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Partial-Nodes-Based State Estimation for Complex
Networks with Constrained Bit Rate

Jun-Yi Li, Zidong Wang, Renquan Lu and Yong Xu

Abstract—In this paper, the partial-nodes-based (PNB) state
estimation issue is investigated for a class of discreteatie complex
networks with constrained bit rate and bounded noises. Mea-
surements from only a fraction of nodes in a complex network
are acquired and used for state estimation. The communicatin
between sensor nodes and estimators is accomplished over
wireless digital communication network with limited bandwidth.
A bit rate constraint model is introduced to reflect the band-
width allocation rules of partially accessible nodes. A sticient
condition is proposed under which the PNB state estimationreor
system is guaranteed to be ultimately bounded, and then a bitite
condition assuring a specific estimation performance is prented.
The estimator gains are derived by solving two optimization
problems in order to ensure two estimation performance metics
(i.e. the smallest ultimate bound and the fastest decay rale
Furthermore, the co-design issue of the bit rate allocation
protocol and the estimator gains is addressed by means of ptcle
swarm optimization and linear matrix inequalities. Finally, three
numerical simulations are provided to verify the validity of the
proposed PNB state estimation approach.

Index Terms—Partial-nodes-based state estimation,
strained bit rate, coding-decoding, co-design problem.

con-

I. INTRODUCTION

understand the underlying network structure. Unfortugate
the state information is not always accessible due to the vas
size of complex networks, strong coupling between nodes,
and lack of accurate models. One approach to solve this
groblem is to use the accessible measurements to obtain an
estimate of the network state. Accordingly, the state egton
problem for complex networks has received a great deal of
attention in literature (see, [10], [18], [20]). For exampétate
estimation problems for diverse complex networks have been
investigated under different communication protocols][10
[40] and switching topology [16], [20].

To the best of our knowledge, the vast majority of exist-
ing studies on state estimation for complex networks have
based themselves on an underlying assumption that, allshode
measurements are accessible, which might be unreasonable i
practical applications. For example, it is incredibly engige
to measure all the nodes in a complex network since the
number of nodes is often tremendous. Besides, due to the phys
ical limits of the communication network and the operating
environment, it is impractical to measure all nodes and then
transmit the collected measurements. A malicious Dos lattac
may also cause some of the measurements to be unobtainable

Complex networks are large-scale systems consisting obhg plocking the transmission channel. Accounting for these

large number of strongly coupled dynamic units that can

l?ﬁfoblems, a partial-node-based (PNB) state estimatiohadet

employed to characterize many real-world examples, ineud has been developed in [21] for the first time, where the state
but not limited to sensor networks, social networks, powektimates of all nodes have been achieved with measurement
grids, biological networks, and so on [2], [37]. Dynamictsni jhformation only from a portion of the nodes. Although

in a complex network often interact with each other througfalevant studies have been conducted later in [8], [9],,[20]
connections, leading to a highly coupled and dynamical ngp7), the corresponding literature on PNB state estimaltias

work environment. As such, much research enthusiasm

hasen scattered, and this constitutes the main motivati@uof

recently been attracted towards dynamical behavior isefiescyrrent study.
complex networks, e.g. stability, synchronization andesta For a long time, most state estimation studies for complex

estimation problems [4], [11], [33], [35], [38], [43], [44]46],
[48].

networks have paid their attention to analog communication
where measurements are transmitted via the form of analog

In the dynamic analysis of complex networks, state insignals which take continuous values with infinite pregisio
formation plays a vital role due to the fact that it helps ta\s opposed to the traditional analog communication scheme,
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the digital communication scheme is capable of adapting to
advanced control equipments and high-quality commurdnati
services, and has attracted ever-increasing researcteshte
in the now-popular networked systems [7], [12], [14], [26],
[27], [36], [41], [47], [51]. In wireless digital communitian,
sensors are often subject to sampling, quantization, adithgo
before transmission. Although sampling and quantizatibn o
sensor signals have already received considerable attenti
in networked control systems (see e.g. [6], [15], [23], |28]
[32] and the references therein), the coding procedure has
not received much attention, especially in the state esitima
field [13], [29]. It should be noted that coding is at the heart
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of analog-to-digital conversion compared to sampling and  boundedness of the PNB state estimation error system,

guantization, and therefore deserves more researchiattent and a bit rate condition that guarantees the specific state
In the digital communication network, the network’s band- estimation performance is also proposed.

width is usually measured in terms of bit rate which defines 3) The PNB state estimators are designed according to d-

the number of bits conveyed through a digital communication ifferent estimation performance requirements by solving

network per second. For complex networks with massive  two optimization problems (OPs) and a mixed-integer

nodes, although the total bit rate of the network is largehea nonlinear programming (MINP) problem.

node is usually allocated with only a small portion of theatot Notation: The notation used in this paper is fairly

bite rate, and this leads to the inevitable bit rate consf$ai standard R™ and R"*™ represent: dimensional Euclidean

The last two decades have seen increasingly rapid advanggsce and the set of x m real matrices, respectivelyy,

in the field of control with limited bit rate. Early researchyng N+ stand for the sets of non-negative integers, and

in this area has focused on the simplest network topologysitive integers, respectively. diagA4;} and coly (e;) denote

which consists of a controller and a dynamic system Wiifiagonal block matrix diag{A;, As,---, Ay} and column
a feedback loop. Several attempts have been made to re or [e’_lr’e%“’ . ’emT, separately. For any € R", -7

the relationship between the minimum bit rate (that ensurgﬁd” 2 |- are its transpose and its Euclidean nopq;, {Q}
various types of stability) and the unstable eigenvaluehef t()\max{Q}) stands for the minimum (maximum) eigenvalue of
open-loop system [30], [31], [39], [42].
Recently, researchers have shown a persistent reseagch in?'
est in complex systems with network topology and constrhine
bit rate [5], [17], [19], [45]. The problem of consensus Il. PROBLEM FORMULATION AND PRELIMINARIES
with limited bit rate has been addressed by considering the The system formulation
simultaneous effects of bit rate, network topology, andnage

