TR/07/82 July 1982

Rational quadratic spline interpolation to monotonic data.

R. Delbourgo and J.A. Gregory

paper submitted for publication in the IMA Journal of Numerical Analysis

<u>Abstract</u>

In an earlier paper by Gregory & Delbourgo (1982), a piecewise rational quadratic function is developed which produces a monotonic interpolant to monotonic data. This interpolant gives visually pleasing curves and is of continuity class C^1 . In the present paper, the data is restricted to be strictly monotonic and it is shown that it is possible to obtain a monotonic rational quadratic spline interpolant which is of continuity class C^2 . An $O(h^4)$ convergence analysis is included.

1. Introduction

A set of data points (x_i, f_i) , i=1,...,n, is given, with $x_1 < x_2 < ... < x_n$ and such that the values f_i form a strictly monotonic sequence. In the subsequent work it will be assumed that

$$f_1 < f_2 < ... < f_n$$

since the case of a strictly decreasing sequence of function values can be treated in a similar manner.

In Gregory and Delbourgo (1982), a piecewise rational quadratic function $s(x) \in c^1[x_1, x_n]$ is constructed which is monotonic on $[x_1, x_n]$ and satisfies

$$s(x_i) = f_i$$
, $s^{(1)}(x_i) = d_i$, $i = 1, ..., n$,

where the derivatives d_i are positive for strictly increasing f_i . The piecewise rational quadratic s(x) is defined as follows: Let

$$h_{i} = x_{i+1} - x_{i},$$

 $\theta = (x - x_{i}) / h_{i},$
 $\Delta_{i} = (f_{i+1} - f_{i}) / h_{i}$
(1.1)

Then for $x \in [x_1, x_{1+1}]$,

$$s(x) = \frac{f_{i+1} \theta^2 + \Delta_i^{-1}(f_{i+1} d_i + f_i d_{i+1}) \theta(1-\theta) + f_i(1-\theta)^2}{\theta^2 + \Delta_i^{-1}(d_i + d_{i+1}) \theta(1-\theta) + (1-\theta)^2}. (1.2)$$

The denominator is strictly positive for all $0 \le \theta \le 1$. Also, a differentiation gives the result that for $x \in [x_{\dot{1}}, x_{\dot{1}+1}]$,

$$s^{(1)}(x) = \frac{d_{i+1} \theta^2 + 2\Delta_i \theta (1 - \theta) + d_{i}(1 - \theta)^2}{\{\theta^2 + \Delta_i^{-1}(d_i + d_{i+1}) \theta (1 - 0) + (1 - \theta)^2\}^2},$$
 (1.3)

and hence $s^{(1)}(x) > 0$ throughout any interval $[x_i, x_{i+1}]$.

In the earlier paper by Gregory and Delbourgo (1982), the derivative Values d_i are determined by local approximations which involve the values f_i . These approximations give a $c^1[x_1, x_n]$ interpolant for which an $o(h^3)$ convergence result can be obtained. In the present paper, positive values of the derivatives d_i are determined in an analogous way to cubic polynomial spline interpolation, which make $s(x) \in C^2[x_1, x_n]$. Furthermore, it is shown that an $o(h^4)$ convergence result can be obtained when accurate derivatives d_1 and d_n are available as end conditions.

It should be noted that if the data is monotonic but not strictly monotonic, then there will be intervals $[x_i, x_{i+1}]$ where $\Delta_i = 0$. The requirement that s(x) be monotonic then implies that $s(x) = f_i$, a constant, on $[x_i, x_{i+1}]$. Elsewhere, the data can be divided into strictly monotonic parts and the proposed method of this paper can be applied.

2. The Monotonic Rational Quadratic Spline

If s(x) is a C^2 function then, necessarily, there is no jump discontinuity in the second derivatives of s(x) at the interior knots x_1 , $i=2,\ldots,n-1$, For cubic polynomial splines, such C^2 consistency conditions lead to a set of linear equations each relating three consecutive derivatives d_i . For the piecewise rational quadratic function employed here, corresponding consistency equations arise which will be non-linear. These are derived below and will then be shown to have a unique solution with all $d_i > 0$.

The requirement for C^2 continuity, namely that $s^{(2)}(x_{i+}) - s^{(2)}(x_{i-}) = 0$ at all the interior knots, gives

$$\frac{2}{h_{i}} \left[\Delta_{i} + d_{i} \left(1 - \frac{d_{i} + d_{i+1}}{\Delta_{i}} \right) \right] + \frac{2}{h_{i-1}} \left[\Delta_{i-1} + d_{i} \left(1 - \frac{d_{i-1} + d_{i}}{\Delta_{i-1}} \right) \right] = 0.$$

This can be written as

$$d_{i}[-c_{i} + a_{i-1} d_{i-1} + (a_{i-1} + a_{i}) d_{i} + a_{i} d_{i+1}] = b_{i},$$

$$i=2, ... n-1, (2.1)$$

where

$$a_{i} = 1 / (h_{i}\Delta_{i}),$$

$$b_{i} = \Delta_{i-1} / h_{i-1} + \Delta_{i} / h_{i},$$

$$c_{i} = 1 / h_{i-1} + 1 / h_{i}.$$
(2.2)

Given d_1 and d_n , (2.1) gives a system of n-2 non-linear equations for the unknowns d_2, \ldots, d_{n-1} . It should be noted that $c_1 > 0$ and, for data which is strictly increasing, $a_1 > 0$, $b_1 > 0$ for all i in equations (2.1).

