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Abstract: This paper describes principles for representing and 

organising planning knowledge in a machine learning architecture. 

One of the difficulties with learning about tasks requiring planning is 

the utility problem: as more knowledge is acquired by the learner, the 

utilisation of that knowledge takes on a complexity which 

overwhelms the mechanisms of the original task. This problem does 

not, however, occur with human learners: on the contrary, it is 

usually the case that, the more knowledgeable the learner, the greater 

the efficiency and accuracy in locating a solution. The reason for this 

lies in the types of knowledge acquired by the human learner and its 

organisation. We describe the basic representations which underlie 

the superior abilities of human experts, and describe algorithms for 

using equivalent representations in a machine learning architecture.

1. Introduction 

As computers are applied to increasingly complex tasks, the extent and organisation 

of knowledge required for success becomes an additional complex task in its own 

right. For this reason, an important branch in the study of Artificial Intelligence 

deals with algorithms which learn and organise their own knowledge directly from 

experience. In this paper, we are interested in those domains where a system must 

find a solution path between some start and some goal state. The task of “speed-up” 

learning refers to the acquisition of information which improves the efficiency of 

finding solution paths. Examples of tasks where such learning is beneficial include: 

board games, controlling a mobile robot, various scheduling and planning 

problems, and the construction of proofs of mathematical theorems. Two of the 

more successful speed-up learning systems are PRODIGY [1] and SOAR [2]. 

These systems learn rules by generalising an example start state to as wide a class 

of potential start states as possible; future problems from within this class may have 

the same solution path applied to them without incurring the cost of its rediscovery. 

However, as shown by Minton [1], such systems can suffer from the “utility 

problem”, where system efficiency is degraded by the cost of managing the 

collection of learnt rules. 
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Such considerations do not seem to apply to human learners, in which increasing 

knowledge is typically accompanied by increasing accuracy and efficiency. We 

therefore consider whether machine learning algorithms can be improved by 

including what is known about human expert representations. Research on skill 

acquisition in humans shows that expert representations differ from those of 

novices in two ways. First, experts have a large number of perceptual chunks, 

which enables them to rapidly identify and categorise a sample problem [3]. 

Second, they associate these perceptual chunks with possible operator sequences in 

knowledge structures known as schemas [4]. These schemas encode domain-

specific knowledge based on the expert’s experience, and it is the propagation of 

knowledge through schemas which distinguishes expert behaviour from that of the 

novice; the expert can use information perceived in the problem statement to 

retrieve a suitable schema, which then guides the formation of a solution, whereas 

the novice often resorts to search strategies. However, earlier work on human 

expertise does not provide a computational model for learning such schemas 

directly from experience. In this paper, we address this problem with a set of 

principles and computational algorithms for learning these representations.  

This paper is organised as follows. In Section 2, an example domain requiring the 

computation of unknown quantities within electric circuits is used to illustrate the 

way in which humans acquire a skill. Section 3 describes the main findings on 

expert representations, i.e. perceptual chunks and schemas. Section 4 shows how 

machine learning algorithms can be designed to learn and work with such 

representations. Finally, Section 5 returns to the utility problem, and discusses how 

the model for expert representations can be used to provide efficient indexing into 

domain-specific knowledge for problem solving.  

2. Computing Unknowns in Electric Circuits 

In this section we describe a typical task in which speed-up learning may be 

observed. We discuss two representations for solving problems, the more 

conventional algebraic method and a diagrammatic representation. The purpose of 

this section is not to argue for the benefits of the latter, which has been done 

elsewhere [5,6,7,8,9]; instead this section provides an example of the kind of 

representation which humans find easiest to master. This permits us to draw some 

conclusions about the mechanisms underlying the human learning process, which 

may then be implemented in a machine learning algorithm. 

2.1 Algebraic and Diagrammatic Circuit Representations 

We consider a problem solving domain in which subjects are given circuit diagrams 

consisting of a battery and a number of resistors. Various numerical quantities will 

be supplied, such as the voltage of the battery and the resistance of some of the 

resistors. Then some unknown quantity will be asked for, such as the total current 

drawn from the battery.  

