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ABSTRACT 

A moving grid system has been used to get  the  solution of 
the moving boundary problem discussed earlier in Part I, 
but basing the necessary interpolations on ordinary cubic 
polynomials rather than splines.    The computations are 
much more economical and the results obtained are also 
found to he more satiafactory. 
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A  Method  for  Solving  Moving  Boundary  Problems 

in Heat  Flow :    Part  II    Using  Cubic  Polynomials. 

John  Crank  and  Radhey  S.  Gupta 
Department  of  Mathematics,  Brunel  University,  Uxbridge. 

1.        Introduction. 

The  present  authors   [1 ]  discussed  a  moving  boundary 

problem  arising  from  the  diffusion  of  oxygen  in  an  absorbing  medium 

and  made  use  of  finite  difference  formulae  for  unequal  intervals 

in  the  region  of  the  moving  boundary  together  with  a  Taylor's 

series  expansion.     An  early finite  difference  method  [2]  proposed 

the  use  of  the  variable  time  step  chosen  so  that  the  boundary 

always  moves  from  one  line  of  the  space  grid  to  the  neighbouring 

one  in  a  single  time  step.     Another  method  [3]   maintained  a  fixed 

number  of  equal  space  intervals  between  the  surface  of  the  medium 

and  the  moving  boundary,   the  size  of  the  interval  being  correspondingly 

adjusted.     The  present  authors   [4]   suggested  the  use  of  a  moving 

grid  system  which  moves  with  the  velocity  of  the  moving  boundary. 

The  method  made  use  of  cubic  splines  to  interpolate  between  the 

grid  points. 

In  the  present  paper  same  idea  of  a  moving  grid  system 

is  employed  to  solve  the  problem  discussed  in  [1 ]   or  [4]  but  the 

necessary  interpolations  are  performed  by  using  ordinary  cubic 

polynomials  rather  than  splines.     This  avoids  solving  the  tridiagonal 

set  of  equations in Part I and the results  thus  obtained  also  show  a 

superiority  over  the  results  obtained  in  [4]. 

For  the  sake  of  completeness  of  the  paper  we  repeat 

sections  2  and  3  of   [4]. 
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2. An Example, 

We  shall  introduce  the  new  method   by  referring  to  a practical 

problem which  the  authors  described  in  detail in the  earlier paper  [1]. 

Expressed  in  non-dimensional  terms  we  require  the  solution  of  the 

equation 
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with  the  boundary  conditions 
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and  the  initial  condition 

u  = 2
1

 (1-x),      0  <   x  <  1 ,       t  =  0,          (4) 
 

where  δ(t)  denotes  the  position of  the  moving boundary  at  time  t.   

3. A  Moving  Grid  System. 
Traditionally,  we  divide  the  region  0  ≤  x ≤  1  into  n  intervals 

each  of  width  ∆x  such  that  xi,, = i∆x,  i  =  0,1,   .   n  and  n∆x  =  1. 

By  some  numerical  procedure  we  advance  the  solution  in finite time 

steps  ∆t,  starting  from the  known  solution at  t  =  0,  given by  (4) • 

Fig.1 Moving  Grid
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We  denote  by  the  values  of  u  at  (i∆x,   J∆t),   j-0,  1,  2  ...., 
J
iU

so  that  in  the  first  interval ∆t we  evaluate  Un_1    and  also  the 

new  position  of  the  boundary  which  has  moved  from  x=1   to  x=1  -ε , 

say,  as  in  Figure  1.    We  now  move  the  whole  grid  a  distance ε  to 

the  left  as  indicated  by  the  broken  lines,  and we  wish to  evaluate 

values  of  U0    and  the  second  space  derivatives  at  each  of  the 

points  x1 - ε ,    x2  -   ε  ,  .. ,  xn-1  - ε ,  1   - ε .     We  describe  another 

method  for  doing  this,  using  ordinary  cubic  polynomials  for 

interpolation between  the points  xo,  x1   ,  X2    • • •  Xn-i ,  1  at  t = 0. 

We  can  then proceed  in  similar  fashion  to  2∆t  and  in general  to 

j∆t  (j=  3,4,   •••)  provided we  include  a  modification  to  allow 

for  the  unequal  interval  ξj    at  the  jth  time  step  near  the  surface 

x  =  0. 
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Forward  Difference  Polynomial  (F.D.P. )  Method. 
 
In  this  method  we  retain  the  same  idea  of  a moving  grid 

system but  avoid  solving  the  tridiagonal  set  of  equations  of 

FDS  method  [4].     Instead,   the  second  space  derivatives  are 

calculated  from  the  values  of  u  by  using  the  simple  3- point 

finite-difference  formulae.     Interpolation  between  any  two  grid 

points  is  then based  on a  cubic  polynomial  which  satisfies  the 

function values  and  the  second  derivatives  at  the  two  grid 

points. 