The existence and uniqueness of a solution d_2, \ldots, d_{n-1} of the non-linear equations (2.1) with all $d_{\dot{1}} > 0$ will first be proved by analysing a Jacobi typeof iteration. It will then be shown that a Gauss-Seidel type of iteration can be used in practice.

Each equation (2.1) is a quadratic in the variable $d_{\tt i}$. Solving for the positive root gives

$$d_{i} = \frac{1}{2(a_{i-1} + a_{i})} [c_{i} - a_{i-1}d_{i-1} - a_{1}d_{i+1} + \{ (c_{i} - a_{i-1}d_{i-1} - a_{i}d_{i+1})^{2} + 4(a_{i-1} + a_{i})b_{i} \}^{\frac{1}{2}}], i = 2, ..., n - 1, (2.3)$$

A Jacobi iteration may be defined by the equation

$$d_{i}^{(k+1)} = \frac{1}{2(a_{i-1} + a_{i})} \left[c_{i} - a_{i-1}d_{i-1}^{(k)} - a_{i}d_{i+1}^{(k)} + \left\{\left(c_{i} - a_{i-1}d_{i-1}^{(k)} - a_{i}d_{i+1}^{(k)}\right)^{2} + 4\left(a_{i-1} + a_{i}\right)b_{i}\right\}^{\frac{1}{2}}\right], i = 2, ..., n-1, \quad (2.4)$$

where $d_1^{(k=1)} = d_1^{(k)} = d_1$ and $d_n^{(k+1)} = d_n^{(k)} = d_n$ are given end condition.

Theorem 2.1. (Existence) For strictly increasing data and given end conditions $d_1 \ge 0$, $d_n \ge 0$, there exits a strictly positive solution d_2, \ldots, d_{n-1} satisfying the non-linear consistency equations.

<u>Proof.</u> A set of functions G_i , i=1,..., n, is defined initially on domain Rⁿ by

$$\begin{split} G_1(\xi) &= d_1 \\ G_i(\xi) &= \frac{1}{2(a_{i-1} + a_i)} [c_i - a_{i-1} \xi_{i-1} - a_i \xi_{i+1} + \{ (c_i - a_{i-1} \xi_{i-1} - a_i \xi_{i+1})^2 \\ &\qquad \qquad + 4(a_{i-1} + a_i) b_i)^{\frac{1}{2}}], i = 2, \ldots, n-1 \\ G_n(\underline{\xi}) &= d_n, \end{split} \tag{2.5} \\ \text{w here } \underline{\xi} &= (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n. \ \text{Let } \underline{G} = (G_1, \ldots, G_n) \ \text{and } \underline{d} = (d_1, \ldots, d_n). \end{split}$$

Then the Jacobi iteration (2.4) assumes the form

$$\underline{d}^{(k+1)} = \underline{G}(\underline{d}^{(k)}).$$

Restricting ξ to have positive components, we now show that there exist. constants α_{i} and β_{i} such that

$$0 < \alpha_{i} \le G_{1}(\xi) \le \beta < \infty$$
, $i = 2, ..., n - 1$.

Also, for $G_1(\underline{\xi})$ and $G_n(\underline{\xi})$, we may define $\alpha_1 = \beta_1 = d_1$ and $\alpha_n = \beta_n = d_n$. Now, for i=2, ..., n-1, examination of G_i (ξ) in the two cases $0 \le a_{i-1}\xi_{i-1} + a_{i}\xi_{i+1} \le c_{i} \text{ and } a_{i-1}\xi_{i-1} + a_{i}\xi_{i+1} > c_{i} \text{ gives}$

$$\beta_{i} = \frac{1}{2(a_{i-1} + a_{i})} [c_{i} + \{c_{i}^{2} + 4(a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}}].$$

Finding a strictly positive value for α_{i} is slightly more complicated but it can be shown that

$$\alpha_{i} = \min \left\{ \frac{-c_{i} + (c_{i}^{2} + 4(a_{i-1} + a_{i})b_{i})^{\frac{1}{2}}}{2(a_{i-1} + a_{i})}, \frac{2b_{i}}{\sum_{i=1}^{2} (a_{i-1} + a_{i})b_{i}}, \frac{1}{\sum_{i=1}^{2} (a_{i-1} + a_{i})b_{i}} \right\}$$

where $N_{i} = \max_{\{0,-c_{i} + (a_{i-1} + a_{i}) \}} \max_{2 \le i \le n-1} \beta_{i}$. Thus if $I_{i} = [\alpha_{i}, \beta_{i}]$,

i=1,...,n, then the map \underline{G} can be restricted to the n-dimensional interval $\mathbb{I}=\mathbb{I}_1\mathbb{x}...\mathbb{x}\mathbb{I}_n$, where $\underline{G}:\mathbb{I}\to\mathbb{I}$ and hence maps positive vectors into positive vectors.

