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Abstract

In this paper, the distributed state and fault estimation problem is discussed for a class of nonlinear time-varying systems
with probabilistic quantizations and dynamic event-triggered mechanisms. To reduce resource consumption, a dynamic event-
triggered strategy is exploited to schedule the data communication among sensor nodes. In addition, the measurement signals
are quantized and then transmitted through the network, where the probabilistic quantizations are taken into consideration.
Attention is focused on the problem of constructing a distributed estimator such that both the plant state and the fault
signal are estimated simultaneously. By using the matrix difference equation method, certain upper bound on the estimation
error covariance is first guaranteed and then minimized at each iteration by properly designing the estimator parameters.
Subsequently, for the proposed distributed estimation algorithm, the estimator performance is analyzed and a sufficient
condition is established to guarantee that the estimation error is exponentially bounded in mean-square sense. Finally, an
illustrative example is provided to verify the usefulness of the developed estimation scheme.

Key words: Sensor networks; state and fault estimation; distributed estimation; dynamic event-triggered mechanisms;
probabilistic quantizations.

1 Introduction

Sensor networks (SNs) have found extensive applications
in various practical areas including military (e.g. bat-
tle damage assessment), environment (e.g. forest fire
detection), health (e.g. drug administration) and home
(e.g. home automation), see e.g. [10, 12, 29, 35, 37, 38].
Typically, a SN contains plenty of smart sensor n-
odes that are distributed in a pre-determined region to
achieve certain goals such as target tracking. These n-
odes are equipped with transceivers and therefore have
the capabilities to share the information with each oth-
er via wireless communication channels [8]. As one of
core issues with SNs, the distributed state estimation
problem aims to obtain the local estimate by using the
measured outputs from the sensor itself and its neigh-
bors, and such a problem has drawn particular research
attention in the past decade. Accordingly, a large num-
ber of distributed estimation/filtering algorithms have
been developed with respect to various performance
indices, see e.g. [6, 42, 43] for the distributed H∞ state
estimation methods and [3, 5, 34, 36] for the distributed
Kalman filtering approaches.
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As is well known, even a small fault in the system could
result in deterioration or even divergence of the system
performance [1]. As such, the fault detection (FD) prob-
lem, whose purpose is to detect whether an undesired
fault occurs or not in a timely way, has recently become a
critical issue and attracted an increasing research inter-
est, see e.g. [30,45]. It should be noticed that it is general-
ly difficult to obtain sufficiently accurate characteristics
(e.g. the shape and the size) of the faults by using the
FD technique only. Therefore, it becomes a vitally im-
portant problem as how to acquire the detailed informa-
tion of the fault itself in the area of fault tolerant control,
which brings about the so-called fault estimation prob-
lem. Up till now, great effort has been made to develop
the fault estimation algorithms for various types of sys-
tems including networked control systems [39], complex
networks [11, 26], 2-D systems [25] and multi-agent sys-
tems [27]. For example, a new fault estimation method
has been proposed in [11] for a class of time-varying s-
tochastic complex networks, where the influences from
stochastic inner couplings, randomly varying topologies
as well as missing measurements have been well exam-
ined. Nevertheless, when it comes to the SNs, the cor-
responding distributed fault estimation is still an open
problem, and this constitutes one of the motivations of
this paper.
In a networked environment, it is a fairly ubiquitous phe-
nomenon that the signal is quantized before being trans-
mitted through bandwidth-constrained channels, where
the quantization is implemented by a quantizer that
converts a real-valued signal into a piecewise constant
one taking values on a finite set [22, 44]. Obviously, this
conversion process would inevitably introduce certain
quantization errors that might degrade the system per-
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formance or even result in the instability of the overall
dynamical systems [41]. As such, in the past few years,
there has been an ever-increasing research interest on
the control/estimation problems subject to signal quan-
tization effects, see e.g. [15,21,23,47]. Roughly speaking,
the existing quantization models can be classified into t-
wo types, namely, the deterministic quantization model
and the probabilistic quantization (PQ) model. With re-
gard to the PQs, the component of the quantized signal
would be a random variable whose expectation is equal
to the real value of the signal, where the unbiasedness
of the quantization is ensured. So far, a few preliminary
research results have been reported on the investigation
of PQs [4, 21, 46].
For the SNs, a noticeable fact is that a typical sen-
sor can only be equipped with an energy-limited bat-
tery and the energy consumption is primarily caused by
the data communications. For energy-saving purposes,
it is naturally desirable to have appropriate communi-
cation strategies with aim to avoid unnecessary data ex-
changes between sensor nodes. In this regard, many ef-
fective communication scheduling strategies have been
developed to determine whether certain data transmis-
sion is necessary or not [48]. Some representative com-
munication strategies include the Round-Robin proto-
col, static event-triggeredmechanisms (SETMs) and dy-
namic event-triggered mechanisms (DETMs), see e.g.
[9, 17, 18, 20, 33, 40, 49, 50]. Among these strategies, the
DETMs stand out for the additionally introduced dy-
namic variable in the triggering rules, and have aroused
a particular research interest for their capability of pro-
viding an adequate trade-off between the communication
burden and the system performance [14]. Very recent-
ly, the distributed set-membership estimation scheme
has been proposed in [13] for a class of time-varying
dynamical systems over SNs under DETMs. Neverthe-
less, in case that the PQs are concerned, the correspond-
ing distributed state and fault estimation problem with
DETMs has not been studied yet, and another motiva-
tion of the current research is therefore to shorten such
a gap.
Inspired by the above discussions, the aim of this pa-
per is to tackle the recursive distributed state and fault
estimation problem over SNs with PQs and DETMs.
In doing so, we are confronted with the following dif-
ficulties/challenges: 1) how to design a suitable recur-
sive distributed estimator such that an acceptable up-
per bound is firstly ensured on the estimation error co-
variance (EEC) and subsequently minimized; 2) how to
examine the impacts from DETMs and PQs on the es-
timation performance; and 3) how to establish a suf-
ficient condition under which the estimation error is
exponentially bounded in mean square sense. In this
sense, the main purpose of this paper is to overcome
the above-mentioned difficulties/challenges through de-
veloping dedicated distributed estimators. Accordingly,
the main contributions of this paper are summarized as
follows: 1) a new joint state and fault estimator design
problem is investigated for SNs with PQs and DETMs;
2) an effective algorithm is proposed to obtain the desired
estimator parameters by solving a recursive matrix equa-
tion; and 3) a sufficient condition is provided to ensure
the exponentially mean-square boundedness of the esti-
mation error.

