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Abstract: This paper presents a straightforward power management algorithm that supervises
the contribution of more than one energy source for charging a vehicle, even if the car is in mo-
tion. The system is composed of a wireless charging system, photovoltaic (PV) generator, fuel
cell (FC), and a battery system. It also contains a group of power converters associated with each
energy resource to make the necessary adaptation between the input and output electrical signals.
The boost converter relates to the PV/FC, and the boost–buck converter is connected with the battery
pack. In this work, the wireless charging, FC, and PV systems are connected in parallel via a DC/DC
converter for feeding the battery bank when the given energy is in excess. Therefore, for each of these
elements, the mathematical model is formulated, then the corresponding power management loop
is built, which presents the significant contribution of this paper. The efficient power management
methodology proposed in this work was verified on Matlab/Simulink platforms. The battery state of
charge and the hydrogen consumption obtained results were compared to show the effectiveness of
this multi-source system.

Keywords: power management; renewable energy sources; electric vehicle; wireless charging system;
photovoltaic generator; fuel cell generator

1. Introduction

Nowadays, the carbon dioxide rate has crossed 400 ppm, and it is still rising. Many
solutions try to save the environment, and this is by finding some sustainable technologies
that help reduce energy consumption or use some other energy resources. The car industry’s
interest in electrified powertrains is growing due to significantly reducing fuel consump-
tion and harmful transportation emissions. The electrification of this main transport
tool was studied as a severe challenge for having an efficient and robust transport tool.
Therefore, researchers have not stopped improving in this field, providing many solutions
and technical specifications for having a kind of electrified transport tool that is adaptable
in use, and is safe and environmentally friendly.

Firstly, some solutions were concentrated on how it is possible using a pure electric
vehicle (EV) or a hybrid electric vehicle (HEV). More than synthesis has tested these solu-
tions and proves the advantages and drawbacks of each one. This study provides helpful
information regarding the importance of EV or HEV and their problems [1]. These solutions
were divided into more than a research field. Some of these studies were concentrated
on the central traction part. The objective was to find the best electrical machine that can
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be adapted inside an electric vehicle or inside a hybrid electric vehicle to increase the
performance, minimize the vehicle weight, and have less energy consumed. The authors
in [2] tested two kinds of machines adapted for HEV or EV and proved the importance
of choosing the perfect machine in the traction part. On the other side, some applications
were made on the power management solutions, and many reviews and studies were made.
Some complicated solutions, based on intelligent controllers and others based on gaming
theory, were found to be helpful, and these were evaluated by [3–5]. On the other side,
the researchers were concentrated on how it is possible to increase vehicle autonomy.
The given solution was also divided into more than one field [6]. Working on the battery
technology or the recharge solutions was also profitable for improving the vehicle auton-
omy [7,8]. Other works were addressed to find a solution for reducing the recharge time
or reducing the number of stops for recharge on a highway road [9,10]. The notion of
fast recharge or grid notion to the vehicle is applied in the vehicle recharge field [11,12].
However, with another solution, the renewable energy field was also used for charging
the vehicle, and the photovoltaic panels were used as an energy source for the recharge
stations or for covering the vehicle body in order to extract the solar power and convert it
to energy power inside the vehicle [13]. Additionally, the idea of a rechargeable road was
defined recently, and the principle of wireless energy transmitter was found to be suitable
for an electric vehicle on the road [14]. Some weaknesses were specified in this solution,
as the vehicle speed cannot be high when using this solution. On the other side, the fuel
cells method was also found helpful for a hybrid EV, and many research works were
applied for testing this tool [15,16]. The only weakness of this kind of solution is the high
noise, which can make the vehicle unconvertable. Additionally, some solutions based on
regenerative braking systems were found valuable and helpful [17].

This study aims to combine the major of these recharge tools into the HEV and
test the efficiency of the new combined recharge system. Using the photovoltaic, fuel
cells, and the wireless transmitter will make the vehicle with a hybrid recharge system.
These solutions significantly reduced the emission of radioactive elements that cause
pollution of the environment and help to increase vehicle autonomy, mainly if used on
highway roads.

Therefore, this paper is formulated to test the efficiency of a hybrid recharge tool
based on multiple energy sources for charging the vehicle even if it is on the road.
The combination of these recharge tools composes PV cells, FC generator, and a wire-
less recharge receiver to use the rechargeable induction roads.

This study provides a detailed mathematical exposition for each of these recharge
solutions and exposes the corresponding power management loop, which can control the
energetic flow from these sources to the main consumers: the motor or the main energy
stock (the battery pack). The benefit of each energy recharge solution and the combination
between them were investigated.