) . . S Consider a complex network witlV nodes as follows:
dynamics [45]. In the case of limited bit-rate communicatia

guantized observer-based encoding-decoding scheme éas be N

designed to facilitate the distributed coordination ofccise- zi(k + 1) =i (k) + f(zi(k)) + Y wiTa; (k) )
time multi-agent systems with partially measurable states J=1

[17]. In comparison with existing time-triggered consensu + Bw;(k), ie V2{1,2,--- N}

strategies, event-triggered strategies with lower bi¢ fsdve
been proposed in [5], [19] to ensure the asymptotic consen
of multi-agent systems by extracting additional inforroati
from the time instances of packet reception. Unfortunatel \ . . ) )
corresponding literature on stzlte estimati(r))n problemsdon- atrices. The nonlinear functiofi(-) is assumed to satisfy
plex networks with constrained bit rate has been scattereadl, f(0) =0 and
this constitutes another main motivation of our currentgtu (f(z1)—f(22) — (21 — 22))7

Based on the above discussions, it can be concluded that < (f(21) = f(22) — u(z1 — 22)) < 0 @
the problem of PNB state estimation for a class of complex A1 #2)mUA T 2) =
networks with constrained bit rate remains open due to th&r Vvz,, 2, € R"*, where@ and u are constant known
following three main challenge4) how to construct a math- matrices.
ematical model to characterize the bandwidth limitatiorired The coupled configuration matri¥) £ [w;;]yxn denotes

complex network with partially accessible nodes? 2) how tfe topology of the complex network with;; = wj; > 0 if
quantify the effect of the bit rate on the PNB state estimatigode; is capable of receiving the signal from nofe@therwise

performance? and 3) how to develop optimized estimatorsgai@ij = 0. In general,V is assumed to be symmetric and

to meet different performance indices and the need for the e@ytisfiesw,;, = _Zﬁlwij for j # i. The inner-coupling

design of the bit rate allocation protocol and the estima&tor matrix T — diag{yjl’% -+ ,7n,} represents connections

With the encouragement of the discussions conducted so fsgwween different elements of the subsystem, wheret 0

we strive to investigate the PNB state estimation for compleneans that théth component ofi; (k) has an impact on the
networks with constrained bit rate in this paper. The sigaift zi (k).

contributions of this paper are categorized into three espe

1) The PNB state estimation problem under the framework ) ) )
of digital communication networks is tackled by the firsB- Measurements of partial nodes under constrained bit rate
attempt, which is more applicable in engineering fields The transmission of the measurements in this paper is
than the conventional PNB state estimation methodsalized by applying a wireless digital communication rarkv
under the framework of analog communication networksnder constrained bit rate. As stated in Section [, for cempl
[9], [20], [21]. Then, a bit rate constraint model is denetworks in practice, only a fraction of the network nodegeha
veloped, for the first time, to characterize the bandwidticcess to the corresponding measurement outputs due to the
allocation of partially accessible nodes in the complédsit rate limitation of the network.
networks. Without loss of generality, it is assumed that we can get

2) A sufficient condition is proposed to ensure the ultimat&ccess to the measurement output of the fitgt nodes.

%Eerexi(k) € R"= represents the system state, andk) €
v refers to the system disturbance signal which satisfies
| wi(k) ||2< wo. A; € R"=*"= and B; € R"=*"» are known
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Specifically, the measurements of nodes in this part arengivie the jth element of the vectog;. By choosing an inte-
as: ger ¢;, the hyperrectangles;, will be partitioned intog,"”
yi(k) = Cizi (k) + Divi(k), 1 <i<ng (3) sub-hyperrectangle&’} (b;) x I'2(b;) x --- x I, (b;), with
1 2 ny

wherey;(k) € R™ denotes the measurement output of thé: 52, - »55, € {1,2,---, ¢} and
ith node,v;(k) € R™ refers to the measurement disturbance N
signal which satisfies| v;(k) |[2< vo. C; € R™*"= and I (b;) ﬁ{y
D; € R™w*™ gre known matrices.

Data collisions inevitably occur when output information 19 (b;) 2 {?/z(j) | —b; + 2b; < yl@ < —b; + 4_1’1}
from different nodes passes through the digital communica- i Qi
tion network with limited bandwidth. A variety of channel
allocation protocols are applied to allocate a certainlakéa '
bit rate to each node to reduce the data collision. The model 19 (b;) 2 {y(a‘) | b; — 2b; <49 < bi} _ (5)
of bit rate constraint can be expressed as follows, & ! -

() | —=b; < y(j) < —b; + 2—1)1}

i A
i

7
For the bit rate constraint model (4) and the uniform quan-

)
ZRz‘ < R (4) tizers described above, in order to ensure that the inféomat
=1 corresponding to each sub-hyperrectangle is uniquelydato

where R, € Nt represents the total available bit rate detefhe maximum number of quantization levels is defined as:

mined by the physical elements, aft] € N indicates the n

allocatedybit ral:e Bcl)f node dim = {WJ (6)
Remark 1:Different media access control (MAC) proto- ny ) ) )

cols, such as allocation-based and competition-based MAere LWJ describes the maximum integer less than or

protocols, are applied in real networks to reduce data-colfgual to V2R, _

sions. While competition-based MAC protocols are better atFor eachB,,, the center of the hyperrectanglé (b;) x

improving the utilization of the network bandwidth in the[si?(bi) X oo X Iz?y (b;) is denoted by

network environment, the allocation-based MAC protocols® v

have a better effect on the network with massive nodes i (Si st

such as complex networks. In this paper, the static allopati b \P1 7

protocol is applied to complex networks [1], [34]. The bitaa

constraint model is presented in formula (4). )
Remark 2:Due to the limitations of network hardwarel: 2. -7y Hence, foranyy; € By,, there exists a certain