Next, \underline{G} is shown to be a contraction mapping on \underline{I} : Let $\underline{\xi}_{\underline{\eta}} \in \underline{I}$ and let

$$X_i = c_i - a_{i-1}\xi_{i-1} - a_i\xi_{i+1}, Y_i = c_i - a_{i-1}n_{i-1} - a_in_{i+1}.$$

Then, for i = 2, ..., n-1,

$$G_{\underline{i}}(\underline{\xi}) - G_{\underline{i}}(\underline{n}) = \frac{1}{2(a_{\underline{i}-1} + a_{\underline{i}})} [X_{\underline{i}} - Y_{\underline{i}} + \{X_{\underline{i}}^2 + 4(a_{\underline{i}-1} + a_{\underline{i}})b_{\underline{i}}\}^{\frac{1}{2}} - \{Y_{\underline{1}}^2 + 4(a_{\underline{i}-1} + a_{\underline{i}})b_{\underline{i}}\}^{\frac{1}{2}}\}$$

$$= \frac{x_{i} - y_{i}}{2(a_{i-1} + a_{i})} \left[1 + \frac{x_{i} + y_{i}}{\{x_{i}^{2} + 4(a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}} + \{y_{i}^{2} + 4(a_{i} - 1 + a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}}} \right],$$

and $G_1(\xi) - G_1(\underline{\eta}) = 0$, $G_n(\underline{\xi}) - G_n(\underline{\eta}) = 0$. Now

$$|x_i - y_i| / (a_{i-1} + a_i) \le \|\underline{\xi} - \underline{\eta}\|_{\infty}$$
, and

$$\frac{\left|x_{i} + y_{i}\right|}{\left\{x_{i}^{2} + 4\left(a_{i-1} + a_{i}\right)b_{i}\right\}^{\frac{1}{2}} + \left\{y_{i}^{2} + 4\left(a_{i-1} + a_{i}\right)b_{i}\right\}^{\frac{1}{2}}} \leq \frac{\left|x_{i}\right| + \left|y_{i}\right|}{\left\{\left(\left|x_{i}\right| + \left|y_{i}\right|\right)^{2} + 8\left(a_{i-1} + a_{i}\right)b_{i}\right\}^{\frac{1}{2}}}$$

$$= \frac{1}{\{1 + 8(a_{i-1} + a_{i}) b_{i} / (|x_{i}| + |y_{i}|)^{2}\}^{\frac{1}{2}}}$$

$$\leq \frac{1}{\{1 + L\}^{\frac{1}{2}}},$$

where, since each of $|X_i|$ and $|Y_i|$ has an upper bound $c_i + a_{i-1}\beta_{i-1} + a_i\beta_{i+1}$,

$$L = 2 \min_{2 \le i \le n-1} (a_{i-1} + a_i) b_i / \max_{2 \le i \le n-1} (c_i + a_{i-1}\beta_{i-1} + a_i\beta_{i+1})^2 > 0.$$

Hence

$$\left\|\underline{\underline{G}}(\underline{\xi}) - \underline{\underline{G}}(\underline{\eta})\right\|_{\infty} \leq \frac{1}{2} \left[1 + 1 / \{1 + L\}^{\frac{1}{2}}\right] \left\|\underline{\underline{\xi}} - \underline{\underline{\eta}}\right\|_{\infty},$$

from which it follows that G is a contraction mapping on I. Thus the

Jacobi iteration converges to a unique fixed point $\underline{d} \in I$, i.e. $\underline{\underline{d}} = \underline{G}(\underline{d})$, and it follows that \underline{d} is a solution of (2.1), which thus completes the proof.

Equations (2.3) are derived from (2.1) by solving for the positive root. The alternative choice of negative root must lead to a $d_i < 0$, if such a solution exists. Thus uniqueness of a positive solution of (2.1) follows directly from the uniqueness of the solution of $\underline{d} = \underline{G}(\underline{d})$, where \underline{G} is a contraction map. Alternatively, uniqueness of a positive solution of (2.1) may be proved directly as follows:

Theorem 2.2. (Uniqueness) The solution of the non-linear consistency equations which satisfies the monotonicity conditions $d_i > 0$ is unique. Proof. Assume that d_1, \ldots, d_n and e_1, \ldots, e_n are two sets of values each satisfying the consistency equations, where $d_1 = e_1 \ge 0$ and $d_n = e_n \ge 0$ are given and $d_i > 0$, $e_i > 0$, $i = 2, \ldots, n-1$, Then

$$b_{i} / d_{i} + c_{i} - a_{i-1}d_{i-1} - (a_{i-1} + a_{i})d_{i} - a_{i}d_{i+1} = 0,$$

$$b_{i} / e_{i} + c_{i} - a_{i-1}e_{i-1} - (a_{i-1} + a_{i})e_{i} - a_{i}e_{i+1} = 0, i = 2, ..., n - 1.$$

Substraction gives

 $(e_i-d_i) \ [b_i/(d_ie_i)+a_{i-1}+a_i] = a_{i-1}(d_{i-1}-e_{i-1})+a_i(d_{i+1}-e_{i+1})$. Consider the jth equation, where j is chose so that

$$|e_j - d_j| = \max_{2 \le i \le n-1} |e_i - d_i|.$$

Then taking moduli gives

$$|e_{j} - d_{j}|\{b_{j} / (d_{j}e_{j}) + a_{j-1} + a_{j}\} \le (a_{j-1} + a_{j})|e_{j} - d_{j}|$$

and thus

$$|e_j - d_j|b_j / (d_j e_j) \le 0$$
.