This paper is systematized as follows. After the previous Section 1, the hybrid
electric vehicle composition is presented and discussed, and the interior architecture
is shown in Section 2. In Section 3, the corresponding mechanical model and mathemat-
ical equations are formulated to explore the various forces acting on the vehicle body.
Additionally, the traction system is described, and its related mathematical model is
presented. The permanent magnet machine, its associated converter, and its primary
energy source are introduced. The multi-source recharge tool is presented in Section 4.
Firstly, the mathematical discerption for each energy source is formulated—the wireless
energy transmitter, PV, and FC generators. The power management loop is presented at
the end of this section. In Section 5, the simulation steps are carried out, and the results
obtained are presented and discussed. A detailed discussion regarding the efficiency of
this multiple recharge tool is introduced. In the end, the conclusion is given, and future
endeavors are explored.
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2. Composition of EVs

Hybrid electric vehicles (HEVs) have two or more sources of power onboard the
vehicle and/or two or more sources of energy power [18,19]. This vehicle can be categorized
into two categories: the first category is the pure EVs, and the second category is HEVs.
This model provides electricity with some other source, in which the vehicle could be
driven on a battery in an urban/populated area and could turn to the engine outside a city.
Further, HEVs can be subdivided into plug-in HEVs (PHEVs) and fuel cell EVs (FCEVs).
Thus, EVs may be classified into HEVs, battery-EVs (BEVs), PHEVs, and FCEVs [20].
The illustration of HEVs, addressed in this work, is shown in Figure 1.
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Figure 1. HEV model.

In the case of a battery charger for HEVs based on fuel cell energy, the amount
of energy transferred depends on the energy source and vehicle composition, and the
designer has to deal with particular points made by the system: wireless recharging (WR)
system, PV generator, battery model, mechanical model, FC, electric motor, and buck-boost
converter [21].

This paper proposes a multi-source system, and this system consists of FC system,
a wireless charging system, a PV generator, and a lithium-ion battery. The system is shown
in Figure 2.
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3. The Vehicle Model

The comportment of a moving vehicle is determined by all the forces acting on it in
that direction. Figure 3 illustrates the forces acting on the vehicle [22]. The tractive force
Ft in the contact area between the tires of the drive wheels and the road surface thrusts
the vehicle forward [23]. The torque from the power plant produces it and then transfers
it through the transmission to the driving wheels. When the vehicle is mobile, there is
resistance that attempts to stop its movement.
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3.1. Tractive Force

The mechanical model of the vehicle must make it possible to calculate the power
necessary to propel the latter according to its characteristics, speed, and acceleration.
To calculate the power required to move the vehicle forward, we apply the fundamental
principle of dynamics [24,25].

mvd
→
v/dt = ∑

→
Fext,

∑
→

Fext =
→
F t −

(→
F r f +

→
F slope +

→
F aero

) (1)

The force Faero is equivalent to the aerodynamic drag force and is given by:

Faero =
1
2

ρairv2 A f Cd (2)

where ρair is the air density, v is the vehicle speed, A f is the frontal vehicle area, and Cd is
the aerodynamic drag coefficient.

The rolling resistance force of the wheels on the ground
(

Fr f

)
is given by the formula:

Fr f = Crmvg cos(ang) (3)

where Cr is the rolling resistance coefficient, g denotes the acceleration due to gravity,
ang denotes the angle, and mv is the vehicle mass.

The gravitational force
(

Fslope

)
depends on the road slope and is given as:

Fslope = mvg sin(ang) (4)

The traction force expression (Ft) is represented as:

Ft = mv
dv
dt

+ Fr f + Fslope + Faero (5)
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The mechanical power (Pm) required to move the vehicle forward is equal to the
product of the traction force and the speed, thus:

Pm = Ftv (6)

According to Equation (6), the load torque is given by:

Tr = Frr (7)

Fr is the total force and r is the tire radius.

3.2. Decomposition of the Traction System
3.2.1. Electrical Motor

The permanent magnet synchronous motor (PMSM) dynamic properties can be de-
scribed by a set of nonlinear differential equations relating the stator and rotor currents
and voltages with the mechanical quantities; torque, speed, and angular position [26–28].
After implementing Park transformation, the voltage expressions in the (d, q) axis are
presented in Equation (8):{

vd = Rsid + Ld
did
dt −ωLqiq

vq = Rsiq + Lq
diq
dt −ωmLdid + ωmλm

(8)

where vd, vq, id, iq, Ld, Lq are the direct and the quadrature voltages, currents, and stator
inductances, respectively. Additionally, ωm denotes the mechanical speed of the electrical
motor, and λm denotes the permanent magnet flux linkage. Rs is the stator resistance.

