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ABSTRACT

Convolutional neural networks (CNNs) have emerged as pow-
erful tools for image retrieval and classification. In this paper,
we study binary embedding of CNN-based image descriptors
for resource-constrained devices. We propose two classes of
fast computable and memory-efficient dimension reduction
operators using Golay-Hadamard matrices (GHMs), which
are constructed by multiplying the columns of a Hadamard
matrix with a Golay sequence. Simulation results on CNN-
based instance image retrieval and classification show that
GHM-based operators can offer competitive performance to
those of full random Gaussian matrices and Gaussian circu-
lant matrices at much lower computational cost and storage
space. This implies the potential of proposed approaches on
devices with low memory, bandwidth and power restrictions.

Index Terms— Convolutional neural network, deep
learning, structured matrix, binary embedding, Hadamard
matrix, Golay sequence, dimensionality reduction.

1. INTRODUCTION

In today’s society, the large volume of multimedia data poses
great challenges for tasks of visual information processing.
Over the past few years, there have been increased interests
in the development of convolutional neural networks (CNNs)
for multimedia applications, e.g., [1–3] and the references
therein. Compared with conventional methods, CNN-based
approaches yield higher accuracy for image retrieval and clas-
sification. Feature vectors extracted from CNN often have
hundreds or thousands of dimensions. Consequently, for
devices with power, buffer and bandwidth constraints, data
transmission and storage could be challenging using these
high dimensional data. To provide short feature vectors, di-
mensionality reduction is often applied to post-process the
CNN feature vectors. One well-known method is principal
component analysis (PCA), in which the projection matrix
was first learnt from an independent data-set [1, 2]. However,
the storage and computation cost in PCA is very expensive.

For example, in NetVLAD CNN architecture [1], the corre-
sponding feature vector learnt from VGG neural network has
a dimension of 32k. To reduce the dimension to 4k, a 4k× 32k
projection matrix requires about 512 MB of memory, which is
too large for mobile applications. Besides, the multiplication
of such a projection matrix is time-consuming.

Various deep hashing methods [4–11] have also been in-
vestigated to generate binary codes directly from deep learn-
ing neural networks. Binary codes are attractive as they are
more memory efficient. They also allow fast query by com-
puting Hamming distance in binary space. However, most of
the existing works focused on supervised hashing. Besides,
binary codes produced by unsupervised hashing methods are
often inferior to real-coefficient CNN descriptors.

In this paper, we propose the binary embedding of deep
learning features through fast Johnson-Lindenstrauss trans-
form (JLT) [12] followed by simple binary operations. In par-
ticular, the fast JLTs are constructed from Golay-Hadamard
matrices (GHMs) by modulating columns of a Hadamard ma-
trix with a Golay sequence. The development is based on
two facts. First, we found a CNN-based image descriptor is
often sparse (or compressible) in the wavelet domain. Sec-
ond, previous work shows that a Golay sequence is effec-
tive in Hadamard-based compressive imaging [13]. Espe-
cially, two classes of fast JLT are proposed: (i) GHM-Rand
is constructed by randomly selecting M rows of an N × N
GHM (N ≥ M ); (ii) GHM-Fix picks up the first M rows of
a cascade of two different GHMs. Compared with existing
fast JLTs such as Gaussian circulant matrices (GCMs) [14],
our proposed operators have reduced randomness and com-
putation complexity. Simulation results show that they can
produce comparable results to those of full random Gaussian
matrices and GCMs in image retrieval and classification.

The rest of this paper is organized as follows. Section 2
briefly reviews binary embedding using full Gaussian matri-
ces and GCMs. Section 3 presents the proposed dimension-
ality reduction operator using GHMs. Extensive simulation
results on image retrieval and classification are given in Sec-
tion 4, followed by conclusion and future work in Section 5.
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2. LITERATURE REVIEW

Consider a data set T ⊂ RN . We want to embed each xi ∈ T
into M ≤ N bits so that for any two points xi,xj ∈ T , their
pairwise Euclidean (or angular) distances can be preserved.
A typical way is to first multiply each xi with an M × N
data-independent projection matrix A, and then map Ax to
binary bits {1,−1}M using a given function. In what fol-
lows, we provide a brief review of binary embedding using
independently identically distributed (i.i.d.) Gaussian random
matrices and Gaussian circulant matrices (GCMs).

