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Abstract—In this paper, a mixture Gamma shadowed (MGS)
model is proposed as a unified composite distribution via rep-
resenting the shadowing impact by an inverse Nakagami-m.
The exact expression and the asymptotic behaviour at high
average signal-to-noise ratio (SNR) regime of the fundamental
statistics of a MGS distribution are derived first. These statistics
are then applied to analyze the performance of the wire-
less communication systems over double shadowed κ-µ fading
channels. In particular, the outage probability (OP), average
bit error probability (ABEP), average channel capacity (ACC),
effective capacity (EC) and average area under the receiver
operating characteristics curve (AUC) of energy detection (ED)
are provided. The numerical and simulation results as well as
a comparison with previous exact works are presented to verify
the validation of our analysis.

Index Terms—Mixture Gamma shadowed, double shadowed
κ-µ fading, average bit error probability, capacity analysis.

I. INTRODUCTION

THE wireless communications channel may undergo the
effect of the multipath and shadowing fading simultane-

ously [1]. Accordingly, many works have been dedicated to
analyze the performance of the communication systems over
generalized fading channels, such as, κ-µ and η-µ [2]. These
generalized conditions can provide close results to the practical
measurements and approximately comprise all the classical
fading distributions. Hence, the probability density function
(PDF), cumulative distribution function (CDF), and moment
generating function (MGF) of the composite η-µ/Gamma
fading models were derived in [3] with applications to the
outage probability (OP), average bit error probability (ABEP)
and average channel capacity (ACC). The PDF and CDF
of composite κ-µ/Gamma fading were presented in [4]. The
statistics of the κ-µ shadowed fading in which the dominant
components are shadowed by a Nakagami-m were given in
[5]. The authors in [6] assumed that both κ-µ and η-µ fading
models are shadowed by an inverse Gamma distribution.

Recently, several studies have been explained that the fading
channels may subject to double shadowing impacts at the
same time. For example, in [7], the statistical properties of the
double shadowed Rician fading channel were derived. In [8],
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the performance of unmanned aerial vehicle (UAV)-enabled
wireless communication systems over composite cascaded
Nakagami-m/double inverse Gamma fading channels was an-
alyzed. Different scenarios of the double shadowed κ-µ fading
using Nakagami-m and inverse Nakagami-m distributions
were investigated in [9]. However, the derived statistics of [9]
include either the infinite series or mathematically intractable
function, such as, Kampe de Feriet function [9, eq. (26) that
is not available in the popular software packages.

More recently, a mixture Gamma (MG) distribution has
been widely used in the literature [10]. This distribution
can approximate with high accuracy most of the composite
generalized/Gamma fading channels, e.g., κ-µ/Gamma and η-
µ/Gamma [11], α-η-µ/Gamma [12], generalized-K (KG) [13],
and α-η-λ-µ/Gamma [14].

Based on the above observations, in this paper, a MG
shadowed (MGS) distribution is proposed as a unified com-
posite model where the shadowing is represented by an inverse
Nakagami-m. To this end, the basic statistics are mathemati-
cally simple and tractable. Consequently, the derived perfor-
mance metrics over double shadowed fading channels have
low complexity in comparison with the exact expressions.

Our main contributions are summarized as follows:
• Providing the exact expression and asymptotic behaviour

at high average signal-to-noise ratio (SNR) values of the
statistical characterization of MGS fading model.

• Capitalizing on the above, we analyze the performance of
the wireless communication systems over double shad-
owed κ-µ fading channel in which the shadowing of
the dominant components is modelled by a Nakagami-m
distribution. Hence, the parameters of a MG distribution
of composite κ-µ/Nakagami-m fading are derived.

• To this effect, novel unified mathematically tractable
closed-form expressions for the ABEP, ACC, effective
capacity (EC), and average area under the receiver oper-
ating characteristics (AUC) curve of the energy detection
(ED) based spectrum sensing are obtained.