The electromechanical torque (Te) can be represented as follows:

Te =
3
2

(
P
2

)(
λdiq − λsid

)
(9)

where λd = Ld.id + λm and λq = Lq.iq.
For the non-salient poles PMSM model, Ld = Lq = Ls, then the modified torque

expression becomes:

Te =
3
2

(
P
2

)(
λmiq

)
(10)

The electromechanical motor equation is formulated as:

Te − Tl =
Pm

2

(
J

dωm

dt
+ f ωm

)
(11)

where Tl , Pm and J denote the load torque, the number of poles, and the rotor inertia

coefficient, respectively. The inverter voltage vector (
→
VS) is given in (12):

→
VS =

√
2
3

UDC

(
Sa + Sbei2π/3 + Scei4π/3

)
(12)

In this work, a PMSM of a maximum power of 50 kW was used. The parameters of
this electric motor are summarized in Table 1.
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Table 1. Parameters of the motor.

Parameters Symbol Values

Shaft power (w) Pu 50,000
Pole pairs Pm 2

Resistance of stator (Ω) Rs 2.63
Resistance of rotor (Ω) Rr 2.42
Mutual inductance (H) M 0.253

Rotor and stator self-inductance (H) Ls = Lr 0.214
Inertia moment (kgm2) J 0.03
Viscous friction (Nms2) f 0.0002

3.2.2. Battery Model

As the recharge system is employed to charge a battery pack, it is essential to recognize
the mathematical battery model. The best performances can be found for the lithium model,
and its detailed function can be visualized in [29,30]. In (13), we show the battery output
voltage, referred to as (Vbatt/cell) by one cell. Thus, the voltage expression depends on
the (Voc), which is the open-circuit voltage. Rst and Cst, which represent the resistance
and capacitance of the electromagnetic short-term double-layer properties, respectively,
and Rlt and Clt, which represent the resistances and capacitances of the electro-chemical
long-time-interval mass transport effects. As it can be discharged or charged, Ist could be
either positive or negative.

Vbatt/cell = Voc + Rbatt Ib +
∫ Rlt Ib −Vlt

RltClt
dt +

∫ Rst Ib −Vst

RstCst
dt (13)

where Rbatt and Ib denote the ohmic resistance and load current of the cell, respectively.
The battery pack voltage Vbatt relies on the number of series (Nsbatt) and parallel

(Npbatt) cells used. Equation (14) formulates both Vbatt and Rbatt in terms of Nsbatt and
Npbatt.  Vbatt =

Nsbatt
Npbatt

(Vbatt/cell)

Rbatt =
Nsbatt
Npbatt

(
Ro + Rst

(
Ist
Il

)
+ Rlt

(
Ilt
I

)) (14)

where Ro denotes the charging or discharging battery cell resistance.
The state of charge (SOC) of the battery can be expressed as a function of time as given

in Equation (15) [31].

SOC(t) = −
∫ t

t−1
1

60 (SOC(t− 1)Nb −W(Vb Ib))dt

SOC(%) =
Q(t)
QMax

× 100
(15)

where W denotes the charge/discharge coefficient, and Nb means the battery self-discharge.

3.2.3. Buck-Boost Converter

The battery is the main energy source connected to a two-quadrant DC/DC converter
in this phase. This phenomenon is necessary as the storage system may have two different
signs, positive or negative, allowing both directions to transfer energy. This converter has
two roles—voltage elevation and minimization. A buck-boost DC converter assures this.
The DC/DC converter comprises two IGBT transistors (S1 and S2) and a coil (L) connected,
as illustrated in Figure 4.
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Steady-state converter analysis, the bidirectional converter works in boost when the
switch S1 and the diode D2 are in conduction. In this case, the battery is discharged,
and the current of the inductor iL is positive. The mathematical model of the converter in
boost mode is given by the differential system Equation (16).

diL
dt = − (1−u1)

L Vdc +
Vbat

L −
R
L iL

ibat = (1− u1)iL
(16)

The bidirectional converter works in the buck mode when the switch S2 and the diode
D1 are in conduction. In this case, the battery charges and iL is negative. The mathematical
model of the converter in buck mode is given by the differential system Equation (17).

diL
dt = − u2

L Vdc +
Vbat

L −
R
L iL

ibat = u2iL
(17)

A binary variable Y is defined to represent the operating mode. Thus:

Y =

{
1 si iLre f > 0 (boost)
0 si iLre f < 0 (buck)

(18)

where iLre f denotes the reference current to control S1 and S2.
Hence, the converter (buck-boost) model can be obtained by:

diL
dt = −(Y(1− u1) + (1−Y)u2)

Vdc
L + Vbat

L −
R
L iL

ibat = (Y(1− u1) + (1−Y)u2)iL
(19)

The control signal of the buck-boost converter, u12, is defined and expressed by
Equation (20).

u12 = Y(1− u1) + (1−Y)u2 (20)