Notation R
n denotes the n-dimensional Euclidean s-

pace and R
n×m is the set of all n×m real matrices. The

superscript “T ” means the matrix transposition and ‖·‖
stands for the Euclidean norm. Let I be an identity ma-
trix and diag{· · · } be a block-diagonal matrix. Pr{·} de-
notes the probabilities of “ · ”. E{x} is the expectation
of the random variable x. tr{A} represents the trace of
A. For symmetric matrices X and Y , X ≥ Y (X > Y )
means that X−Y is positive semi-definite (positive def-
inite).

2 Problem Formulation

Consider the following nonlinear time-varying target
plant:

xk+1 =gk(xk) +Akfk +Bkwk (1)

where xk ∈ R
nx is the plant state; Ak and Bk are known

time-varying matrices; the process noise wk ∈ R
nw is

a Gaussian white-noise sequence with covariance Rk >
0. The mean and covariance of the initial state x0 are,
respectively, x̄0 and P0 > 0. fk ∈ R

nf is the fault signal
whose dynamic characteristics are described by

fk+1 = Fkfk. (2)

Here, Fk is a known matrix and the initial value of the
fault f0 has the mean f̄0 and covariance Z0 > 0.
Assumption 1 [28] gk(·) : Rnx → R

nx is a continu-
ous nonlinear function that satisfies gk(0) = 0 and the
following constraint:

‖gk(u)− gk(v)− Ek(u− v)‖ ≤ µk ‖u− v‖ (3)

for all u, v ∈ R
nx , where Ek is a known matrix and µk is

a nonnegative scalar.
Remark 1 In this paper, the distributed state and fault
estimation problem is addressed for the time-varying sys-
tem (1), where the additive fault is taken into accoun-
t. In order to reflect the engineering practice, we adopt
the model (2) that is capable of depicting the dynamical
change of the fault and such a model has been widely used
in the literature [11]. Note that one of the main differ-
ences between the fault estimation problem in this paper
and disturbance estimation problem considered in many
papers is that the fault has its own dynamics and the dis-
turbance is generally unknown and bounded. Moreover,
it is easy to see that the fault would reduce to a constant
one when Fk = I. Consequently, the fault in (2) is more
general that covers the frequently investigated constant
fault as a special case. Such kind of fault is quite common
in real-world systems such as three-tank systems [2] and
wind turbine condition monitoring systems [31].
In this paper, there are n sensor nodes in the network
and the network topology structure is described by G =
(V ,Q,W) with the node set V = {1, 2, . . . , n}, the edge
setQ ⊆ V×V , and the weighted adjacency matrix W =
[ωij ]n×n. The edge (i, j) ∈ Q means that node i has
access to the information from node j. If (i, j) ∈ Q, we
assume that the corresponding element ωij inW satisfies
ωij = 1, otherwise ωij = 0. For node i, denote by Ni =
{j ∈ V : (i, j) ∈ Q} the set of its neighbors plus the
node itself.
For the ith (i = 1, 2, . . . , n) node, the measurement out-
put is expressed as follows:

yi,k = Ci,kxk +Di,kvk, (4)
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where yi,k ∈ R
ny is the measurement output of the ith

node, Ci,k and Di,k are known time-varying matrices,
the measurement noise vk ∈ R

nv is a Gaussian white-
noise sequence with covariance Qk > 0.
Assumption 2 All the mentioned random variables x0,
f0, wk and vk are mutually independent.
In order to save the communication cost, for the sensor
node i, a DETM is exploited to judge when the infor-
mation is sent to its neighboring nodes. Let 0 ≤ ti0 <
ti1 < · · · < til < · · · represent the triggering instants de-
termined by:






til+1 = min
{

k|k > til,
1

δi
~i,k + σi − ‖ϑi,k‖ ≤ 0

}

,

~i,k+1 = λi~i,k + σi − ‖ϑi,k‖, ~i,0 = ~
i
0.

