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Partial-Nodes-Based State Estimation for Complex
Networks with Constrained Bit Rate

Jun-Yi Li, Zidong Wang, Renquan Lu and Yong Xu

Abstract—In this paper, the partial-nodes-based (PNB) state
estimation issue is investigated for a class of discrete-time complex
networks with constrained bit rate and bounded noises. Mea-
surements from only a fraction of nodes in a complex network
are acquired and used for state estimation. The communication
between sensor nodes and estimators is accomplished over a
wireless digital communication network with limited bandwidth.
A bit rate constraint model is introduced to reflect the band-
width allocation rules of partially accessible nodes. A sufficient
condition is proposed under which the PNB state estimation error
system is guaranteed to be ultimately bounded, and then a bitrate
condition assuring a specific estimation performance is presented.
The estimator gains are derived by solving two optimization
problems in order to ensure two estimation performance metrics
(i.e. the smallest ultimate bound and the fastest decay rate).
Furthermore, the co-design issue of the bit rate allocation
protocol and the estimator gains is addressed by means of particle
swarm optimization and linear matrix inequalities. Finall y, three
numerical simulations are provided to verify the validity of the
proposed PNB state estimation approach.

Index Terms—Partial-nodes-based state estimation, con-
strained bit rate, coding-decoding, co-design problem.

I. I NTRODUCTION

Complex networks are large-scale systems consisting of a
large number of strongly coupled dynamic units that can be
employed to characterize many real-world examples, including
but not limited to sensor networks, social networks, power
grids, biological networks, and so on [2], [37]. Dynamic units
in a complex network often interact with each other through
connections, leading to a highly coupled and dynamical net-
work environment. As such, much research enthusiasm has
recently been attracted towards dynamical behavior issuesof
complex networks, e.g. stability, synchronization and state
estimation problems [4], [11], [33], [35], [38], [43], [44], [46],
[48].

In the dynamic analysis of complex networks, state in-
formation plays a vital role due to the fact that it helps to
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understand the underlying network structure. Unfortunately,
the state information is not always accessible due to the vast
size of complex networks, strong coupling between nodes,
and lack of accurate models. One approach to solve this
problem is to use the accessible measurements to obtain an
estimate of the network state. Accordingly, the state estimation
problem for complex networks has received a great deal of
attention in literature (see, [10], [18], [20]). For example, state
estimation problems for diverse complex networks have been
investigated under different communication protocols [10],
[40] and switching topology [16], [20].

To the best of our knowledge, the vast majority of exist-
ing studies on state estimation for complex networks have
based themselves on an underlying assumption that, all nodes’
measurements are accessible, which might be unreasonable in
practical applications. For example, it is incredibly expensive
to measure all the nodes in a complex network since the
number of nodes is often tremendous. Besides, due to the phys-
ical limits of the communication network and the operating
environment, it is impractical to measure all nodes and then
transmit the collected measurements. A malicious Dos attack
may also cause some of the measurements to be unobtainable
by blocking the transmission channel. Accounting for these
problems, a partial-node-based (PNB) state estimation method
has been developed in [21] for the first time, where the state
estimates of all nodes have been achieved with measurement
information only from a portion of the nodes. Although
relevant studies have been conducted later in [8], [9], [20],
[22], the corresponding literature on PNB state estimationhas
been scattered, and this constitutes the main motivation ofour
current study.

For a long time, most state estimation studies for complex
networks have paid their attention to analog communication,
where measurements are transmitted via the form of analog
signals which take continuous values with infinite precision.
As opposed to the traditional analog communication scheme,
the digital communication scheme is capable of adapting to
advanced control equipments and high-quality communication
services, and has attracted ever-increasing research interest
in the now-popular networked systems [7], [12], [14], [26],
[27], [36], [41], [47], [51]. In wireless digital communication,
sensors are often subject to sampling, quantization, and coding
before transmission. Although sampling and quantization of
sensor signals have already received considerable attention
in networked control systems (see e.g. [6], [15], [23], [28],
[32] and the references therein), the coding procedure has
not received much attention, especially in the state estimation
field [13], [29]. It should be noted that coding is at the heart
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of analog-to-digital conversion compared to sampling and
quantization, and therefore deserves more research attention.

In the digital communication network, the network’s band-
width is usually measured in terms of bit rate which defines
the number of bits conveyed through a digital communication
network per second. For complex networks with massive
nodes, although the total bit rate of the network is large, each
node is usually allocated with only a small portion of the total
bite rate, and this leads to the inevitable bit rate constraints.
The last two decades have seen increasingly rapid advances
in the field of control with limited bit rate. Early research
in this area has focused on the simplest network topology
which consists of a controller and a dynamic system with
a feedback loop. Several attempts have been made to reveal
the relationship between the minimum bit rate (that ensures
various types of stability) and the unstable eigenvalue of the
open-loop system [30], [31], [39], [42].

Recently, researchers have shown a persistent research inter-
est in complex systems with network topology and constrained
bit rate [5], [17], [19], [45]. The problem of consensus
with limited bit rate has been addressed by considering the
simultaneous effects of bit rate, network topology, and agent
dynamics [45]. In the case of limited bit-rate communication, a
quantized observer-based encoding-decoding scheme has been
designed to facilitate the distributed coordination of discrete-
time multi-agent systems with partially measurable states
[17]. In comparison with existing time-triggered consensus
strategies, event-triggered strategies with lower bit rate have
been proposed in [5], [19] to ensure the asymptotic consensus
of multi-agent systems by extracting additional information
from the time instances of packet reception. Unfortunately,
corresponding literature on state estimation problems forcom-
plex networks with constrained bit rate has been scattered,and
this constitutes another main motivation of our current study.

Based on the above discussions, it can be concluded that
the problem of PNB state estimation for a class of complex
networks with constrained bit rate remains open due to the
following three main challenges:1) how to construct a math-
ematical model to characterize the bandwidth limitation ofthe
complex network with partially accessible nodes? 2) how to
quantify the effect of the bit rate on the PNB state estimation
performance? and 3) how to develop optimized estimator gains
to meet different performance indices and the need for the co-
design of the bit rate allocation protocol and the estimator?

With the encouragement of the discussions conducted so far,
we strive to investigate the PNB state estimation for complex
networks with constrained bit rate in this paper. The significant
contributions of this paper are categorized into three aspects.