Thus,  we  represent  u(x)  between  the  two  points  xi,, 

xi+i  by 

ui,i+1  α  + βx  +yx2  +  μx3     , (5) 

 

where  α  =  α(i,i+1 )   etc. 
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We  employ  the  usual  expressions 
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and  at  the  surface  x =  o, 
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where  ξ= x1  - x0. 

At  x =  x1  we  use  a  formula  of  the  same  type  buy 

generalised  to  allow for  the  unequal  interval  ξ,  namely 
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From (5.1)  we obtain 

 
Ui,1+ℓ   =    6μx    +    2y ,                                                     (9) 

and  thus  by  inserting  values  Ui ,  Ul+1 , Ui ,Ui+1  into  (5) 

and  (9)  we  derive  the  coefficients  α,  β,  y,μ   and hence 

determine  the  polynomial  for  the  interval xi  to  xi+1 

For  the  interval  near  the  moving boundary we  make  use  of 

the  conditions  derived  in  [1 ]  which  are  given  by 
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at  the  moving  boundary  giving  U"(xn)  =   1. 

Assuming  the  function values  to  be  known  at  any  time 

j ∆t when  the  distance  of  the  moving  boundary  from  the  surface 

x = 0    is  ξj + r∆x  the  method  proceeds  as  follows. 

Obtain  the  second  derivatives  U"(x1),  i  =  0,1,   ...................    ,   (r  +  1 ) 

from  (6),(7),(8)  and  (10).     The  value  of
1j

rU +
  i.e.     at 
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the  point  neighbouring    the       moving  boundary,  follows 

from  the  simple  explicit  relationship 
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where )j
r(*U χ  denotes  the  value  of  the  second  derivative  at  xr

at  t = j∆t. 

The Taylor's  series for Ur    obtained by expanding about 

the  moving point can be written as  in [4], 
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where ℓ(0  ≤  ℓ ≤  ∆ x)   is  the  distance  of the  moving point  from Ur . 

Using    (3)   and   (10 )   and  assuming that the  boundary is  not 

moving too quickly,  the above  relation gives   to  a reasonable  accuracy 

ℓ = √(2Ur)  . (12) 

Therefore,   once
1j

rU +
is known from (11 ),  we can find the 

position of  the  moving boundary from   (12 ).     Hence,   the 

movement,     εj+1        ,     of  the boundary in time ∆t,   from  j∆t to 

( j + 1 )∆t is given by 

  
 ε j+1 = ∆x - l j+1    . (13) 

Having  got  ε  from  (l 3 )   we  then  interpolate  the  values  of 

u(x)   at  t = j∆t  at  the  points  x1 -  ε ,    x2 -   ε  ,   ....,xr-ε",δ-ε 
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using  (5)   and  the  corresponding  second  derivatives  from 

the  linear  relationship 
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The values of u(x)  at x1,  x2 ,.................... xr   ,   at time  ( j + 1 )∆t 

follow  at  once  from 
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together  with 
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We  should remember  that  the  space  interval  x1  -  Xo = ξ 

is  not  fixed  and  varies  from  one  time  step  to  the  next. 

 
We  proceed  in  steps  ∆t  in  this  way  testing  ξ     at  each 

step  for  stability.     When 2
1

2
t
≥

ξ

Δ

 we  replace  ξ  by  ∆x + ξ 

to  get  values  at  the  next  time  step  and  proceed  as  before. 

A  stability  analysis  for  this  method  has  been  appended  at 

the  end  of  the  paper. 



5.       Results and Discussion. 

Let us rewrite the expression for the analytical 

solution obtained in  [1 ]  for small times when the boundary 

x = 1 has not moved to   the working   accuracy 
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0 ≤  x ≤  1. 

We  start  the  FDP  and  the  FGL*  solutions  from  the 

values  taken  from  (17)  at  t =   0.025  and  give  a  comparison 

for  the  positions  of  the  moving boundary  and  the  surface 

concentrations  in  Tables  I  and  II  respectively.     The  figures 

throughout  for  corresponding  step  size  show  a  very  good 

agreement  in both  cases.    The  corresponding  values  obtained 

by using  cubic  splines  in Part  I  are  also  presented  for 

comparison  in Tables  I  and  II. 

Apart  from  getting  superior  results  by the  FDP 

method  the  effort  involved  in using  it,  is  appreciably 

less  than  for  the  FDS  method  essentially  because  the 

latter  involves  the  solution  of  a  tridiagonal  set  of 

equations  at  each  time  step. 

