2 shows that the upper and lower 10% critical values

=0.061

of the W, statistic when n = 20 are 0.088 and 0.035 respectively, so
there is clearly no real evidence against the exponential fit.
For the Jackson statistic, we have W, = 1.76, E(W;,) = 1.82 and
var(W;) = 0.0238. Using a single tailed test the observed significance
level is approximately

@{(1.76—1.82)/ (1.0278)2 }: @ (—0.42)=0.34

which confirms the adequacy of fit of the exponential distribution.

4. COMPARISON OF TWO SAMPLES

As a second application of the use of exponential scores, we consider the

problem of comparing two independent samples of observations, which we



denote by X, X5,..., X;;, and X .- X420 Xman» respectively. We

assume that the samples are drawn from underlying populations with
continuous c.d.f.'s F;(x) and F, (x) respectively. We wish to test
the hypothesis

Hy :Fi(x) = Fa(x) for all x. (4.1)
For the parametric case when the underlying distributions are assumed
to be exponential, we have

Fi(x) =1 —-exp(- 0:x), Fo(x) =1 — exp(- 02x)
and the null hypothesis given by (4.1) is then equivalent to the

hypothesis that the population means are equal, or equivalently that
0; = 0,. In this case we use the test statistic R=X_1/ﬁ, the

ratio of sample means. If Hy is true, R has the F-distribution with
(2m, 2n) degrees of freedom. A strong justification for the test
arises if the exponential assumption is correct, since the test then
provides the uniformly most powerful similar test of Hy against one-
sided alternatives.

For the exponential scores test, we use the statistic first proposed

by Savage (1956) ,
m
Se =D er,N (4.2)
i=1

where R; denotes the rank of X; in the ordered combined samples and
N =m + n. Thus S, is simply the sum of exponential scores assigned
to the observations in the first sample.

The exact null distribution of S¢ is in principle easily found since

N
each of the (

j possible rank orders for the observations in the first
m

sample are equally likely under H,. Hence

P(Se=s|Ho)=>»m.n(s)/[NJ (4.3)

m

where Ay n(s) in the number of ways of selecting m ranks (R, R,,..,Rp)
from the integer set (1, 2,... ,m+n) such that S. = s. The probability

distribution of S. can therefore be constructed by a simple search

over the [II:IJ possible rank order vectors for the observations in the

first sample, as illustrated in table 3 for the case m = 3, n = 2.
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TABLE 3
Calculation of the exact null distributions of

S, for the case m =3, n = 2.

Ranks for sample 1 ~ Scores for sample 1 S P(S.=S|H,)
1,2,3 0.200, 0.450, 0.783 1.433 0.1
1,2,4 0.200, 0.450, 1.283 1.933 0.1
1,2,5 0.200, 0.450, 2.283 2.933 0.1
1,3,4 0.200, 0.783, 1.283 2.266 0.1
1,3,5 0.200, 0.783, 2.283 3.266 0.1
1,4,5 0.200, 1.283, 2.283 3.766 0.1
2,3,4 0.450, 0.783, 1.283 2.516 0.1
2,3,5 0.450, 0.783, 2.283 3.516 0.1
2,4,5 0.450, 1.283, 2.283 4.016 0.1
3,4,5 0.783, 1.283, 2.283 4.349 0.1

In table 4, values of the upper and lower percentage points of the null
distribution of S are given for nominal significance levels
a=0.10, 0.05, 0.025 and sample sizes m = n = 4(1)10(2)20. Because
of the discreteness of the distribution of S, the actual significance
levels are slightly less than the nominal levels for the smaller sample
sizes. More extensive tables which cover the case of unequal sample

sizes are given by Hajék (1969).
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TABLE 4
Upper and lower 100a% points of the null distribution

of S¢ for the case of equal sample sizes.