and communication resource, the total bandwidth of compl&kt Of integerssy, s, ---,s, € {1,2,---,¢q;} such that

networks is often limited. In this case, the number of adbéss yi € Iii x I x -+ x I, which satisfies the following

nodesn, directly affects the amount of bit rate that carnequality: ’

be allocated to each node. Specifically, the larger the

1" @

4 L
* 35, —[Cil Ci2  + Cin,

with e 2 —b + [((2si-1)b)/[V2R|], § =

is, the less bit rate is allocated to each node. Also, less ‘%—hi (Sli’sé,... ,S:’L )H < 7Vnybl (8)
bit rate means lower transmission quality which leads to a ' /12 r\/y 2RiJ

worse estimation. Intuitively, if measurements can beastéd

from more nodes, i.e., the largey is, the better estimation The integersst, s, - - - ,s;y € {1,2,---,q;} are the compo-
results can be achieved. Therefore, the number of nodemnts of the codeword in the coding procedure.

providing available measurements has a complex impact onCoder for node i under constrained bit rate R;.

the performance of the state estimation for a complex nétwor For y;(k) € Il (b;) x I'2(b;) x -+ x I';" (b;) C By,, the
The comprehensive effect of the number of accessible nogggowing codeword is geﬁerated "

ng on the performance of the state estimation will be discussed

in Section IV by numerical examples. VE(k) = {szl, e ,s;y} : 9)
Decoder for nodes.

For the received codewor@/™ (k), it can be decoded
To comply with the digital communication fashion, ayy using the corresponding alphabef: embedded in the

coding-decoding strategy subject to constrained bit ratele  gecoder. In addition, the output of the decoder is defined as
tion (4) is presented in this subsection. By coding procedur

the measurement of each accessible node is coded as a string  g;(k) = hy, (yfi (k)) = hy, (311, . ’S;y) . (10)
of binary codes selected from the alphalét of size 2.

To facilitate the coding-decoding procedure, the follogvin _ - )
uniform quantizer is brought forward in this paper. For thE- Partial-nodes-based state estimation under coding-
quantizer of nodei, given a scaling parametdr; > 0, decoding procedure
the quantization region is identified subsequently By = Based on the coder (9) and decoder (10) proposed before,
{y; € R™ |y§J)| < b;,j = 1,2,---,n,}, where ygj) the estimator of nodé belonging to the firsthy nodes is

C. Coding-decoding procedure under constrained bit rate



FINAL VERSION

capable of receiving the information with the following fior

at time instant: from the sensor:
ﬁl(k) = hgl (Sziv T asfzy)

=[ea e 1"

cl’ﬂy

_b¢+{((2£w<—;)b0,/[%@??

Let de,_i (k) £ Yi (k) i
nodei, d.(k) £ col,, (d..;(k)), andd.(k) = col(d,
follows from (8) and (11) that

[E—

(), 0). It

e s (k)2 < % (12)
de(B) 2 = 1. ()2 < ;ﬁ 13)

In terms of the decoded measurements from the figst
nodes, the state estimators for the complex network (1) are

constructed of the following form

Zilk 4+ 1) =A@ (k) + f(&(k +§:%;@
+K((@—Q@%»l*12~-m(m)

Zilk +1) =A;i;(k) +Z%mj
i:no+1,no+2,---,N (15)

wherei; (k) € R"= is theith node’s state estimate, add, ¢
R"=*" s the estimator gain to be designed.

Denotmg the estimation error of thith node ase;(k) =
zi(k) —

1 is obtained as:

eilk +1) =Aje; (k) + flei(k)) + Zwurej + Biw;(k)
— Ki(yi(k) — dei(k )—C'xi( )
=A;e;(k) + f(ei(k)) + wal"ej ) + Biw;(k)
—&QM)—&&M@+&%M)
i=1,2,---,ng (16)
eilk +1) =Aje; (k) + flei(k)) + Zwurej + Biw;(k)
i:nm+Lm+a,~,N (17)

with f(ei(k)) £ f(ai(k)) — f(2i (k).

b+ [((2s1 = 1) bi) / |27 (11)
b+ [((285 — 1) bi) / |27 |

— 4:(k) be the decoding error vector of

4
- -
- -
- >
<
- - /3{ 7 3 ... * -
4 > D> -~
- -
;’htrfl glgsets S % % - 5% Complex network
0 - with MV nodes

Node i : ‘,““ estimation
| Wireless digital ! I

I commumcatlon”
| network with Lt
| limited bit rate .

Estimator i

B e ——

Sensor i

1 measurement decoded |information

codeword | W Icodeword
.............. > HHI|.-------------> Decoder i

Coderi

Fig. 1. Schematic of PNB state estimation problem with qairstd bit rate

To simplify the symbolic representation, we set
e(k) £ coly(e;(k)), F(e(k)) = coln(f(ei(k)))
A 2 diagy{A;}, B = coly{B;}
£ diag, {C:}, C £ diag{C, 0}
2 col,{D;}, D £ col{D,0}
£ diag, {K:}, K = diag{K,0}
o(k) £ col,, (vi(k)), v(k) = coly(v;(k),0)
w(k) £ coly(wi(k)), A= (A-KC+WaT).

By applying the Kronecker product, the estimation error
dynamics (16) is rearranged as the following compact form:

e(k+1) =F(e(k)) + Ae(k) — KDuv(k)
+ Bw(k) + Kd.(k).

In order to facilitate the further development of this paper
the following definition is presented to assist in descigitime
issues to be studied.

Definition 1: The dynamics of the estimation errefk)
[i.e., the solution of system (19)] is said to be exponelytial
ultimately bounded if there exist constants> 0, p > 0, and

(18)

NI@Q

(19)

#;(k) and taking the definition of decoding error intg? > 0, such that
account, the corresponding estimation error dynamics déno

le(k)][3 < o*p+¢

wheres € [0,1) is the decay rate and is the asymptotic
upper bound (AUB) of|e(k)||3.