Hence $d_{\dot{1}} = e_{\dot{1}}$ and so $d_{\dot{1}} = e_{\dot{1}}$, $i = 2, \ldots, n = 1$.

In practice a Gauss-Seidel type of iteration can be used to solve (2.3). This iteration is defined by

$$d_{i}^{(k+1)} = \frac{1}{2(a_{i-1} + a_{i})} [c_{i} - a_{i-1}d_{i-1}^{(k+1)} - a_{i}d_{i+1}^{(k)} + \{ (c_{i} - a_{i-1}d_{i-1}^{(k+1)} - a_{i}d_{i+2}^{(k)})^{2} \}$$

$$+4(a_{i-1} + a_{i})b_{i}^{\frac{1}{2}},$$

 $i = 2, ..., n - 1,$ (2.6)

 $where \ \mathtt{d}_1^{(k+1)} \ = \ \mathtt{d}_1^{(k)} \ = \ \mathtt{d}_1 \ \text{and} \ \mathtt{d}_n^{(k+1)} \ = \ \mathtt{d}_n^{(k)} \ = \ \mathtt{d}_n \ \text{are given end conditions}.$

A convenient starting vector $\underline{\mathbf{d}}^{(0)}$ for this iteration is given by

$$d_{i}^{(0)} = \{b_{i} / (a_{i-1} + a_{i})\}^{\frac{1}{2}}, i = 2, ..., n-1.$$

<u>Theorem 2.3.</u> The Gauss-Seidel iteration (2.6) converges to the unique positive solution of the non-linear consistency equations.

<u>Proof.</u> By Theorems 2.1 and 2.2 there exist unique $d_{\dot{1}} > 0$ satisfying

$$b_i / d_i + c_i - a_{i-1}d_{i-1} - (a_{i-1} + a_i)d_i - a_id_{i+1} = 0, i = 2, ..., n - 1.$$

Also, the Gauss-Seidel iterates satisfy

$$b_i / d_i^{(k+1)} + c_i - a_{i-1}d_{i-1}^{(k+1)} - (a_{i-1} + a_i)d_i^{(k+1)} - a_id_{i+1}^{(k)} = 0, i = 2, ..., n-1.$$

Subtract and write $d_{i}^{(k)} = d_{i} + \epsilon_{i}^{(k)}$ Then

$$[b_{i} / \{d_{i}(d_{i} + \epsilon_{i}^{(k+1)})\} + a_{i-1} + a_{i}] \epsilon_{i}^{(k+1)} = -a_{i-1}\epsilon_{i-1}^{(k+1)} - a_{i}\epsilon_{i+1}^{(k)}$$

Since $d_i + \varepsilon_i^{(k+1)} = d_i^{(k+1)} > 0$, on taking moduli we obtain

$$\left[\text{bi /} \{ \text{didi } + \left| \epsilon_{i}^{(k+1)} \right|) \} + \text{ai-1} + \text{ai} \right] \left| \epsilon_{i}^{(k+1)} \right| \leq \text{ai-1} \left| \epsilon_{i-1}^{(k+1)} \right| + \text{ai} \left| \epsilon_{i+1}^{(k)} \right| .$$

Consider the j^{th} inequality , where j is chosen so that

$$\left| \varepsilon_{j}^{(k+1)} \right| = \max_{2 \le i \le n-1} \left| \varepsilon_{i}^{(k+1)} \right| = \left\| \underline{\varepsilon}^{(k+1)} \right\|_{\infty}.$$

Then

$$\begin{split} \left[b_{j} / \{ d_{j}(d_{j} + \left\| \underline{\epsilon^{(k+1)}} \right\|_{\infty}) \} + a_{j-1} + a_{j} \right] & \underline{\epsilon}^{(k+1)} \Big\|_{\infty} \\ & \leq a_{j-1} \left\| \underline{\epsilon^{(k+1)}} \right\|_{\infty} + a_{j} \left\| \underline{\epsilon^{(k)}} \right\|_{\infty}, \end{split}$$

which reduces to

$$\left\|\underline{\varepsilon}^{(k+1)}\right\|_{\infty} \leq \frac{aj\left\|\underline{\varepsilon}^{(k)}\right\|_{\infty}}{a_{j} + b_{j} / \{d_{j}(d_{j} + \left\|\underline{\varepsilon}^{(k+1)}\right\|_{\infty})\}}$$

It follows that

$$\left\|\underline{\varepsilon}^{(k+1)}\right\|_{\infty} \leq \beta \left\|\underline{\varepsilon}^{(k)}\right\|_{\infty}$$

where

$$\beta = \frac{a_{j}}{a_{j} + b_{j} / \{d_{j}(d_{j} + \|\underline{\varepsilon}^{(0)}\|_{\infty})\}}$$

And 0 < β < 1. Thus $\left\|\underline{\varepsilon}^{(k)}\right\|_{\infty} \to 0$ as $k \to \infty$ and hence $d_{\underline{i}}^{(k+1)} \to d_{\underline{i}}$, $i=2,\ldots,n-1$.