1) The PNB state estimation problem under the framework
of digital communication networks is tackled by the first
attempt, which is more applicable in engineering fields
than the conventional PNB state estimation methods
under the framework of analog communication networks
[9], [20], [21]. Then, a bit rate constraint model is de-
veloped, for the first time, to characterize the bandwidth
allocation of partially accessible nodes in the complex
networks.

2) A sufficient condition is proposed to ensure the ultimate

boundedness of the PNB state estimation error system,
and a bit rate condition that guarantees the specific state
estimation performance is also proposed.

3) The PNB state estimators are designed according to d-
ifferent estimation performance requirements by solving
two optimization problems (OPs) and a mixed-integer
nonlinear programming (MINP) problem.

Notation: The notation used in this paper is fairly
standard.Rn and R

n×m representn dimensional Euclidean
space and the set ofn × m real matrices, respectively.N,
and N+ stand for the sets of non-negative integers, and
positive integers, respectively. diagN{Ai} and colN (ei) denote
diagonal block matrix diagN{A1, A2, · · · , AN} and column
vector

[

eT1 , e
T
2 , · · · , eTN

]T
, separately. For anyz ∈ Rn, zT

and‖ z ‖2 are its transpose and its Euclidean norm.λmin{Q}
(λmax{Q}) stands for the minimum (maximum) eigenvalue of
Q.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The system formulation

Consider a complex network withN nodes as follows:

xi(k + 1) =Aixi(k) + f(xi(k)) +

N
∑

j=1

ωijΓxj(k)

+Biwi(k), i ∈ V , {1, 2, · · · , N}
(1)

wherexi(k) ∈ Rnx represents the system state, andwi(k) ∈
Rnw refers to the system disturbance signal which satisfies
‖ wi(k) ‖2≤ w0. Ai ∈ Rnx×nx andBi ∈ Rnx×nw are known
matrices. The nonlinear functionf(·) is assumed to satisfy
f(0) = 0 and

(f(z1)−f(z2)− ū(z1 − z2))
T

× (f(z1)− f(z2)− u(z1 − z2)) ≤ 0 (2)

for ∀z1, z2 ∈ Rnx , where ū and u are constant known
matrices.

The coupled configuration matrixW , [ωij ]N×N denotes
the topology of the complex network withωij = ωji > 0 if
nodei is capable of receiving the signal from nodej, otherwise
ωij = 0. In general,W is assumed to be symmetric and
satisfieswii = −∑N

j=1 wij for j 6= i. The inner-coupling
matrix Γ = diag{γ1, γ2, · · · , γnx

} represents connections
between different elements of the subsystem, whereγl 6= 0
means that thelth component ofxj(k) has an impact on the
xi(k).

B. Measurements of partial nodes under constrained bit rate

The transmission of the measurements in this paper is
realized by applying a wireless digital communication network
under constrained bit rate. As stated in Section I, for complex
networks in practice, only a fraction of the network nodes have
access to the corresponding measurement outputs due to the
bit rate limitation of the network.

Without loss of generality, it is assumed that we can get
access to the measurement output of the firstn0 nodes.
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Specifically, the measurements of nodes in this part are given
as:

yi(k) = Cixi(k) +Divi(k), 1 ≤ i ≤ n0 (3)

where yi(k) ∈ Rny denotes the measurement output of the
ith node,vi(k) ∈ R

nv refers to the measurement disturbance
signal which satisfies‖ vi(k) ‖2≤ v0. Ci ∈ Rny×nx and
Di ∈ Rny×nv are known matrices.

Data collisions inevitably occur when output information
from different nodes passes through the digital communica-
tion network with limited bandwidth. A variety of channel
allocation protocols are applied to allocate a certain available
bit rate to each node to reduce the data collision. The model
of bit rate constraint can be expressed as follows,

n0
∑

i=1

Ri ≤ Rs (4)

whereRs ∈ N
+ represents the total available bit rate deter-

mined by the physical elements, andRi ∈ N indicates the
allocated bit rate of nodei.

Remark 1:Different media access control (MAC) proto-
cols, such as allocation-based and competition-based MAC
protocols, are applied in real networks to reduce data colli-
sions. While competition-based MAC protocols are better at
improving the utilization of the network bandwidth in the
network environment, the allocation-based MAC protocols
have a better effect on the network with massive nodes
such as complex networks. In this paper, the static allocation
protocol is applied to complex networks [1], [34]. The bit rate
constraint model is presented in formula (4).

Remark 2:Due to the limitations of network hardware
and communication resource, the total bandwidth of complex
networks is often limited. In this case, the number of accessible
nodesn0 directly affects the amount of bit rate that can
be allocated to each node. Specifically, the larger then0

is, the less bit rate is allocated to each node. Also, less
bit rate means lower transmission quality which leads to a
worse estimation. Intuitively, if measurements can be extracted
from more nodes, i.e., the largern0 is, the better estimation
results can be achieved. Therefore, the number of nodes
providing available measurements has a complex impact on
the performance of the state estimation for a complex network.
The comprehensive effect of the number of accessible nodes
n0 on the performance of the state estimation will be discussed
in Section IV by numerical examples.

C. Coding-decoding procedure under constrained bit rate

To comply with the digital communication fashion, a
coding-decoding strategy subject to constrained bit rate condi-
tion (4) is presented in this subsection. By coding procedure,
the measurement of each accessible node is coded as a string
of binary codes selected from the alphabetARi of size2Ri .

To facilitate the coding-decoding procedure, the following
uniform quantizer is brought forward in this paper. For the
quantizer of nodei, given a scaling parameterbi > 0,
the quantization region is identified subsequently byBbi =

{yi ∈ Rny : |y(j)i | ≤ bi, j = 1, 2, · · · , ny}, where y
(j)
i

is the jth element of the vectoryi. By choosing an inte-
ger qi, the hyperrectanglesBbi will be partitioned intoqny

i

sub-hyperrectanglesIi1
si
1

(bi) × Ii2
si
2

(bi) × · · · × I
iny

siny

(bi), with

si1, s
i
2, · · · , siny

∈ {1, 2, · · · , qi} and

Iij1 (bi) ,

{

y
(j)
i | −bi ≤ y

(j)
i < −bi +

2bi
qi

}

Iij2 (bi) ,

{

y
(j)
i | −bi +

2bi
qi

≤ y
(j)
i < −bi +

4bi
qi

}

...

