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ABSTRACT

Let g be the function which maps conformally a simply- connected
domain G onto a rectangle R so that four specified points
z1, 22, 23, z4,0n OG are mapped respectively onto the four vertices
of R. This paper is concerned with the study of a domain
decomposition method for computing approximations to g and to an
associated domain functional in cases where: (i) G is bounded by two
parallel straight lines and two Jordan arcs. (ii) The four points

z1, 22, 23, z4, are the corners where the two straight lines meet the

two arcs.
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1. Introduction

Let G be a simply-connected Jordan domain in the complex z-plane
(z=x+1y), and consider a system consisting of G and four distinct

points z1, zp, zp, z4 in counter-clockwise order on its boundary 0G.

Such a system is said to be a quadrilateral Q and is denoted by
Q= 1{G; 21,22, 22, 24}
The conformal module m(Q) of Q is defined as follows:
Let R be a rectangle of the form
R:= {(£,m): a<f<b,c<n<d|, (1.1)
in the w-plane (w = & + in), and let h denote its aspect ratio, i.e.
h:= (d-c)/ (b-a).

Then, m(Q) is the unique value of h for which Q is conformally
equivalent to a rectangle of the form (1.1), in the sense that for
h=m(Q) and for this value only there exists a unique conformal map
R —>G which takes the four corners at+ic, b+ic, b+id and a+id of R

respectively onto the four points z7,zp,z3 andzg4. In particular,

h=m(Q) is the only value of h for which Q is conformally equivalent to

a rectangle of the form
Rh{a}:= {(é,n): 0 <g&E<1l, o <M <a+ h}. (1.2)

Consider now the case where Q is of the form illustrated in
Figure 1.1(b) and let the arcs (z7, zp)and (z3,2z4) have cartesian

equations Y=-17(x) and y=1,(x), where ty; j= 1,2, are positive in
[0,1]. That is, let
Q: = {G; 21, 22,23, 24} , (1.3a)
where
G:={(x,y) ¢+ 0<x<1, -1ix) <y < 19 (x)},
with (1.3b)

'Ej(X)> 0, 3= 1,2, for x € [0,17,



and
z1 = — 117000, zp =1 - 1t7(),
(1.3¢)
zz3 = 1+ 1it11), z4 = 1120 .
Also, let
Gl ={(x,y): 0 < x <1, —11(x) <y <0}, (1.42)
and

Go={(x,y) :0< x <1, 0< y<12x)}, (1.52)
so that G= Gy U Gy ,and let Q; and Q, denote the quadrilaterals
01 : = {Gy; z1, zp, 1,0}, (1.4b)

and

Qo ={Gp; 0, 1, 23 ,z4}; (1.5b)

see Figures 1.2(b) and 1.3(b). Finally, let
h=m(Q)and hy:=m(Q 4);3=1,2, (1.6)

and let g and g5; j=1,2, be the associated conformal maps

g : Rp {-hu} — G, (1.7)

g1 ¢ Rpp {-hu} = G, (1.8)
and

92 ¢+ Rp, {0} — Goy (1.9)

where, with the notation (1.2),
Rp{-hi}: ={(&,m:0 <& <1, —hy <n< h-nhy}(1.10)
Rp; {- hi}: ={(&nm: 0<g<1 —hy <n <0},(L1)
and

Rn, {0}: = {(6,m:0< €<1 0<n< hyf; (LI2)

see Figures 1.1-1.3.

This paper is concerned with the study of a domain decomposition
method for computing approximations to h:= m(Q) and to the associated
conformal map g, defined by (1.7), in cases where the quadrilateral Q
is of the form (1.3). More specifically, the method under consider-

ation is based on decomposing Q into the two smaller quadrilaterals Q;
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and Q,, given by (1.4) and (1.5), and then approximating h, Rp{-hq}

and g respectively by
h: =hy +hp, (1.13a)

Rif —hib: ={(§,n): 0<&<1,—hy <n< hyf, (1.13b)

and

go(w) : RhZ{O} — Gy, for w € RhZ{O},

g (w) : ={g1(w): Rpi{ - hi} = Gy, for w e Rpj { - hi} . (1.14)