II. STATISTICAL PROPERTIES OF A MGS DISTRIBUTION

The PDF of a MG distribution is given by [10, eq. (1)]

f(x) =
K∑
j=1

σjx
βj−1e−ζjx (1)

where σj , βj , and ζj are the parameters of jth Gamma
component and K that stands for the number of terms, can
be evaluated via using the mean square error (MSE) method
between the exact PDF and its MG representation [10].
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If ξ is an inverse Nakagami-m random variable (RV) with
E[ξ] = 1 where E[.] indicates the statistical expectation, its
power normalized PDF is expressed as [9, eq. (50)]

fξ(r) =
(ms − 1)ms

Γ(ms)rms+1
e−

(ms−1)
r ms > 1 (2)

where ms refers to the shadowing severity index and Γ(.) is
the Gamma function [15, eq. (8.310.1)].

Let γ ∼ MGS(σj , βj , ζj ,ms) for j = 1, · · · ,K is an MGS-
distributed RV. Then, the PDF of γ can be obtained by the
product of MG and inverse Nakagami-m RVs as [3, eq. (8)]

fγ(γ) =

∫ ∞
0

1

z
f

(
γ

z

)
fξ(z)dz (3)

Substituting (1) and (2) into (3) and making use of [15, eq.
(3.381.4)] with some mathematical manipulations, this yields

fγ(γ) = (ms − 1)ms
K∑
j=1

σj(ms)βjγ
βj−1

(ms − 1 + ζjγ)βj+ms
(4)

where (.)n is the Pochhammer symbol.
When ζj → 0 for all j = 1, · · · ,K, the asymptotic of the

PDF, f∞γ (γ), can be expressed as

f∞γ (γ) '
K∑
j=1

σj(ms)βjγ
βj−1

(ms − 1)βj
(5)

Inserting (4) in Fγ(γ) =
∫ γ

0
fγ(γ)dγ and recalling [15, eq.

(3.194.1)], the CDF of a MGS distribution can be derived as

Fγ(γ) =

K∑
j=1

σj(ms)βj 2F1

(
βj +ms, βj ;βj + 1;− ζj

ms−1γ
)

βj((ms − 1)γ−1)βj

(6)

where 2F1(., .; .; .) is the Gauss hypergeometric function de-
fined in [15, eq. (9.14.1)].

Using the fact that 2F1(., .; .; 0) ' 1 when ζj → 0 or
plugging (5) in Fγ(γ) =

∫ γ
0
fγ(γ)dγ, the asymptotic of the

CDF, F∞γ (γ), can be evaluated as

F∞γ (γ) '
K∑
j=1

σj(ms)βjγ
βj

βj(ms − 1)βj
(7)

Using the Laplace transform and invoking [16, eq.
(07.33.07.0001.01)], the MGF of the MGS distribution can
be obtained as

Mγ(s) =
K∑
j=1

σj(ms)βjΓ(βj)U
(
βj ; 1−ms;

ms−1
ζj

s
)

ζ
βj
j

(8)

where U(.; .; .) is the Tricomi confluent hypergeometric func-
tion of the second kind defined in [15, eq. (9.211.4)].

The asymptotic of the MGF, M∞γ (s), can be deduced after
applying the Laplace transform for (5) and invoking [15, eq.
(8.310.1)]. Thus, this yields

M∞γ (s) '
K∑
j=1

σj(ms)βjΓ(βj)

[(ms − 1)s]βj
(9)

The n-th moment, µn, of the MGS distribution can be found

by using (4) and [15, eq. (3.194.3)] as

µn = E[γn] =
K∑
j=1

σj(ms)βjB(βj + n,ms − n)

ζ
βj+n
j (ms − 1)−n

(10)

where B(., .) is the Beta function [15, eq. (8.380.1)].
It is worth mentioning that the MGS distribution can be

used to model the κ-µ/inverse Gamma fading [6] with σj =
e−µκµµ+2(j−1)κj−1(1+κ)µ+j−1

Γ(µ+j−1)Γ(j)γ̄µ+j−1 , βj = µ+j−1, and ζj = µ(1+κ)
γ̄ .