(5)

Here, λi, σi and δi are given positive scalars, ϑi,k is de-

fined by ϑi,k , yi,k − yi,ti
l
with the latest broadcast

measurement yi,ti
l
, and ~

i
0 ≥ 0 is the given initial con-

dition. Assume that the parameters λi and δi satisfy
λiδi ≥ 1, which implies that the variable ~i,k satisfies
~i,k ≥ 0 for all time instants. For notation simplicity, we

set ȳi,k , yi,ti
l
when k ∈ [til, t

i
l+1).

In the sequel, we consider the case that the triggered
measurement ȳi,k is quantized before being transmitted.
Define the quantized measurement as follows:

q(ȳi,k) , [q1(ȳ
1
i,k) q2(ȳ

2
i,k) . . . qny

(ȳ
ny

i,k)]
T , (6)

where ȳji,k (j = 1, 2, . . . , ny) is the jth element of ȳi,k,

qj(·) : R → Uj is the probabilistic quantizer that maps
a real value to the following quantization level set Uj :

Uj ,

{

̺ji,ι|̺
j
i,ι , ιτ ji , ι = 0,±1,±2, . . .

}

, τ ji > 0. (7)

When ȳji,k ∈ [̺ji,ι, ̺
j
i,ι+1], the signal ȳji,k is quantized in

the following probabilistic manner:

Pr
{

qj(ȳ
j
i,k) = ̺ji,ι|α

j
i

}

= 1− αj
i ,

Pr
{

qj(ȳ
j
i,k) = ̺ji,ι+1|α

j
i

}

= αj
i

with αj
i ,

ȳj

i,k
−̺j

i,ι

τ j

i

∈ [0, 1].

Defining ϕj
i,k , qj(ȳ

j
i,k)− ȳji,k as the quantization error,

from [21], we have

E{ϕj
i,k} = 0, E{(ϕj

i,k)
2} ≤ (τ ji )

2/4,

E{ϕj
i,kϕ

l
i,k} = 0 (for j 6= l). (8)

By setting ~xk , [xT
k fT

k ]T and combining (1)-(2) with
(4), the following discrete time-varying system can be
obtained:

~xk+1 =~gk(~xk) + ~Ak~xk + ~Bkwk

yi,k = ~Ci,k~xk +Di,kvk, (9)

where

~gk(~xk) ,
[

gTk (xk) 0
]T

, ~Ci,k ,
[

Ci,k 0
]

,

~Bk ,

[

Bk

0

]

, ~Ak ,

[

0 Ak

0 Fk

]

.

For the node i (i = 1, 2, . . . , n), the following distributed
estimator is constructed:

x̂i,k+1 = Ki,kx̂i,k +
∑

j∈Ni

ωijGij,kq(ȳj,k), (10)

where x̂i,k denotes the estimate of ~xk with x̂i,0 =
[

x̄T
0 f̄T

0

]T
, and Ki,k and Gij,k are the estimator gains

to be designed.

Let ei,k , ~xk − x̂i,k be the estimation error. Recalling
the definitions of q(ȳi,k) and ȳi,k, one has

ei,k+1 =~gk(~xk) + ( ~Ak −Ki,k)~xk +Ki,kei,k + ~Bkwk

−Gi,kWiyk +Gi,kWiϑk −Gi,kWiϕk, (11)

where

Gi,k , [Gi1,k . . . Gin,k], Wi , diag{ωi1I, . . . , ωinI},

yk , [yT1,k . . . yTn,k]
T , ϑk , [ϑ1,k . . . ϑn,k]

T ,

ϕk , [ϕ1
1,k . . . ϕ

ny

1,k ϕ1
2,k . . . ϕ

ny

n,k]
T .

To end this section, let us state the main purpose of this
paper. We are interested in designing a distributed es-
timator of the form (10) for each senor node such that,
in the presence of DETMs and PQs, an upper bound
on the EEC Pi,k , E{ei,keTi,k} is guaranteed and, more-
over, such an upper bound is locally minimized at each
time instant by properly designing the estimator gain
matrices Ki,k and Gij,k.

3 Main Results

3.1 Estimation Algorithm Design

Lemma 1 For any real-valued matrices H1 and H2, the
following inequality

H1H
T
2 + H2H

T
1 ≤ aH1H

T
1 + a

−1
H2H

T
2

holds for any scalar a > 0.
Lemma 2 Let the positive scalars ak, bi,k and ci,k be
given. Assume that there exist two sets of real-valued
matrices X̄k and Ȳi,k satisfying

X̄k+1 ,(1 + ak)µ
2
ktr{I1X̄kI

T
1 }I + (1 + a−1

k )
(

~Ek + ~Ak

)

× X̄k

(

~Ek + ~Ak

)T
+ ~BkRk

~BT
k (12)

and

Ȳi,k+1 ,

(

(1 + bi,k)(1 + ci,k)λ
2
i + (1 + δi)

× (1 + b−1
i,k )/δ

2
i

)

Ȳi,k +
(

(1 + bi,k)(1 + c−1
i,k )

+ (1 + b−1
i,k )(1 + δ−1

i )
)

σ2
i (13)

with the initial conditions X̄0 = diag
{

P0 + x̄0x̄
T
0 , Z0 +

f̄0f̄
T
0 } and Ȳi,0 = (~i0)

2, where ~Ek , diag
{

Ek, 0
}

and

I1 ,
[

I 0
]

. Then, the covariances Xk , E
{

~xk~x
T
k

}

and

Yi,k , E
{

~
2
i,k

}

satisfy Xk ≤ X̄k and Yi,k ≤ Ȳi,k, respec-
tively.
Proof : By applying Lemma 1, one obtains from (3) and
(9) that