The motivation for considering this method emerges from the intuitive
observation that if h*:= min(h,,h;) is "large", then the segment 0<x<I
of the real axis is "nearly" an equipotential of the function u

satisfying the following Laplacian problem:

Au = 0, in G,
u=0 on (z1,z9); u=1 on (z3,24)
ou

8_n =0, on (zp2z3) U (24,21 -
This in turn indicates that if h* is large, then
h=~ hi{ +hy,
and the function (1.14) "approximates" the true conformal map g. (We

note that

h=2 hy +hyp, 1.15
1 2

and equality occurs only in the two trivial cases where: (a) G is a

rectangle, and (b) 19(x)=12(x),x€[0,1]; see e.g. [8:p.437].)

The purpose of the present paper is to provide a theoretical
justification for the above decomposition method, and to show that
(1.13), (1.14) are capable of producing close approximations to h and
to g, even when h*:= min(h,,h;) is only moderately large. We do this
by a method of analysis that makes extensive use of the theory given
in [2:Kap.V,§3], in connection with the integral equation method of
Garrick [6] for the conformal mapping of doubly-connected domains. In

particular, we derive estimates of

Ep:=!h—-h! =h-(h] + hy), (1.16a)
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Eg}: = max{ig(w)—g] (W)l :w € ?hl{—hl}}, (1.16b)
Eg} : =max {g(w + iEp) —gp (W) |: w € ?hZ{O} }, (1.16¢)

and show that
Eh= O{exp(— 2n h*)} ,
and
ES) =0 (exp (- nh*) ), EF =0(exp(-mn*)},
provided that the functions t4; j=1,2, in (1.3b), satisfy certain

smoothness conditions.

Although the main results of the paper are derived by considering
quadrilaterals of the form (1.3), the domain decomposition method and
the associated theory have a somewhat wider application. More
specifically, it will become apparent from our work that both the
method and the theory also apply to the mapping of quadrilaterals
Q:={G;z1,22,23,24.},1n cases where the domain G and the crosscut C
that decomposes Q into Q; and Q, are as described below:

* G is of the form illustrated in Figure 1.4. That is, G is

bounded by a segment /1:= (z4, z1) of the real axis, a straight line
lp " (z,,z3) inclined at an angle an,0<a<l, to/7, and two Jordan

arcs y1:= (z1,z2) andyy =(z3,24) which are given in polar

co-ordinates by

vy = {z:z =pj (88 e* S0<0<an) ;3 = 1,2. (1.17)

* The functions e4; 3=1,2, in (1.17), are such that p7(6) > 1 and

0<pp(B)<l,for6e [0, am], and the crosscut Cc is the arc

7z = et e,O < 6 < o, of the unit circle.

Although the results of the present paper apply only to
quadrilaterals that have one of the two special forms illustrated in
Figures 1.1 and 1.4, we note that the mapping of such quadrilaterals
has received considerable attention recently; see e.g. [1],[5],[11],

[12],[15] and [17]. In this connection the decomposition method is of
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practical interest for the following two reasons:

(1) It can be used to overcome the "crowding" difficulties
associated with the numerical conformal mapping of "thin" quadri-
laterals of the forms illustrated in Figures 1.1 and 1.4. (Full
details of the crowding phenomenon and its damaging effects on
numerical procedures for the mapping of "thin" quadrilaterals can be

found in [12], [13] and [9]; see also [3:p.179], [8:p.428] and
[16:p.4] .)

(i1) Numerical methods for approximating the conformal maps of
quadrilaterals of the form (1.4) or (1.5) are often substantially
simpler than those for quadrilaterals of the more general form (1.3);

see e.g. [5] and [12:§3.4].