Lower / points Upper /. points
o 0.025 0.05 0.10 0.10 0.05 0.025
m=n=4 1.46 1.91 2.25 5.75 6.09 6.54
5 2.39 2.66 3.10 6.90 7.34 7.61
6 3.08 3.45 3.91 8.09 8.55 8.92
7 3.78 4.20 4.72 9.28 9.80 10.22
8 4.52 4.98 5.56 10.44 11.02 11.48
9 5.16 5.77 6.40 11.60 12.23 12.74
10 6.03 6.57 7.25 12.75 13.43 13.97
12 7.59 8.21 8.98 15.02 15.79 16.41
14 9.19 9.88 10.72 17.28 18.12 18.81
16 10.81 11.57 12.48 19.52 20.43 21.19
18 12.47 13.28 14.26 21.74 22.72 23.53
20 14.15 15.01 16.06 23.94 24.99 25.85

The calculation of the exact null distribution of S¢ is only practical
for relatively small sample sizes, so approximations to the percentage
points are needed. We first determine the mean and variance of S..

We have

N
S;,N
E(R;,NIHo)= 3" p(R; =r[Ho) e, =20 (4.4)
r=1 N
2 N N
E °R =3 PR; =r|Ho Je2 N=SuN (4.5)
r=1 N

N N
ECR,NR;,NHo )= 3 S p(R; =1,R =s|H, )%, N %, N
e
_Si,N-S,,N

Nl (4.6)
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Substituting S; x =N and S, n = 2N-en,n, We obtain

N_eN,N
E(eRl,N |H0) =1 9 Var(eRl,N |H0) =
N (4.7)
cov(e e |H ):_M
RiN>"RiN 1o N(N-1)
for i¥ j=1,2,...,N. This leads to
mn(N—-eyy)
E(S¢[Ho)=m, var(S,[Hg) = —————— (4.8)

N(N-1)
Taking S. to be approximately normally distributed with mean and
variance given by (4.8), the normal approximation to the 100a th

percentile of the null distribution of S, 1is
1
Sa%m+ua{mn(N—eN’N)/{N(N—l)} 2} (4.9)

where ugy is the 100a th percentile of the N(0,l) distribution.

An alternative approximation due to Cox (1964) takes ex /€, to have
approximately the F-distribution with (2m, 2n) degrees of freedom,
where ex and ey, denote the mean scores given to the samples of X's
and Y's respectively. Since S, = mex and mex + n e, =N, this is
equivalent to taking

nse approx o
m(N _ Se ) N 2m.2n

This leads to an F-approximation for s, given by

- mNFZm,Zn ((l)

Yo n+ mFZm,2n ((1)

(4.10)

Numerical studies indicate that (4.9) and (4.10) both give good
approximations when the sample sizes are greater than 10.
Example 2 The following data show the number of cycles to failure
in tests with two types of carbide inserts. The ranks of the

observations in the combined samples together with the associated
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exponential scores are also given.

Type A carbide Type B carbide
X; R; CR; ,32 X; R; CR; 32
27 1 0.031 32 2 0.064
43 4 0.131 39 3 0.097
58 5 0.167 64 6 0.204
74 7 0.243 81 8 0.283
91 9 0.324 97 10 0.368
109 11 0.413 128 12 0.461
132 13 0.511 149 14 0.563
185 17 0.740 209 18 0.807
221 19 0.878 276 22 1.129
246 20 0.955 341 24 1.340
272 21 1.038 392 26 1.608
329 23 1.229 456 28 1.975
361 25 1.465 536 29 2.225
447 27 1.775 579 31 3.058
550 30 2.558 639 32 4.058

Summing the scores for the type A carbide gives S. = 13.077. Using
a single tailed test, the result is not quite significant at the 10%

level so there is only slight evidence that the true mean lives

differ. For the parametric test which assumes underlying exponential

distributions, the observed value of the test statistic R is
il/iz ~(206.00)/(261.81) = 0.787. Referring this value to the F-

distribution with (32,32) degrees of freedom, the result is again not
quite significant at the 10% level.

It is of course important to know of the loss of power that occurs
when using the exponential scores test instead of the parametric R
test when the true underlying distributions are exponential. When
determining the power of the exponential scores test, we may consider
the general alternative

1-Fo(x) = {1-F;(x)}"
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where F;(x) is an arbitrary continuous c.d.f The parameter 6 has

a simple interpretation since

P(X; > X;) = j_“; £,(x){1-F, (x)}dx

=[" 1-F @}’ (x)dx (4.12)
=0/(0+1)
fori=1,2,....m,j=m+1, m+2,...,m+n. Any two distributions

having c.d.f.'s satisfying (4.11) are said to follow a Lehmann alternative.
A special case of interest is when the distributions are Weibull with

common power parameter, that is,
F(x) =1—exp(-0,X)°, B (x) =1—exp(-0,X)° (4.13)

for x > 0, where 0;, 62, & > 0. These c.d.f.'s satisfy (4.11) with
0 = (0,2/6; ), and when 6=1 reduce to exponential forms with 0 repre-

senting the ratio of the populations means.