Additionally, the statistics of the Fisher Senedcor F fading
[17] can be represented by (4)-(10) with K = 1, σ1 = mm

Γ(m)γ̄m ,
β1 = m, and ζ1 = m

γ̄ .

III. DOUBLE SHADOWED κ-µ FADING CHANNELS

The received signal envelope, R, over double shadowed κ−
µ fading channel can be given as [9, eq. (22)]

R2 = ξ2

µ∑
l=1

(Xl + ϑpl)
2 + (Yl + ϑql)

2 (11)

where the parameters of (11) are defined as follows:
i) µ is a real-valued extension related to the number of

multipath clusters.
ii) ξ and ϑ represent the RVs which are responsible for

introducing the shadowing impacts that are modelled
by inverse Nakagami-m and Nakagami-m distributions,
respectively, with E[ξ2] = E[ϑ2] = 1. Physically, the
effect of ϑ may occur when the signal power is shadowed
by obstacles moving between the transmitter and receiver,
such as, cars and/or people. Furthermore, the second
impact, namely, ξ, may occur due to objects moving near
to the transmitter and/or receiver [8], [9].

iii) Xl and Yl are mutually independent Gaussian random
processes with mean E[Xl] and E[Yl] = 0 and variance
E[X2

l ] = E[Y 2
l ] = δ2.

iv) pl and ql are the mean values of the in-phase and
quadrature phase components of the multipath cluster l.
Hence, the power of the dominant component which is a
complex RV expressed as ϑpl + iϑql, is Pl = p2

l + q2
l .

According to (11), the PDF of R can be derived by
averaging the PDF of the single shadowed κ-µ fading Type I
model [9, eq. (2)] over (2). However, [9, eq. (2)] includes the
confluent hypergeometric function 1F1(.; .; .) [15, eq. (9.41.1)]
that would lead to statistics in terms of either the infinite series
or numerically complicated functions (please see [9, eqs. (25)
and (26)]). Thus, to obtain simple closed-form expressions, the
PDF of the induced shadowing of the dominant component is
approximated by a MG distribution, whereas the multiplicative
shadowing is represented by a MGS model.

The PDF of the received instantaneous SNR over single
shadowed κ-µ Type I model is given by [9, eq. (3)]

f(x) =
Ωµmmxµ−1e−Ωx

Γ(µ)(µκ+m)m
1F1

(
m;µ;

µκΩ

µκ+m
x

)
(12)

where Ω = µ(1+κ)
γ̄ , γ̄ is the average SNR, κ is the ratio

between the total powers of the dominant components (d2 =∑µ
l=1 Pl) and scattered waves (2µδ2), and m is the shadowing

severity index of the Nakagami-m.
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With the aid of [15, eq. (9.41.1)], (12) can be rewritten as

f(x) =
∞∑
j=1

Γ(m+ j − 1)mm(κµ)j−1Ωµ+j−1xµ+j−2e−Ωx

Γ(m)Γ(µ+ j − 1)(j − 1)!(µκ+m)m+j−1

(13)

The required accuracy for approximating (1) can be ob-
tained by using K terms for the series of (13). Hence, by
matching (1) and (13), we have

σj =
Γ(m+ j − 1)mm(κµ)j−1Ωµ+j−1

Γ(m)Γ(µ+ j − 1)(j − 1)!(µκ+m)m+j−1

βj = µ+ j − 1, ζj = Ω (14)

IV. PERFORMANCE ANALYSIS USING A MGS MODEL

A. Outage Probability

The OP is defined as the probability of falling the values of
the output SNR below a predefined threshold value ϕ.