The paper is organized as follows: In Section 2, we state without
proof some preliminary results which are needed for our work in
Section 3. These concern well-known properties of three integral
operators that occur in the integral equations of the method of
Garrick. In Section 3, we consider the Garrick formulations for the
conformal maps of three closely related doubly-connected domains.
Hence, by making use of the theory given in [2: Kap V], we derive a
number of results that provide certain comparisons between the three
conformal maps. Section 4 contains the main results of the paper.
Here, we first identify certain well-known relationships between the
conformal maps (1.7)-(1.9) and those considered in Section 3. Hence,
by making use of the results of Section 3, we derive estimates of the
errors (1.16) in the domain decomposition approximations
(1.13)-(1.14). Finally, in Section 5 we present two numerical
examples illustrating the theory of Section 4, and make a number of

concluding remarks concerning this theory.
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2. Preliminary results.
In Section 3 we shall make extensive use of the properties of
three linear integral operators in the real function space
Ly :={u:uis 2n —periodic and
square integrable in [0, 2 1]}. (2.1)
These operators are denoted by K, Rg and Sq and are defined as
follows; see [2:pp.194-195].

K is the well-known operator for conjugation on the unit

circle. That is, for ue Ly, the function Ku is defined by the Cauchy

principal value integral

1 211 [(P
Klu(@)]:=—PV 0 cot

}u(t)dt.
211

The operators Rg and Sgydepend on a real parameter g, with
0<g<1l, and are defined by

1 A 1
Rolu @) 1: =£j0 gl — £) u (t) dt,Sqlu @) I: =£j0 hgl — t)u (t)dt,

where the kernels Gy and hgy are given by the absolutely convergent

series
0 q2k 0 qk
gq (@ = 4 ——5 sin k@, hqg) = - 4y —— sin k¢
k=11 - 4a k=11 — g
The properties of the above three operators are studied in detail
in [2:pp.195-205], where in particular the following basic results can
be found:
-Ifu €Ly, then

Ku, Rq, Sq , € Ly, (2.2)
and
2q2
| Kull<[full, [l Rqu < Slhall ll squll= Slhall (2.3a)
l1-¢g 1-¢g
Also, for 0< g, <g; <1,
2 2
2(ql _qz)
| (Byy —Rgpull€ ———2— | u|. (2.3b)
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[ Throughout this paper we shall take,

21'[2 1
||u || : :{i J.Ou (t)dt }2]

Let W denote the space
W:= {u:uis 2n-periodic and absolutely
continuous in [0, 2n] and u' € L, } . (2.4)

If u € w, then
Ku, Rgqu, Sgqu € w, (2.5a)
and
(Ku)' = Ku', (Rqu)' = Rqu', (Squ)' = Squ'. (2.5b)
We also need the following:

If u € w and
211
Iu(t) at =0,
0

then u satisfies the Warschawski inequality

u(@) P <2nlull lu'l ; (2.6)

see [18:p.18] and [2:p.68]. In addition we have wirtinger's
inequality [7:p.185], i.e.,
full<llu']. (2.7)
- Let T denote any of the three operators K, Rg or Sqg.
Then, for any function u € w,
[Tulf<TIl u"ll. (2.8)
(This follows at once from (2.7) and (2.5), by observing that

211
Tudt = 0;
0
see e.qg. [5:Eq.(2.6)].)

The significance of the results (2.2)-(2.8) in connection with our
work in Section 3 is that the method of Garrick for the mapping of
doubly-connected domains can be formulated in terms of the operators

K, Rqg and Sq- The details are as follows:

Let T'q and Ty be two Jordan curves in the z-plane which are
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starlike with respect to z=0 and are given in polar co-
ordinates by

ri:={8:2 = pye)et%,0 <6< 2nk g = 12 (2.9)

where 0<py(0) < p1(6), for 6 e [0,2n]. Also, let Q be the
doubly-connected domain bounded externally and internally by I'y and T'p
respectively, i.e.

Q:= (IntT'7 ) N (ExtI'p). (2.10)

Then, for a certain value q, 0 < q < 1, the domain Q is conformally
equivalent to the annulus

Ag = {W: g < |W| < 1}, (2.11)
and the reciprocal M:= 1/q of the inner radius is called the conformal
module of Q.

Let £ denote the conformal map Ag— Q. Then, the following are
well-known:

f can be extended continuously to Kq.