The power of the exponential scores test under the Lehmann model was

evaluated by Burr and Young (1975a) for one-sided alternatives 6 > 1,
and a wide range of sample sizes. In the same investigation, the power
of the nonparametric Mann-Whitney test based on the statistic

{1 if X;>X

m n
Umn = ZZUijWhere U1J = Olf Xl <XJ

i=1j=1

(4.14)

was also evaluated. Randomised tests were used to keep control over
the significance level a. The power of the parametric R-test was also
determined for the case when the underlying distributions are

exponential using the result that R is then distributed as 0 Faopn 2n.

The broad findings from the power study were

(i) when 0 is relatively close to 1, there is only a small loss
of power through using the exponential scores test rather than
the parametric R tests, but the loss of power becomes quite large
for large values of 0,

(i1) the exponential scores test consistently gave a greater power
than the Mann-Whitney test.
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These findings are illustrated in table 5 for the case m = n = 8.

TABLE 5

Powers of (i) the parametric R-test, (ii) the exponential scores test,
(ii1) the Mann-Whitney test, for size a, when samples of size m = n =8
are drawn from exponential distributions with a ratio of means equal to

0.

@ =10.05 a=0.10
0 (i) (ii) (iii) (i) (i) (iii)
1.2 0.097  0.092  0.089 0.176 ~ 0.170  0.164
1.4 0.158  0.145  0.136 0265 0249 0235
1.6 0229 0202  0.190 0.357 0331  0.308
1.8 0.305 0267  0.246 0.446 0410 0379
2.0 0.381 0330  0.302 0.539 0483  0.445
2.5 0.554 0477 0434 0.695  0.638  0.586
3.0 0.689  0.599  0.545 0.507  0.748  0.692
4.0 0.854  0.765  0.705 0922 0876  0.825

The results in table 5 show that in small samples, the use of the
exponential scores test leads to some loss of efficiency when the
true distributions are exponential. Of more interest is an assess-
ment of the gain in efficiency that may result from using the
exponential scores test instead of the R test for other distribution
forms. When the distributions are Weibull with c¢c.d.f.'s given by
(3.13), Burr and Young (1975a) show that the asymptotic relative
efficiency of the R-test relative to the S, test is

§2{r(1+87 )2

ARE(R;S,) = = ~
Fa+287) - {rd+s)}

(4.15)

The values of the A.R.E are 0.100, 0.800, 0.997, 1.000, 0.965 and 0.915
for 6 = 0.2, 0.5, 0.9, 1.0, 1.5, 2.0 respectively, showing that the

exponential scores test can be appreciably more efficient that the R-test.
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Finally, we consider a modified form of the two-sample exponential
scores test statistic when a particular type of censoring occurs.
Denoting the ordered observations in the combined samples by
X1 £X@ <...sX(n), We assume that because of censoring only

Xy £Xp-X(), are observed. This is quite a common
situation
in life-testing investigations where an experiment to compare two
life distributions may be terminated early because of cost considerations.
We let

7 = {1 if X ;) is an observation from sample 1

0if X ;) is an observation from sample 2 (4,16)

C

and let m. = ZZi denote the number of uncensored observations which
i=1

are from the first sample. A distribution free test of the hypothesis

that F;(x) = Fa(x) for all x may be made using the statistic

c m-—m N
i=l1 i=c+1

This statistic differs only by a constant from the statistic originally
proposed by Basu (1968) and is the sum of exponential scores for the

observations in sample 1 when each censored observation is allocated the
average of the largest N-c exponential scores. Burr & Young (1975b) give

a theoretical justification for a test based on s(ec) by showing that its

use leads to the locally most powerful rank test of the hypothesis 6 =1
in the Lehmann alternative F»(x) = 1-{1-F, (x)}°. They also give tables

of percentage points of the null distribution of sff) for sample sizes
3<m<nm+n<16 and r=3(1) m+n-1,and show that simple normal
approximations to these points using the moment expressions

E(s¥Y |H,)=m var(st? | Hy) =mn(c—e .y )/{N(N-1)} (4.18)
are adequate even for sample sizes as small as 8.