Iijqi (bi) ,

{

y
(j)
i | bi −

2bi
qi

≤ y
(j)
i ≤ bi

}

. (5)

For the bit rate constraint model (4) and the uniform quan-
tizers described above, in order to ensure that the information
corresponding to each sub-hyperrectangle is uniquely encoded,
the maximum number of quantization levels is defined as:

qim =
⌊

ny
√
2Ri

⌋

(6)

where ⌊ny
√
2Ri⌋ describes the maximum integer less than or

equal to
ny
√
2Ri .

For eachBbi , the center of the hyperrectangleIi1
si
1

(bi) ×
Ii2
si
2

(bi)× · · · × I
iny

siny

(bi) is denoted by

~
i
bi

(

si1, s
i
2, · · · , siny

)

,
[

ci1 ci2 · · · ciny

]T
(7)

with cij , −bi +
[

((

2sij − 1
)

bi
)

/
⌊

ny
√
2Ri

⌋]

, j =

1, 2, · · · , ny. Hence, for anyyi ∈ Bbi , there exists a certain
set of integerssi1, s

i
2, · · · , siny

∈ {1, 2, · · · , qi} such that

yi ∈ Ii1
si
1

× Ii2
si
2

× · · · × I
iny

siny

, which satisfies the following

inequality:
∥

∥

∥
yi − ~

i
bi

(

si1, s
i
2, · · · , siny

)∥

∥

∥

2
≤

√
nybi

⌊

ny
√
2Ri

⌋ . (8)

The integerssi1, s
i
2, · · · , siny

∈ {1, 2, · · · , qi} are the compo-
nents of the codeword in the coding procedure.

Coder for node i under constrained bit rate Ri.
For yi(k) ∈ Ii1

si
1

(bi) × Ii2
si
2

(bi) × · · · × I
iny

siny

(bi) ⊂ Bbi , the

following codeword is generated

YRi

i (k) =
[

si1, · · · , siny

]

. (9)

Decoder for nodei.
For the received codewordYRi

i (k), it can be decoded
by using the corresponding alphabetARi embedded in the
decoder. In addition, the output of the decoder is defined as

ŷi(k) = ~
i
bi

(

YRi

i (k)
)

= ~
i
bi

(

si1, · · · , siny

)

. (10)

D. Partial-nodes-based state estimation under coding-
decoding procedure

Based on the coder (9) and decoder (10) proposed before,
the estimator of nodei belonging to the firstn0 nodes is
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capable of receiving the information with the following form
at time instantk from the sensor:

ŷi(k) = ~
i
bi

(

si1, · · · , siny

)

=
[

ci1 ci2 · · · ciny

]T

=

















−bi +
[

((

2si1 − 1
)

bi
)

/
⌊

ny
√
2Ri

⌋]

−bi +
[

((

2si2 − 1
)

bi
)

/
⌊

ny
√
2Ri

⌋]

...

−bi +
[((

2siny
− 1

)

bi

)

/
⌊

ny
√
2Ri

⌋]

















.

(11)

Let de,i(k) , yi(k)− ŷi(k) be the decoding error vector of
nodei, d̄e(k) , coln0

(de,i(k)), andde(k) , col(d̄e(k), 0). It
follows from (8) and (11) that

‖de,i(k)‖2 ≤
√
nybi

⌊

ny
√
2Ri

⌋ (12)

‖de(k)‖2 = ‖d̄e(k)‖2 ≤

√

√

√

√

√

n0
∑

i=1

nyb2i
(⌊

ny
√
2Ri

⌋)2 . (13)

In terms of the decoded measurements from the firstn0

nodes, the state estimators for the complex network (1) are
constructed of the following form

x̂i(k + 1) =Aix̂i(k) + f(x̂i(k)) +

N
∑

j=1

ωijΓx̂j(k)

+Ki(ŷi(k)− Cix̂i(k)), i = 1, 2, · · · , n0 (14)

x̂i(k + 1) =Aix̂i(k) + f(x̂i(k)) +

N
∑

j=1

ωijΓx̂j(k)

i = n0 + 1, n0 + 2, · · · , N (15)

wherex̂i(k) ∈ Rnx is the ith node’s state estimate, andKi ∈
Rnx×ny is the estimator gain to be designed.

Denoting the estimation error of theith node asei(k) ,

xi(k)− x̂i(k) and taking the definition of decoding error into
account, the corresponding estimation error dynamics of node
i is obtained as:

ei(k + 1) =Aiei(k) + f(ei(k)) +

N
∑

j=1

ωijΓej(k) +Biwi(k)

−Ki(yi(k)− de,i(k)− Cix̂i(k))

=Aiei(k) + f(ei(k)) +

N
∑

j=1

ωijΓej(k) +Biwi(k)

−KiCiei(k)−KiDivi(k) +Kide,i(k)

i = 1, 2, · · · , n0 (16)

ei(k + 1) =Aiei(k) + f(ei(k)) +

N
∑

j=1

ωijΓej(k) +Biwi(k)

i = n0 + 1, n0 + 2, · · · , N (17)

with f(ei(k)) , f(xi(k))− f(x̂i(k)).

…

Fig. 1. Schematic of PNB state estimation problem with constrained bit rate

To simplify the symbolic representation, we set

e(k) , colN (ei(k)), F (e(k)) , colN (f(ei(k)))

A , diagN{Ai}, B , colN{Bi}
C̄ , diagn0

{Ci}, C , diag{C̄, 0}
D̄ , coln0

{Di}, D , col{D̄, 0}
K̄ , diagn0

{Ki}, K , diag{K̄, 0}
v̄(k) , coln0

(vi(k)), v(k) , colN (v̄i(k), 0)

w(k) , colN (wi(k)), A , (A−KC +W ⊗ Γ).

(18)

By applying the Kronecker product, the estimation error
dynamics (16) is rearranged as the following compact form:

e(k + 1) =F (e(k)) +Ae(k)−KDv(k)

+Bw(k) +Kde(k).
(19)

In order to facilitate the further development of this paper,
the following definition is presented to assist in describing the
issues to be studied.