In this paper, the state estimation problem for complex net-
work (1) with constrained bit rate condition (4) is invesiigd
by using decoded measurements from only a part of nodes.
The schematic structure is shown in Fig. 1. In the following
pages, the sufficient condition will be given to guarantes th
the estimation error is exponentially ultimately bound€éde
desired estimator gains will be derived by solving some ef th
OPs proposed in this paper.

IIl. M AIN RESULTS

In this section, the ultimate boundedness of PNB state
estimation is firstly analyzed. The design issues of the PNB
state estimator are then discussed under different esbimat
performance metrics.
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A. The analysis of PNB state estimation B, o (D11 D2
2 -
The next theorem will discuss the ultimate boundedness | ¥ D22
of the PNB state estimation error dynamics (19) and give a —(1 = )P — iUy — ATPA ATP + 10>

sufficient condition to guarantee the ultimate boundedness ®;; =
For the sake of simplicity, we denote

* P—eil

_ _ [-ATPKD ATPB ATPK
[OFE} édlag{Hl,Hg} [O2P) 2
A ) -PKD  PB  PK
AT =)P -l a1l -
I, £ x —e1l (20) DTKTPKD -DT"K"PB -DTKTPK
A Do = * BTPB B"PK | +1L.
I, 2diag{ —eol, —e31, —c41} « * KTPK

&5 2col (A"P,P,—D"K"P,BT"P,K"P). - . ,
By applying the Schur Complement Lemma, it is readily
Theorem 1:Under the bit rate condition (4), let the positiveseen from inequality (21) thab;, < 0. Then, it follows from
integersR,, R; (i = 1,2,---,no), and the matrixK” with  the formulas (21) and (24) that
appropriate dimensions be given. Then, the dynamics of the

PNB state estimation error is ultimately bounded if there AV (k) < =2V (k) + eaw” (k)w(k)
exist positive scalars;, €2, €3, €4, 7y, and positive definite + e3v” (k)v(k) + ead? (k)d. (k). (25)
matricesP; € R"=*"= (3 =1,2,--., N) such that N ) ) b2
Denotingp £ ea Nw + e3noV3 + €4 Y o) rmirs, WE
(1)11 @12 2 0 3740V 42_1 ([\/QTJ)z
) = <0 (21) have
* =P
AV (k) < =~V (k) + ¢. (26)

with P £ diagy {P;}.
Proof: Define the Lyapunov-like function for the PNBMoreover, for any scalay, one has
state estimation error system (19) &$k) = e (k)Pe(k). t41 oy
Then, the difference oV (k) is calculated as: nHlV(t 1) =0V .
= (V({E+1) = V(@) +n (n—1)V()

AV('@ =V(E+1)-Vk) <n'(n—1—m)V(t)+n' e, (27)

¢7 (k + 1)Pe(k + 1) — 7 (k)Pe(k) . N - s of inequal
B T Lettingn =7 = T and summing both sides of inequality
_[F(e(k) +Ae(k) — KDu(k) + Bu(k) + Kde(k)]"P (27) from 0 to k — 1 in relation tot, we arrive at

)
x [F(e(k)) + Ae(k) — KDv(k) + Bw(k) + Kd.(k)] (1 — i)
— el (k)Pe(k) 7"V (k) = V(0) < Tﬁ¢ (28)
_FT(e(k))P (e(k)) + " (k) AT P Ae(k) which can be further computed as
v (k)D" K" PK Duv(k) + w” (k) B" P Bw(k) Vo) A — b
+dT(k)KT73Kd (k) + 2F T (e(k))PAe(k) Vi) ==+ g =) ?
— 2FT(e(k))PK Du(k) + 2FT (e(k))PBw(k) ) )
+ 2T (e(k))PEd, (k) — 267 (k) ATPK Do(k) =1 =" <V(O) - ;) 3 (29)
+2¢" (k) ATPBuw(k) + 2¢" (k) AT PKd. (k) Then, taking the definition oF (k) and (29) into consider-
— 20T (k)DTKTPBuw(k) — 20T (k) DT KT PKd.(k) ation together, one has:
+ 2uw” (k)BT PKd. (k) — T (k)Pe(k). (22) le(k) 12 <———— T (k)Pe(k)
It is inferred from (2) that /(\mm{?} 5 5
CONNERSANED <0. (23) SAmm{P} <V(O) - 3) ey 0
“ F(e(k)) * I Fle(k))| — Consequently, recalling Definition 1, it is readily seenttha

R . the dynamics of the PNB state estimation error system (19) is
whereU; £ Iy @ Uy, U £ Iy @ Uy, Uy = (a"u+au")/2, exponentially ultimately bounded. Moreover, the AUB of the

and Uy = (a” + u")/2. Then, taking (22) and (23) into pNB state estimation error can be calculated by:
consideration together, one has:

_ EQNU)Q +€3TL01)2 + €4 Z:l:() nynyibfz
AV (k) <¢T(R)B1C(R) — AV (k) + o (k) (k) i i () ey
+ e3vT (k)v(k) + e4d? (k)d. (k) (24) YAmin{P}
where The proof of this theorem is now complete. ]

. The following corollary discusses the bit rate conditioatth
C(k) £ [T (k) FT(e(k)) oT(k) wh(k) dl(k)] guarantees the desired PNB state estimation performanee fo

€
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complex network. According to (31), the following suffictenwith

bit rate condition is provided with no need to prove. @51 2diag(Ils, I}
Corollary 1: Under the condition mentioned in Theorem &y -’ =oAL

1, the PNB state estimation error system (19) is ultimately K _d'agN{’C’O}i K= q'aglo{lci}

bounded with a given AUR, if there exist a set of bit rates =P —eUr e1Us

A
R; i=1,2,--- ng) satisfying 3= * —e11 (36)
no nyb? _ YAmin{P}e — EQng _ 63710’0(2) (32) oy 2col (A, P, _DT]CT, BT'P, ICT)
2= €4 ' A2ATP —CTKT + (W D)TP