Consider the three resistor circuit in Figure 1(a). The battery provides a voltage of 

12V, and the resistors have the indicated resistances. In order to compute the total 
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current drawn from the battery, one of several approaches may be taken: the 

individual currents drawn by the different resistors may be calculated, and the total 

worked out, or the total resistance of the three resistors may be computed, 

exploiting the property that complex networks may be replaced with equivalent 

sub-networks. In the given case, it is easiest to compute the total resistance of the 

circuit. This requires the following recognition: two of the resistors form a parallel 

network, which is in series with the third resistor. The resistance of the parallel 

network can be computed as 0.5 ohm from the rule 1/rP = 1/rA + 1/rB. Then this can 

be combined with the resistance of the third resistor using the rule that, for resistors 

in series, rT = rP+rC; thus the total circuit resistance is 1.5 ohm and the total current 

drawn will be IT = VT/rT = 8A. 

This is an example of the standard algebraic approach for solving such problems. 

Note that the solver must remember rules for resistors in parallel and series, as well 

as recognise circuit decompositions which enable these rules to be applied in 

sequence. Also, the entire procedure would be different if numerical quantities had 

been supplied for different parameters. In contrast, we describe a diagrammatic 

representation for electric circuits, known as AVOW diagrams [6]. 

An AVOW diagram is composed of AVOW boxes, each AVOW box being a 

Figure 2 : An AVOW box (a), and rules for their composition:   

(b) series and (c) parallel resistors. 
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diagrammatic representation of a resistor (or load) within an electric circuit, as 

shown in Figure 2(a). A resistor has the properties of voltage (V), current (I) and 

resistance (r). These properties are represented in the AVOW box by scaling the 

indicated dimension, voltage being the height, current the width, and resistance the 

gradient of the box’s diagonal. It can be seen that the relation of the gradient to the 

box’s height and width encapsulates Ohm’s law (r=V/I), and also that the area of 

the box represents the power expended in the resistor (P=I*V).  

The AVOW boxes are combined into an AVOW diagram for an entire circuit using 

simple rules of composition. In order to represent two series resistors, two AVOW 

boxes are aligned vertically, as shown in Figure 2(b). Similarly, two parallel 

resistors are represented by aligning the boxes horizontally, as shown in Figure 

2(c). The alignment rules encapsulate Kirchhoff’s Laws which govern the flow of 

current and distribution of potential differences in electric circuits. For the 

completed AVOW diagram to be a well-formed representation of the circuit, it 

must be a rectangle completely filled with AVOW boxes with no overlap or gaps. 

This requirement captures an important abstraction used in circuit analysis: a 

collection of resistors in a circuit can be regarded as equivalent to a single resistor. 

In the same way, the composite AVOW diagram is also an AVOW box, containing 

all the information for this equivalent single resistor. Just as with the single AVOW 

box, the resistance of the total AVOW diagram can be found by measuring the 

gradient of the total rectangle’s diagonal. The geometrical nature of this constraint 

on the final AVOW diagram and the rules for composing separate AVOW boxes 

mean that it is very natural for humans to work within this representation, a fact 

which has important pedagogical implications.  

As an example of their use, we return to the example problem in Figure 1(a). In 

order to construct an equivalent AVOW diagram for this circuit, three AVOW 

boxes must be drawn, each requiring its dimensions (height, width, gradient) and 

position in the diagram to be determined: the final diagram is shown in Figure 1(b). 

Human subjects typically proceed as follows. Beginning with resistor A, the only 

known quantity is its resistance, which determines the gradient of the diagonal of its 

AVOW box. In this instance the resistance is 1, so a square box is drawn. Similarly, 

for resistor B a further square AVOW box is required, and it is drawn alongside 

that of resistor A with the same height because the two resistors are in parallel. 