The OP, Po, can be computed by [1, eq. (1.4)]

Po = Fγ(ϕ) (15)

where Fγ(.) is provided in (6).
The asymptotic of the OP, P∞o , can be analyzed by (7), i.e.,

P∞o = F∞γ (ϕ). Furthermore, the P∞o may be closely repre-
sented as P∞o ' (Gcγ̄)−Gd whereby Gc denotes the coding
gain and Gd stands for the diversity order that demonstrates
the increasing in the slope of the OP versus γ̄.

For the double shadowed κ-µ fading and after plugging (14)
in (7) and following a similar procedure of [18, eq. (14)], one

obtains Gc = (ms−1)
µ(1+κ)ϕ

(
Γ(µ+1)(µκ+m)m

mm(ms)µ

) 1
µ

and Gd = µ.

B. Average Bit Error Probability

The ABEP, P̄e, can be evaluated by [1, eq. (9.11)]

P̄e =
1

π

∫ π
2

0

Mγ

(
ρ

sin2 φ

)
dφ (16)

where ρ = 0.5 and ρ = 1 for binary frequency shift keying
(BFSK) and binary phase shift keying (BPSK), respectively.

Substituting (8) into (16) and utilizing the property [16, eq.
(07.33.26.0004.01)], we have

P̄e =
1

πΓ(ms)

K∑
j=1

σj

ζ
βj
j

∫ π
2

0

G2,1
1,2

[
(ms − 1)ρ

ζj sin2 φ

∣∣∣∣1− βj0,ms

]
dφ

(17)

where Ga,bc,d[.] is the Meijer’s G-function [15, eq. (9.301)].
Employing [16, eq. (07.34.02.0001.01)] and the change of

variable t = sin2 φ, (17) becomes

P̄e =
1

2πΓ(ms)

K∑
j=1

σj

ζ
βj
j

∫ 1

0

1

2πi
√

(1− t)t

∫
L

Γ(r)Γ(ms + r)

Γ(βj − r)
(

(ms − 1)ρ

tζj

)−r
drdt (18)

where i =
√
−1 and L is the suitable contour in the r-plane

from %− i∞ to %+ i∞ with % is a constant value.

Changing the order of the integrals of (18) and then utilizing
[15, eq. (3.191.3)] for the linear integral, this yields

P̄e =
1

2πΓ(ms)

K∑
j=1

σj

ζ
βj
j

1

2πi

∫
L

Γ(r)Γ(ms + r)Γ(βj − r)

B(r + 0.5, 0.5)

(
(ms − 1)ρ

ζj

)−r
dr (19)

Recalling [15, eq. (8.384.1)/ eq. (8.338.2)] and using [18,
eq. (07.34.02.0001.01)], (19) can be expressed as

P̄e =
1

2
√
πΓ(ms)

K∑
j=1

σjG
2,1
2,2

[
(ms−1)ρ

ζj

∣∣∣∣ 1− βj , 10,ms, 0.5

]
ζ
βj
j

(20)

The asymptotic of the ABEP at high γ̄ regime, P̄∞e , can be
deduced after inserting (9) in (17) and using t = sin2 φ as

P̄∞e '
1

2π

K∑
j=1

σj(ms)βjΓ(βj)

[(ms − 1)ρ]βj

∫ 1

0

tβj√
(1− t)t

dt (21)

Invoking [15, eq. (3.191.3)], (21) can be evaluated as

P̄∞e '
1

2
√
π

K∑
j=1

σj(ms)βjΓ(βj + 0.5)

βj [(ms − 1)ρ]βj
(22)

Substituting (14) into (22) and using the same steps of [18,

eq. (14)], we have Gc = (ms−1)ρ
µ(1+κ)

(
2
√
πΓ(µ+1)(µκ+m)m

mm(ms)µΓ(µ+0.5)

) 1
µ

and
Gd = µ for the ABEP over double shadowed κ-µ fading.