5. COMPARISON OF k >2 SAMPLES

The problem of deciding whether differences among the observations in
k > 2 samples can be regarded as showing evidence of real differences
among the k parent populations or may be attributed to chance is a

very common problem in statistics. The formulation of the problem is
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as follows.

Let X;;,i=1,...,k, j =1...,n; be a set of independent random
variables and let Fi(x) be the c.d.f. of Xj;. It is assumed that
each Fi(x) belongs to the class Q of absolutely continuous c.d.f.'s.
The hypothesis to be tested is

H, : Fi(x) = F(x) for all x (5.1)
If the common c.d.f. F(x) assumed under H, is specified, well-
known parametric procedures are available. For example, if F(x)

is taken to be normal, the analysis of variance statistic

k L k n _
>y (Xi -X.) ZZ(Xij -Xi)
R = i=1 i=1 i=l (52)
k-1 N-k

is used, R having the F-distribution with (k-1, N-k) degrees of freedom

2

when H, is true (Nzini).

i=1
When F(x) is unspecified, several nonparametric tests have been
proposed which include the Kruskal-Wallis rank test (1952), the Mood
and Brown median test (1950) and Kiefer's k-sample analogue of the
Kolmogorov-Smirnov test (1959). A nonparametric test based on
exponential scores was proposed by Downton (1976). If we introduce
rank order indicator variables {Z;;} where Z;;-1 if the jth
ordered observation in the combined samples is from the ith population

and Z;; = 0 otherwise, Downton's test statistic is

N-1 & - -
T,=——— > n;(e; - 1)°.

* N-exn 5 (5.3)
where
e :iiz..e.
T R (5.4)

Since _ei . 1s simply the mean of the exponential scores assigned to the

observations in the ith sample, the statistic T. is the between samples
sum of squares of exponential scores scaled by the constant (N-1)/(N-ex, n).
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To find the exact null distribution of the statistic Ts, we use the

k

result that each of the N!/.Hlni! possible exponential score assign-
1=

ments to the observations in the k samples are equally likely when
H, is true. Thus the c.d. f. of T is

n,'n,!...n, !
1 2N! k ARG (5.5)

}(t) is the number of exponential score assignments to the

p(Te <t/Hg) =

1

where A
{

k samples for which Te<t . Values of the upper 1000% points of the
null distribution of T, have been computed by Burr and Young (1977a)

for k = 3 and 2 < n. < 5 and are reproduced in table 6.
TABLE 6

Exact upper 100a % points for T, when k = 3

Sample sizes 10% 5% 21% Sample sizes | 10% 5% 23%
2 22 419 - - 33 3 3.92 486 5.81
2 23 4.56 4.66 5.07 33 4 4.06 492 5.79
2 2 4 427 532 548 335 4.13 5.08 6.02
2 25 4.16 5.92 6.09 344 4.11 497 5.99
2 33 3.99 5.14 5.34 345 4.19 5.09 591
2 3 4 4.08 5.19 593 355 423 5.16 5.98
2 35 416 5.27 6.54 4 4 4 421 5.05 5.84
2 4 4 4.18 5.09 6.26 4 45 424 5.11 593
2 45 4.12 5.14 6.25 4 55 425 5.19 6.03
255 422 539 6.18 555 428 5.21 6.08

The calculation of the exact null distribution of Tg is clearly

impractical except for small values of k and the {n;}, so an
approximation is required. Noting that T, is a special case of a

general class of rank statistics considered by Puri (1964), use of
his results show that as n,—o , i=1,....k, To has a limiting

X?-distribution with k - 1 degrees of freedom when H, is true.
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Since
E(Te|H,)=k-1, (5.6)
the exact and asymptotic null distribution of T, agree in their first

moments. Calculations show that the use of an ordinary chi-square

approximation to the upper percentiles of the null distribution of T,

is generally satisfactory even for very small sample sizes, except in

the extreme tail of the distribution. Improved approximations can

be obtained by taking T, to be approximately distributed as ax%,

where a and v are chosen to give agreement between the variances

as well as the means of the asymptotic and exact null distributions.