3. Convergence Analysis of Rational Quadratic Spline

We begin by quoting a theorem which was given with proof in the earlier paper Gregory and Delbourgo (1982) and which will be required in the subsequent work.

Theorem3.1 Let $f(x) \in C^4[x_1, x_n]$ and $f^{(1)}(x) > 0$ on $[x_1, x_n]$. Let s(x) be the piecewise rational quadratic interpolant such that $s(x_1) = f(x_1)$ and $s^{(1)}(x_1) = d_1 \ge 0$, then for $x \in [x_1, x_{1+1}]$, $i = 1, \ldots, n-1$ $|f(x) - s(x)| \le \frac{h_1}{4c} \|f^{(1)}\| \max \{|f_1^{(1)}| - d_1|, |f_{1+1}^{(1)}| - d_{1+1}|\}$ $+ \frac{h_1^4}{304c} [\|f^{(4)}\| \|f^{(1)}\| + \frac{2}{3}h_1 \|f^{(3)}\|^2 + 2\|f^{(2)}\| \|f^{(3)}\|_1, (3.1)$

Where $h_{\downarrow} = x_{\downarrow+1} - x_{\downarrow}$, c is a constant independent of i whose value is at least

$$\frac{1}{2} \frac{\min}{x_1, x_n} f^{(1)}(x)$$
 and $\|\cdot\|$ denotes the uniform norm on $[x_1, x_n]$.

The next theorem establishes an upper bound for $\max_{2 \le i \le n-1} \left| f_i^{(1)} - d_i \right|$ when the d_i are the solutions of the non-linear consistency conditions (2.1).

Theorem 3.2 Let $d_1 = f_n^{(1)}$ and $d_n = f_n^{(1)}$ in the rational quadratic spline interpolant. Then, with the assumptions of Theorem 3.1 and for h sufficiently small,

$$\max_{2 \le i \le n-1} \left| f_i^{(1)} - d_i \right| \le \frac{h^3 K(h) \left\| f^{(1)} \right\|}{2m^3 / \left\| f^{(1)} \right\| - h^3 K(h)}, \tag{3.2}$$

where

$$k(h) - \frac{1}{12} \{7 \| f^{(1)} \| + \| f^{(2)} \| + o(h), \quad (3.3)$$

and
$$h=\max h_i$$
, $m = \min_{[x_1, x_n]} f^{(1)}(x) > 0$ (3.4)

Thus
$$\max_{2 \le i \le n-1} |f_i^{(1)} - d_i| = o(h^3)$$
.

Proof. Consider the consistency equations

$$b_i / d_i + c_i - a_{i-1}d_{i-1} - (a_{i-1} + a_i)d_i - a_id_{i+1} = 0$$

and let

$$b_{i} / f_{i}^{(1)} + c_{i} - a_{i-1} f_{i-1}^{(1)} - (a_{i-1} + a_{i}) f_{i}^{(1)} - a_{i} f_{i+1}^{(1)} = E_{i},$$

$$i = 2, \dots, n - 1.(3.5)$$

where, from (3.4), $0 < 1/f_i^{(1)} < 1/m$. Subtracting and writing

$$d_{\dot{\perp}} - f_{\dot{\perp}}^{(1)} = \lambda_{\dot{\perp}} \tag{3.6}$$

gives

$$b_{i}\lambda_{i} / \{f_{i}^{(1)}(f_{i}^{(1)} + \lambda_{i})\} + a_{i-1}\lambda_{i-1} + (a_{i-1} + a_{i})\lambda_{i} + a_{i}\lambda_{i+1} = E_{i},$$

$$i = 2, ..., n-1, \qquad (3.7)$$

where we require a bound on $\max_{2 \le i \le n-1} |\lambda_i|$. Now, from (3.5) and the definitions (2.2), it follows that

$$\begin{split} \mathbf{E}_{\mathbf{i}} \ \mathbf{h}_{\mathbf{i}-1} \ \mathbf{h}_{\mathbf{i}} \ \Delta_{\mathbf{i}-1} \ \Delta_{\mathbf{i}} &= \{\mathbf{h}_{\mathbf{i}} \ \Delta_{\mathbf{i}-1}^2 \ \Delta_{\mathbf{i}} + \mathbf{h}_{\mathbf{i}-1} \ \Delta_{\mathbf{i}-1} \ \Delta_{\mathbf{i}}^2 \} \ / \ \mathbf{f}_{\mathbf{i}}^{(1)} \ + (\mathbf{h}_{\mathbf{i}} \ + \mathbf{h}_{\mathbf{i}-1}) \ \Delta_{\mathbf{i}-1} \ \Delta_{\mathbf{i}} \\ &- \ \mathbf{h}_{\mathbf{i}} \ \Delta_{\mathbf{i}} \ (\mathbf{f}_{\mathbf{i}-1}^{(1)} \ + \ \mathbf{f}_{\mathbf{i}}^{(1)}) \ - \ \mathbf{h}_{\mathbf{i}-1} \ \Delta_{\mathbf{i}-1} \ (\mathbf{f}_{\mathbf{i}}^{(1)} \ + \ \mathbf{f}_{\mathbf{i}+1}^{(1)}) \ . \end{split}$$