C. Average Channel Capacity

The normalized ACC can be determined by [17, eq. (26)]

C̄ =
1

ln(2)

∫ ∞
0

ln(1 + γ)fγ(γ)dγ (23)

Plugging (4) in (23) and making use of the identity [16, eq.
(01.04.26.0002.01)], we obtain

C̄ =
(ms − 1)ms

ln(2)

K∑
j=1

σj(ms)βj

∫ ∞
0

γβj−1G1,2
2,2

[
γ

∣∣∣∣1, 11, 0

]
dγ

(ms − 1 + ζjγ)βj+ms

(24)

Invoking [15, eq. (7.811.5)], (24) can be calculated as

C̄ =
1

ln(2)Γ(ms)

K∑
j=1

σj

ζ
βj
j

G2,3
3,3

[
ms − 1

ζj

∣∣∣∣1− βj , 1, 1ms, 1, 0

]
(25)

The asymptotic of the ACC for γ̄ → ∞, C̄∞, can be
evaluated via [17, eq. (28)]

C̄∞ ' 1

ln(2)

∂

∂n
E[γn]

∣∣∣∣
n=0

(26)

Substituting (10) into (26), computing the partial derivative,
and setting n = 0, C̄∞ over MGS model is deduced as

C̄∞ '
K∑
j=1

σjΓ(βj)

[
ln
(
ms−1
ζj

)
+ ψ(βj)− ψ(ms)

]
ln(2)ζ

βj
j

(27)
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Ā = 1−
u−1∑
l=0

l∑
i=0

(
l + u− 1

l − i

)
2−(l+i+u)

i!
(ms − 1)i

K∑
j=1

σj(ms)βjΓ(βj + i)U

(
βj + i; i−ms + 1;

ms − 1

2ζj

)
(33)

where ψ(.) is the Euler’s digamma function [15, eq. (8.360.1)].

D. Effective Capacity

In Shannon’s theorem, the ACC has been measured under
perfect quality of service (QoS). However, in the EC, the
constraints of the QoS, such as, system delay, are taken into
consideration [6]. The EC can be calculated by [12, eq. (4)]

R = − 1

A
log2

{∫ ∞
0

(1 + γ)−Afγ(γ)dγ

}
(29)

where A , θTB/ln(2) with θ, T , and B denote the delay
exponent, the time and the bandwidth of the channel.

Inserting (4) in (29) and employing [15, eq. (3.197.1)], the
EC over MGS distribution can be yielded as

R = − 1

A
log2

{ K∑
j=1

σj(ms)βjB(βj ,ms +A)

(ms − 1)βj

× 2F1

(
βj +ms, βj ;βj +ms +A; 1− ζj

ms − 1

)}
(30)

Plugging (5) in (29) and recalling [15, eq. (3.194.3)], the
asymptotic of the EC at γ̄ →∞, R∞, can be deduced as

R∞ ' − 1

A
log2

{ K∑
j=1

σj(ms)βj
(ms − 1)βj

B(βj , A− βj)
}

(31)

E. Average AUC of Energy Detection

The average AUC, Ā, is a single figure of merit of ED that
can be computed by [20, eq. (20)/ eq. (21)]

Ā = 1−
u−1∑
l=0

l∑
i=0

(
l+u−1
l−i

)
2l+i+ui!

∫ ∞
0

γie−
γ
2 fγ(γ)dγ (32)

where
(
a
b

)
= a!

b!(a−b)! is the binomial coefficient.
Substituting (6) into (32) and utilizing [16, eq.

(07.33.07.0001.01)], Ā can be obtained as in (33) shown at
the top of this page.

The average AUC at high γ̄ value, Ā∞, can be evaluated
after inserting (5) in (32) and invoking [15, eq. (3.381.4)] as

Ā∞ ' 1−
u−1∑
l=0

l∑
i=0

K∑
j=1

σj(ms)βj
(
l+u−1
l−i

)
Γ(βj + i)

2l+u−βj (ms − 1)βj i!
(34)

V. COMPLEXITY ANALYSIS

A comparison between the complexity of the OP and EC of
this work and the exact expressions is shown in Table I. In this
table, Ψ(k) = M(k log k) log log k, k is the number of digits,
M refers to the complexity of the multiplication algorithm and
HT denotes the higher transcendental functions (e.g., Gamma,
Beta, Meijer’s G, and hypergeometric) [21].