Considering  the  important  problem  of  roughness  in 

the  positions  of  the  moving boundary which  is  produced 

by  the  FGL  method  near  the  times  where  the  process  used 

to  calculate  the  concentration  in  the  neighbourhood 

of  the  moving  point  is  transferred  one  space  interval 

towards  the  surface  x  =  0.    We  give  in Table  III 

*   Fixed  Grid  Lagrange,   the  numerical  method  used  in  [1 ] • 



the  positions     of  the  boundary  at  and  around  such  times  of 

shifting  the   interval  in  the  FGL  method  along  with  the 

corresponding  figures  from  the  FDP  method.     The  irregularities 

produced  in  the  former  method  are  clearly  visible  while  their 

counterparts  show  a  smooth behavior  throughout. 

Table  IV  gives  a  comparison  of  the  surface  concentrations 

obtained by  the  FDP  and  the  FGL  methods  at  and  around  times 

when  the  first  space  interval  ξ  in  the  former  is  increased 

to  ξ+Δx  for  the  succeeding  compulations.     It  is  interesting 

to  note  that  the  differences  in the  concentrations  show  no 

sign  of  irregularities. 

8. 
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TABLE   I 

Comparison  of  104δ   at  different   times.  All  solutions  start  from 
the  analytical  solution  at  t =   0.025.  

             Time 
Method 

0.040 0.060 0.100 0.120 0.140 0.160 0.180 0.185 

   FGL Δx=0.05 9992 9918 9346 8781 7966 6799 4942 4178 

  
Δx =0.10 

FDP 
    Δx = 0.05 

9988 
 

9992 

9904 
 

9918 

9308 
 

9344 

8734
 

8780 

7912 
 

7968 

6725 
 

6798 

4830 
 

4948 

4114 
 

4258 

FDS  Δx= 0.10 
 9993 9920 9327 8739 7892 6664 4680 3917 

TABLE   II 

Comparison  of  104U  at  the  surface  x=0,  at  different  times.  All 
solutions  start  from  the  analytical  solution  at  t =  0.025.  

                Time 
Method 

0.040 0.060 1 
0.100 

0.120 0.140 0.160 0.180 0.185 

FGL  Δx  =  0.05 2742 2234 1430 1089 777 486 216 151 

Δx  =  0.10 
FDP 
        Δx =  0. 05 

2745 
 

2742 

2238 
 

2234 

1434 
 

1429 

1093 
 

1089 

780 
 

776 

490 
 

486 

219 
 

216 

155 
 

151 

FDS    Δx=  0.10 
 2736 2277 1424 1083 771 481 210 145 



TABLE     III 

Table  showing  the  irregularities  in  the  position  of  the 
moving boundary,   calculated  by  the  FGL  method.   Comparatively 
smooth  figures  are  shown for  the  FDP  method  (Δx  =  0.10),  

Time FG-L Method FDP Method 

 
 104δ         -Δ              -Δ2 104δ         -Δ            -Δ2

0.110 

9099           29 
9070           30                1 
9040           30                0 
9010           26               -4 
8984 

9104 
9076           28             0 
9048           28             1 
9019           29             0 
8990           29 

0.137 

8141           52 
8089           55                 3 
8034           40               15 
7994                                0 
7954 

8145 
8100           45             1 
8054           46             0 
8008           46             2 
7960 

0.154 

7277           
7204           73 
7124           80                7 
7037           87              -35 
6985           52 

7256            61 
7195  
7132            63            2 
7068            64            1 
7002            66            2  

0.167 

6396 
6306            90               13 
6203          103               55 
6045          158              -92 
5979           66 

6343             82 
6261  
6177              84            2 
6090              87            1 
6002              88 

0.176 

5499 
5393         106                19 
5268         125              123 
5020         248            -165 
4937           83 

5520 
5415             105            4 
5306             109            4 
5193             113 
5077             116            3 

0.184 

4652         114 
4538         132                18 
4406         392              260 
4014         102            -290 
3912 

4563               
4421             142 
4271             150             8 
4114             157             7 
3948             166             9 

NOTE  :     The  data  are  tabulated  at  an  interval  of  time  Δt =   0.001. 
The  underlined  values  correspond  to  the  times  when  the 
interpolation process  near  the  moving boundary  is  transferred 
one  step  to  the  left. 
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TABLE     IV 

Table  showing  the  smoothness  of  the  surface  concentrations 
calculated  by  the  FDP  method  at  times  when  the  first 
interval  is  increased  by  Δx,     Corresponding  figures  for 
the  FGL  method  are  given for  comparison  (Δx  =  0.   10).  