Definition 1: The dynamics of the estimation errore(k)
[i.e., the solution of system (19)] is said to be exponentially
ultimately bounded if there exist constantsσ > 0, ρ > 0, and
φ > 0, such that

‖e(k)‖22 ≤ σkρ+ φ

whereσ ∈ [0, 1) is the decay rate andφ is the asymptotic
upper bound (AUB) of‖e(k)‖22.

In this paper, the state estimation problem for complex net-
work (1) with constrained bit rate condition (4) is investigated
by using decoded measurements from only a part of nodes.
The schematic structure is shown in Fig. 1. In the following
pages, the sufficient condition will be given to guarantee that
the estimation error is exponentially ultimately bounded.The
desired estimator gains will be derived by solving some of the
OPs proposed in this paper.

III. M AIN RESULTS

In this section, the ultimate boundedness of PNB state
estimation is firstly analyzed. The design issues of the PNB
state estimator are then discussed under different estimation
performance metrics.
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A. The analysis of PNB state estimation

The next theorem will discuss the ultimate boundedness
of the PNB state estimation error dynamics (19) and give a
sufficient condition to guarantee the ultimate boundedness.

For the sake of simplicity, we denote

Φ11 ,diag{Π1,Π2}

Π1 ,

[

−(1− γ)P − ε1Û1 ε1Û2

∗ −ε1I

]

Π2 ,diag{−ε2I,−ε3I,−ε4I}
Φ12 ,col

(

ATP ,P ,−DTKTP , BTP ,KTP
)

.

(20)

Theorem 1:Under the bit rate condition (4), let the positive
integersRs, Ri (i = 1, 2, · · · , n0), and the matrixK with
appropriate dimensions be given. Then, the dynamics of the
PNB state estimation error is ultimately bounded if there
exist positive scalarsε1, ε2, ε3, ε4, γ, and positive definite
matricesPi ∈ Rnx×nx (i = 1, 2, · · · , N ) such that

Φ1 =

[

Φ11 Φ12

∗ −P

]

< 0 (21)

with P , diagN{Pi}.
Proof: Define the Lyapunov-like function for the PNB

state estimation error system (19) asV (k) , eT (k)Pe(k).
Then, the difference ofV (k) is calculated as:

∆V (k) = V (k + 1)− V (k)

=eT (k + 1)Pe(k + 1)− eT (k)Pe(k)

=[F (e(k)) +Ae(k)−KDv(k) +Bw(k) +Kde(k)]
TP

× [F (e(k)) +Ae(k)−KDv(k) +Bw(k) +Kde(k)]

− eT (k)Pe(k)

=FT (e(k))PF (e(k)) + eT (k)ATPAe(k)

+ vT (k)DTKTPKDv(k) + wT (k)BTPBw(k)

+ dTe (k)K
TPKde(k) + 2FT (e(k))PAe(k)

− 2FT (e(k))PKDv(k) + 2FT (e(k))PBw(k)

+ 2FT (e(k))PKde(k)− 2eT (k)ATPKDv(k)

+ 2eT (k)ATPBw(k) + 2eT (k)ATPKde(k)

− 2vT (k)DTKTPBw(k)− 2vT (k)DTKTPKde(k)

+ 2wT (k)BTPKde(k)− eT (k)Pe(k). (22)

It is inferred from (2) that

ε1

[

e(k)

F (e(k))

]T [

Û1 −Û2

∗ I

][

e(k)

F (e(k))

]

≤ 0. (23)

whereÛ1 , IN ⊗ U1, Û2 , IN ⊗ U2, U1 , (ūTu+ ūuT )/2,
and U2 , (ūT + uT )/2. Then, taking (22) and (23) into
consideration together, one has:

∆V (k) ≤ζT (k)Φ̄1ζ(k)− γV (k) + ε2w
T (k)w(k)

+ ε3v
T (k)v(k) + ε4d

T
e (k)de(k) (24)

where

ζ(k) ,
[

eT (k) FT (e(k)) vT (k) wT (k) dTe (k)
]T

Φ̄1 ,

[

Φ̄11 Φ̄12

∗ Φ̄22

]

Φ̄11 ,

[

−(1− γ)P − ε1Û1 −ATPA ATP + ε1Û2

∗ P − ε1I

]

Φ̄12 ,

[

−ATPKD ATPB ATPK

−PKD PB PK

]

Φ̄22 ,







DTKTPKD −DTKTPB −DTKTPK

∗ BTPB BTPK

∗ ∗ KTPK






+Π2.

By applying the Schur Complement Lemma, it is readily
seen from inequality (21) that̄Φ1 < 0. Then, it follows from
the formulas (21) and (24) that

∆V (k) ≤− γV (k) + ε2w
T (k)w(k)

+ ε3v
T (k)v(k) + ε4d

T
e (k)de(k). (25)

Denotingφ , ε2Nw2
0 + ε3n0v

2
0 + ε4

∑n0

i=1
nyb

2

i
(⌊ny√

2Ri

⌋)

2 , we

have

∆V (k) ≤− γV (k) + φ. (26)

Moreover, for any scalarη, one has

ηt+1V (t+ 1)− ηtV (t)

=ηt+1(V (t+ 1)− V (t)) + ηt(η − 1)V (t)

≤ηt(η − 1− ηγ)V (t) + ηt+1φ. (27)

Letting η = η̄ = 1
1−γ

and summing both sides of inequality
(27) from 0 to k − 1 in relation tot, we arrive at

η̄kV (k)− V (0) ≤ η̄(1− η̄k)

1− η̄
φ (28)

which can be further computed as

V (k) ≤V (0)

η̄k
+

η̄(1− η̄k)

η̄k(1− η̄)
φ

=(1 − γ)k
(

V (0)− φ

γ

)

+
φ

γ
. (29)

Then, taking the definition ofV (k) and (29) into consider-
ation together, one has:

‖e(k)‖22 ≤
1

λmin{P}e
T (k)Pe(k)

≤ (1− γ)k

λmin{P}

(

V (0)− φ

γ

)

+
φ

γλmin{P} . (30)

Consequently, recalling Definition 1, it is readily seen that
the dynamics of the PNB state estimation error system (19) is
exponentially ultimately bounded. Moreover, the AUB of the
PNB state estimation error can be calculated by:

ε2Nw2
0 + ε3n0v

2
0 + ε4

∑n0

i=1
nyb

2

i
(⌊ny√

2Ri

⌋)

2

γλmin{P} . (31)

The proof of this theorem is now complete.
The following corollary discusses the bit rate condition that

guarantees the desired PNB state estimation performance for a
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complex network. According to (31), the following sufficient
bit rate condition is provided with no need to prove.