The justification for using the distribution-free exponential scores
test is that it should have good power properties when the underlying
distributions are exponential. Table 7 shows values of the powers
of the test obtained by simulation by Burr and Young (1977a) for the
Lehmann alternative

Ex)=1-{1-Fo)%i  i=1,2, ...k (5.7)
where F(x) is arbitrary, for the case k = 3, nj = n, 0; = 1,
0,=1+06 , 03=1+206. The corresponding values of the power of
the Kruskal-Wallis test are also shown. Randomised tests were used
because of the marked discreteness of the distribution of the Kruskal-
Wallis statistic. The results in table 7 show that the power of the
exponential scores test is consistently higher and that the power

differences become quite appreciable for large & as n increases.
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TABLE 7

Values of the powers of size a tests based on (1) the
exponential scores statistic T, , (ii) the Kruskal-Wallis
statistic under the alternative Fi(x) = 1-{1-F(x)}%i with

91:1, 62:1+5, 63:1+26.

n=4 n=6 n=8
o | @ Gy | ») G | @H  3>)

0.25 1 0.065 0.064 | 0.077 0.074 | 0.090 0.083
0.50 ] 0.098 0.092|0.136 0.122|0.177 0.155

o =0.05
0.7510.138 0.127|0.210 0.183 | 0.285 0.242
1.00 | 0.181 0.164 | 0.288 0.245 | 0.395 0.330
0.2510.034 0.033]|0.042 0.039|0.049 0.045
0.50 | 0.055 0.050|0.081 0.071]0.110 0.094
a =0.025

0.75]0.081 0.073|0.134 0.113]0.193 0.159
1.00{ 0.111 0.098 | 0.194 0.160| 0.285 0.229

6. SERIES OF EVENTS AND SOME RELATED SIGNIFICANCE TESTS

We consider a one-dimensional point process in which events occur
in a haphazard way in time. For example, the events may refer to
accidents, failures of equipment, arrivals of customers at a queue
point, etc. We suppose that observations X; X;,..., X, are
available on the intervals between the occurrences of (n+1) consecutive
events and let Fij(x) denote the c.d. f. of X;. If the {X;} are
independently and identically distributed random variables with
Fi(x) = F(x), 1 =1,2,...,n, the series of events forms a renewal
process. In the case when the distribution is exponential with
F(x)=1 - exp(-Ax), x > 0, the series of events forms a Poisson process
with rate A.

In this section we consider significance tests based on exponential
scores which can be used to check the consistency of a renewal process

model with an observed series of events, against the alternatives



21

(i) a trend in the rate of occurrence of events, (ii) serial

dependence among the intervals between events.

6.1 Tests For a Renewal Process Against a Trend Alternative

Suppose that as an alternative to a renewal process, it is suspected

that there will be a trend with the intervals stochastically increasing
or stochastically decreasing in a systematic way. A simple model
allowing for trend is

Fi(x) =1 - {1-F(x)y 00D -y g (6.1)

We shall refer to (6.1) as a Lehmann trend alternative. If F(x)
the c.d.f. of X, is fully specified, we obtain exponentially

distributed observations by using the transformation Uj. = - log {1-F(Xj)},
i=1,..., n. The case 6 = 0 then corresponds to taking the {U;}

to form a Poisson process as the null hypothesis. If F(x) is unspecified,
the null hypothesis 8 = 0 corresponds to taking the series of events as
forming a renewal process. A general class of linear rank statistics
which may be used for testing this hypothesis against the trend alternative
1s

n n+l1

\Va=i§1(i—T)aRi’n (6.2)

where Rj is the rank of X; in the ordered set of intervals and ap ,n
i

is a 'score' used to replace the rank R; . The scores satisfy

al,n = a2 n =....=anp.n
so if the intervals between the events tend to increase (decrease)
this will be reflected in a relatively large (small) value for vy, . If we

put aj n = €j,n, we obtain the exponential scores trend statistic

ni n+l
\ve=2(1——]eR ,n (6.3)
1 2 i

The use of this statistic is known to provide the locally most powerful
rank test of H : 6 = 0 against one-sided alternatives 6 > 0 or 6 < 0
in the Lehmann trend alternative given by (6.1), (Burr and Young (1978)).
The exact null distribution of y. is easily calculated for small n

since each of the n! possible exponential score assignments to the
observations are equally likely when H_ is true. Hence we have
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P(ye <&|Ho)=Ap(&)/n! (6.4)

where Ap(&) is the number of score assignments for which \Vefa.

