
LIGHTWEIGHT NON-LOCAL NETWORK FOR IMAGE SUPER-RESOLUTION

Risheng Wang1,2, Tao Lei1,2∗, Wenzheng Zhou3, Qi Wang4, Hongying Meng5, Asoke K. Nandi5

1School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology
Xi’an 710021, P. R. China

2Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology
Xi’an 710021, P. R. China

3School of Electrical and Control Engineering, Shaanxi University of Science and Technology
Xi’an 710021, P. R. China

4School of Computer Science and the Center for OPTical IMagery Analysis and Learning (OPTIMAL),
Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China

5Department of Electronic and Computer Engineering, Brunel University London, Uxbridge,
Middlesex, UB8 3PH, United Kingdom

ABSTRACT
The popular deep convolutional networks used for image
super-resolution (SR) reconstruction often increase the net-
work depth and employ attention mechanism to improve
image reconstruction effect. However, these networks suffer
from two problems. The first is the deeper network easily
causes higher computational cost and more GPU memory
usage. The second is traditional attention mechanism often
misses the spatial information of images leading the loss
of image detail information. To address these issues, we
propose a lightweight non-local network (LNLN) for image
super resolution in this paper. The proposed network makes
two contributions. First, we use non-local module instead
of normal attention module to obtain larger receptive field
and extract more comprehensive feature information, which
is helpful for improving image SR reconstruction results.
Secondly, we use the depthwise separable convolution (DSC)
instead of the vanilla convolution to reconstruct the residual
block, which greatly reduces the number of parameters and
computational cost. The proposed LNLN and comparative
networks are evaluated on five commonly public datasets,
and experiments demonstrate that the proposed LNLN is su-
perior to state-of-the-art networks in terms of reconstruction
performance, the number of parameters and storage space.

Index Terms— deep learning, image super-resolution
(SR), non-local module, depthwise separable convolution
(DSC)

1. INTRODUCTION

Image super-resolution (SR) reconstruction is a technology to
restore low-resolution image into high-resolution image and
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improve image visual quality. It has been widely used in re-
mote sensing [1], medicine [2], criminal investigation [3] and
other fields. To achieve image SR, ones can improve image
sensors and optical instruments, but a high-precision equip-
ment is usually expensive. Therefore, it is not practical to
improve image super-resolution by changing hardware equip-
ment. Due to this reason, researchers begin to pay attention
to image super-resolution algorithms. With the continuous
development of deep learning, convolutional neural networks
(CNN) are increasingly used for image super-resolution re-
construction [4]. By designing a CNN model to learn the
nonlinear mapping relationship, it is possible to obtain the
reconstructed high-resolution images that correspond to a
low-resolution input images. Although existing deep learning
algorithms can provide good image super-resolution results
than traditional algorithms based on model-driven, they still
suffer from some shortcomings.

First of all, image SR belongs to ill posed problem, that
is, multiple possible high resolution (HR) images can be ob-
tained from one low resolution (LR) image after reconstruc-
tion, and there is no unique solution. Therefore, there are
many possibilities to map LR image to HR image, and it is
difficult to get the optimal solution. To solve the problem,
Kim et al. [5] proposed an accurate image super resolution
using very deep convolutional network (VDSR) that increases
the network depth to 20 layers. By cascading small filters in
the deep network structure, the context information of large
image area can be effectively utilized to improve image SR
accuracy. The deepening of VDSR network is conducive to
enhance the representation ability, but it cannot make full use
of the shallow feature information. Therefore, Zhang et al.
[6] proposed a residual dense network (RDN) that uses var-
ious skip connections and series operations between shallow
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and deep layers to combine dense connection layer and lo-
cal feature fusion to achieve excellent SR effect. In order to
further improve the convergence speed and accuracy of SR
networks, Yu et al. [7] proposed a wide activation for effi-
cient and accurate image super-resolution (WDSR) by widen-
ing the network width and increasing the characteristics of
deep flow. Although these studies mentioned above improve
image SR effect by designing deeper or wider networks, they
suffer from the problems of a huge mountain of parameters
and high computational cost requirement.