Resistor C is also represented by a square AVOW box, but this time, because it is 

in series with resistors A and B, it is drawn below these two boxes but with their 

combined width. Finally, the scale of the diagram is found by recognising that the 

height of the final diagram represents the voltage across the entire circuit, i.e. the 

12V supplied by the battery. Hence, by measuring the width of the combined box 

and scaling, the current drawn from the battery is determined. 

2.2 Comparison 

It is evident that the steps followed by a solver using the diagrammatic 

representation are qualitatively different from those followed by the solver using 

algebra. The major difference being the immediate goal: with the AVOW diagrams, 

the goal is to correctly draw an equivalent representation of the circuit. That this is 
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sufficient for then providing a solution to the given problem is a property of the 

AVOW diagram representation, specifically, its encoding of domain laws in the 

geometry of the representation. Cheng [5,6] discusses this topic in more depth. 

From studies on human subjects [7], it is clear that learners using AVOW diagrams 

generalise the perceptual information in the diagrams more than the numerical 

information. For instance, circuits with the same structure are considered similar, 

and not circuits requiring the same sequences of algebraic manipulations, i.e. 

learners rely on the perceptual properties of the diagrams. It is only whilst in the 

process of producing a scaled diagram that the learner will incorporate the 

numerical quantities in the given circuit. The studies show that the improvement in 

ability of subjects is based, to a large extent, on the acquisition and retrieval of 

perceptual information relating to circuit topologies and AVOW diagrams. Similar 

studies with subjects using algebraic solution techniques have not shown such a 

strong improvement. Hence the claim that perceptual processes are an important 

source of the power in speed-up learning observed in humans. 

3. Expert Representations: Chunks and Schemas 

Research on skill acquisition in humans has shown that experts have a large number 

of perceptual chunks, which enables them to rapidly identify and categorise a 

sample problem [3]. Second, they associate these perceptual chunks with possible 

operator sequences in knowledge structures known as schemas [4]. In this section 

we briefly describe the acquisition of perceptual chunks and their association with 

information in schemas. 

3.1 Perceptual Chunking Theory 

The use by experts of perceptual chunks to discriminate between  examples from 

their domain of expertise was first described in the  seminal work of de Groot [3]. 

He found that one of the most effective tests (beyond playing ability) which 

distinguished expert from novice chess players was the recall of chess positions 

presented for short periods of time; the expert could recall typical game positions 

almost exactly after only a few seconds presentation, whereas the novice could 

recall only a few pieces. This ability of the expert was not due simply to a better 

recall of visual phenomena, as experts were only marginally better than novices 

with board positions with random placements of pieces [10]. These results have 

been replicated and extended upon in work by Gobet and Simon [11], work which 

also provides a computational model of this ability. The model, CHREST, learns a 

discrimination network of chunks relating to typical configurations of pieces. These 

configurations may be rapidly identified in novel board positions, and enable the 

whole board to be retained as a relatively small number of chunks, each chunk 

containing several pieces. Tests show that CHREST conforms very closely to the 

performance of human subjects, with different abilities of chess player 

corresponding to differing numbers of acquired perceptual chunks.  

Although most of the detailed modelling work has been confined to work on chess, 

the basic hypothesis that experts possess a large  number of perceptual chunks has 
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been validated in many domains, e.g. ice hockey, football and electric circuits. 

Estimates for the number of chunks acquired by an expert are typically of the order 

of 50,000 chunks [12]. The large number of chunks enable the expert to do two 

things. First, the expert can use the chunks as an efficient indexing mechanism into 

knowledge relevant for problem solving. Second, the chunks help the expert to 

‘zero-in’ on unique features of the current problem. For example, in the chess 

domain, a piece in an unusual position will not have an associated chunk, priming 

the expert to consider the consequences of his position compared with the more 

familiar situation. 