The mean and variance of y are also easily found under H_, using

the results given in (4.7) with N replaced by n. We obtain
E(yelH,)=0 (6.5)

and

n/ n+l 2
var(ye|H )= Y |i——— var| ep. ,n|H,
i=1 2 i
n+l1 n+1
ST () () (RPN
i1 b 2 R1 n RJ,n 0

S {Z[ nzﬂ ZZ(‘THJ(_THJ}

=n(n+1) (n-ey.,)/12 (6.6)

Values of the upper percentage points of the null distribution of the

standardised statistic

1

. 2
we={ 12 )}2{1——(n+1>}e“ (6.7)

n(n+1)(n-e, P

are given by Burr and Young (1977b) and are reproduced in table 8.
It is seen that the distribution of . tends rapidly to the N(O0,I)

distribution which has upper 10%, 5% and 22% points equal to 1.28,

1.64, and 1.96 respectively.
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TABLE 8
Upper 100a% points of the null distribution of .
n 0=0.10 a =0.05 a =0.025 n a=0.10 a =0.05 a =0.025
5 1.44 1.60 1.79 16 1.32 1.64 1.91
6 1.36 1.63 1.80 18 1.31 1.65 1.91
7 1.36 1.64 1.83 20 1.31 1.65 1.92
8 1.35 1.64 1.84 22 1.31 1.65 1.92
9 1.34 1.64 1.86 24 1.31 1.65 1.93
10 1.33 1.64 1.88 26 1.31 1.65 1.93
12 1.33 1.64 1.89 28 1.31 1.65 1.93
14 1.32 1.64 1.90 30 1.30 1.65 1.94

The exponential scores test being distribution free provides a valid
test for trend whatever the form of F(x). If the distribution is
specified and we take F(x) = 1 - exp(-Ax), x > 0, the model given by
(6.1) is equivalent to X; having a negative exponential distribution
with parameter

A o=A1+0G-1)} , i=L..n. (6.8)

When 6=0, the events form a Poisson process. Burr and Young (1978)
show that the uniformly most powerful similar test of Hyp :0 = 0
against the one-sided alternative 6 > 0 rejects Hy for sufficiently
small values of the statistic

n n
R, =YiX; /) X, (6.9)
i=1 i=1

They also show that the lower 1000% point of the distribution of R;
When 6=0, say 14, iS given by
ro=1+Mm-1) upiq (6.10)

where u, 4 1s the lower 100 a % point of the distribution of the mean

of n independent random variables each distributed uniformly over
(0,1). Exact values of u,  are given by Stephens (1966) for

n=23(1)12(2)20. For n > 20, a normal approximation may be used.
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Example 3 The following data show the intervals in operating hours
between successive failures of a piece of air conditioning equipment.
The ranks of the observations and their exponential scores are also

shown.

Serial Number(i) 1 2 3 4 5 6 7 8 9 10
Interval(x;) 257 80 78 87 5 88 59 133 60 9
Rank(r;) 10 6 5 7 1 8 3 9 4 2
Exponential score

(e: 10) 293 085 0.65 1.10 0.10 1.43 034 193 0.48 0.21

The observed value of the exponential scores trend statistic is

12

- S (-10.78)=-1.34.
(10)(11)(7.07)

*
Ve

Since the null distribution of y.* is symmetrical about zero, use of

table 8 shows that the observed value is just significant at the 10%

level showing slight evidence of a real downward trend in the intervals.

The observed value of the parametric trend statistic is
10 10
R, =) ix; /) x; =429
i=l i=1

From Stephen's tables we have Ug 905 = 0.341, ug9.10 = 0.376 giving
ri0.05 4.07, ri0.10=4,38. The observed result is again signifi-
cant at the 10% level and shows slightly more evidence of a real
downward trend.