Secondly, each feature map channel is equally important
in the above mentioned SR networks, but in the actual train-
ing, different feature map channels have different importance.
Therefore, researchers begin to integrate attention modules to
SR networks. Li et al. [8] constructed a multi-scale resid-
ual network (MSRN) by introducing convolution kernels of
different scales into the network to realize image SR recon-
struction. Compared with previous CNNs with single-scale
convolution kernel, MSRN can fully extract feature informa-
tion and improve image SR reconstruction effect. Moreover,
Zhang et al. [9] proposed residual channel attention network
(RCAN), in which a very deep training network is constructed
by residual in residual (RIR) structure. Since both the long
skip connection and short skip connection in RIR are helpful
for preserving low frequency information of images, RCAN
can learn more useful information leading to better image
SR reconstruction effect. To improve RCAN, Zhang et al.
[10] proposed a densenet with deep residual channel attention
(DRCA) based on RCAN. Compared with RCAN, the net-
work requires fewer parameters and less computation. How-
ever, DRCA only considers the dependence between feature
channels but ignores the spatial correlation of feature maps
resulting in the loss of image detail information.

Although a lot of studies on image SR have been reported,
they still face two challenges. First, the channel attention
mechanism cannot capture the spatial relationship of images.
Secondly, the number of parameters and computational cost
of the network becomes higher to improve feature represen-
tation. In this paper, we propose a lightweight non-local net-
work for image super resolution (LNLN), our main contribu-
tions include:

(1) We integrate both spatial attention and channel atten-
tion to the proposed LNLN, which achieves better SR recon-
struction results than normal channel attention networks.

(2) We employ depthwise separable convolution (DSC) to
achieve a lightweight network to reduce the number of pa-
rameters. The proposed LNLN is superior to popular SR net-
works since it only requires 8.72MB memory.

2. THE PROPOSED NETWORK

For existing depth network models, the DRCA is one of the
most popular models for image SR reconstruction. DRCA
first uses a convolutional layer to extract the shallow features

of the input image. Secondly, the shallow features, dense con-
nection residual group, and the last projection layer (1 × 1
convolutional layer) are connected by long skip connection to
obtain a larger receptive field. Then the upscale module com-
posed of convolutional layer and pixel shuffle layer (PSL) is
used for upsampling. Finally, a convolution layer is used to
map the upscaled features to the SR image to obtain the recon-
structed high-resolution image. DRCA is mainly composed
of five residual blocks, and the vanilla convolution layers in
the residual blocks bring many parameters, which leads to the
requirement of large storage space and high computational
cost.
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Fig. 1. The framework of LNLN.

In view of the problems existing in DRCA, we propose
a lightweight non-local network for image SR. As shown in
Fig. 1, the structure of LNLN is composed of four stages.
In the first stage, we use a 3 × 3 depthwise separable convo-
lution layer to extract shallow features, and then use a non-
local module to obtain the feature map with spatial correla-
tion. In the second stage, deep feature information is fur-
ther extracted through densely connected blocks of residuals
to obtain more details regions. In the third stage, the fusion
feature maps of spatial correlation and channel correlation are
obtained through non-local module. In the last stage, the re-
constructed image is obtained by upsampling and convolution
operation. The LNLN shows two advantages than popular
DRCA: (1) the LNLN provide better image SR reconstruc-
tion results due to the use of non-local module. (2) the LNLN
requires fewer parameters and memory usage due to the em-
ployment of DSC.

2.1. Global Context Capture Module (GCCM)

In neural network architectures, the larger receptive field is of-
ten obtained by stacking more convolutional layers. However,
a vanilla convolutional layer only provides local spatial infor-
mation while missing global spatial information. To solve the
problem of integrating both local and global spatial informa-
tion to SR networks, we use non-local [11] operations to di-
rectly calculate the relationship between two locations, so as
to quickly capture the long-distance correlation and get more
global feature information.