3.2 Knowledge for Problem Solving 

According to Sweller [13], a schema is simply a “structure which allows problem 

solvers to recognize a problem state as belonging to a particular category of 

problem states that normally require particular moves”. This implies that “certain 

problem states can be grouped, at least in part, by their similarity and the similarity 

of the moves that can be made from those states.” Analysis of the performance of 

subjects and their protocols [6,4] has provided considerable evidence of the kinds 

of information contained in schemas; it is the nature of this information and its 

propagation which largely distinguishes expert behaviour from the novice. An 

example of a schema is given in Figure 3. The template provides the perceptual 

pre-conditions for determining whether this schema applies in the current situation. 

Various slots determine different behaviours depending on different constraints 

found in the problem. Such schemas have been shown to support flexible problem 

solving strategies and explain how experts can employ a direct forward-inferencing 

strategy when solving relatively simple problems [4]. The collection together of 

domain knowledge in schemas is similar to that achieved by frames [14]. The 

difference here is the emphasis on perceptual knowledge for forming the template. 

However, in spite of such work on the content of schemas, and even their use in 

intelligent tutoring systems [15], no substantive computational model has been 

proposed for learning such representations. We address this question in the next 

section. 

4. Learning Perceptual Schemas: CHREST+ 

The previous two sections have outlined the principles which underlie an efficient 

representation for supporting skill acquisition, and also the mechanisms thought to 

Figure 3 : An example of a schema. 

 A  B 

Template for parallel resistors Possible rules and actions: 

If rA and rB known, then 1/rTotal =  1/rA+1/rB 

If IA and IB known, then ITotal = IA+IB 

If VTotal known, then VA = VB = VTotal 
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explain the superior performance of human experts. There are two central 

underlying mechanisms: the acquisition of perceptual chunks and the acquisition of 

knowledge for problem solving. This section considers these in turn, illustrating 

how they may be implemented and combined in a machine learning architecture.  

4.1 Learning Perceptual Chunks 

The heart of the expert’s representation is an efficient indexing mechanism to a 

large number of perceptual chunks. Here we describe an effective algorithm for 

learning and indexing this knowledge. The algorithm, CHREST [16,11], builds up 

a discrimination network from the presented examples. It functions in a similar 

manner to EPAM [17], but has some important differences. The discrimination 

network is learnt as follows. 

The network consists of a collection of chunks, with each chunk representing a 

meaningful group of basic elements. For example, in the circuit domain, the basic 

elements are the resistors and connections; the chunks are the collections of 

resistors which comprise circuits and sub-circuits. The chunks are developed as the 

discrimination network grows through the processes of discrimination and 

familiarisation. Essentially, each node of the network holds a chunk of information 

about an object in the world. The nodes are interconnected by links into a network, 

with each link representing the result of applying a test to the object. When trying 

to recognise an object, the tests are applied beginning from the root node, and the 

links are followed until no further test can be applied. The information held in the 

stored chunk is then compared with that in the current object: the object matches 

the stored chunk if the chunk is a more general description than that of the object. 

At the node reached during sorting, if the stored chunk matches that of the object 

then familiarisation occurs, in which the chunk is specialised by adding more 

details of the features in that object. If the current object and the chunk at the node 

reached differ in some feature, then discrimination occurs, which adds a new node 

and a new link based on the mis-matched feature. Therefore, with discrimination, 

new nodes are added to the discrimination network; with familiarisation, the 

resolution of chunks at those nodes is increased. 

There are two distinguishing features of CHREST which are important to its 

efficiency. First, information is not confined to the leaf nodes of the discrimination 

network (which is similar to the organisation in UNIMEM [18]). Hence, each node 

will contain information describing one perceptual chunk, and its descendant nodes 

will contain information about closely related chunks. The second feature is that 

CHREST uses perceptual chunks as tests. Thus, when discrimination occurs, 

instead of simply taking a single feature from the current object for use as a test, 

CHREST will search the network for a node which represents the mismatched sub-

chunk; the information at that node can then be used as a test on the new link.  