On the boundaries |W| =1 and |W| = g of Ag the function f is
given by two continuous boundary correspondence functions © and 0
which are defined by

fel®) =0 (0(p)) @9 £ige 19 =5 (6(0)) 2O (®), ¢ cr0,2m) .
2.12)

The requirement that |W|=1 is mapped onto I'; defines £

uniquely, apart from an arbitrary rotation in the W-plane. Here, we
normalize the mapping by requiring that

21 2
| (0@ -oldo=| {B(p)-p}do=0. (2.13)
0 0

The outer and inner boundary correspondence functions © and 0

and the inner radius g of Aqg satisfy the Garrick integral equations:

0(@)=¢+ (K + Ry [1ogp; (O (@) ]+ Sl 1ogp,(0(9))],(2.14a)

~

0(¢)=¢—5g [1ogp (0 (9))]— (K + Rg)[1ogp,(O())] ,(2.14b)

and

211
1 A
logg = o f {log P,(@(e)) —log pl(O((P))}d(p; (2.14¢)
0
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see [2:pp.198-199] and [5:§3].
3. On the conformal maps of three doubly-connected domains.

Let the curves T'y; =12, be given by (2.9) with
py(®)>1and 0 <p (6) < 1, 6 €[0, 2n], (3.1

and, as in Section 2, let f, © and 0 denote respectively the conformal
map
f:Aq — Q: = (IntI']) N (ExtIy), (3.2)

and the associated outer and inner boundary correspondence functions
defined by (2.12). Also, let C; denote the unit circle

Cr:={z: 4 =1}, (3.3)
and let qu and qgl be respectively the conformal modules of the two
doubly-connected domains

Q1: =(Int I'7) N (Ext Cq), (3.4)
and
Qo : = (IntCy) N (ExtTy). (3.5)

Finally, let 53 j=1,2, denote the conformal maps

5 :qu — Qj ;=12 (3.6)

where

Aqg. : =W : g. <W<1k3j=12 3.7
G =t <l <13 67

and let 04 andéj j=1,2, be the associated outer and inner boundary

correspondence functions, i.e.

0, (o)

o , |
L9 £ (qret P=e . (3.82)

£(e™?) =0 (01(0)) e
and

£ (0 1020 10200 £ o) _ o (8, (g)) 02

(3.8b)
(The conformal maps £ and £f3; j =12 are illustrated in
Figures 3.1-3.3.)

We recall that the conformal map f is normalized by the conditions
(2.13) and, by analogy, we normalize the conformal maps £5;3 = 1,2,

respectively by



IO {Oj (‘P)—(P}dq’= Io {Gj (tp)—cp}dq):O; i =12 (3.9

We also recall that the boundary correspondence functions O, ® and the
radius g, associated with f, satisfy the Garrick equations (2.14).

Similarly, the boundary correspondence functions 05, 04; j=1, 2, and
the radii ay; J=1,2, associated with 53 =12 satisfy the simplified

Garrick equations:

0, (p)=0+ (K + qu) [log e1 (0, (9) )1 (3.10a)
01(0) = ¢~ 5, [logp1 (0, (0)), (3.10b)
1 21
logay == —= [ “loge; () (9))de, (3-10c)
and
0 (0)=0+5q, [logo, (8, (@) ], (3.11a)
0,(9) =0 ~[K + Rq_1[10g 0,(0,(¢))], (3.11b)
1 21 .
logq, = ?Io 10g p,(0,(9) ) dp . 3.11¢)

(The above -equations follow from (2.14), by setting respectively
Py (60)=1 and Py (0)=1.)

In this section we derive a number of results that provide

estimates for the quantities:

‘ logg - [log 9, + log qz]

14

nax |0 ()~ 0,(0)

14

,  max  [logp,(@(p))-1ogp, (O (@)
]

¢e [0, 2] @el0, 2n

max é((p)—@)z((p) , max ‘log pz(é((p))—log pz(él(cp)) ,
¢ e[0, 2] oe [0, 2 ]
maX{log f(w)—-1log fl(w) ‘ tw € qu} , max {‘logf(qw/qZ)—log fo(w):w e Kq2 }s
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and also for the real and imaginary parts of the function log{f (W) /W},

W € Ag. All these estimates are given in terms of the radii g and
ay; 3=1,2, and are derived by making extensive use of the theory of

the Garrick method given in [2:kap.V). The significance of the
results of this section in connection with the domain decomposition
method will become apparent in Section 4, once certain well-known
relationships between the conformal maps (3.2), (3.6) and (1.7)-(1.9)
are identified.