Non-local operations can be defined as:

yi =
1

c (x)

∑
∀j

f (xi, xj) g (xj) (1)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/icassp39728.2021.9414527, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP)



where
f (xi, xj) = exp

(
θ (xi)

T ∅ (xj)
)

(2)

c (x) =
∑
∀j

f (xi, xj) (3)

the x is the input feature map, i is the output feature position
index and j is the index of all possible positions. x and y are
inputs and outputs of non-local operations. The f (xi, xj) cal-
culates the similarity between xi and xj . the function g(xj) is
the representation of feature map at position j, y is obtained
by standardizing the response factor c (x).
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Fig. 2. Non-local module.

Although the non-local module can obtain more compre-
hensive feature information, it will cause a substantial in-
crease in computing cost. Therefore, we only add non-local
blocks in low-level and high-level feature spaces, which is a
good way to supply global information to the network for im-
age restoration while slightly increasing the computation cost.
In addition, we divide the feature map into four regional grids
as shown in Fig. 2. After each grid performs a non-local op-
eration, the area grids are reconnected to the feature map and
processed by subsequent layers, which further effectively re-
duces the computational cost of the non-local module [12]. In
fact, the non-local module not only ensures the training effi-
ciency of the network, but also helps the network learn more
complex and useful features to obtain higher reconstruction
performance.

2.2. Model compression

Generally, with the deepening of network models, the feature
representation will be improved and the number of parame-
ters will be multiplied. A very deep network often requires
a lot of storage resources and easily causes over fitting risk.
Therefore, we use DSC [14] instead of vanilla convolution to
construct residual groups, which can effectively compress the
network model while ensuring the network training accuracy.
The vanilla convolution needs to consider both spatial infor-
mation and channel correlation. In DSC, the channel convo-
lution is performed first, and then the pointwise convolution
is performed. DSC not only reduces the computational com-
plexity of convolution operation and reduces the number of

parameters, but also increases the network width and extracts
richer feature information, it thus does not cause too much
loss to the accuracy of reconstruction results. Suppose that
the size of the input feature map in the vanilla convolution is
W×H×C1, the output feature map size isW×H×C2, where
W andH are the width and height of the feature map, respec-
tively. C1 and C2 represent the numbers of channels, the size
of convolution kernel is K×K, then the computational com-
plexity of vanilla convolution isK2×W×H×C1×C2 while
the computational complexity of DSC isW×H×(K2×C1+
C1×C2). Compared with the vanilla convolution, the compu-
tational complexity of DSC can be reduced to (1/C2+1/K2)
of the vanilla convolution. In LNLN, we replace the vanilla
convolution in the residual group with DSC and construct a
lightweight residual group (LRG) module. The parameter
number of the LRG is 0.38M, which is only 14.12% of the
corresponding module in DRCA network. The whole net-
work model is compressed from 55.4MB to 8.72MB.

3. EXPERIMENTS

Experiments are performed on a workstation with Intel Core
i7 8700X @ 3.2GHz, 64GB RAM, NVIDIA GeForce RTX
2080Ti GPU, Windows 10 Pro, and PyTorch 0.4.

We used 800 high-resolution images from DIV2K dataset
[15] as training set, and used Set5 [16], Set14 [17], BSD100
[18], Urban100 [19], Manga109 [20] as test sets. Firstly, LR
image is obtained by bicubic downsampling of HR image.
Then, we increase the number of samples by randomly rotat-
ing 90◦, 180◦, 270◦ and horizontally flipping.

3.1. Training

For the LNLN training, the hyper-parameter values are set as
follows. The initial learning rate is 10−4, and then reduced
to half every 200 epochs. We use L1 loss as training loss and
Adam optimizer with β1 = 0.9, β2 = 0.99, ε = 10−8. In
addition, we use the ReLU as the activation function. After
the training, we use the optimal model parameters to recon-
struct the test set. We transform the SR image into YCbCr
space and evaluate the reconstructed image effectively on Y
channel.