Corollary 1: Under the condition mentioned in Theorem
1, the PNB state estimation error system (19) is ultimately
bounded with a given AUBǫ, if there exist a set of bit rates
Ri (i = 1, 2, · · · , n0) satisfying

n0
∑

i=1

nyb
2
i

(⌊

ny
√
2Ri

⌋)2 ≤ γλmin{P}ǫ− ε2Nw2
0 − ε3n0v

2
0

ε4
. (32)

Specifically, when the allocated bit rate are all the same for
each node, i.e.,R1 = R2 = · · · = Rn0

, R̃, the PNB state
estimation error system (19) is ultimately bounded with a given
AUB ǫ if

R̃ ≥ ny

2
log2

(

ε4ny

∑n0

i=1 b
2
i

γλmin{P}ǫ− ε2Nw2
0 − ε3n0v20

)

. (33)

Remark 3:The ultimate boundedness is a significant per-
formance index for the estimation error dynamics, which
ensures that the estimation error remains within a region
nearing the steady state. In this theorem, we propose a
sufficient condition to guarantee that the dynamics of the PNB
state estimation error system (19) is exponentially ultimately
bounded. It is inferred from the result in Theorem 1 that the
AUB of the estimation error system (19) is dependent on the
system noisew(k), the measurement noisev(k), the number of
the accessible nodes in the complex network, and the coding-
decoding procedure. Notably, when the bound of the noise,
the number of accessible nodes, and the parameters of the
coding-decoding procedure are determined, the AUB (31) of
the estimation error system depends only on the bit rate. In
the specific case, a bit rate condition is subsequently obtained
under which the required PNB state estimation performance
is satisfied.

B. Design of PNB state estimator

Based on the analysis of the PNB state estimation error
system, the design issue will be addressed by solving two OPs
and a MINP problem in order to guarantee certain performance
indexes.

OP A: To minimize the ultimate bound of the PNB state
estimation error dynamics so as to achieve the best estimation
performance under bit rate constraint condition (4) with known
total available bit rateRs and allocated bit rateRi.

Theorem 2:For PNB state estimation error system (19),
let a scalar γ̄ (0 < γ̄ < 1) and positive integersRs,
Ri (i = 1, 2, · · · , n0) be given. Suppose that there exist
four positive scalarsε1, ε2, ε3, ε4, N positive definite
matricesPi ∈ Rnx×nx (i = 1, 2, · · · , N ), and n0 matrices
Ki ∈ Rnx×ny (i = 1, 2, · · · , n0) satisfying

Φ2 =

[

Φ21 Φ22

∗ −P

]

< 0 (34)

P ≥ I (35)

with

Φ21 ,diag{Π3,Π2}
K ,diagN{K̄, 0}, K̄ , diagn0

{Ki}

Π3 ,

[

−γ̄P − ε1Û1 ε1Û2

∗ −ε1I

]

Φ22 ,col
(

Ā,P ,−DTKT , BTP ,KT
)

Ā ,ATP − CTKT + (W ⊗ Γ)TP

(36)

andP is defined in Theorem 1.
Then, the dynamics of the PNB state estimation error system

(19) is ultimately bounded, where the decay rate of the state
estimation error‖e(k)‖22 is γ̄. Furthermore, the minimum of
the AUB of ‖e(k)‖22 can be derived by solving the following
minimization problem:

min











ε2Nw2
0 + ε3n0v

2
0 + ε4

n0
∑

i=1

nyb
2
i

(⌊

ny
√
2Ri

⌋)2











(37)

subject to the matrix inequality constraints (34) and (35).
Moreover, the gainsKi (i = 1, 2, · · · , n0) of the estimators
can be obtained by (18) and the following formula:

K =P−1K. (38)

Proof: Settingγ = 1 − γ̄, and taking (38) into account,
it is readily seen that

Φ21 = Φ11, Φ22 = Φ12. (39)

Moreover, it is evident from inequality (34) thatΦ1 < 0,
which guarantees the ultimate boundedness of the PNB state
estimation error system (19).

Following the similar line in Theorem 1, the inequality in
terms ofV (k) is obtained:

V (k) ≤ γ̄k

(

V (0)− φ

γ

)

+
φ

γ
(40)

whereφ is defined in Theorem 1. Then, based on the inequal-
ities (30) and (35), we can derive that

‖e(k)‖22 ≤ V (k) ≤ γ̄k

(

V (0)− φ

1− γ̄

)

+
φ

1− γ̄
. (41)

As such, the asymptotic bound of‖e(k)‖22 can be computed
by minimizing φ, which is equivalent to the condition (37).
Then, the proof is complete.

OP B: To optimize the decay rate of the PNB state estima-
tion error dynamics for the fastest convergence performance
under bit rate constraint (4) with known total available bitrate
Rs and allocated bit rateRi.

Theorem 3:For PNB state estimation error system (19), let
positive integersRs, Ri (i = 1, 2, · · · , n0) be given. Suppose
that there exist five positive scalarsε1, ε2, ε3, ε4, γ, N +1
positive definite matricesPi ∈ Rnx×nx (i = 1, 2, · · · , N ), S ∈
R

Nnx×Nnx andn0 matricesKi ∈ R
nx×ny (i = 1, 2, · · · , n0)

satisfying

Φ3 =

[

Φ31 Φ22

∗ −P

]

< 0 (42)
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P ≥ I (43)
[

−S γI

∗ P − 2I

]

< 0 (44)

with

Φ31 ,diag{Π5,Π2}

Π5 ,

[

−P + S − ε1Û1 ε1Û2

∗ −ε1I

]

(45)

andP , Φ22, K, K̄, Π2 are defined in Theorem 2. Then, the
dynamics of the PNB state estimation error system (19) is
ultimately bounded. Furthermore, the optimum decay rate of
PNB state estimation error‖e(k)‖22 can be derived by solving
the following maximization problem:

max{γ} (46)

subject to the matrix inequality constraints (42)-(44). More-
over, the gainsKi (i = 1, 2, · · · , n0) of the estimators can
be derived by taking (18) and the following formula into
consideration:

K =P−1K. (47)

Proof: It is evident from the inequality(P − I)P−1(P −
I) ≥ 0 that−P−1 ≤ P − 2I. Then, the following inequality
is derived in light of (44):

Φ33 ,

[

−S γI

∗ −P−1

]

≤
[

−S γI

∗ P − 2I

]

< 0. (48)

By applying the Schur Complement Lemma toΦ33, one
gets−S + γ2P < 0. Then, it is inferred from (42) that

[

Φ̄31 Φ22

∗ −P

]

< Φ3 < 0 (49)

with

Φ̄31 ,diag{Π̄5,Π2}

Π̄5 ,

[

−P + γ2P − ε1Û1 ε1Û2

∗ −ε1I

]

.