Therefore, the system of equations becomes:

diL
dt = −u12

Vdc
L + Vbat

L −
R
L iL

ibat = u12iL
(21)

The DC bus of the system is modeled by a filter capacitor and is expressed in (22):

Cdc
dVdc

dt
= i1 + ibat − ibus (22)

4. Hybrid Recharge System

This recharge system utilizes three kinds of energy sources: the wireless recharge
model, PV panels, and FC generators. Therefore, modeling each of these facilities is
essential to introduce this hybrid recharge tool clearly.
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4.1. Wireless Power Transfer Model

The wireless charging device enables electrical energy to be transferred to the bat-
tery. An equivalent installation of the EV wireless charging device is shown in Figure 5a.
The static model of the charger system with one receiver coil was studied in this section.
In Figure 5b, a simplified representation of this inductive power transfer method is shown.
VS (secondary voltage) and VP (primary voltage) represent this inductive power transfer’s
output and input voltages (IPT).
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Figure 5. Recharge System: (a) Wireless charging system; (b) Simplified representation of wireless charging system.

The mutual inductance (M) is related to the magnetic coupling coefficient (kWR) as
follows, where Lp and Ls denote the primary and secondary inductances.

kWR =
M√
LpLs

(23)

The reflected impedance from the secondary to the primary is represented by:

Zp =
ω2M2

Zs
(24)

ω denotes the oscillation angular frequency (rad/s). Additionally, Zp and Zs denote
the primary and secondary impedances. Zs depends on the selected compensation topology.
The current Is flows through the secondary winding is represented as follows:

Is =
jωMIp

Zs
(25)

The voltages across the primary and secondary windings are introduced as follows:{
Vp = jωLp Ip − jωMIs

Vs = jωMIp − jωLs Is
(26)

The primary and secondary resonant frequencies are identical and given by:

ω =
1√

CsLs
=

1√
CpLp

= 2π f (27)
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The power expressions (Pp and Ps) of the primary and secondary sides are expressed
as follows:

Pp = Vp Ip =
(

jωLp Ip − jωMIs
)

Ip

Ps = Vs Is =
(

jωMIp − jωLs Is
)

Is
(28)

The power provided by the wireless charging system is proportional to the vehicle’s
speed. This conclusion was previously proved in [31].

A wireless charging system of a maximum power of 8–10 kW is used in this work.
The other parameters of the wireless charging system are summarized in Table 2.

Table 2. Wireless recharge system data.

Parameters Values

i1 (A) 20.0
Uref (V) 480.0

Coil diameter (cm) 40.0
Distance between coils (cm) 140.0
Width of winding, W (cm) 19.0

Average winding radius, r (cm) 15.5
Number of turns, N (turns) 17.0

4.2. PV Generator Model

The solar cell is an electrical component used in some application requirements,
such as an EV to transform solar energy into electricity to produce the electrical energy
requirements. Many authors have suggested various models for modeling solar cells [32,33].
Figure 6 shows the single-diode model used to model the solar cell [34].

Sustainability 2021, 13, x FOR PEER REVIEW 9 of 20 
 

Table 2. Wireless recharge system data. 

Parameters Values 

i1 (A) 20.0 

Uref (V) 480.0 

Coil diameter (cm) 40.0 

Distance between coils (cm) 140.0 

Width of winding, W (cm) 19.0 

Average winding radius, r (cm) 15.5 

Number of turns, N (turns) 17.0 

4.2. PV Generator Model 

The solar cell is an electrical component used in some application requirements, such 

as an EV to transform solar energy into electricity to produce the electrical energy require-

ments. Many authors have suggested various models for modeling solar cells [32,33]. Fig-

ure 6 shows the single-diode model used to model the solar cell [34]. 

 

Figure 6. Equivalent model of a PV cell into a panel. 

The current 𝐼𝑐 is given by 

𝐼𝑐 = 𝐼𝑝ℎ + 𝐼𝑠ℎ + 𝐼𝑑 (29) 

The current 𝐼𝑝ℎ (PV cell’s current) can be evaluated as: 

{
  
 

  
 𝐼𝑝ℎ =

𝐺

𝐺𝑟𝑒𝑓
(𝐼𝑟𝑠−𝑟𝑒𝑓 + [𝐾𝑆𝐶𝑇(𝑇𝑐 − 𝑇𝑐−𝑟𝑒𝑓)])

𝐼𝑑 = 𝐼𝑟𝑠 (𝑒
𝑞(𝑉𝑐+𝑅𝑠𝐼𝑐)

𝛼𝑘𝑇 − 1)

𝐼𝑠ℎ =
1

𝑅𝑝
(𝑉𝑐 + 𝑅𝑠𝐼𝑐)

 (30) 

With 𝐼𝑟𝑠 current can be approximately obtained as: 

Figure 6. Equivalent model of a PV cell into a panel.