5 ()
andP is defined in Theorem 1.
Specifically, when the allocated bit rate are all the same for Then, the dynamics of the PNB state estimation error system

each node, ieRy = Ry = - = R,, £ R, the PNB state (19) is ultimately bounded, where the decay rate of the state
estimation error system (19) is ultimately bounded withvegi  estimation errofje(k)||3 is 7. Furthermore, the minimum of
AUB ¢ if the AUB of |le(k)||3 can be derived by solving the following

minimization problem:

2

~ n
R> Yo
-2 92 <’7)‘min{lp}€ - EQNUJ% — €3N

no 2
min EQN’LU% + Egnol)g + €4 Z nyil)lQ (37)
Remark 3:The ultimate boundedness is a significant per- i=1 (F/QTD
formance index for the estimation error dynamics, which o ) _
ensures that the estimation error remains within a regiGHPiect 1o the matrix inequality constraints (34) and (35).
nearing the steady state. In this theorem, we proposeV@reover, the gaingt; (i = 1,2,---,no) of the estimators
sufficient condition to guarantee that the dynamics of th@PrFan e obtained by (18) and the following formula:
state estimation error system (19) is exponentially ultétya K =P~ K. (38)
bounded. It is inferred from the result in Theorem 1 that the
AUB of the estimation error system (19) is dependent on the Proof: Settingy =1 — 7, and taking (38) into account,
system noisev(k), the measurement noisék), the number of it is readily seen that
the ac_cessible nodes in the complex network, and the cod_ing- By = By, Doy — Byo. (39)
decoding procedure. Notably, when the bound of the noise,
the number of accessible nodes, and the parameters of th¥loreover, it is evident from inequality (34) thdt; < 0,
coding-decoding procedure are determined, the AUB (31) which guarantees the ultimate boundedness of the PNB state
the estimation error system depends only on the bit rate. @gtimation error system (19).
the specific case, a bit rate condition is subsequently mdai  Following the similar line in Theorem 1, the inequality in
under which the required PNB state estimation performanigms ofV (k) is obtained:
is satisfied.

v <7 (vo)-2)+ 2 (40)
v v
B. Design of PNB state estimator where¢ is defined in Theorem 1. Then, based on the inequal-

ities (30) and (35), we can derive that
Based on the analysis of the PNB state estimation error p

system, the design issue will be addressed by solving two OPs |je(k) |2 < V (k) < 5" (V(O) — —_) +—— (41

and a MINP problem in order to guarantee certain performance 1-75 =7

indexes. As such, the asymptotic bound [p(k)||% can be computed
OP A: To minimize the ultimate bound of the PNB statédhy minimizing ¢, which is equivalent to the condition (37).

estimation error dynamics so as to achieve the best estimatThen, the proof is complete. u

performance under bit rate constraint condition (4) witlown OP B: To optimize the decay rate of the PNB state estima-

total available bit rateR; and allocated bit raté;. tion error dynamics for the fastest convergence performanc
Theorem 2:For PNB state estimation error system (19)inder bit rate constraint (4) with known total available riaite

let a scalary (0 < % < 1) and positive integersks, R, and allocated bit rate;.

R; i = 1,2,---,ng) be given. Suppose that there exist Theorem 3:For PNB state estimation error system (19), let
four positive scalarss;, €2, €3, €4, N positive definite positive integersk,, R; (i = 1,2,---,ng) be given. Suppose
matricesP; € R"=*"= (; = 1,2,---,N), andng matrices that there exist five positive scalags, €2, €3, €4, 7, N +1
K € R™*"™ (4 =1,2,---,ng) satisfying positive definite matrice®;, € R"=*"= (; =1,2,--- /N),S €
RNmexNns andn, matricesk; € R™*™ (i = 1,2,---,ng)
By — Do; Doy -0 (34) satisfying
x —P D3 @
o= 0 Pl <o (42)
P>1 (35) 3 « —P




FINAL VERSION 7

P>1 (43) C. The co-design of the PNB estimators and bit rate allocatio
protocol

<0 (44) In order to minimize the AUB of the PNB state estimation

error system (19), the design issue is addressed in Theorem
with 2 with given bit rate R, and R;. It is inferred from (31)

that the available bit rate of each node plays an important

@3y Ediag(Ils, 11, } role in the AUB. On the other hand, the available bit rate

PSS -l e, (45) s allocated by thc_e MAC protocol, which can be designed i_n
. e terms of the desired performance. Therefore, the co-design

problem involving both the bit rate allocation protocol and

the estimator gains will be the focus of the rest of this paper

andP, g, K, K, II, are defined in Theorem 2. Then, the | o qer 1o address the co-design issue, the following new
dynamics of the PNB state estimation error system (19) iSiimization problem is proposed, according to (4).

ultimately bou.ndeq. FurthermorQe, the optim_um decay rgte 0 Corollary 2: Based on Theorem 2, when the positive inte-

tF;::E])‘oslltg\f\(/aineStrlnn;itilr?]inz:tri:)q)'nk(]2)|l‘:)2lecri'n be derived by solving gersR; (i = 1,2,--- ,ng) are variables which need to be
9 P ' determined, the minimum of the AUB ofe(k)||3 can be

derived by solving the following minimization problem:

AN
ITs =

max{~} (46)

. . . . Min  eaNwj + egnovd + 4 00, b
subject to the matrix inequality constraints (42)-(44). rgto ez + eanovy + 242002 Q ?/2&})2
over, the gainsk; (i = 1,2,---,ng) of the estimators can s.t. (4), (34), (35)
be derived by taking (18) and the following formula into 0<R; <R,
consideration: RieN, i=1.2-.no.