Consequently, the dynamics of the PNB state estimation error
e(k) is proved to be ultimately bounded on the basis of the
Theorem 1.

Following the line similar to the proof of Theorem 1, we
obtain the following inequality:

V (k) ≤ (1− γ2)k
(

V (0)− φ

γ2

)

+
φ

γ2
(50)

whereφ is defined in Theorem 1. The decay rate of‖e(k)‖22
is thus determined by1− γ2. In this way, the optimum decay
rate of PNB state estimation error is obtained by solving the
maximization problem (46). The proof is complete.

C. The co-design of the PNB estimators and bit rate allocation
protocol

In order to minimize the AUB of the PNB state estimation
error system (19), the design issue is addressed in Theorem
2 with given bit rateRs and Ri. It is inferred from (31)
that the available bit rate of each node plays an important
role in the AUB. On the other hand, the available bit rate
is allocated by the MAC protocol, which can be designed in
terms of the desired performance. Therefore, the co-design
problem involving both the bit rate allocation protocol and
the estimator gains will be the focus of the rest of this paper.

In order to address the co-design issue, the following new
minimization problem is proposed, according to (4).

Corollary 2: Based on Theorem 2, when the positive inte-
gersRi (i = 1, 2, · · · , n0) are variables which need to be
determined, the minimum of the AUB of‖e(k)‖22 can be
derived by solving the following minimization problem:

min ε2Nw2
0 + ε3n0v

2
0 + ε4

∑n0

i=1
nyb

2

i
(⌊ny√

2Ri

⌋)

2

s.t. (4), (34), (35)

0 ≤ Ri ≤ Rs

Ri ∈ N, i = 1, 2, · · · , n0.
(51)

Moreover, the gainsKi (i = 1, 2, · · · , n0) of estimators can
be obtained by (18) and the following formula:

K =P−1K. (52)

Proof: The proof is similar to Theorem 2, which is
omitted for conciseness.

Note that the linearity of the objective function and con-
straints of OP A lead to the fact that OP A can be efficiently
solved by linear matrix inequalities (LMIs). However, the
proposed co-design problem in this subsection is a MINP
problem which refers to mathematical programming involving
the continuous and discrete variables and the nonlinearityin
the objective function and constraints [3]. It is difficult to
be solved due to the integer constraints ofRi, the matrix
inequality constraints (34) and (35), as well as the nonlinear
term ε4

∑n0

i=1
nyb

2

i
(⌊ny√

2Ri

⌋)

2 in the objective function.

To solve such a MINP problem, a combination of the PSO
algorithm and the LMI technique is proposed in the subsequent
analysis. For the MINP problem (51) with constraints, the first
step is to transform (51) into the following form by introducing
a penalty function:

min ε2Nw2
0 + ε3n0v

2
0 + ε4

∑n0

i=1
nyb

2

i
(⌊ny√

2Ri

⌋)

2 + fp(R)

s.t. (34), (35)

Ri ∈ N, i = 1, 2, · · · , n0

(53)

where fp(R) = max {0,∑n0

i=1 Ri −Rs} is the penalty
function with R = [R1, R2, · · · , Rn0

]. The fitness func-
tion of PSO is defined asF(R) , ε2Nw2

0 + ε3n0v
2
0 +

ε4
∑n0

i=1
nyb

2

i
(⌊ny√

2Ri

⌋)

2 + fp(R).
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Start

Initialize the parameters of the PSO algorithm

Evaluate the fitness of each individual particle 

by solving LMIs (34) and (35)

Update pb and gb

Update the velocity and position of all the 

particles according to (54) and (55)

k=k+1

If k reaches the 

maximum iteration

End

No

Yes

Fig. 2. Flowchart of the PSO-Assisted co-design algorithm

For the optimization problem (53), letvi =
[vi,1,vi,2, · · · ,vi,n0

] and Ri = [Ri,1,Ri,2, · · · ,Ri,n0
]

represent the velocity and position of the particlei,
respectively. The velocity and position updating equations of
particle i are given as follows:

vi(t+ 1) =wvi(t) + c1r1 (pi(t)−Ri(t))

+ c2r2 (gb(t)−Ri(t)) (54)

Ri(t+ 1) =Ri(t) + vi(t+ 1) (55)

where t is the iteration number,c1 and c2 represent the
cognitive acceleration coefficient and the social acceleration
coefficient, separately,w refers to the inertia weight,pi

denotes the historical individual best position (pb) for particle
i, andgb bespeaks the historical global best position for the
entire swarm. Considering that the PSO is used to solve the
MINP problem, the initial position and velocity of the particle,
as well as the parametersc1, c2, andw are all selected as
integers in the algorithm. Moreover,r1 and r2 are selected
randomly from two integers belonging to 1 or 2 rather than
random numbers belonging to[0, 1] in the classical PSO
algorithm.

The flowchart of the PSO algorithm proposed in this paper
is shown in Fig. 2. The first step is to initialize parameters,
including the population sizeNS , the maximum number of
iterationsNI , c1, c2, w, vi, Ri, and the initialpi of each
particle. The second step is to evaluate each particle’s fitness
function F(Ri) by solving the LMIs (34) and (35). If the
LMIs (34) and (35) are infeasible, then the value of fitness will

be artificially assigned a sufficiently large value (104 in this
paper) to reduce the effect of the corresponding particle onthe
particle swarm. The third step is to update thepb by choosing
the smaller one betweenF(Ri) and F(pi), and update the
gb by choosing the minimum fitness value in the swarm.
Then, according to the updating equations (54) and (55), the
velocity and the position of the each particle are updated in
the fourth step. Each iteration repeats the process from the
second step to the fourth step until the maximum number of
iterations is reached. After that, the bit rate allocation protocol
can be parameterized according togb. Finally, the PNB-based
estimators (16) are generated under the gain matricesKi that
are obtained through solving the LMIs (34) and (35).