The current Ic is given by
Ic = Iph + Ish + Id (29)



Sustainability 2021, 13, 7351 10 of 20

The current Iph (PV cell’s current) can be evaluated as:
Iph = G

Gre f

(
Irs−re f +

[
KSCT

(
Tc − Tc−re f

)])
Id = Irs

(
e

q(Vc+Rs Ic)
αkT − 1

)
Ish = 1

Rp
(Vc + Rs Ic)

(30)

With Irs current can be approximately obtained as:

Irs =
Irs−re f

e(
qVoc

ns∗nβTc )−1
(31)

Finally, the current Ic can be given by

Ic = Iph − Irs

(
e(

q(Vc+Rs Is)
αkT )−1

)
− 1

Rp
(Vc + Rs Is) (32)

The model of a PV generator depends on the number of parallel and series cells,
Np and Ns. Finally, the PV generator current can be given by:

Ip = Np Iph −
[

Np Irs

(
e(

q(Vc+Rs Is)
αkT )−1

)
− NP

Rp

(
Vp

nsNs

+
Rs Ip

NP

)]
(33)

The parallel and series resistance (Rp and Rs) values are not be considered in this
model, i.e., Rp = ∞ and Rs = 0. Thus:

Ip = Np Iph −
[

Np Irs

(
e(

q(Vp)
nβnsTc Ns )−1

)]
(34)

4.3. FC Generator Model

The FC uses air and hydrogen as fuel sources. Equation (35) shows the rates of
conversion between the hydrogen U fH2

and the oxygen U fO2
. Figure 7 shows the FC proton

exchange membrane (PEM) [35].
U fO2

=
nr

o2
nin

o2
=

60,000∗R∗T∗i f c
2∗z∗F∗Pair∗Vair∗y%

U fH2
=

nr
H2

nin
H2

=
60,000∗R∗T∗i f c

z∗F∗Pf uel∗Vf uel∗x%

(35)
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Figure 7. Equivalent circuit of the FC recharge tool.
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The partial pressures of the hydrogen PH2 , oxygen PO2 and products water vapor
defined by the parameters applied to block B, are expressed by the following equations [36]:

PH2 =
(

1−U f H2

)
x%Pf uel

PH2o =
(

ω f c + 2y%U f O2

)
Pair

PO2 =
(

1−U f O2

)
y%Pair

(36)

where x denotes the hydrogen in the fuel (%) and y represents the oxygen in the oxidant (%).
When T ≤ 100 ◦C

En = 1, 229 + (T − 298)
−44.43

z ∗ F
+

R ∗ T
z ∗ F

∗ ln
(

PH2 ∗ P
1
2

O2

)
(37)

When T > 100 ◦C

En = 1, 229 + (T − 298) ∗ −44.43
z ∗ F

+
R ∗ T
z ∗ F

∗ ln

PH2∗P
1
2

O2

PH2O

 (38)

Then, from the Nernst voltage (En) and the partial pressures of gases, the exchange
current (i0) and the values of the circuit voltage (Eoc) can be calculated as given in the
following equations:

Eoc = Kc ∗ En (39)

i0 =
z ∗ F ∗ k ∗

(
PH2 + PO2

)
Rh

e−(∆G/RT) (40)

Equation (41) expresses the Tafel slope model.

A =
R ∗ T

z ∗ α ∗ F
(41)

Using the polarization curve at nominal operation conditions and some additional
parameters, such as the stack efficiency, supply pressures, composition of fuel and air,
and temperatures, the nominal rates of conversion gases can be estimated as it is in
Equation (42).  U f H2 =

ηnom∗∆h0
(H2O)g∗N

z∗F∗Vnom

U f O2 = 60,000∗R∗Tnom∗N∗Inom
2∗z∗F∗Pairnom∗VIpm(air)nom∗0.21

(42)

The voltage source (E) can be given by E = Eoc −
(

N ∗ A ∗ ln
( i f c

i0

)
∗
(

1
1+sTd/3

))
Vf c = E− R f c ∗ i f c

(43)

where ifc is the FC current (A), Rfc is the internal resistance (Ω), N is the cells number,
and Td is the response time.

The expressions in Table 3 are used to calculate the detailed model parameters.
The corresponding expression represents each variable.

Table 3. FC variables and their expressions.