Recall that the classical Johnson-Lindenstrauss Lemma
[12] states that if A has independent Gaussian entries with
zero-mean and unit variance, then with very high probability,
the following inequality holds for ε > 0 and all pairs of points
xi,xj in a finite data set T [12]∣∣∣∣∣
∥∥∥∥ 1√

M
A(xi − xj)

∥∥∥∥2

2

− ‖xi − xj‖22

∣∣∣∣∣ ≤ ε‖xi − xj‖22 (1)

provided that M ≥ O
(
ε−2 logQ

)
, in which Q denotes the

total number of points in T .
A simple binary operation is to take the sign of Ax, as

given below
f(x) = sign(Ax) (2)

where the sign(·) denotes the element-wise sign operation. If
each data point is on the unit-sphere, i.e., ‖xi‖2 = 1 (1 ≤ i ≤
Q), the angular distances of xi and xj can be evaluated or
estimated using the normalized Hamming distances of f(xi)
and f(xj). That is, for δ > 0, when A is a standard i.i.d.
Gaussian matrix with M ≥ O(δ−2 log(N/η)), the following
holds with probability 1− η [15, 16]∣∣∣∣ 1

M
dH (f(xi), f(xj))−

1

π
arccos(〈xi,xj〉)

∣∣∣∣ ≤ δ (3)

It is also known that this bound is optimal in terms of bit com-
plexity M [15]. It should be pointed out that the above result
is for any finite data-set. The bound for M can be further
improved if the data-sets have low-complexity structure. For
example, when each xi is a sparse vector with s non-zero ele-
ments, (3) holds whenM ≥ O(δ−2s log(eN/s)) even for the
infinite set.

Although i.i.d. Gauss matrices are theoretically optimal,
they require high computational and storage costs. Over the
past decade, the design of fast JLT for binary embedding
has been an active area. Several operators have been pro-
posed such as fast binary embedding [16] and circulant bi-
nary embedding [14]. As we aim to build low-complexity op-
erators for practical applications, we provide a brief review
on the construction of A from a GCM with the following
form [14, 17]

A = RICνDζ (4)

where I is a fixed subset of {1, 2, ..., N} with a size of M ,
and RI is a subsampling operator that restricts a vector to
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Fig. 1: An example of sorted Haar-wavelet magnitudes of a
feature vector extracted from Resnet-50.

its entries indexed by I. Cν is a circulant matrix generated
by a standard Gaussian vector ν and Dζ is a diagonal matrix
with random sign vector ζ on its diagonal, i.e., Pr(ζi = 1) =
Pr(ζi = −1) = 0.5. This class of matrices is attractive as
its matrix-vector multiplication can be computed with only
O(N logN) operations [14].

Circulant binary embedding using (2) and (4) was inves-
tigated in [14] for vectors on the unit sphere. If the maximum
magnitude of xi is small, i.e., ‖xi‖∞ = O

(
logN/

√
N
)

, the
Hamming distance dH (f(xi), f(xj)) can be used to estimate
their angular distances. For an arbitrary data-set, one can pre-
process each data vector by multiplying it with a randomly
modulated Hadamard matrix. That is, A can be replaced by
A = RICνDζHDκ, where H is an N ×N Hadamard ma-
trix and κ is a random sign vector.

3. BINARY EMBEDDING USING
GOLAY-HADAMARD MATRICES

3.1. Problem formulation

Our goal here is to design memory efficient and fast-
computable binary embedding for CNN features. Note that
for fast locality sensitivity hashing (LSH), it was shown em-
pirically [18] that a full random matrix can be approximated
by A = RIHDζ2HDζ1HDζ0 without much performance
degradation in approximate nearest neighbour search, where
ζi (i = 0, 1, 2) are random sign vectors. This construction is
for arbitrary finite data-set. When the data-set has intrinsic
low-complexity structure, more efficient dimension operator
can be used [19].

Interestingly, we found that CNN-based image descrip-
tors are still “compressible” in the wavelet domain. As a
quick demo, Figure 1 shows the sorted wavelet magnitudes
for a CNN feature vector. Here, the off-the-shelf feature
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Table 1: Comparison of number of random coefficients and computation costs for different operators

Operators No. of Random Coefficients No. of Operations
Floats Binaries Multiplications Additions

i.i.d. Gauss O(MN) 0 O(MN) O(MN)
GCM [14] N N O(N logN) O(N logN)

GHM-Rand 0 N 0 O(N logM)
GHM-Fix 0 0 0 O(N logN)

is extracted from the last fully-connected layer of Resnet-
50 [20] with dimension length of N = 1000. 8-level Haar
wavelet decomposition is then applied. As one can see,
most of the signal’s energy concentrates only on a few large
wavelet coefficients. Similar results were found for other
CNN-architectures. Based on this observation, we aim to de-
sign A using only 1 or 2 stages of HDζi with deterministic
sign vectors ζi (i = 0, 1).