These two features have an important consequence for the use of CHREST to 

rapidly discriminate perceptual information: the node in the discrimination network 

relating to the currently perceived chunk will suggest, via its links, where the next 

piece of perceptual information should be looked for. Also, because the tests are 

themselves acquired perceptual chunks, the information looked for will not be at 
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the lowest level of resolution, but instead reflect the amount of knowledge of the 

system. It is usual for experts to require far fewer pieces of perceptual information 

to acquire a far greater amount of conceptual information, and this behaviour is 

captured quite effectively in CHREST [11]. 

4.2 Learning Knowledge for Problem Solving 

The previous section described an algorithm which learns perceptual chunks. As 

suggested by previous researchers, e.g. [3,17,4], we assume that these chunks are 

the right information to be problem templates in a schema, as discussed in Section 

3.2. What we require is a learning mechanism to associate with each template 

information relevant for solving the problems which it matches. As an example, we 

consider the learner attempting to acquire schemas for the circuit domain from 

Section 2, and we will assume that the learner is working with AVOW diagrams.  

We consider a learner in a supervised situation provided with a sample circuit and 

its equivalent AVOW diagram. The discrimination process for perceptually 

distinguishing instances from each of these representations will tend to build up 

separate networks, one for the circuits and one for the AVOW diagrams. This 

process can be performed by CHREST. We now use the methods for combining 

multiple networks described in [19] to provide CHREST with the ability to 

associate the node for the circuit diagram with the node for the AVOW diagram. 

This link between two equivalent representations is known as an equivalence link, 

and we call the extended model CHREST+. The result of this process is illustrated 

in Figure 4, where some equivalent nodes in discrimination networks for the two 

representations are shown.  

If the learner sees the same circuit in a later setting, either on its own or as part of a 

larger circuit, then that circuit’s chunk will be retrieved from the discrimination 

network. The equivalence link enables the learner to retrieve a representation for 

the final form of the AVOW diagram. This mechanism means the learner can 

decompose complex circuits into sub-circuits which have been encountered 

 ... 

Figure 4 : Multiple discrimination networks, showing two equivalence links 

and the inheritance structure. Chunks are illustrated at some of the nodes. 

 …  
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previously. As was shown in Section 2.1, the visual pattern of an AVOW diagram 

works as a template, as it applies to a variety of possible quantities in the circuit. 

This means that each schema generalises to a wide range of possible problems, thus 

supporting rapid speed-up learning. However, other representations for solution 

paths may be used. For instance, if the learner is using algebra, the sequence of 

algebraic manipulations may be encoded as an ordered list and, through 

variabilisation, the particular equations may be generalised to a wider class of 

circuits. This ordered list may be discriminated by CHREST in the same way as the 

AVOW diagrams, and equivalence links added between the circuit and algebraic 

nodes. However, because the algebra does not generalise across instances as well as 

the AVOW diagrams, the complete system will not learn as rapidly, just as is the 

case with human subjects. 

 

5. Avoiding the Utility Problem? 

This paper is concerned with the organisation of knowledge for efficient speed-up 

learning. Earlier work has shown that systems such as PRODIGY [1] and SOAR 

[2] suffer from the utility problem, in which system efficiency is degraded by the 

cost of managing the collection of learnt rules. As Minton [1] explains: “To be 

useful, the cumulative benefits of applying the knowledge must outweigh the 

cumulative costs of testing whether the knowledge is applicable.” In Section 3 we 

argued that experts use chunks of perceptual information to index domain-specific 

information stored within schemas. In this section we discuss the efficiency of 

retrieving the relevant schema based on perceptual information. 

As an example, let us consider the circuit in Figure 1(a). Restricting consideration 

to voltage (V), current (I) and resistance (r), this circuit contains at least 12 

quantities: those for the individual resistors and values for the whole circuit. Any 

one of these may be used as the target unknown for a given problem. For example, 

assuming the unknown is the voltage across resistor A, VA, Table 1 lists some 

possible problems and their solution path. One such table would be required for 

each of the other 11 quantities. 