Xk+1 =E
{

~xk+1~x
T
k+1

}

=E

{

[

~gk(~xk) + ~Ak~xk + ~Bkwk

]

3



×
[

~gk(~xk) + ~Ak~xk + ~Bkwk

]T
}

≤(1 + ak)µ
2
ktr{I1XkI

T
1 }I + (1 + a−1

k )
(

~Ek + ~Ak

)

×Xk

(

~Ek + ~Ak

)T
+ ~BkRk

~BT
k . (14)

Then, it is easy to derive Xk+1 ≤ X̄k+1 by means of an
induction method.
On the other hand, one has from (5) that

ϑT
i,kϑi,k ≤

(

1

δi
~i,k + σi

)2

≤(1 + δi)~
2
i,k/δ

2
i + (1 + δi

−1)σ2
i .

(15)

Using the similar techniques in [17], we obtain Yi,k+1 ≤
Ȳi,k+1 readily and the proof is thus complete. �

Theorem 1 Let the positive scalars di,k, gi,k, hi,k and
mi,k be given. Assume that there exists a set of real-valued
matrices Σi,k with initial constraint Σi,0 = diag

{

P0, Z0}
satisfying the following recursive equation:

Σi,k+1

,(1 + di,k)(1 + hi,k)µ
2
ktr{I1X̄kI

T
1 }I + (1 + di,k)

× (1 + h−1
i,k )

(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)

X̄k

×
(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)T
+ (1 + d−1

i,k )

× (1 +mi,k)Ki,kΣi,kK
T
i,k +

~BkRk
~BT
k +

[

g−1
i,k

+ (1 + d−1
i,k )(1 +m−1

i,k )
]

n
∑

s=1

Gi,kWi∆s,kWiG
T
i,k

+Gi,kWi

[

Υ+ (1 + gi,k) ~DkQk
~DT
k

]

WiG
T
i,k, (16)

where

~Ck ,

[

~CT
1,k . . . ~CT

n,k

]T

, ~Dk ,

[

DT
1,k . . . DT

n,k

]T

,

Υ , diag
{

(τ11 )
2/4, . . . , (τ

ny

1 )2/4, . . . , (τny
n )2/4

}

,

∆s,k ,

[

(1 + δs)Ȳs,k/δ
2
s + (1 + δs

−1)σ2
s

]

I.

Then, Σi,k+1 is an upper bound on the EEC Pi,k+1, i.e.,

Pi,k+1 ≤ Σi,k+1.

Proof : The EEC Pi,k+1 is calculated as

Pi,k+1

=E

{[

~gk(~xk)− ~Ek~xk +
(

~Ak −Ki,k + ~Ek

−Gi,kWi
~Ck

)

~xk +Ki,kei,k −Gi,kWi
~Dkvk

+Gi,kWiϑk −Gi,kWiϕk

][

~gk(~xk)− ~Ek~xk

+
(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)

~xk +Ki,kei,k

−Gi,kWi
~Dkvk +Gi,kWiϑk −Gi,kWiϕk

]T}

+ ~BkRk
~BT
k . (17)

Noticing the following facts

E{ϕk} = 0, E{ϕkϕ
T
k } ≤ Υ, E{ϕke

T
i,k} = 0,

E{ϕk~x
T
k } = 0, E{ϕkϑ

T
k } = 0, E{ϕkv

T
k } = 0,

we have
Pi,k+1

≤E

{[

~gk(~xk)− ~Ek~xk +
(

~Ak −Ki,k −Gi,kWi
~Ck

+ ~Ek

)

~xk +Ki,kei,k +Gi,kWiϑk

][

~gk(~xk)− ~Ek~xk

+
(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)

~xk +Ki,kei,k

+Gi,kWiϑk

]T}

+Gi,kWi

(

Υ+ ~DkQk
~DT
k

)

WiG
T
i,k

+ ~BkRk
~BT
k −Gi,kWi

~DkE

{

vkϑ
T
k

}

WiG
T
i,k

−Gi,kWiE

{

ϑkv
T
k

}

~DT
k WiG

T
i,k. (18)

With the help of Lemma 1, it follows further from (18)
that

Pi,k+1

≤(1 + di,k)(1 + hi,k)µ
2
ktr{I1XkI

T
1 }I + (1 + di,k)

× (1 + h−1
i,k )

(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)

Xk

×
(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)T

+ (1 + d−1
i,k )

× (1 +mi,k)Ki,kPi,kK
T
i,k + ~BkRk

~BT
k +

[

g−1
i,k

+ (1 + d−1
i,k )(1 +m−1

i,k )
]

Gi,kWiE

{

ϑkϑ
T
k

}

WiG
T
i,k

+Gi,kWi

[

Υ+ (1 + gi,k) ~DkQk
~DT
k

]

WiG
T
i,k (19)

where di,k, gi,k, hi,k and mi,k are positive scalars.
In addition, it follows from (15) that

ϑkϑ
T
k ≤ϑT

k ϑkI =
n
∑

s=1

ϑT
s,kϑs,kI

≤
n
∑

s=1

[

(1 + δs)~
2
s,k/δ

2
s + (1 + δs

−1)σ2
s

]