3.2. Golay-Hadamard matrices for binary embedding

According to [13], a partial Hamdard matrix modulated by a
Golay sequence can offer near-optimal bound for the com-
pressive sampling of sparse signals in the wavelet domain
[13]. The definition of a Golay sequence is given below [21]:

Definition 1 Consider two length-N binary sequences a =[
a0, a1, · · · , aN−1

]
and b =

[
b0, b1, · · · , bN−1

]
. Define two

polynomials A(z) =
∑N−1
n=0 anz

n and B(z) =
∑N−1
n=0 bnz

n.
a and b are said to be a Golay complementary pair (GCP) if

|A(z)|2 + |B(z)|2 = 2N, (5)

for all |z| = 1. a (or b) is called as a Golay sequence [21].

From (5), it is clear that |A(z)| ≤
√

2N for all z = ejω

(0 ≤ ω < 2π), which means that a Golay sequence is nearly
flat in the spectrum domain, i.e., it is a binary pseudo-random
sequence. A GCP can be constructed directly or recursively.
When N = 2n, the methods in [21] can produceN ·n! differ-
ent Golay sequences. One popular way is through the Golay-
Rudin-Shapiro recursion formula [21]:

a(0) = 1, b(0) = −1 (6)

a(l) = [a(l−1), b(l−1)] b(l) = [a(l−1), −b(l−1)] (7)

for l = 1, 2, · · · , n − 1. Unlike a random sign vector, each
element ai in a Golay sequence has an explicit form. Hence,
it can be easily implemented in both software and hardware
without storing the whole sequence. Next, we define Golay-
Hadamard matrix (GHM):

Definition 2 A Golay Hadamard matrix (GHM) is given by
G = HDζ , where H is the Hadamard matrix and Dζ is a
diagonal matrix with Golay sequence ζ on its diagonal.

It can be shown that each row in a GHM is still a Golay se-
quence [13, 21]. Thus, Gx calculates the inner products of x
with N orthogonal binary pseudo-random sequences. Below,
we propose two classes of M × N dimensionality reduction
operators A constructed from GHMs:

• GHM-Rand:

A =
1√
M

RΩG0, (8)

• GHM-Fix:

A =
1√
NM

RIG1G0 (9)

where Gi (i = 0, 1) are GHMs, RΩ and RI represent the
sub-sampling operator similar as that in (4). In particular, Ω in
(8) is a uniform random subset of {1, 2, · · · , N} with size of
|Ω| = M ; and in (9), I is a fixed set with I = {1, 2, · · ·M}.

Assume that the feature vectors xi are strictly sparse in
the Haar-transform domain with only s non-zero coefficients
each, i.e., ‖Wxi‖0 ≤ s for all xi ∈ T , in which W de-
notes the Haar wavelet transform matrix. For GHM-Rand in
(8), when the Golay sequence is constructed from the Golay-
Rudin-Shapiro recursion using (6) and (7), (1) holds with
high probability when M ≥ O

(
ε−2s log3(2s) logN

)
[13].

This implies that GHM-Rand can be used as a fast JLT to em-
bed wavelet-domain sparse CNN feature vectors without any
binarization. At this stage, we are not sure how to get rigor-
ous proof with binary function f(x). But numerical results
in the next Section show they can offer excellent performance
for image retrieval and classification.

Note that GHM-Rand in (8) requires only one stage of
a partial GHM. According to [22], multiplication of such a
matrix requires only O(N logM) additions, which is com-
putationally efficient. It is also memory-efficient as the ran-
domness only comes from Ω. In the particular case when
M = N , GHM-Rand becomes a deterministic operator as
well. GHM-Fix in (9) is completely deterministic, which in-
cludes a cascade of 2 different GHMs requiring O(N logN)
operations. Table 1 compares our proposed GHM-Rand and
GHM-Fix operators with i.i.d. Gauss and GCMs for memory
requirement and computational cost. As can be seen here, our
proposed systems have reduced randomness and lower com-
putational complexity.
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4. SIMULATION RESULTS

To evaluate the performance of the proposed operators, sim-
ulations were carried out for different CNN-architectures and
different image data-sets in image retrieval and classification.