Parameters α ∆G Kc K K1

Expression R∗N∗Tnom
zF∗N∗A −RTnom ∗ ln

(
i0
K1

)
Eoc

En(nom)

Vu

Kc

(
U fO2

(max)−U fO2
(nom)

) 2Fk(PH2(nom)+PO2(nom))
hR



Sustainability 2021, 13, 7351 12 of 20

Where Vfc is the voltage of the FC (V), Pfuel is the pressure of fuel (atm), and Pair is the
pressure of air (atm). Kc is the voltage of nominal operation conditions (V), z is the moving
electrons, k is the Boltzmann’s constant, and h is a constant (6.626 × 10−34 Js).

4.4. The Proposed Power Management Strategy

When the vehicle is in a garage or a covered parking place, the solar radiation cannot
give the necessary power for starting the vehicle. Therefore, the battery/ultracapacitor is
used for moving the vehicle. On the other hand, the battery charging method needs many
technologies, solutions, or sources for quick recharge and increasing vehicle autonomy
when it is on the highway [37]. Therefore, it is mandatory to control and supervise the
different recharge solutions for improving the global efficiency of the battery [38].

An easy power management algorithm is built to show how to control the three
used energy sources for charging the EV. The PV generator cannot be efficient only in
particular weather conditions and vehicle positions, different from the dark zones or
when the sunshine is covered. Therefore, the PV generator system is absent in this con-
trol algorithm when the vehicle starts from the stop position as a garage or covered
parking. Even if the vehicle starts from a sunshine zone, the PV generator cannot collab-
orate by feeding the vehicle with the necessary energy, as its given power, not enough.
Therefore, when the EV starts, the battery is used as the primary energy source.
Next, if the EV is in motion, more than one case can occur, and this is related to the
acceleration given ratio. Even the acceleration factor is high; the FC generator will con-
tribute by the maximum as possible. Additionally, it is crucial to indicate that the wireless
recharge method will decrease its contribution even the vehicle speed increase. The case of
deceleration is also taken into account in this algorithm, and the idea is to shut down the
FC generator. Therefore, based only on the wireless recharge method by percentage and
according to the vehicle speed. The proposed algorithm is shown in Algorithm 1.

Algorithm 1. The proposed power management algorithm.

if (vehicle will start)
{Battery is the main source of power (100% power from the battery)}

else if (vehicle is in motion)
{Extract the maximum power from the PV generator (PV generator contribute by 100% in the
energy sources)

if (acceleration ratio is between 0 and 0.4%)
- Use 10% of FC generator
- Use 100% of power from the WR

else if (acceleration ratio is between 0.4 and 0.6%)
- Use 50% of FC power
- Use 50% of WR power

else (acceleration ratio > 0.6%)
-Use 100% of power from the FC
-Use 20% of WR power

}
else if (Deceleration or Brake)

{ - FC is not used
- WR power contribute by:

{ if (vehicle speed < 20 km/h)
-Use all the power from the WR

else if (20 km/h < vehicle speed < 40 km/h)
-Use 50% of WR power
else (40 km/h < vehicle speed)
-Use 20% of WR power

}
}
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5. Results and Discussion

The simulation steps were carried out, and the results obtained are presented and
discussed. A detailed discussion regarding the efficiency of this multiple recharge tool
is introduced. However, it is necessary to mention that the presented results were ob-
tained in the condition supposing each of these three-recharge systems is stable and
running in the stationary mode. If one of these systems is not stable, the proposed solution
will have difficulty, and the overall running system will need an adaptable control tool.
The stability analysis and effects of each of these recharge tools are discussed in [39–41].
From the other side, investigation of the stability factors for each of these elements and on
the global re-charge performance will be treated in our future endeavors.

5.1. Simulated Drive Cycle

The different simulation conditions were carried on after implementing the mathemat-
ical models on the Matlab/Simulink platform. The simulation time is calculated to have
300 m distance as a road. On this trajectory, there are 150 coils, and the distance between
two coils is 1.5 m. Figure 8 shows this arrangement. On the other side, the car simulation
model comprises 256 PV cells, which provide 6 kW electrical power in the best climatic
conditions. The initial SOC of the battery is set to 65%.
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Values of the vehicle parameters and the electric motor used in the simulation are
listed in Table 4.

Table 4. Parameters of the vehicle and the electric motor used in the simulation.

Parameter Symbol Value

Vehicle weight (kg) m 20.0
Rolling resistance fr 480.0

Frontal surface area of the EV (m2) Af 40.0
Tire radius (m) R 140.0

Aerodynamic drag coefficient Cd 19.0

In the different simulation steps, more than one parameter should be supervised and
evaluated for calculating the efficiency of the power management algorithm.
Essentially, the instant battery voltage, the battery state of charge, the instant battery
current, the battery capacitor, and more need to be sensed and evaluated. These parameters
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must be supervised for the measured vehicle speed and according to the given acceleration
form. However, it is mandatory to oversee the energy flow of the different recharge sources
and inspect the global energy management reaction.