I, (20)

which leads to

E

{

ϑkϑ
T
k

}

≤
n
∑

s=1

[

(1 + δs)Ȳs,k/δ
2
s + (1 + δs

−1)σ2
s

]

I,

(21)

where Lemma 2 has been utilized. Substituting (21) into
(19) yields

Pi,k+1

≤(1 + di,k)(1 + hi,k)µ
2
ktr{I1X̄kI

T
1 }I + (1 + di,k)

× (1 + h−1
i,k )

(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)

X̄k

×
(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)T

+ (1 + d−1
i,k )

× (1 +mi,k)Ki,kPi,kK
T
i,k +

~BkRk
~BT
k +

[

g−1
i,k

+ (1 + d−1
i,k )(1 +m−1

i,k )
]

n
∑

s=1

Gi,kWi∆s,kWiG
T
i,k

+Gi,kWi

[

Υ+ (1 + gi,k) ~DkQk
~DT
k

]

WiG
T
i,k. (22)

Finally, it follows from (16) that
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Pi,k+1 ≤ Σi,k+1, (23)

which ends the proof. �

In the following theorem, an effective algorithm is pro-
vided to parameterize the estimator gains which ensure
that the upper bound derived in Theorem 1 isminimized.
Theorem 2 For 1 ≤ i ≤ n, the upper bound Σi,k ob-
tained in Theorem 1 achieves its minimum

Σi,k+1

=
(

Gi,kWi −Θ5i,kΘ
−1
4i,k

)

Θ4i,k

(

Gi,kWi −Θ5i,kΘ
−1
4i,k

)T

−Θ5i,kΘ
−1
4i,kΘ

T
5i,k −Θ1i,kΘ

−1
2i,kΘ

T
1i,k + (1 + di,k)

× (1 + h−1
i,k )

(

~Ak + ~Ek

)

X̄k

(

~Ak + ~Ek

)T
+ ~BkRk

~BT
k

+ (1 + di,k)(1 + hi,k)µ
2
ktr{I1X̄kI

T
1 }I (24)

with the estimator parameters given by

Ki,k = Θ1i,kΘ
−1
2i,k −Gi,kWiΘ3i,kΘ

−1
2i,k, (25)

and

Gij,k =

{

Ḡij,kω
−1
ij if ωij 6= 0,

0, if ωij = 0
(26)

where

Ḡi,k ,
[

Ḡi1,k Ḡi2,k . . . Ḡin,k

]

= Θ5i,kΘ
−1
4i,k,

Θ1i,k ,(1 + di,k)(1 + h−1
i,k )

(

~Ak + ~Ek

)

X̄k,

Θ2i,k ,(1 + di,k)(1 + h−1
i,k )X̄k + (1 + d−1

i,k )(1 +mi,k)Σi,k,

Θ3i,k ,(1 + di,k)(1 + h−1
i,k )

~CkX̄k,

Θ4i,k ,(1 + di,k)(1 + h−1
i,k )

~CkX̄k
~CT
k +

[

g−1
i,k + (1 + d−1

i,k )

× (1 +m−1
i,k )

]

n
∑

s=1

∆s,k + (1 + gi,k) ~DkQk
~DT
k

+Υ−Θ3i,kΘ
−1
2i,kΘ

T
3i,k,

Θ5i,k ,Θ1i,k
~CT
k −Θ1i,kΘ

−1
2i,kΘ

T
3i,k. (27)

Proof : By using the “completing the square” technique,
it is deduced from (16) that

Σi,k+1

=
[

Ki,k − (Θ1i,k −Gi,kWiΘ3i,k)Θ
−1
2i,k

]

Θ2i,k

[

Ki,k

− (Θ1i,k −Gi,kWiΘ3i,k)Θ
−1
2i,k

]T
−Θ1i,kΘ

−1
2i,kΘ

T
1i,k

+Θ1i,kΘ
−1
2i,kΘ

T
3i,kWiG

T
i,k +Gi,kWiΘ3i,kΘ

−1
2i,kΘ

T
1i,k

+Gi,kWiΘ4i,kWiG
T
i,k + (1 + di,k)(1 + h−1

i,k )

×
[

( ~Ak + ~Ek)X̄k( ~Ak + ~Ek)
T − ( ~Ak + ~Ek)

× X̄k
~CT
k WiG

T
i,k −Gi,kWi

~CkX̄k( ~Ak + ~Ek)
T
]

+ (1 + di,k)(1 + hi,k)µ
2
ktr{I1X̄kI

T
1 }I + ~BkRk

~BT
k .
(28)

Then, it is easy to see that Σi,k+1 is minimized if the
estimator gain Ki,k is selected as (25).