  FDP Method FGL Method  

Time
  104Uo    -Δ 104U0 -Δ  

 

0·093 

1599 
1580 
1562 
1543 
1525 

 
 19 
 18 
17 
18 

1598 
1580 
1561 
1543 
1524 

 
18 
19 
18 
19 

 

 

0·127 

1013 
997 
321 
965 
950 

 
16 
16 
16 
15 

1013 
997 
981 
965 
950 

 
 16 
16 
16 
15 

 

 

0·148 

691 
676 
662 
647 
633 

 
15 
14 
15 
14 

691 
677 
662
647 
633 

 
14 
15 
15 
14 

 

 

0·163 

476 
462 
448
434 
420 

 
14 
14 
14 
14 

476 
462 
448
435 
421 

 
14 
14 
13 
 14 

 

 

0·174 

325 
312 
298 
285 
272 

 
13 
14 
13 
13 

326 
312 
299 
286 
272 

 
14 
13 
13 
14 

 

 

0·182 

219 
206 
193 
180 
168 

 
13 
13 
13 
12 

220 
207 
194

  181 
 168 

 
13 
13 
13 
13 

 

NOTE:      The  data  are  tabulated  at  an interval  of  time  Δt  =  0.001. 
The  underlined  values  correspond  to  the  times  when  the first 
space  interval  is  increased  by  Δx. 
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6, Generalisation. 

We consider the same latent heat type problem as discussed 

in [4].    In non-dimensional form the relevant equations are  , 
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Let us  assume  that  the  values  of U0, U1  ...............Ur  , 

Ur+1 are  known  at  the  jth  time  level  and  the  position  of 

the  moving boundary  is  also  known  at  that  time  which  is 

given by δj =ξj +  r Δx.    The width  of  all  the  meshes  is Δx 

except  the  first  one  which  isξj j • 

The second derivatives  at  the  surface  and  the  first 

mesh  points,  at  the  jth  time  level,  can be  computed 

by  (7)  and  (8)  respectively while  at  the  intermediate 

points  they can be  obtained by  (6). 

To  get  second  derivative  at  the  last  mesh  point 

i.e.   the  moving boundary we  differentiate  (20)  with 

respect  to    t    and  use  (18)  and  (21)  such  that 
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giving    (x”U r+1)   = 2δ&         where  δ   is   a  function  of   t. 

But  the  Taylor's  expansion for   U r  about  the  moving 

boundary,  after  making  the  appropriate  substitutions, 

gives  as  in  [4]  , 

δ&    =     -l+√(l+2Ur), (24) 

which  in  turn,  using  (23)   gives 

”U  (xr+1)     =        {-l + √{l+2Ur)}2    . (25) 

The  new  position  of  the  moving  boundary  at  the 

(j+  l)th        time  level  is  determined  from  (24)   after 

replacing  δ  by  a  forward  finite  difference     i.e. 

 

               .)j
rU21(1

t

J1J
++=

Δ
δ−+δ

                                                                        (26) 

The  interpolations  for  the  value  of  u  and  its   second 

derivative  for  xi,   ≤  x  ≤  xi+1  ,       i  =  0,   1,...     (r  -  l) 

can  be  performed  by  using  (5)  and  (l4.)  respectively.. 

But  for  the  interval  next  to  the  moving  boundary  the 

relations   (20)   and   (25)   are   to  be  used  for  the  desired 

interpolations. 

It  should  again  be  remembered  that  as  the  boundary 

δ(t)   is   moving  forward  the  first   interval  ξ  becomes 

larger  and  larger  with  time.     As  soon  as  it     becomes 

greater  than Δ x  we  should break  it  into  two  intervals 

making  the  second  to  be   of  width  Δx    and  the  interval 



nearest   to  the  surface  x =   0  to  be   of   width ξ -   Δx. 

The value  of  u,   at  the new mesh point,   has  to be  interpolated 

using  (5). 
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APPENDIX 

Stability  Analysis  for  F.P.P.Method.

Following  the   same  argument  as  in  the  previous  paper  [1 ],  it 

is  easy to  show  that  for  stability,  we  require  the  largest 

modulus   of  the  eigenvalues   of  the   square  matrix  A  to  be   less  than  unity 

where  A  is  given  by 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−

−
+
ΔΔ−

+
Δ

ΔΔ−

=

2r)r(1

....

r2r)(1r0
Δx)Δx(ξ

t2
ξΔx

t21Δx)ξ(ξ
t2

2ξ
t2

2ξ
t21

A

 

 
 

16. 

Applying Brauer's theorem as in [ 1 ]    to   the first and second rows of 

   δ  we  get 

and
2
1

2
tgiving

2
t2

2
t21)i( ≤

ξ

Δ

ξ

Δ
≤⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

ξ

Δ
−−λ



17. 
 

      ,
2
1

x
t

x
t2

x
t21)ii( ≤

Δξ
Δ

ξΔ
Δ

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δξ
Δ

−−λ  

respectively. 

When ξ  <  Δx,   the  stability  condition clearly  is
2
1

2
t
≤

ξ

Δ  However, 

when ξ  ≥  Δx  the   conditions   (i)  and   (ii)   are  automatically  satisfied 

since  we  have
2
1

2x

t
≤

Δ

Δ   for  the  explicit  scheme  at   the  intermediate 

points. 
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