Figure 9 shows the given driving cycle and the corresponding vehicle speed. It should
be mentioned that the drive cycle form was applied for simulating a city road condition.

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 20 
 

the instant battery voltage, the battery state of charge, the instant battery current, the bat-

tery capacitor, and more need to be sensed and evaluated. These parameters must be su-

pervised for the measured vehicle speed and according to the given acceleration form. 

However, it is mandatory to oversee the energy flow of the different recharge sources and 

inspect the global energy management reaction. 

Figure 9 shows the given driving cycle and the corresponding vehicle speed. It 

should be mentioned that the drive cycle form was applied for simulating a city road con-

dition. 

  

(a) (b) 

Figure 9. City road condition: (a) Accelerator; (b) speed. 

According to the drive cycle, the profitability of the hybrid system can be verified, 

especially with supervising the battery’s SOC. The forms of power delivered by the stud-

ied source are illustrated in Figure 10a–e for the power provided by the PV generator, 

wireless charging, FC generator, consumed power by the electric motor, and the battery 

power, respectively. 

  

(a) (b) 

 
 

(c) (d) 

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

Time (s)

W
R

 p
o

w
e
r 

(W
)

Figure 9. City road condition: (a) Accelerator; (b) speed.

According to the drive cycle, the profitability of the hybrid system can be verified,
especially with supervising the battery’s SOC. The forms of power delivered by the stud-
ied source are illustrated in Figure 10a–e for the power provided by the PV generator,
wireless charging, FC generator, consumed power by the electric motor, and the battery
power, respectively.

The implemented hybrid device provides enough power to drive the engine and
charge the battery simultaneously, especially for low speeds, and this is shown in Figure 10e,
between the instants 4 s and 8 s, where the given battery power is the minimum.

5.2. Hybrid System Efficiency

Figure 11 shows the SOC of the used battery. From the obtained results, it is possible to
understand that the hybrid system runs perfectly, as indicated by the power management
algorithm. Furthermore, to check the robustness of the hybrid system, a sudden shift
in the rotational speed at t = 2 s, t = 4 s, and t = 8 s is made. The results obtained
validate the hypothesis proposed. We note that even the induction motor’s rotation speed
varies, holding the flux steady. This figure shows that the SOC rate increases during weak
acceleration, although the vehicle is in motion, and the same during the stop phase.

Figure 12 shows the dynamics of the consumption of hydrogen. It is clear that the
hydrogen consumption rate is closely related to the power delivery by PV and WR systems.
We note that the proposed hybrid system has contributed to saving a significant amount
of hydrogen.

Based on this case of deceleration and brake mode, each recharge method was tested,
and its energetic contribution can be evaluated. The best choice can be related to the combi-
nation between FC, PV, and WR. However, as the difference is not enough, the fundamental
energy efficiency cannot be evaluated unless the PV weight system is correctly studied.
It is demonstrated that with the new PV cells technology [42], the extra weight on the
vehicle will be relatively affected. Therefore, one can conclude that the benefit of this
renewable energy source is assured. However, it is also essential to indicate that the vehicle
speed factor significantly influences the energetic performance as demonstrated in [2–5],
which shows that PV cells and WR will contribute by 100% on a deceleration mode.

Finally, the efficiency of each recharge system can be summarized as presented in
Table 5, in which this table classifies these recharge tools according to their energetic gain
for the same road conditions.



Sustainability 2021, 13, 7351 15 of 20

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 20 
 

the instant battery voltage, the battery state of charge, the instant battery current, the bat-

tery capacitor, and more need to be sensed and evaluated. These parameters must be su-

pervised for the measured vehicle speed and according to the given acceleration form. 

However, it is mandatory to oversee the energy flow of the different recharge sources and 

inspect the global energy management reaction. 

Figure 9 shows the given driving cycle and the corresponding vehicle speed. It 

should be mentioned that the drive cycle form was applied for simulating a city road con-

dition. 

  

(a) (b) 

Figure 9. City road condition: (a) Accelerator; (b) speed. 

According to the drive cycle, the profitability of the hybrid system can be verified, 

especially with supervising the battery’s SOC. The forms of power delivered by the stud-

ied source are illustrated in Figure 10a–e for the power provided by the PV generator, 

wireless charging, FC generator, consumed power by the electric motor, and the battery 

power, respectively. 

  

(a) (b) 

 
 

(c) (d) 

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

Time (s)

W
R

 p
o

w
e
r 

(W
)

Sustainability 2021, 13, x FOR PEER REVIEW 15 of 20 
 

 

(e) 

Figure 10. Results: (a) PV generator power; (b) wireless charging system power; (c) FC power; (d) consumed electric motor 

power; (e) battery power. 