From Table I, one can see that (6) and (30) have less number
of HT functions, as well as numerical operations than [9, eq.

TABLE I
COMPLEXITY COMPARISON OF THE OP AND EC WITH EXACT FORMATS

Function/
Number of Functions or Operations

Complexity
Operation [9, Eq. (25)] Eq. (6) [19, Eq. (8)] Eq. (30)

HT 4K + 6 4K+2 8K + 10 5K+2 O(M(k) log2 k)

Power K + 3 K + 2 K + 2 K + 2 O(M(k) log k)

Division K + 1 K K + 1 K + 1 O(M(k))

Multiplication 5K + 7 5K+2 8K + 10 5K+3 O(M(k))

Sum K + 1 K K K − 1 O(k)

Factorial K + 1 K K + 1 K O(Ψ(k))

(25)] and [19, eq. (8)], respectively. Hence, in addition to
their deriving in closed-form, our expressions mathematically
simpler. Furthermore, the difference in the computational
intricacy between the exact and MGS approaches becomes
large when the statistics of the RVs, namely, sum, maximum,
products, and ratio, are employed. This is due to increasing in
the number of the complicated functions and operations.

VI. ANALYTICAL AND SIMULATION RESULTS

In this section, the numerical, simulation, and asymptotic
results are presented for different scenarios. To achieve MSE
≤ 10−5, we have chosen K = 15.

Fig. 1 illustrates the OP versus normalized ϕ for γ̄ = 5 dB.
Moreover, Figs. 2-3 explain the ABEP for BPSK modulation,
the normalized ACC and EC for A = 3.5, and the average
complementary of AUC (CAUC), 1-Ā, for u = 3 versus γ̄,
respectively. Three cases for ms which are heavy (ms = 1.5),
moderate (ms = 5.5), and light (ms = 50) are studied.

From the provided results, it is clear that the performance
becomes better when κ and/or µ increase. This is because the
high values of κ and µ indicate that the total power of the
scattered waves is less than that of the dominant components
and large number of multipath clusters arrive at the receiver,
respectively. Besides, the increasing in m and/or ms means
the impacts of the shadowing on the received signal are low.
However, m has higher effect on the performance than ms

due to improving in the power of the dominant components.
In Fig. 3, one can see that the ACC is higher than the EC

for the same scenario. This refers to the impact of the system
delay on the EC whilst its ignored in the ACC. Moreover, the
EC is related to the average AUC via u [20]. This relationship
explains how the low quality of the received signal by the
unlicensed user would reduce the detectability of the ED.

For further validation, a comparison between our approxi-
mate results and the exact analysis is carried out in Figs. 1
and 3. As anticipated, a good matching between the results
can be observed. But, a MGS approach has low mathemat-
ical complexity than [9] and [19]. Furthermore, a perfect
agreement between the numerical results and their simulation
counterparts as well as the asymptotic behaviour at high γ̄ can
be noted which proves the correctness of our expressions.
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Simulation
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Fig. 2. ABEP for BPSK versus average SNR.

VII. CONCLUSIONS

In this paper, a highly accurate approximate unified compos-
ite multipath/shadowed representation that is based on MG and
inverse Nakagami-m distributions was proposed. This model
was then applied to the double shadowed κ-µ fading. The exact
and asymptotic expressions of the OP, ABEP, ACC, EC and
average AUC over MGS model were derived. The results for
different values of the fading parameters were presented and
compared with the exact models. The provided expressions can
be reduced for many fading conditions, such as, κ-µ shadowed
[5], κ-µ/inverse Gamma [6], and Fisher Senedcor F [17].
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