K =Pk (47) (51)
Moreover, the gaind<; (i = 1,2,--- ,ng) of estimators can

Proof: It is evident from the inequality? —I)P~(P —  pe obtained by (18) and the following formula:
I) > 0 that —P~! < P — 2I. Then, the following inequality

is derived in light of (44): K =P~'K. (52)
Proof: The proof is similar to Theorem 2, which is
A= A ) ~I . .
®33 = ] = <0. (48) omitted for conciseness. [
—P * P2 Note that the linearity of the objective function and con-

straints of OP A lead to the fact that OP A can be efficiently
solved by linear matrix inequalities (LMIs). However, the
proposed co-design problem in this subsection is a MINP
problem which refers to mathematical programming invaivin

By applying the Schur Complement Lemma dg3, one
gets—S ++2P < 0. Then, it is inferred from (42) that

[(1)31 22 < B3 <0 (49) the continuous and discrete variables and the nonlinearity
S the objective function and constraints [3]. It is difficul t
_ be solved due to the integer constraints ®f, the matrix
with inequality constraings (34) and (35), as well as the noaline
&3, 2diag{Ils, I} termeg > 0, ("JI;?ZJY in the objective function.
—P+2P -l U, To solve such a MINP problem, a combination of the PSO

fl; &

. algorithm and the LMI technique is proposed in the subsequen
analysis. For the MINP problem (51) with constraints, thst fir
giep is to transform (51) into the following form by introduog
penalty function:

* —81[

Consequently, the dynamics of the PNB state estimation er
e(k) is proved to be ultimately bounded on the basis of tH

Theorem 1. : n nyb?
min  esNwd + 2+ o mlbi 4 of (R
Following the line similar to the proof of Theorem 1, we e2Nwp + eanovy + €4 2252, ([ \J/QRT:D Jo(R)
obtain the following inequality: s.t.  (34), (35)
R, eN, i=1,2,--,ng
2\k ¢ ¢
V(k) < (1=~7)"(V(0) - )T (50) (53)
_ S , Where f,(R) = max{0,> °, R; — R} is the penalty
where¢ is defined in Theorem 1. The decay rate|lefk)|l; function with R = [Ry, Ry,---,Rn,]. The fitness func-

is thus determined by — ~2. In this way, the optimum decaytion of PSO is defined aF(R) = eaNw? + e3nogvg +
rate of PNB state estimation error is obtained by solving trée s nyb? + £,(R)
4 Lii=1 ([n P :

maximization problem (46). The proof is complete. m yx/zRiJ)z
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be artificially assigned a sufficiently large valug{ in this
paper) to reduce the effect of the corresponding particlthnen

particle swarm. The third step is to update theby choosing

the smaller one betweeR(R;) and F(p;), and update the

g» by choosing the minimum fithess value in the swarm.

1 Then, according to the updating equations (54) and (55), the

Evaluate the fitness of each individual particle velocity and the position of the each particle are updated in
by solving LMIs (34) and (35) the fourth step. Each iteration repeats the process from the

second step to the fourth step until the maximum number of

iterations is reached. After that, the bit rate allocatiootgcol

Initialize the parameters of the PSO algorithm

Update p,and g, can be parameterized accordinggio Finally, the PNB-based
estimators (16) are generated under the gain matfiGethat
1 are obtained through solving the LMIs (34) and (35).
Update the velocity and position of all the Remark 4:This paper considers a class of complex net-
particles according to (54) and (55) works with limited bandwidth where only partial nodes’

measurement outputs are accessible. In order to estimelte ea
node’s state more accurately, the problem of appropriately
allocating the limited bit rate to a certain number of avalga
nodes is essential. As such, this paper considers the design
problems of the bit rate protocol and the estimator pararsete
simultaneously. Such a co-design problem is further trans-
formed into a MINP problem as shown in (51)and is later
solved by means of PSO and the LMls.

Remark 5:This paper investigates the state estimation
problem for a class of discrete-time complex networks based
on partial nodes’ measurements. According to an allocation
based MAC, a bit rate constraint model is first introduced
to reflect the bandwidth limitation of complex networks with
ng accessible nodes. Under the proposed bit rate constraint

For the optimization problem (53), letv; = model,_ Theorem 1 provides a sufficient condition _to gqamnte
Vi1, Vio, - Vin,] and R; = [Ri1,Ria, -, Ring] the ultimate boundedness of the PNB state estimation error

represent the velocity and position of the particle dynamics. Two optimization problems focusing on different

respectively. The velocity and position updating equatioh estimation performances are presented to design the desire
particlei are given as follows: state estimators. Furthermore, a co-design problem that in

corporates the bit rate allocation protocol and the estimat

k=k+1

If k reaches the
maximum iteration

Fig. 2. Flowchart of the PSO-Assisted co-design algorithm

vi(t +1) =wv;(t) + cir1 (pi(t) — Ri(?)) parameters is proposed to improve the estimation accuracy
+ cara (gu(t) — R4(1)) (54) and such a problem is well addressed by resorting to the PSO
Ri(t+ 1) =R;(t) + vi(t + 1) (55) and LMI techniques.

Remark 6:The state estimation problem for discrete-time
where t is the iteration numbere; and c represent the complex networks has attracted extensive research attenti
cognitive acceleration coefficient and the social accétema and abundant literature has been collected. This paper is
coefficient, separatelyw refers to the inertia weightp; more innovative compared to the established literaturéén t
denotes the historical individual best positign)(for particle following ways: 1) the proposed bit rate constraint model
i, and g, bespeaks the historical global best position for the new in terms of portraying the extent of communication
entire swarm. Considering that the PSO is used to solve thgndwidth constraints and the bandwidth allocation rutes f
MINP problem, the initial position and velocity of the p&té, part of the nodes in complex networks; 2) the bit rate coaditi
as well as the parametets, cz, andw are all selected as established in this paper is new due to the fact that it reveal
integers in the algorithm. Moreover; andr, are selected the relationship between the specific PNB state estimation
randomly from two integers belonging to 1 or 2 rather thaperformance and the bit rate; 3) the design algorithms for
random numbers belonging tfH), 1] in the classical PSO PNB state estimator gains are new which meet the needs for
algorithm. different performances of the estimation error system.