The implemented hybrid device provides enough power to drive the engine and 

charge the battery simultaneously, especially for low speeds, and this is shown in Figure 

10e, between the instants 4 s and 8 s, where the given battery power is the minimum. 

5.2. Hybrid System Efficiency 

Figure 11 shows the SOC of the used battery. From the obtained results, it is possible 

to understand that the hybrid system runs perfectly, as indicated by the power manage-

ment algorithm. Furthermore, to check the robustness of the hybrid system, a sudden shift 

in the rotational speed at t = 2 s, t = 4 s, and t = 8 s is made. The results obtained validate 

the hypothesis proposed. We note that even the induction motor’s rotation speed varies, 

holding the flux steady. This figure shows that the SOC rate increases during weak accel-

eration, although the vehicle is in motion, and the same during the stop phase. 

Figure 12 shows the dynamics of the consumption of hydrogen. It is clear that the 

hydrogen consumption rate is closely related to the power delivery by PV and WR sys-

tems. We note that the proposed hybrid system has contributed to saving a significant 

amount of hydrogen. 

 

(a) 

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2
x 10

4

Time (s)

B
a
tt

e
ry

 p
o
w

e
r 

(W
)

Low Speed Medium speed
Deceleration or Brake

Start

Phase
High Speed

0 2 4 6 8 10
64.5

64.6

64.7

64.8

64.9

65

Time (s)

S
O

C
 (

%
)

 

 

PV PV+WR WR

Figure 10. Results: (a) PV generator power; (b) wireless charging system power; (c) FC power; (d) consumed electric motor
power; (e) battery power.
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Table 5. Energetic contribution of the proposed multi-recharger system *.

Index/Metric FC PV+FC WR+FC PV+WR+FC

Energy gain + ++ + +++
Efficiency + ++ + +++

Renewable energy use + ++ ++ +++
Profitability ++ +++ ++ +++

* In this table, + denotes low, ++ denotes moderate, and +++ denotes high.

6. Conclusions

This section ends the article after this report by outlining the key points and the
main contribution of this study. Therefore, after providing all of the necessary equations
for constructing a hybrid electric vehicle with a multi-charged source and displaying all
of the internal models for the three studied recharge tools, a global model is designed
and applied on the MATLAB Simulink tool to provide input on energy performance.
The findings demonstrate that all of the designed models are operating well, and the power
management control loop has been tested for the simulation test conditions. Statistics show
that using this multi-recharge tool improves vehicle power performance and increases
vehicle autonomy. However, some flaws in this analysis can be seen in terms of the weight
of the PV recharge method and its global input on the real energetic gain. These flaws
will only be fully evaluated if a thorough analysis of the PV weight system is conducted,
which is why this issue is one of the work’s future endeavors.
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Nomenclature

ρair Air density
Cd Aerodynamic drag coefficient
Cr Rolling resistance coefficient
v Vehicle speed
A f Vehicle frontal area
mv Vehicle mass
g Acceleration due to gravity
ang Angle
Rs Stator resistance
ωm Mechanical speed of the electrical motor
λm Permanent magnet flux linkage
Rbatt Cell’s ohmic resistance
Ib Cell load current
Ro Battery cell charging or discharging resistance
W Charge/discharge coefficient
Nb Stands of the battery self-discharge
SOCmax Maximum state of charge
Vfc Voltage of fuel cell (V)
Pfuel Pressure of fuel (atm)
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Pair Pressure of air (atm)
Vfuel Fuel flow rate (l/min)
Vair Air flow rate (l/min)
N Cells number
Td Response time
ifc Fuel cell current (A)
x Hydrogen in the fuel (%)
y Oxygen in the oxidant (%)
Rfc Internal resistance (Ω)
z Moving electrons
Kc Voltage of nominal operation conditions (V)
k Boltzmann’s constant [J K-1]
ηnom Nominal efficiency (%)
∆h0

(H2O)g Enthalpy of water vapor (J mol−1)

Vnom Nominal voltage (V)
Inom Nominal current (A)
Paimom Nominal absolute pressure of air (Pa)
Q Battery capacity (Ah)
Qmax Maximum Battery capacity (Ah)
SOC State of charge (%)
Tnom Nominal operating temperature (K)
PH2O Water pressure (bar)
R Constant (8.3145 J/(mol K))
h Planck constant (6.626 × 10−34 J s)
α Charge transfer coefficient
ωfc Percentage of water vapor %
M Mutual inductance (H)
ω Oscillation angular frequency (rad/s)
kWR Magnetic coupling constant
Ls Secondary inductance (H)
Lp Primary inductance (H)
Zp Primary impedance (Ω)
Zs Secondary impedance (Ω)
Ip Primary current (A)
Is Secondary current (A)
Vp Primary voltage (V)
Vs Secondary voltage (V)
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