Next, (28) is further converted to

Σi,k+1

=
(

Gi,kWi −Θ5i,kΘ
−1
4i,k

)

Θ4i,k

(

Gi,kWi −Θ5i,kΘ
−1
4i,k

)T

−Θ5i,kΘ
−1
4i,kΘ

T
5i,k −Θ1i,kΘ

−1
2i,kΘ

T
1i,k + (1 + di,k)

× (1 + h−1
i,k )

(

~Ak + ~Ek

)

X̄k

(

~Ak + ~Ek

)T
+ (1 + di,k)

× (1 + hi,k)µ
2
ktr{I1X̄kI

T
1 }I + ~BkRk

~BT
k . (29)

In general, we have the relationship of Gi,kWi =

Θ5i,kΘ
−1
4i,k. By recalling the definition of Wi, it is ob-

vious that Wi might be non-invertible. Therefore, the
estimator gain matrix Gi,k cannot be directly obtained

from Gi,kWi = Θ5i,kΘ
−1
4i,k. In this context, an alterna-

tive yet effective way for acquiring the estimator gain
Gi,k is to select Gi,k as in (26). Then, the minimum of
the upper bound can be expressed in the form of (24),
which ends the proof. �

3.2 Boundedness Analysis

Lemma 3 [32] If there exist a stochastic process Vk(ζk)
as well as positive scalars ᾱ, α, ℓ and 0 < ρo < 1 such
that

α‖ζk‖
2 ≤ Vk(ζk) ≤ ᾱ‖ζk‖

2 (30)

and
E
{

Vk(ζk)|ζk−1

}

≤ (1− ρo)Vk−1(ζk−1) + ℓ, (31)

then ζk is exponentially bounded in the mean-square
sense, i.e.,

E
{

‖ζk‖
2
}

≤
ᾱ

α
E
{

‖ζ0‖
2
}

(1− ρo)
k +

ℓ

α

k
∑

i=1

(1− ρo)
i.

Lemma 4 [16] Let A,B,C ∈ R
n×n with B > 0 and

C > 0. Then, B−1 − A
T
C
−1

A > 0 if C− ABA
T > 0.

Theorem 3 Consider the discrete-time nonlinear target
plant described by (1)-(2) with estimator (10). Assume
that there exist real positive scalars ā, ē, c̄, r̄, q, q̄, τ , x,
x̄, µ, ν, σ and σ̄ such that

‖ ~Ak‖ ≤ ā, ‖ ~Ek‖ ≤ ē, ‖ ~Ck‖ ≤ c̄, ~BkRk
~BT
k ≤ r̄I,

qI ≤ ~DkQk
~DT
k ≤ q̄I, τ ji = τ, µk = µ, xI ≤ X̄k ≤ x̄I,

ν = di,k = gi,k = hi,k = mi,k, σI ≤ Σi,k ≤ σ̄I. (32)

Then, the estimation error ei,k (i = 1, 2, . . . , n) is expo-
nentially bounded in mean square.
Proof : First, we select the quadratic function of the fol-
lowing form:

Vk(ei,k) = eTi,kΣ
−1
i,kei,k. (33)

Then, it is easy to obtain from (32) that

σ̄−1‖ei,k‖
2 ≤ Vk(ei,k) ≤ σ−1‖ei,k‖

2, (34)

which means that Vk(ei,k) satisfies the condition (30).

Next, we aim to find an upper bound onE
{

Vk+1(ei,k+1)|ei,k
}

satisfying the condition (31). According to (11) and
(17)-(21), one obtains

E
{

Vk+1(ei,k+1)|ei,k
}

=E

{[

~gk(~xk)− ~Ek~xk +
(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)

× ~xk +Ki,kei,k −Gi,kWi
~Dkvk +Gi,kWiϑk + ~Bkwk

−Gi,kWiϕk

]T

Σ−1
i,k+1

[

~gk(~xk)− ~Ek~xk +
(

~Ak −Ki,k

+ ~Ek −Gi,kWi
~Ck

)

~xk +Ki,kei,k −Gi,kWi
~Dkvk

+Gi,kWiϑk −Gi,kWiϕk + ~Bkwk

]

|ei,k
}
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≤(1 + d−1
i,k )(1 +mi,k)e

T
i,kK

T
i,kΣ

−1
i,k+1Ki,kei,k + E

{

(1

+ di,k)(1 + hi,k)
[

~gk(~xk)− ~Ek~xk

]T
Σ−1

i,k+1

[

~gk(~xk)

− ~Ek~xk

]

+ (1 + di,k)(1 + h−1
i,k )~x

T
k

(

~Ak −Ki,k

+ ~Ek −Gi,kWi
~Ck

)T
Σ−1

i,k+1

(

~Ak −Ki,k + ~Ek −Gi,k

×Wi
~Ck

)

~xk +
[

(1 +m−1
i,k )(1 + d−1

i,k ) + g−1
i,k

]

ϑT
kWi

×GT
i,kΣ

−1
i,k+1Gi,kWiϑk + (1 + gi,k)v

T
k (Gi,kWi

~Dk)
T

× Σ−1
i,k+1(Gi,kWi

~Dk)vk + ϕT
kWiG

T
i,kΣ

−1
i,k+1Gi,kWiϕk

+ wT
k
~BT
k Σ

−1
i,k+1

~Bkwk

}

. (35)

Based on (27) and (32), we obtain

‖Ḡi,k‖ = ‖Θ5i,kΘ
−1
4i,k‖

≤
(1 + ν)(1 + ν−1)(ā+ ē)x̄c̄

(

1 + x̄/(x+ σ)
)

∆+ (1 + ν)q + τ2/4
, ḡ (36)

with ∆ ,
(

ν−1 + (1 + ν−1)2
)
∑n

s=1(1 + δ−1
s )σ2

s .