3.2. Evaluation and results

We selected peak signal to noise ratio (PSNR) and structural
similarity (SSIM) as important indicators to evaluate the qual-
ity of image reconstruction. The higher values of PSNR and
SSIM correspond to the better SR reconstruction effect.

In Table 1, it can be seen that the values of PSNR and
SSIM provided by the proposed method on Set5, Set14, B100,
Urban100 and Manga109 datasets are basically higher than
comparative models. Although the results of Manga109 are
slightly lower than those on RCAN when the scaling factor
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Table 1. Quantitative comparisons with different networks for scale factor of 2 and 4.

Method Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

2

33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.8 0.9339
VDSR [5] 37.53 0.959 33.05 0.913 31.9 0.896 30.77 0.914 37.22 0.975
EDSR [13] 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.1 0.9773
RCAN [9] 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.26 0.9384 39.44 0.9786
DRCA [10] 38.28 0.9615 34.13 0.923 32.39 0.9023 33.25 0.9382 39.4 0.9779

Ours 38.32 0.9618 34.15 0.9232 32.42 0.9028 33.27 0.9384 39.43 0.9784
Bicubic

4

28.42 0.8104 26 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
VDSR [5] 31.35 0.883 28.02 0.768 27.29 0.7251 25.18 0.754 28.83 0.887
EDSR [13] 32.46 0.8968 28.8 0.7876 27.71 0.742 26.64 0.8033 31.02 0.9148
RCAN [9] 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
DRCA [10] 32.68 0.9009 28.91 0.7898 27.8 0.7444 26.94 0.8111 31.37 0.9182

Ours 32.72 0.9012 28.92 0.7899 27.82 0.7446 26.96 0.8112 31.38 0.9183

Bicubic EDSRVDSR

RCAN DRCA OursGround Truth

Bicubic VDSR EDSR

RCAN DRCA Ours Ground Truth

(a) Visual comparison for scaling factor s=2 (b) Visual comparison for scaling factor s=4

Fig. 3. Visual comparison of different models when s=2 and s=4.

is 2, the results on other datasets are better than those on
RCAN. As we all know, with the increase of scaling factor,
the image reconstruction will become more difficult. When
the scaling factor is 4, the proposed LNLN obtains higher
values of PSNR and SSIM than other models as shown in
Table 1. In addition, the LNLN provides a clearer image tex-
ture with fuller edges and sharper results that are closer to the
original image in Fig. 3.

Table 2 shows the comparison of the number of train-
ing parameters and storage usage of networks. Compared
with EDSR, RCAN and DRCA, the LNLN achieves a signifi-
cant compression on the model size. Although the number of
trainable parameters and model size are slightly higher than
VDSR, the LNLN achieves better reconstruction results due
to the use of the non-local module. In summary, our proposed
LNLN achieves the better balance between the reconstruction
effect and the model size.

4. CONCLUSION

In this paper, in order to ensure the accuracy of image recon-
struction and reduce the memory requirement of CNNs, we
propose a lightweight non-local network for image super res-

Table 2. Comparison of the efficiency of different networks.
Method Parameters (M) Storage usage (MB)
VDSR 0.66 2.6
EDSR 41.3 10.8
RCAN 15.8 34.9
DRCA 14.2 55.4

ours 2.04 8.72

olution. On the one hand, we use non-local module to obtain
the long-distance dependence of images and global informa-
tion leading to better image SR results. On the other hand,
we use DSC to reduce the number of model parameters. Fi-
nally, the propose LNLN achieves a good balance between
reconstruction effect and model size. Experiments demon-
strate that the proposed LNLN shows the advantages of higher
reconstruction accuracy, fewer parameters and lighter model
compared with the popular networks in five commonly used
datasets.

In the future, we will study the application of semi
supervised learning and few-shot learning in image super-
resolution reconstruction.
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