The flowchart of the PSO algorithm proposed in this paper
is shown in Fig. 2. The first step is to initialize parameters,
including the population siz&Ng, the maximum number of
iterationsN;, c1, c2, w, v;, R;, and the initialp, of each In this section, three numerical simulations are carrigd@u
particle. The second step is to evaluate each particle'ssitnillustrate the effectiveness of the PNB state estimatoppsed
function F(R,;) by solving the LMIs (34) and (35). If the in this paper for the complex network (1) with constrained bi
LMIs (34) and (35) are infeasible, then the value of fitneds wirate.

IV. NUMERICAL EXAMPLE
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0.5 T T T T T

The complex network (1) with five nodes is considered i

this section with the following parameters: ?): Theorem 2(7=0.96)

Ti

¢): Theorem 3

012 0.06] [0.04 0.02 Py -
Al = ) A2 =

0.12°°0.18 0.04 0.06 :): Theorem 2(5=0.96)|

_008 012— _001 0.03 05 : Thcorf:m 3
As = , Ag= 205 T

0.12 0.12 0.02 0.03 E

004 0.04] [0.02 0.02 £ 0: Theorem 2(7=0.96) ]
Ay = , By = , By = s . . . : :

0.06 0.02 0.02 0.01 05 : : . . .

[0.06 0.03 0.01 : Theorem 2(5=0.96)|1
B3 = ) B4 = ) B5 == . :): Theorem 3 (1

0.02 0.02 0.02 I

T

The coupling configuration matrix is assumed as the fc

. 51(k): Theorem 2(7=0.96)
lowing form:

: Theorem 3
1

—0.60 020 020 010 0.10 o 20 40 % 80 100 120
020 —050 0.10 0.0 0.10
W=|020 010 -080 020 0.30 (56)

0.10 0.10 0.20 —-0.50 0.10 TABLE |
0.10 0.10 0.30 0.10 —0.50 THE COMPARISON BETWEENOP AAND OP B

Fig. 3. The trajectories of;1 (k) and ;1 (k) (i € {1,2,3,4,5})

and the inner-coupling matrix is assumed to be an identity Total bit rateRs(bps) OP A (¥ =0.96) OP B
diagonal matrix. Setting-like time 8 6
The nonlinear function is supposed to satisfy the following Upper bound of the trajectory 0.1763 0.1923

forms:

0.6 tanh(O.Qxil (k) 4+ 0.7z41 (k) 0.5 T T T T T

f(zi(k)) = . - — —
0.3 tanh(0.5$i2 (k)) + 0.6$i2 (k) 0= :): Theorem 2(7:0.96);
: Theorem 3

1

Then, it can be seen that the nonlinear function satisfies 1 53
sector bounded condition (2) with

B 082 0 0.7 0
Uy = y Up = .
0 0.75 0 0.6

Assume that the measurements of the first three nodes
be obtained and possess the following parameters:

T

:): Theorem 2(5=0.96)|7
: Theorem 3 =
1

oo
anN

T

o

: Theorem 2(7=0.96) ]
:): Theorem 3
1

. Amplitude

o
o

o
wn

T

1 0 1 1 0 1 0 SRS
Ci = Co = Oy = Theorem ‘2(1,7[).96)_
1 1 1] 9 2 lo 1] 9 3 ll 1] Theorf'md
-0.5
05 .
D - —0.03 Do — —0.03 Do — —0.02
B T A =) R B i A Thren 21-090)
-0.5 1
The following three cases are given to verify the effective ° 20 40 irS9 80 100 120

ness of the method proposed in this paper.

Case 1: PNB state estimation effects of OP A and OP Fig. 4. The trajectories afz(k) and 22 (k) (i € {1,2,3,4,5})
B.

This case discusses the effects of OP A and OP B on
different performance indexes of the developed PNB stateThe simulation results are plotted in Figs. 3-4 and Table I.
estimators. The total available bit rate of the complex oekw Fig. 3 and Fig. 4 sketch the trajectories of the first and the
is set to be32 bps, and the available bit rate of each accessibdecond component of the state and their estimates, reaggcti
node is allocated a®; = R, = R3 = 10 bps by an average It can be observed from Figs. 3-4 that the estimator of each
allocation protocol (AAP). The scaling parameters of eacgiode performs well in estimating the state trajectoriese Th
guantizer are chosen d§ = 0.6, bo = 0.7, bs = 0.6. trajectories of the estimation error dynamics subject to OP
Especially, they in Theorem 2 is set to be 0.96. Then, byA and OP B are displayed in Fig. 5. In terms of OP A and
applying Theorem 2 and Theorem 3, the estimator gain 6 B, the upper bound of the estimation error and the time
each node can be obtained, respectively. required for the error dynamics to reach and remain within
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o
©

o
o
T

= |le(k)
~le(k)

T
2
2

: Theorem 2 (5=0.96)
: Theorem 3

o
3

.7 0.25

j 0.15

Amplitude
o )
»n o

o
IS

i
A

0.25

0.2

o
w

F

10

larger the difference between the parameter§ = 1,2, 3),
the more pronounced the advantage of PSO-OAP in reducing
AUB of the PNB estimation error system.
Case 3: The comprehensive effect of the number of
accessible nodes and the bit rate on PNB estimation errors.
This case aims to discuss the comprehensive effect of the
number of accessible nodes and the total available bit rate
R, on the estimation error through numerical simulation. The

b s 10 1 ® % % 1 accessible nodes are selected to be theffifst= 1,2, 3,4, 5)
02 N g, = == 5%, | nodes, respectively. The parameters of the measurements ar
o1r VW 1 set to be:
% 2‘0 . 4‘0 e‘o 7 8‘0 11‘)0 1£o 1 0
time(k) Ci=0=03=0Cy =C5 = 01
Fig. 5. The trajectories of PNB estimation eripe(k) ||2 subject to OP A
and OP B D D D D D —0.03
1=LD2=D3=D4=Ds5=
—0.04

the “steady-state region” (“settling-like times”) are shoin

Table I. From Fig. 5 and Table I, we can see that OP A exhibits bps, separately, and the available bit rate of accessible

better performance in reducing the upper bound of estimatigodes is allocated by the AAP. The scaling parameters of each
errors while OP B leads to a low decay rate.