4.1. Results on unsupervised image retrieval

For unsupervised instance-level image retrieval, the test data-
sets are the standard Oxford 5k [23] and Paris 6k [24] along
with their revised versions ROxford 5k and RParis 6k [25].
The CNN architecture is based on the Resnet101-AP-GeM
[2, 26] trained from Resnet101 [20] on Landmarks-full data-
set [27]. The authors’ source codes on GitHub [28] were used
for evaluation. In the original setting [28], each CNN feature
has a length of N = 2048 with each float coefficient stored
in 32-bits, i.e., 2048 × 32 = 65536 bits altogether. Binary
embedding using i.i.d. Gauss, GCM [14], GHM-Rand and
GHM-Fix are applied for the original CNN feature vectors.
Hamming distance is then calculated for approximate nearest
neighbour search. For comparison purpose, results of dimen-
sion reduction using PCA with whitening (PCAw) are also
included, where the whitening operator was also learnt from
the Landmarks-full data-set [2]. To produce M = 32d-bits,
the d × N PCAw operator is used with whitening power of
0.25. The performance is measured via standard mean aver-
age precision (mAP) [2]. Following the convention, only the
annotated region of interests are used. The results are shown
in Table 2. As one can see from here, the performance of
PCAw drops quickly with the decrease of M . Despite their
low-complexity, our proposed operators offer the best perfor-
mances in nearly all cases for a given M except for a cou-
ple of cases, in which GHM-Rand and GHM-Fix are slightly
worse than those of the i.i.d. Gauss matrix. In fact, when
M = 2048 bits, GHM-Rand becomes a fixed operator and its
performances are still very to those of the original one with
65536 bits (2048 floats). Although GHM-Fix is a data obliv-
ious and deterministic operator, it offers very similar perfor-
mance to those of full i.i.d. Gauss matrix and GCMs.

Table 3 further compares the results of our proposed
systems with different state-of-the-art binary codes obtained
from CNN networks. Specifically, we compare with super-
vised methods such as supervised semantics-preserving deep
hashing (SSDH) [9], hierarchical deep hashing (HDH) [7]
and un-supervised ones such as Deepbit [8], pixels to binary
(P2B) codes [10] and embedding and aggregation on selective
convolution features (EASC) [11]. One can observe the pro-
posed GHM-Rand operator offers the best performance ex-
cept for Paris 6k at 256 bits. The performance of GHM-Fix
is also very close to that of GHM-Rand. These benchmark
methods often require much more complicated training and/or
post-processing to produce binary codes. On the hand, our
proposed system only requires simple multiplication of CNN
descriptors with GHM(s) followed by a sign operation.

4.2. Results on image classification

The classification performance was tested on two publicly
available databases, Caltech101 (9,146 images) with 101 ob-
ject categories [29] and Caltech256 (30,607 images) with 256
object categories [30]. The off-the-shelf feature vectors were
extracted from the last pooling layer (pool5− 7× 7− s1) of
Googlenet [31]. 70% of images were used during the model
training process and the remaining 30% were for testing.
Matlab 2020a’s default linear support vector machine (SVM)
classifier was used to train and classify on binary codes di-
rectly. The results are documented in Table 4. Here, 50 tri-
als were performed for each dimensionality reduction opera-
tor with random coefficients. As one can see, our proposed
GHM-Rand and GHM-Fix achieve similar performance on
image classification for all bit length M on both data-sets.

5. CONCLUSION

In this paper, we study binary embedding of CNN feature
vectors for low-powered, low-buffered devices, e.g., mobile
or Internet of things (IoT) devices. Two fast dimensionality
reduction operators were proposed based on Golay-Hadmard
matrices (GHMs). In particular, to embed an N -dimensional
feature vector intoM bits, GHM-Rand requiresN random bi-
nary bits and O(M logN) additions along with N sign flip-
ping operations. GHM-fix is completely deterministic with
O(N logN) additions and 2N sign flipping operations. To
demonstrate the effectiveness of the proposed operators, sim-
ulation results were carried out for image instance retrieval
and image classification on some popular image data-sets.
Despite their low-complexity in both computation and stor-
age, GHM-Rand and GHM-Fix offer competitive (or even
better) performance to PCA, full random Gaussian matrices
and Gaussian circulant operators. This indicates their promis-
ing potentials in practical mobile or IoT applications. In fu-
ture, we aim to develop solid theoretical proofs and explore
their use in video retrieval and classification.
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