Remark 4:This paper considers a class of complex net-
works with limited bandwidth where only partial nodes’
measurement outputs are accessible. In order to estimate each
node’s state more accurately, the problem of appropriately
allocating the limited bit rate to a certain number of available
nodes is essential. As such, this paper considers the design
problems of the bit rate protocol and the estimator parameters
simultaneously. Such a co-design problem is further trans-
formed into a MINP problem as shown in (51)and is later
solved by means of PSO and the LMIs.

Remark 5:This paper investigates the state estimation
problem for a class of discrete-time complex networks based
on partial nodes’ measurements. According to an allocation-
based MAC, a bit rate constraint model is first introduced
to reflect the bandwidth limitation of complex networks with
n0 accessible nodes. Under the proposed bit rate constraint
model, Theorem 1 provides a sufficient condition to guarantee
the ultimate boundedness of the PNB state estimation error
dynamics. Two optimization problems focusing on different
estimation performances are presented to design the desired
state estimators. Furthermore, a co-design problem that in-
corporates the bit rate allocation protocol and the estimator
parameters is proposed to improve the estimation accuracy
and such a problem is well addressed by resorting to the PSO
and LMI techniques.

Remark 6:The state estimation problem for discrete-time
complex networks has attracted extensive research attention
and abundant literature has been collected. This paper is
more innovative compared to the established literature in the
following ways: 1) the proposed bit rate constraint model
is new in terms of portraying the extent of communication
bandwidth constraints and the bandwidth allocation rules for
part of the nodes in complex networks; 2) the bit rate condition
established in this paper is new due to the fact that it reveals
the relationship between the specific PNB state estimation
performance and the bit rate; 3) the design algorithms for
PNB state estimator gains are new which meet the needs for
different performances of the estimation error system.

IV. N UMERICAL EXAMPLE

In this section, three numerical simulations are carried out to
illustrate the effectiveness of the PNB state estimator proposed
in this paper for the complex network (1) with constrained bit
rate.
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The complex network (1) with five nodes is considered in
this section with the following parameters:

A1 =

[

0.12 0.06

0.12 0.18

]

, A2 =

[

0.04 0.02

0.04 0.06

]

A3 =

[

0.08 0.12

0.12 0.12

]

, A4 =

[

0.01 0.03

0.02 0.03

]

A5 =

[

0.04 0.04

0.06 0.02

]

, B1 =

[

0.02

0.02

]

, B2 =

[

0.02

0.01

]

B3 =

[

0.06

0.02

]

, B4 =

[

0.03

0.02

]

, B5 =

[

0.01

0.02

]

.

The coupling configuration matrix is assumed as the fol-
lowing form:

W =

















−0.60 0.20 0.20 0.10 0.10

0.20 −0.50 0.10 0.10 0.10

0.20 0.10 −0.80 0.20 0.30

0.10 0.10 0.20 −0.50 0.10

0.10 0.10 0.30 0.10 −0.50

















(56)

and the inner-coupling matrix is assumed to be an identity
diagonal matrix.

The nonlinear function is supposed to satisfy the following
forms:

f(xi(k)) =

[

0.6 tanh(0.2xi1(k)) + 0.7xi1(k)

0.3 tanh(0.5xi2(k)) + 0.6xi2(k)

]

.

Then, it can be seen that the nonlinear function satisfies the
sector bounded condition (2) with

ū1 =

[

0.82 0

0 0.75

]

, u1 =

[

0.7 0

0 0.6

]

.

Assume that the measurements of the first three nodes can
be obtained and possess the following parameters:

C1 =

[

1 0

1 1

]

, C2 =

[

1 1

0 1

]

, C3 =

[

0 1

1 1

]

D1 =

[

−0.03

−0.04

]

, D2 =

[

−0.03

−0.02

]

, D3 =

[

−0.02

−0.01

]

.

The following three cases are given to verify the effective-
ness of the method proposed in this paper.

Case 1: PNB state estimation effects of OP A and OP
B.

This case discusses the effects of OP A and OP B on
different performance indexes of the developed PNB state
estimators. The total available bit rate of the complex network
is set to be32 bps, and the available bit rate of each accessible
node is allocated asR1 = R2 = R3 = 10 bps by an average
allocation protocol (AAP). The scaling parameters of each
quantizer are chosen asb1 = 0.6, b2 = 0.7, b3 = 0.6.
Especially, theγ̄ in Theorem 2 is set to be 0.96. Then, by
applying Theorem 2 and Theorem 3, the estimator gain of
each node can be obtained, respectively.

-0.5

0

0.5
x11(k)
x̂11(k): Theorem 2(γ̄=0.96)
x̂11(k): Theorem 3
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x̂21(k): Theorem 2(γ̄=0.96)
x̂21(k): Theorem 3
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x̂31(k): Theorem 2(γ̄=0.96)
x̂31(k): Theorem 3
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x̂41(k): Theorem 2(γ̄=0.96)
x̂41(k): Theorem 3
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x̂51(k): Theorem 2(γ̄=0.96)
x̂51(k): Theorem 3

Fig. 3. The trajectories ofxi1(k) and x̂i1(k) (i ∈ {1, 2, 3, 4, 5})

TABLE I
THE COMPARISON BETWEENOP A AND OP B

Total bit rateRs(bps) OP A (γ̄ = 0.96) OP B

Setting-like time 8 6

Upper bound of the trajectory 0.1763 0.1923
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x̂12(k): Theorem 2(γ̄=0.96)
x̂12(k): Theorem 3
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x̂22(k): Theorem 2(γ̄=0.96)
x̂22(k): Theorem 3
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x̂32(k): Theorem 3
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x̂42(k): Theorem 3
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x̂52(k): Theorem 2(γ̄=0.96)
x̂52(k): Theorem 3