By noticing ‖Gi,kWi‖ ≤ ‖Ḡi,k‖, the following can be
obtained:

‖Ki,k‖ =‖Θ1i,kΘ
−1
2i,k −Gi,kWiΘ3i,kΘ

−1
2i,k‖

≤
(ā+ ē+ ḡc̄)x̄

x+ σ
, k̄. (37)

From (16) and (37), it is clear that

Σi,k+1 ≥(1 + d−1
i,k )(1 +mi,k)Ki,kΣi,kK

T
i,k

+ (1 + di,k)(1 + hi,k)µ
2
ktr{I1X̄kI

T
1 }I

>
[

1 +
(1 + ν)µ2xnx

2(1 + ν−1)k̄2σ̄

]

(1 + d−1
i,k )

× (1 +mi,k)Ki,kΣi,kK
T
i,k (38)

which, in terms of Lemma 4, indicates that

(1 + d−1
i,k )(1 +mi,k)K

T
i,kΣ

−1
i,k+1Ki,k < (1− ǫ)Σ−1

i,k (39)

with

ǫ , 1−
[

1 +
(1 + ν)µ2xnx

2(1 + ν−1)k̄2σ̄

]−1

.

It is easily seen that 0 < ǫ < 1. By taking (39) into
account, we obtain

(1 + d−1
i,k )(1 +mi,k)e

T
i,kK

T
i,kΣ

−1
i,k+1Ki,kei,k

≤(1− ǫ)eTi,kΣ
−1
i,kei,k = (1 − ǫ)Vk(ei,k). (40)

Together with (16), one obtains

Σi,k+1 ≥(1 + di,k)(1 + h−1
i,k )

(

~Ak −Ki,k −Gi,kWi
~Ck

+ ~Ek

)

X̄k

(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)T

+ (1 + di,k)(1 + hi,k)µ
2
ktr{I1X̄kI

T
1 }I

+
[

g−1
i,k + (1 + d−1

i,k )(1 +m−1
i,k )

]

×
n
∑

s=1

Gi,kWi∆s,kWiG
T
i,k, (41)

which further guarantees that

E

{

(1 + di,k)(1 + h−1
i,k )~x

T
k

(

~Ak −Ki,k −Gi,kWi
~Ck

+ ~Ek

)T
Σ−1

i,k+1

(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)

~xk

+ (1 + di,k)(1 + hi,k)
[

~gk(~xk)− ~Ek~xk

]T

× Σ−1
i,k+1

[

~gk(~xk)− ~Ek~xk

]

+
[

(1 + d−1
i,k )(1 +m−1

i,k ) + g−1
i,k

]

ϑT
kWiG

T
i,k

× Σ−1
i,k+1Gi,kWiϑk

}

≤tr
{

Σ
− 1

2

i,k+1

[

(1 + di,k)(1 + h−1
i,k )

(

~Ak −Ki,k + ~Ek

−Gi,kWi
~Ck

)

X̄k

(

~Ak −Ki,k + ~Ek −Gi,kWi
~Ck

)T

+ (1 + di,k)(1 + hi,k)µ
2
ktr{I1X̄kI

T
1 }I

+
[

g−1
i,k + (1 + d−1

i,k )(1 +m−1
i,k )

]

×
n
∑

s=1

Gi,kWi∆s,kWiG
T
i,k

]

Σ
− 1

2

i,k+1

}

≤tr{I} = nx + nf . (42)

Furthermore, it is not difficult to obtain that

E

{

(1 + gi,k)v
T
k (Gi,kWi

~Dk)
TΣ−1

i,k+1(Gi,kWi
~Dk)vk

+ ϕT
k WiG

T
i,kΣ

−1
i,k+1Gi,kWiϕk + wT

k
~BT
k Σ

−1
i,k+1

~Bkwk

}

≤
(1 + ν)ḡ2

σ
E

{

vTk
~DT
k
~Dkvk

}

+
ḡ2

σ
E

{

ϕT
k ϕk

}

+
1

σ
E

{

wT
k
~BT
k
~Bkwk

}

≤
(1 + ν)ḡ2q̄ + ḡ2τ2/4

σ
nny +

r̄

σ
(nx + nf). (43)

Denote ι , (1+ν)ḡ2 q̄+ḡ2τ2/4
σ nny+( r̄σ +1)(nx+nf ). Sub-

stituting (40), (42)-(43) into (35) implies

E
{

Vk+1(ei,k+1)|ei,k
}

≤ (1− ǫ)Vk(ei,k) + ι. (44)

According to Lemma 3, it follows from (34) and (44) that
the stochastic process ei,k is exponentially bounded in
mean-square sense. �
Remark 2 In the literature, there has been a rich body
of results reported on the distributed state/fault estima-
tion problem over various SNs. In comparison with the
existing literature, the main results obtained in this pa-
per distinguish themselves in the following aspects: 1) the
addressed joint state and fault estimator design problem
is new in the sense that the SNs are subject to PQs and
DETMs; 2) the developed algorithm is appealing as it cal-
culates the desired estimator parameters in a recursive
way; and 3) the derived exponential boundedness condi-
tion is new in the sense of mean-square, which quantifies
the performance of the proposed state/fault estimator.

4 An Illustrative Example

4.1 Demonstrations of Results

Consider the target plant (1)-(2) with

gk(xk) = Ekxk + f̄k(xk), Ak =

[

0.3

0.2

]

, Bk =

[

0.5

0.4

]

,

Fk = 1.68sin(0.5k)
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where

Ek =

[

0.8 −0.1 + 0.01cos(k)

0.15 0.8

]

, f̄k(xk) =

[

0.01sin(x1
k)

0.01sin(x2
k)

]

.