On the right the following Taylor expansions are made:

$$\begin{split} &\Delta_{i-1} = f_{i}^{(1)} - \frac{1}{2} h_{i-1} f_{i}^{(2)} + \frac{1}{6} h_{i-1}^{2} f_{i}^{(3)} - \frac{1}{24} h_{i-1}^{3} f_{i-\alpha}^{(4)}, \\ &\Delta_{i} = f_{i}^{(1)} + \frac{1}{2} h_{i} f_{i}^{(2)} + \frac{1}{6} h_{i}^{2} f_{i}^{(3)} + \frac{1}{24} h_{i}^{3} f_{i+\beta}^{(4)}, \\ &f_{i-1}^{(1)} = f_{i}^{(1)} - h_{i-1} f_{i}^{(2)} + \frac{1}{2} h_{i-1}^{2} f_{i}^{(3)} - \frac{1}{6} h_{i-1}^{3} f_{i-\gamma}^{(4)}, \\ &f_{i+1}^{(1)} = f_{i}^{(1)} - h_{i} f_{i}^{(2)} + \frac{1}{2} h_{i}^{2} f_{i}^{(3)} + \frac{1}{6} h_{i}^{3} f_{i+\delta}^{(4)}, \end{split}$$

where $f_{i-\alpha}^{(4)}$ means $f^{(4)}$ $(x_i-\alpha h_{i-1})$, $0<\alpha<1$, etc. After some algebra, the result of these substitutions gives

$$\begin{split} \mathrm{E}_{\mathtt{i}} \Delta_{\mathtt{i}-1} \; \Delta_{\mathtt{i}} \; &= \mathrm{f}_{\mathtt{i}}^{(1)} \; \{ \frac{1}{8} \; (\mathrm{h}_{\mathtt{i}}^2 \; \mathrm{f}_{\mathtt{i}+\beta}^{(4)} \; - \, \mathrm{h}_{\mathtt{i}-1}^2 \; \mathrm{f}_{\mathtt{i}-\alpha}^{(4)}) - \frac{1}{6} \; (\mathrm{h}_{\mathtt{i}}^2 \; \mathrm{f}_{\mathtt{i}+\delta}^{(4)} \; - \, \mathrm{h}_{\mathtt{i}-1}^2 \; \mathrm{f}_{\mathtt{i}-\gamma}^{(4)} \} \\ &\quad + \; \frac{1}{12} \; (\mathrm{h}_{\mathtt{i}}^2 \; - \, \mathrm{h}_{\mathtt{i}-1}^2) \; \; \; \mathrm{f}_{\mathtt{i}}^{(2)} \; \; \mathrm{f}_{\mathtt{i}}^{(3)} \; \; + \; \; \mathrm{o}(\mathrm{h}^3) \quad . \end{split}$$

Now Δ_{i-1} Δ_{i} \geq m^2 , where m is defined by (3.4). Thus it follows that

$$m^2 |E_{\dot{1}}| \le \frac{1}{12} h^2 \{7 \|f^{(1)}\| \|f^{(4)}\| + \|f^{(2)}\| \|f^{(3)}\| \} + o(h^3)$$

Hence

$$|E_{i}| \le m^{-2} h^{2} K (h) ,$$
 (3.8)

where K (h) is defined by (3.3). We now consider equation (3.7) with index i=j taken so that $\left|\lambda_{j}\right|=\max_{2< i,j\leq n-1}\left|\lambda_{i}\right|$. Then

$$[b_{j}/\{f_{j}^{(1)}(f_{j}^{(1)}+\lambda_{j})\}+a_{j-1}+a_{j}]$$
 $\lambda_{j}=E_{j}-a_{j-1}\lambda_{j-1}-a_{j}\lambda_{j+1}$

where $\left|\lambda_{j}\right| = \left\|\underline{\lambda}\right\|_{\infty}$, since $\lambda_{1} = 0 = \lambda_{n}$. Taking moduli and noting that $0 < f_{j}^{(1)} + \lambda_{j} \le f_{j}^{(1)} + \left\|\underline{\lambda}\right\|_{\infty} \text{ gives}$