The exponential scores test for trend is most likely to be used when
the investigator is confident that the underlying distributions have
forms close to the exponential. If the exponential form holds exactly,
there will be no loss of efficiency in using the nonparametric test
based on y. rather than the parametric test based on R in very large
samples. An assessment of the loss of efficiency in small samples is
given by Burr and Young (1978), who report on an investigation to

determine the powers of the tests for a Poisson process against the
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alternative given by (6.8), for various significance levels and
sample sizes. Powers were also determined for the nonparametric
rank trend test based on the statistic

ve=Y (i—“T”)Ri (6.11)

i=1

for which the scores assigned to the observations are simply the
ranks. This statistic is often used for testing for randomness
in a sequence of observations against a trend in location. They
conclude that the exponential scores test has a marked power
superiority over the test based on v, in small samples, but that
the loss of efficiency through not using the parametric test can
be quite large. Their findings are illustrated in table 9.

TABLE 9
Powers of tests of Hp : § = 0 against 6 > 0 when Fi(X) = 1-{ I-F(x)}' "0~ D°
(i=1,...,n) ,significance level a=0.05, for (i) parametric R; test with

F(x) = 1-e7%, (ii) exponential scores trend test, (iii) rank trend test.

’ @) (ii) (iii) @ (ii) (iii)

0.2  0.264 0.215 0.192 0.647  0.569  0.483
0.4 0.436 0.342 0.293 0.838  0.759  0.651
0.6 0.552 0.429 0.359 0.906  0.835  0.725
0.8 0.633 0.491 0.407 0937 0875  0.767
1.0 0.690 0.536 0.443 0.954  0.898  0.792
1.5 0.779 0.610 0.498 0.973 0.928  0.827
20 0829 0.655 0.532 0.982  0.942  0.845
3.0 0.883 0.706 0.570 0.989  0.955 0.863
40 0912 0.734 0.591 0992 0962  0.873

6.2 Tests For Serial Independence

In a renewal process, the intervals between events are independent
and identically distributed. Taking this as the null hypothesis,
suppose that we are interested in the alternative in which the
intervals are serially correlated. Let

E[(X; - EX)HX iy — EXi))]

PXi, Xk ) = 1
fvar(X;)  var(Xi)}?

denote the correlation coefficient between X; and X« If we
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assume that the {X;} have common mean p and common variance o~,
and that p(Xi, Xi+x ,) = px, for each i, the auto-correlation
coefficient of lag k is defined by

P = E{X; )Xo —0)}/ 07 (6.12)

The estimator of px is the sample serial correlation coefficient of

lag k defined by

A n—k _ _ n _
Pk =D, (X =X) Xpsk —X) /g (X; -X)? (6.13)
n—k n_,

where Z;, = X; - X. Under Hy, the random variables Z;. Z;+x,

i=1,...,n-k are identically distributed and hence

A n 2
Elp | =(-k)E{(Z] Zp,) /'21 z:y
1=

_ k) g DAY % z?

n(n—k) li_] =1
-k
__-b (6.15)
n(n-1)
n
since > > Z.Z.=-Y Z.2 . In particular for the serial correlation
iz ') o= !
coefficient of lag 1, we have
E(ﬁlj =-1/n (6.16)
The exact variance of f)\k , under Hy depends on the distribution of the
{Xi} and Moran (1967) shows that for k = 1 we have
n
n2 -n+l n+l 2 Z?
Var(f)\l |H0j =5 - gl 1=l . (6.17)
n-(n-1) nm+1) n o,
>Z:
i=1 !




27
If the {X;} are assumed to be exponentially distributed, we have the

approximation

AN
Var[p1|H0jz%—l+2—ﬁ+..., (6.18)

n? n® n*

this approximation arising by approximating the expectation of the
ratio in (6.17) by the ratio of expectations. For large n, we may

take

N
P
; ~ N(.1) (6,19)

and so make an approximate test of the hypothesis that the series of
events forms a Poisson process against the alternative of first order
serial dependence of the intervals. The test must be used with

caution in small samples (Lewis (1972)) as the convergence to normality

is slow.

The test based on ;31 is only valid when the assumed common distribution
of the X; under the null hypothesis is the negative exponential.

When the assumed common distribution is not specified, the null
hypothesis is that the series of events forms a renewal process. A
general class of rank statistics which may be used to test this null
hypothesis against the alternative of first order serial dependence

is the product moment score statistic
n-1
V, =Y *r,n,,n (6.20)
i=1

where R; is rank of X;. in the ordered set of intervals and

ap.n 1s the 'score' given to the observation X;. If neighbouring

intervals tend to be positively correlated, V, will be relatively
large while a negative correlation would result in a relatively small
value of V,.