Case 2: Effects of different allocation protocols on AUB.

TABLE I
THE AUBS SUBJECT TO DIFFERENT BIT RATE ALLOCATION PROTOCOLS

Quantizer Parameters Protocol Allocation of Bit Rate AUB

Ry =21

b1 =0.6 AAP Ry =21 0.3181
b2 =0.9 R3 =21
b3 = R; =20

PSO-OAP Ry =22 0.3148
Rs =22
Ry =21

by =0.6 AAP Ry =21 0.3415
by = 2.2 Ry =21
b3 = 2.6 R; =19

PSO-OAP Ry =22 0.3275
R3 =23

. . . . and Rs
In this case, simulations are conducted under different an

location protocols (i.e. PSO-based optimal allocatiortquol

The total available bit rateR, are set to bel6 bps and

guantizer are chosen as= 0.6, b = 0.7, b3 = 0.6, b4 = 0.9,

bs = 0.8. The#¥ is set to be 0.96 for OP A. Then, a set of
simulations are conducted with different number of actdssi
nodes and different total available bit rate.

T T T
(k)||2: The number of accessible nodes=1
(k)|]2: The number of accessible nodes=2
(k)[]2: The number of accessible nodes=3
(k)||2: The number of accessible nodes=4
(k)[]2: The number of accessible nodes=5

Amplitude

time(k)

Fig. 6. The trajectories of estimation erripre(k) ||2 with ¢ accessible nodes

=16 bps ¢ = 1,2,3,4,5)

(PSO-OAP) and AAP) to analyze their respective effect on
the AUB. In the AAP, the total available bit rate is evenly
allocated to each node without considering its charadiesis
In comparison, PSO-OAP assigns the bit rate to each node
subject to the optimized results obtained by Corollary 2.

The total available bit rate of the digital communication
network is set to bé4 bps. The decay ratgin OP A is set to
be 0.96. Moreover, two sets of scaling parameters are selectec
as shown in Table Il to demonstrate the generality of the
effectiveness of PSO-OAP and to discuss the effect of differ
parameter$; on the estimation performance. Then, the values
of AUB can be obtained by solving OP A subject to the AAP
and the MINP in (51), respectively. The corresponding ftssul
are shown in Table I, from which we can find the following

two observations: 1) PSO-OAP performs better than AAP g. 7. The trajectories of estimation errpie(k) |2 with i accessible nodes

1

0o

T T T
5: The number of accessible nodes=1
5: The number of accessible nodes=2

:)|[2: The number of accessible nodes=4

Amplitude

(®)ll2
(Rl
|le(k)||2: The number of accessible nodes=3
(Rl
(k)

2: The number of accessible nodes=5
07 H

05| -

osfh -

04

03

02

01

o

o 20 0 60 80 100 120

time(k)

reducing the AUB of the PNB estimation error system; 2) thad Rs = 32 bps ¢ = 1,2,3,4,5)
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0.2989

I
5

Rs=16 bps

H 02275
2025 0.2049

2 3 4

0.2270 0.2264

The number of accessible nodes (1]
025 02254
g Rs=32 bps
= 02 01738 - 21
£0.1s
% 0.1 [3]
j’:jo.os
2
=
1 2 3 4 [4]
The number of accessible nodes
Fig. 8. The average PNB estimation er@(k) with Rs = 16 bps and
R, = 32 bps (5]

The corresponding simulation results are plotted in Figs.[6]
6-8, which indicate that the number of nodes that provide
available measurements outputs has a significant effedten t
state estimation of a complex network. Under the conditiong7]
of R; = 16 and R, = 32, the estimation errdj e(k) ||» with ¢
(:=1,2,3,4,5) accessible nodes are plotted in Figs. 6-7. The[8]
average estimation error is denoted@s) =| e(k) |2 /n,
where n is the simulation run length1R0 in this paper).
Then, in terms of different available bit rafe,, the average
estimation errore(k) with ¢ (i = 1,2,3,4,5) accessible
nodes are shown in Fig. 8. From Figs. 6-8, we can find
the following three observations: 1) larger bit rate leads !
a smaller estimation error; 2) when the bit rate is at a low
level (Rs; = 16), the number of accessible nodes is not
as large as necessary, which is natural since the larger thé!
no IS, the less bit rate is allocated to each node and the
larger the decoding error; and 3) when the bit rate is set to
R, = 32 and the number of accessible nodes is less fhdme [12]
larger the number of accessible nodes, the better the g¢&tima
performance, which can be explained intuitively since more
near-perfect measurements yield more available infoonati [13]
for state estimation.

9]

V. CONCLUSIONS [14]

In this paper, the PNB state estimation problem has been
investigated for a class of discrete-time complex netwaiiks 15
constrained bit rate. A bit rate constraint model has been
proposed to describe the bandwidth allocation of partially
accessible nodes in a complex network. A sufficient condipg
tion has been constructed under which the estimation error
system is ultimately bounded. Then, a bit rate conditiort tha
guarantees a particular PNB state estimation performaase h
been developed. In order to ensure two different estimation7]
performance indices, two OPs have been resolved to obtin th
optimized estimators. Moreover, the co-design issue obthe (14
rate allocation protocol and the estimator gains has been se
tled. Three illustrative numerical cases have been praovide
illustrate the feasibility and effectiveness of our resulturther
research topics include 1) the PNB state estimation witlkeroth

(19]

11

estimation techniques such as the moving horizon estimatio
[49],
using some effective optimization strategies [24], [25].

[50] and 2) improving the estimation performance by
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