This inequality reduces to

$$\left\|\underline{\lambda}\right\|_{\infty} \le f_{j}^{(1)} \left| E_{j} \right| / \left\{ b_{j} / f_{j}^{(1)} - \left| E_{j} \right| \right\}, \tag{3.9}$$

under the assumption that the denominator is positive. Now

$$\begin{aligned} b_{j} / f_{j}^{(1)} &= (\Delta_{j-1} / h_{j-1} + \Delta_{j} / h_{j}) / f_{j}^{(1)}, \\ &= (f_{j-\theta}^{(1)} / h_{j-1} + f_{j+\phi}^{(1)} / h_{j}) / f_{j}^{(1)} \text{ for some } 0 < \theta, \phi < 1, \\ &\geq 2m / \{h \| f^{(1)} \| \}. \end{aligned}$$

Thus, from (3.8)

$$b_{j} / f_{j}^{(1)} - |E_{j}| \ge 2m / \{h ||f^{(1)}|| \} - m^{-2}h^{2} K (h)$$
 (3.10)

which is positive for h sufficiently small. Finally, substituting (3.10) and (3.8) in (3.9) gives the desired result.

Remark. When the results of Theorems 3.1 and 3.2 are taken together, it can be seen that $f(x) - s(x) = 0(h^4)$ on the assumption that $d_1 = f_1^{(1)}$ and $d_n = f_n^{(1)}$ are given end conditions.

4. <u>Numerical Results and Discussion</u>

Our first set of results is concerned with the order of convergence of the interpolation scheme. Tables 1 and 2 show the interpolation errors arising from the application of the rational quadratic spline scheme to

 $f(x) = \exp(x)$ over [0,1] when the exact choice of end conditions $d_1 = f^{(1)}(0) = 1$ and $d_1 = f^{(1)}(1) = 1$ $a = \exp(1)$ is made. The knots are taken to be equally spaced with four choices of interval lengths, namely h = 0.2, 0.1, 0.05, 0.025. In one experiment, the errors e_1, e_2, e_3, e_4 corresponding to these four choices of h are evaluated at $\theta = 1/3$, where, for each h, the interval of interpolation is that containing the point x = 0.86. In a second experiment the four intervals containing the point x = 0.86 are selected with $\theta = 2/3$.

error e ₁	error e ₁	error e ₃	error e ₄			
(h = 0.2)	(h = 0.1)	(h = 0.05)	(h = 0.25)	e_1/e_2	e_2/e_3	e_3/e_4
45217×10 ⁻⁵	26477×10 ⁻⁶	16973×10 ⁻⁷	1046×10 ⁻⁸	17.08	15.60	16.22

Table 1. Rational quadratic spline interpolation errors at $\theta = 1/3$ in interval containing x = 0.26, $f(x) = \exp(x)$.

error e ₁	error e ₂	error e ₃	error e ₄			
(h = 0.2)	(h = 0.1)	(h = 0.05)	(h = 0.25)	e_1/e_2	e_2/e_3	e_3/e_4
84774×10 ⁻⁵	47378×10^{-6}	30788×10^{-7}	1902×10 ⁻⁸	17.89	15.39	16.19

Table 2. Rational quadratic spline interpolation errors at $\theta = 2/3$ in interval containing x = 0.86, $f(x) = \exp(x)$.

The theory of Section 3 shows that a convergence rate of $0 \, (h^4)$ is expected and this is confirmed by both tests which clearly show the tendency of the ratios e_k / e_{k+1} to approach the value 2^4 .

Our second set of results is concerned with the application of the rational spline scheme to the monotonic data sets of Tables 3, 4, and 5.

X	7.99	8.09	8.19	8.7	9.2	10	12	15	20
Y	0	2.76429×10^{-5}	4.37498×10^{-2}	0.169183	0.469428	0.943740	0.998636	0.999919	0.999994

<u>Table 3.</u> Monotonic Data Set 1 [Fritsch & Carlson (1980)]

X	22	22.5	22.6	22.7	22.8	22.9	23	23.1	23.2	23.3	23.4	23.5	24
y	523	543	550	557	565	575	590	620	860	915	944	958	986

Table 4. Monotonic Data Set 2 [pruess (1979)]

Table 5. Monotonic Data Set 3 [Akima (1970); Fritsch & Carlson (1980)]

Both the Fritsch-Carlson radio-chemical data of Table 3 and the Akima data of Table 5 are used in Gregory & Delbourgo (1982) in connection with the piecewise rational quadratic C¹ scheme proposed there. These data sets are also used by Fritsch & Carlson (1980), where the need for good monotonic interpolants is clearly illustrated by the poor behaviour of other interpolation methods.

In general, to apply the C^2 rational spline scheme of this paper, it is necessary to set the end derivatives d_1 and d_n to suitable non-negative values. Two possible methods are explored below. It should be noted that for the Akima data, s(x) is constant over the interval [0,8] and the rational spline scheme is applied only over [8,15], The condition $d_1=0$ is then imposed at the left hand end point x=8 of this interval, where s(x) will be C^1 .

Method 1. This is based on the three point difference approximations

$$d_1 = \Delta_1 + (\Delta_1 - \Delta_2) h_1 / (h_1 + h_2)$$
 ,

if the expression on the right is positive, otherwise d₁ is set to zero;

$$d_n = \Delta_{n-1} + (\Delta_{n-1} - \Delta_{n-2}) h_{n-1} / (h_{n-2} + h_{n-1}),$$

if the expression on the right is positive, otherwise d_1 is set to zero.