Imagine now a learning system confronted with a sequence of circuit problems and  

solution paths such as in the table. The question is how to store this information for 

later recall. Note that each solution path must be accompanied by its preconditions: 

in the second example in the table, the resistors A and B must be in parallel. As can 

Table 1: Some possible problems from the circuit in Figure 1(a). 

Given quantities   Solution path for the unknown VA 

IA rA         Compute VA = IArA 

IB rB         Compute VB = IBrB, then infer VA = VB 

IB IC rA       Infer IA = IC – IB, then compute VA = IArA 

VTOT VC       Infer VA = VTOT – VC 

VTOT IC rC      Compute VC = ICrC, then infer VA = VTOT - VC 
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be seen, the amount of information which even a simple circuit structure may 

generate is large. The utility problem now arises because of the cost of locating, 

within all this information, the piece which relates to a novel situation. Such a 

system is described by Kieras [20], where explanations for solution paths are used 

to build up knowledge such as that in Table 1. Kieras notes that “in terms of CPU 

time, the pattern matching required to instantiate [these rules] can overwhelm the 

savings from the faster processing of explanations”. In other words, the utility 

problem arises. The assumption in many psychological models using production-

rules is that all the productions are matched in parallel, but this condition is not met 

by designers of practical systems which usually possess a single or restricted 

number of processors. 

In contrast,  Section 3 has argued that experts do not directly store information 

relating to solution paths. Instead, they use easily indexed chunks of perceptual 

information as a means of referencing information about the kind of problems 

which arise from similar circuits. Thus, a schema for the circuit in Figure 1(a) will 

contain a perceptual chunk for the circuit as a whole, and then pointers to the 

possible solution paths contained in Table 1. The expert therefore does not 

immediately attempt to recognise a possible solution path out of all those 

theoretically possible, but instead locates a similar looking circuit: a task of much 

reduced complexity. 

It should also be noted that this method facilitates reuse of previously learnt 

information. For instance, in recognising the example circuit, the expert, in passing, 

will identify the top two resistors as a parallel circuit. Any schema for that parallel 

circuit will thus also be indexed. This means that the information in the second line 

of Table 1 may be inferred from the parallel circuit schema and not require 

relearning for more complex examples. 

There is still the question of matching the possible solution paths in the schema to 

the specific circuit quantities; for large circuits the number of possible paths can 

become large. It is at this point that the advantage of a diagrammatic representation 

may be seen. The AVOW diagrams discussed in Section 2.1 provide a unified 

representation for all the possible solution paths given in Table 1: independent of 

the target unknown and the given quantities, the problem solver must draw a 

correctly scaled AVOW diagram for the circuit. In every case, a similar series of 

operations must be carried out, and obtaining the quantity of the unknown is 

reduced to a simple measurement of the relevant dimension. This unification of 

solution paths into a diagram means that separate algebraic and inference 

techniques need not be learnt for every possible solution path. It also means that 

sequences of operators are automatically fitted to the values provided in the 

problem. This enables the solver to skip unnecessary steps [4,15]. 

Further, the separation of the solution template from the sequence of solution steps 

means the system may readily incorporate information about the problem from 

different sources. Therefore CHREST+ may be used as an additional mechanism to 

established problem solving techniques; the proposed solution template may enter a 

further module which considers its sequence of actions based on the template, other 

sources of planning information and formal look-ahead.  
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6. Conclusion 

The primary conclusion from this paper is that the avoidance by human experts of 

the utility problem may be explained through efficient computational mechanisms 

for learning perceptual schemas. These mechanisms can be incorporated into 

standard machine learning systems, and also provide guidelines for knowledge 

representation to maximise the effects of learning. 

However, this paper does not claim that the use of expert representations will 

entirely solve the problems of acquiring and using large volumes of information. 

This paper is instead intended as a contribution towards designing computers which 

emulate the ability of humans to learn effective and efficient rules for problem 

solving. As such, it has proposed a method for using expert representations in 

learning knowledge for problem solving, and also described principles and 

computational justifications underlying representations which support efficient 

problem solving. 
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