It can be easily seen that the nonlinear function gk(xk)
satisfies (3) with µk = 0.01.
The SN consists of 4 sensor nodes whose topology can
be represented by G = (V ,Q,W), where V = {1, 2, 3, 4},
Q = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 4)},
and ωij = 1 for (i, j) ∈ Q. The measurement output (4)
is considered with the following parameters:

C1,k =
[

1.8 1.3 + 0.01cos(k)
]

, D1,k = 0.6,

C2,k =
[

1.2 + 0.01sin(k) 0.7
]

, D2,k = 0.5,

C3,k =
[

1 + 0.01sin(k) 0.9 + 0.01cos(k)
]

,

C4,k =
[

1.5 0.8
]

, D3,k = −0.4, D4,k = 0.6.

For node i (i = 1, 2, 3, 4), we set the parameters in the
DETMs (5) as λi = 0.2, δi = 10, σi = 0.4, ~i0 = 1 and
select the quantization level as τ1i = 0.2. The covari-
ances of the noise wk and vk are given by Rk = 0.6 and
Qk = 0.6, respectively. The initial values of the plan-
t state and the fault are zero-mean Gaussian variables
with covariances P0 = diag{0.1, 0.1} and Z0 = 0.1. Fur-
thermore, set di,k = gi,k = hi,k = mi,k = 1. Based on
the above parameters, the minimized upper bound on
the EEC and the estimator gains can be calculated re-
cursively at each time instant from (24) and (25)-(26).
Figs. 1-5 are the simulation results. Among them,
Figs. 1-2 plot the first and second state trajectories and
their corresponding estimates, respectively. In Fig. 3,
the fault signal and its estimate are displayed. Fig. 4
depicts the trace of the minimal upper bound Σi,k and
the mean square error (MSE) defined by

MSEi,k ,
1

M

M
∑

t=1

3
∑

s=1

(~xs
i,k − x̂s

i,k)
2

with M = 300, which verifies that MSEi,k always stays
below its upper bound Σi,k. In Fig. 5, the broadcast in-
stants of each sensor node determined by the DETM are
shown. All simulation results have shown the feasibility
of the estimation algorithm developed in this paper.

4.2 Comparisons of Results

I. Comparisons with and without quantization effects
In order to reveal the quantization effects on the estima-
tion performance, the traditional estimation approach
without considering quantization effects is realized si-
multaneously under same parameter settings in the sim-
ulation. For the purpose of comparison, the differences
between the estimate error of the proposed estimator
(with quantization effects) and that of the traditional ap-
proach (without quantization effects) are computed for
nodes 1, 2, 3 and 4, and the simulation result is shown in
Fig. 6. It is easily seen that, during the most of the time,
the estimate errors of the traditional estimation are big-
ger than the ones of our proposed approach. This is be-
cause the traditional estimation approach is sensitive to
the quantization errors in measurements while the pro-
posed estimation algorithm takes the quantization errors
into account, which therefore performs better.

0 10 20 30 40 50 60

Time (k)
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-2

-1.5

-1

-0.5

0

0.5

1

Fig. 1. State x1 and its estimates

0 10 20 30 40 50 60

Time (k)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 2. State x2 and its estimates
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Fig. 3. Fault f and its estimates

II. Comparisons with and without DETMs
Consider the case that the measurements are transmit-
ted through the network at each time instant (i.e. the
periodic sampling scheme). In this case, it is obvious
that the transmission rates of measurement outputs for
sensor nodes 1, 2, 3 and 4 are all 100%. However, by
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Fig. 4. Trace of state estimation error variance and its upper
bound for nodes 1, 2, 3 and 4.

0 10 20 30 40 50 60

Time (k)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
rig

ge
rin

g 
in

st
at

ns
 o

f n
od

e 
i

Fig. 5. The broadcast instants.
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Fig. 6. Estimate error differences.

using our proposed DETM, the event-triggered release
instants are shown in Fig. 5, from which, it is easily cal-
culated that the transmission rates for nodes 1, 2, 3 and
4 are 43.3%, 33.3%, 23% and 36.7%, respectively. There-
fore, it can be concluded that the proposed DETM is
more efficient in alleviating communication burden com-
pared with the periodic sampling scheme. On the oth-
er hand, the differences between the estimate errors un-
der DETMs and that under periodic sampling case are
plotted in Fig. 7. It appears that estimate errors under
DETMs are almost bigger than the ones under period-
ic sampling case, which means that the estimation per-
formance may deteriorate to a certain extent owing to
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Fig. 7. Estimate error differences.

the introduction of DETMs. Consequently, we can con-
clude that the proposed DETM can effectively reduce
the communication burden at the cost of preserving cer-
tain estimation performance.

5 Conclusions
In this paper, the distributed state and fault estimation
problem has been dealt with for a class of nonlinear time-
varying systems with PQs and DETMs. A SN has been
deployed to collect the measurements, where each sen-
sor node exchanges local quantized measurements with
its adjacent nodes. To reduce the resource consumption,
the DETMs have been employed to schedule the com-
munication between sensor nodes. By using the matrix
difference equationmethod, an upper bound on the EEC
has been found, which has been minimized at each it-
eration by properly designing the estimator parameter-
s. In our upcoming research, the present estimator de-
sign results would be extended to SNs subject to fading
channels [24] and Markovian jumping systems [7, 19].
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