The moments of the null distribution of V, can be expressed in terms

of sums of powers of the scores {arn}‘. For the mean, we have



2
Y| ~Dak.t/n (6,21)
r=q r=l1

Writing
n
a +2> a a a
ZRH R+ ;RH H_n ri+2n
n-3 n-1
+2Z Z 4R.n 4R, ,n 4R.n :
.= 1 ] J+1
i=l  j=i1+2
we obtain

E(V2|HO)_ Z zarn s,n zzzarn sn ,n

r s r #s# t

zzzzarn snatn u,n (6?22)

r£s#t#u

Two particular classes of scores have been considered in the literature.

If the scores are the ranks of the observations, the test statistic is

n—1
V=D RiRiy, (6.23)
i=1

with mean and variance given by

E(Vr|H0):é(3n+2)(n2 -1) (6.24)

(n+ 1)(5n6 +21In° +501n* —823n° +1102n% — 68n — 240)

720(n-2)(n-3) (6.25)

Var(vr |HO ) =

If the exponential scores are used, the test statistic is

n-1
= D eg, Cr,, 0 (6.26)
i=1
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Use of (4.7) with N replaced by n gives

n? -2n+e,

E Hy )= 6.27
(eRi,n eRi+1’n| 0) n(n—l) ( )
so the exact mean is
E(V([Hy)=n-2+n"" e, (6.28)
Cox and Lewis (1966) give the approximation
E(V,[H )~ n -2+ 108077 (2.29)
n

where y=0.5772 is Euler's constant, and approximate the variance by

n® —6n?% +24n
(n—2)(n—3)

The test statistics V., and V. when standardised have limiting N(0,l)

Var(Ve|H0)z —2logn (6.30)

distributions when the series of events forms a renewal process, but
caution must again be used with small samples as the convergence to

normality is relatively slow.

The theoretical study of the properties of the tests based on Sl,Vr

and V. requires the specification of a model which creates dependence
between neighbouring intervals. A simple approach is to take the

conditional distribution of X;. given Xj.;.= Xj.; as negative exponen-
tial with a parameter depending on the observed value of X;.;. The

conditional p.d.f of X; is then
£, (x|X; =xi_1) =A(xj_; ) expi—xA(—xh (xi_;)} O<x<ow. (6.31)

The special form

AMx ) =ho(T+2x,), i=12,...,n (6.32)
with x, = 0 was considered by Cox (1955).
Example 4. The following data {X;} were obtained by simulation using
the model given by (6.31) and (6.32) with n = 30, A, =51, =0.2.
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The ranks {R;} and exponential scores {eg 3} are also given.
i

X; 265 287 1549 338 4941 73.15 428 418 17.24 431

R 9 10 23 28 29 3 12 11 24 13

en 3 035 040 140 250 300 400 050 045 155 0.56
’

X; 479 12.07 1165 1252 883 175 116 17.57 229 6.07
Ri 14 21 20 22 17 5 3 25 7 16
er o 061 117 1.07 128 081 018 010 171 026 074

Xi 0.14 9.79 1024 246 149 2296 27.16 566 192 0.23

Ri 1 18 19 8 4 26 27 15 6 2

er.30 0.033 089 098 030 014 191 216 0.68 0.22 0.068
i

A plot of Xj:+; against X;. is shown in figure 2 and shows some evidence

of a first order serial dependence. For the parametric test, we have
A N N
p, = 0.434, E(pl|HOJ =-0.0333, var(p1|H0j =0.0269
Referring the value

1
{P1 —E (Py]Ho)} / {var (p1|Ho)}2 = 2.85

to the N(O,l) distribution gives an observed significance level
approximately equal to 0.0022.

For the exponential scores statistic, we have

V, =40.38, E(V4|Ho)=28.13  var(V,|Hy)=2272,

1
{V, —E (V,|Ho)}/ {var(v,|H,)}* =2.57 and an approximate observed

significance level of 0.0051.
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Finally, the standardised value of the rank statistic is

N | —

v, —E(v[H¢)} / {var(v,[H)}2 =1.70

with an associated observed significance level equal to 0.045.

For this data set, the evidence against H, shown by the rank test

is much less than that given by the exponentical scores test

1+l

70

60

50

4O,

304

20

10

10 20 30 40 S0 60

Figur 2. Scatter diagram plot of Xj+; against X;
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