Fig. 4. The trajectories ofxi2(k) and x̂i2(k) (i ∈ {1, 2, 3, 4, 5})

The simulation results are plotted in Figs. 3-4 and Table I.
Fig. 3 and Fig. 4 sketch the trajectories of the first and the
second component of the state and their estimates, respectively.
It can be observed from Figs. 3-4 that the estimator of each
node performs well in estimating the state trajectories. The
trajectories of the estimation error dynamics subject to OP
A and OP B are displayed in Fig. 5. In terms of OP A and
OP B, the upper bound of the estimation error and the time
required for the error dynamics to reach and remain within
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||e(k)||2: Theorem 2 (γ̄=0.96)
||e(k)||2: Theorem 3

5 10 15

0.15

0.2

0.25

45 50 55

0.15

0.2

0.25

Fig. 5. The trajectories of PNB estimation error‖ e(k) ‖2 subject to OP A
and OP B

the “steady-state region” (“settling-like times”) are shown in
Table I. From Fig. 5 and Table I, we can see that OP A exhibits
better performance in reducing the upper bound of estimation
errors while OP B leads to a low decay rate.

Case 2: Effects of different allocation protocols on AUB.

TABLE II
THE AUBS SUBJECT TO DIFFERENT BIT RATE ALLOCATION PROTOCOLS

Quantizer Parameters Protocol Allocation of Bit Rate AUB

b1 = 0.6

b2 = 0.9

b3 = 1.2

AAP

R1 = 21

R2 = 21

R3 = 21

0.3181

PSO-OAP

R1 = 20

R2 = 22

R3 = 22

0.3148

b1 = 0.6

b2 = 2.2

b3 = 2.6

AAP

R1 = 21

R2 = 21

R3 = 21

0.3415

PSO-OAP

R1 = 19

R2 = 22

R3 = 23

0.3275

In this case, simulations are conducted under different al-
location protocols (i.e. PSO-based optimal allocation protocol
(PSO-OAP) and AAP) to analyze their respective effect on
the AUB. In the AAP, the total available bit rate is evenly
allocated to each node without considering its characteristics.
In comparison, PSO-OAP assigns the bit rate to each node
subject to the optimized results obtained by Corollary 2.

The total available bit rate of the digital communication
network is set to be64 bps. The decay ratēγ in OP A is set to
be0.96. Moreover, two sets of scaling parameters are selected
as shown in Table II to demonstrate the generality of the
effectiveness of PSO-OAP and to discuss the effect of different
parametersbi on the estimation performance. Then, the values
of AUB can be obtained by solving OP A subject to the AAP
and the MINP in (51), respectively. The corresponding results
are shown in Table II, from which we can find the following
two observations: 1) PSO-OAP performs better than AAP in
reducing the AUB of the PNB estimation error system; 2) the

larger the difference between the parametersbi (i = 1, 2, 3),
the more pronounced the advantage of PSO-OAP in reducing
AUB of the PNB estimation error system.

Case 3: The comprehensive effect of the number of
accessible nodes and the bit rate on PNB estimation errors.

This case aims to discuss the comprehensive effect of the
number of accessible nodes and the total available bit rate
Rs on the estimation error through numerical simulation. The
accessible nodes are selected to be the firsti (i = 1, 2, 3, 4, 5)
nodes, respectively. The parameters of the measurements are
set to be:

C1 = C2 = C3 = C4 = C5 =

[

1 0

0 1

]

D1 = D2 = D3 = D4 = D5 =

[

−0.03

−0.04

]

.

The total available bit rateRs are set to be16 bps and
32 bps, separately, and the available bit rate of accessible
nodes is allocated by the AAP. The scaling parameters of each
quantizer are chosen asb1 = 0.6, b2 = 0.7, b3 = 0.6, b4 = 0.9,
b5 = 0.8. The γ̄ is set to be 0.96 for OP A. Then, a set of
simulations are conducted with different number of accessible
nodes and different total available bit rate.
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Fig. 6. The trajectories of estimation error‖ e(k) ‖2 with i accessible nodes
andRs = 16 bps (i = 1, 2, 3, 4, 5)
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Fig. 8. The average PNB estimation errorē(k) with Rs = 16 bps and
Rs = 32 bps

The corresponding simulation results are plotted in Figs.
6-8, which indicate that the number of nodes that provide
available measurements outputs has a significant effect on the
state estimation of a complex network. Under the conditions
of Rs = 16 andRs = 32, the estimation error‖ e(k) ‖2 with i
(i = 1, 2, 3, 4, 5) accessible nodes are plotted in Figs. 6-7. The
average estimation error is denoted asē(k) =‖ e(k) ‖2 /n,
where n is the simulation run length (120 in this paper).
Then, in terms of different available bit rateRs, the average
estimation errorē(k) with i (i = 1, 2, 3, 4, 5) accessible
nodes are shown in Fig. 8. From Figs. 6-8, we can find
the following three observations: 1) larger bit rate leads to
a smaller estimation error; 2) when the bit rate is at a low
level (Rs = 16), the number of accessible nodesn0 is not
as large as necessary, which is natural since the larger the
n0 is, the less bit rate is allocated to each node and the
larger the decoding error; and 3) when the bit rate is set to
Rs = 32 and the number of accessible nodes is less than5, the
larger the number of accessible nodes, the better the estimation
performance, which can be explained intuitively since more
near-perfect measurements yield more available information
for state estimation.

V. CONCLUSIONS

In this paper, the PNB state estimation problem has been
investigated for a class of discrete-time complex networkswith
constrained bit rate. A bit rate constraint model has been
proposed to describe the bandwidth allocation of partially
accessible nodes in a complex network. A sufficient condi-
tion has been constructed under which the estimation error
system is ultimately bounded. Then, a bit rate condition that
guarantees a particular PNB state estimation performance has
been developed. In order to ensure two different estimation
performance indices, two OPs have been resolved to obtain the
optimized estimators. Moreover, the co-design issue of thebit
rate allocation protocol and the estimator gains has been set-
tled. Three illustrative numerical cases have been provided to
illustrate the feasibility and effectiveness of our results. Further
research topics include 1) the PNB state estimation with other

estimation techniques such as the moving horizon estimation
[49], [50] and 2) improving the estimation performance by
using some effective optimization strategies [24], [25].
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