Here each of
$$f_1^{(1)} - d_1$$
 and $f_n^{(1)} - d_n$ is $0(h^2)$.

 $\underline{\text{Method 2}}$ Non-linear approximations for d_1 and d_n are given by

$$\begin{aligned} d_1 &= \Delta_1 \; (\Delta_1 \; / \left\{ \; (f_3 \; - \; f_1) \; / \; (x_3 \; - \; x_1) \; \right\})^{h_1 \; / \; h_2}, \\ d_n &= \Delta_{n-1} \; (\Delta_{n-1} \; / \left\{ f_n \; - \; f_{n-2} \right) \; / \; (x_n \; - \; x_{n-2}) \; \right\})^{h} \; n \; - \; 1 \; / \; h \\ &= n \; - \; 1 \; / \; n \; - \; 2 \; . \end{aligned}$$

Here, as in Method 1, each of $f_1^{(1)} - d_1$ and $f_n^{(1)} - d_n$ each $0 \, (h^2)$, as can be shown by a Taylor expansion argument. These approximations are an improvement on the non-linear end conditions quoted in Gregory & Delbourgo (1982) and are identical with these conditions in the case of equal intervals.

Figures 1, 2, and 3 show the results of applying the rational spline scheme to the three given data sets. The scheme is implemented with the end conditions described by Method 2. (End conditions- based on Method 1 gives graphs little different from those shown.) For the purposes of comparison, the C^1 piecewise cubic interpolant using the \mathcal{L}_2 monotonicity region recommended by Fritsch & Carlson is shown. Also; the C^1 piecewise rational quadratic interpolant based on the second method of derivative approximation recommended by Gregory & Delbourgo (1982) is shown. For the Data Set 1, the extra degree of continuity of the rational spline scheme is apparent at the knot x=10 when compared with the C^1 schemes. The Data Set 2 illustrates a behaviour which is to be expected of any spline Scheme. Here, due to the nature of the data, the C^2 constraint has lead to more variation in the curve than that given by the rational quadratic C^1 scheme. However, in general it can be seen that the rational spline scheme produces good curves.

6. Conclusion

A method of constructing a C² monotonic interpolant to given monotonic data has been described. This method is based on a rational quadratic spline

representation and involves the solution of a non-linear system of consistency equations. The iterative solution of this system means that the method involves more work than existing \mathbb{C}^1 methods. However, the method seems to produce visually pleasing curves which have the advantage of being twice continuously differentiable and $0 \, (h^4)$ convergent.

References

- Akima, A. 1970 A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach. 17, 589-602.
- Fritsch, F.N. & Carlson, R.E. 1980 Monotone piecewise cubic interpolation. SIAM J. Num. Analysis 17, 235-246.
- Gregory, J.A.& Delbourgo, R. 1982 Piecewise rational quadratic interpolation to monotonic data. *IMA Journal of Numerical Analysis* 2, (to appear).
- Pruess, S. 1979 Alternatives to the exponential spline in tension. *Math. Comp.* 33, 1273-1281.

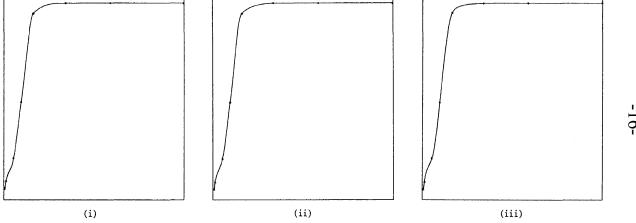


Fig. 1.Results for monotonic data set 1. (i) Fritsch-Carlson; (ii) C¹ piecewise rational quadratic; (iii) C² rational quadratic spline.

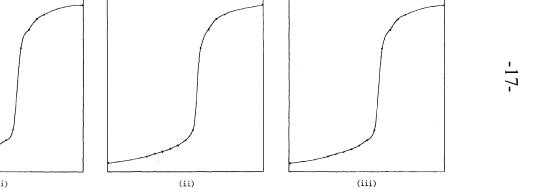


Fig. 2. Results for monotonic data set 2. (i) Fritsch-Carlson; (ii) C piecewise rational quadratic; (iii) C^2 rational quadratic spline.

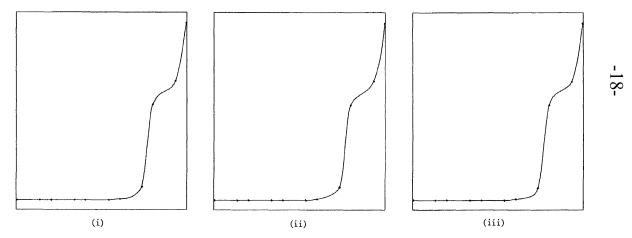


Fig. 3. Results for monotonic data set 3. (i) Fritsch-Carlson; (ii) C^1 piecewise rational quadratic; (iii) C^2 rational quadratic spline.