Our results will be established by assuming that the two boundary

curves ry; j=1, 2, satisfy the conditions stated below.

Assumptions A3.1 The curves

r.: ={z:z=pj(ee)i9,oses ont; 3 = 1,2

J
satisfy the following:
(i) p;(8)>1 and0<p,(8)<1,0e[02m].

(i1) pj(e ); 3=1,2, are absolutely continuous in [0,2 ], and

dj=ess suplp; (6)/pg(6)] <oo. (3.12)
(ii1) If
my = <6< 2n{911(9)} and mp:= (o {P,(0)}, (3.13a)
then
1 + my
gy: =dyy——¢<1l; j=1,2. (3.13b)
1 - my

We note that the above assumptions resemble closely those that
constitute the so-called e€d-condition associated with the theory of
the method of Garrick; see [2:p.200] and [5:p.266]. We also note the
following elementary results which are needed for our analysis:

- The assumption A3.1(ii) implies that

IO((P)

log e, (B(@) — Log p, (0, (¢)) ‘ ~Nioy(g) P2

t)/ py(t)de|

Sdl ‘O((p)—@l((p) ;¢ € [0,2m] . (3.14a)
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Hence, also

|| Log pl(O) - logpl(G))HSdl [ O—Ol I - (3.14b)
Similarly,
109 p,(0(9))=1ogp,(0,(@))|<d, [[0(p) -O,()[, 9el0, 2n],
and (3.14c¢)

I 109 p,(0) —1ogp,O,)[<d, [6-6, | . (3.144d)
Since g<gqy; j=1,2, the Garrick equations (3.10c) and (3. 1lc)

imply that
0<g<gys my<l;j=12. (3.15a)

_ 1+ g4
g 179l g, B < ey 3 = L2 (3.15b)
J1-g J l—qj

Lemma 3.1 Let ¢ denote any of the boundary correspondence functions
O,@) andG)j, éj;j=l,2. If the curves Fj; j=1,2, satisfy the

Hence, also

assumptions A3.1, then:

(1) P'ely i.e. ¥(Q)— Qew.
(ii) v <1/ -¢ed)7 (3.16a)
and
| W' -1||<e/( -¢9)° , (3.16b)
where
- €:=max(g],€)), when V¥: :@,@),
and

.€:=€j,Wh€Il 1P:=®j,éj; j=1,2.
Proof (i) This follows from the Garrick equations (2.14) and
(3.10)-(3.11), by modifying in an obvious manner the proof of Satz
3.5(b); in [2:pp.204-205].

(i1) The differentiation of (2.14a) gives

P ~ N
e'(q>>—1=(f<+Rq>[p—l ©(¢)). @'(cp)]+sq[p—2(®<cp>>.®'<cp)].
1 2

This follows from (2.5), because logp] @ eW and logpy @) eW.
Hence, by using (2.3) and (3.12) we find that

2

1 2 -

lor-1]< {1”2}@ ||G>'||+{l 9 2}d2 161 . (17
- q - q
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Similarly, the differentiation of (2.14b) leads to

2

. 2 1 — ~

| -1 < (1 qzjdl e + L q2]d2 | &1, (3.17b)
-9 - g

Therefore, if || O'|| > || o |, then

|| -1 | <e] O and || 0-1 |<el O], (3.18a)
and if|| @ | < | €', then

lo-1 <ef| @ and || &1 | < e|l &, (3.18b)
where €:= max (¢1, €2); see (3.13) and (3.15).

The two cases ¥:= © and ¥ := 0 of (3.16) follow from the
inequalities (3.18), by recalling that £<I1 and observing that

112 1 112 41
et == =11~ +5

~

see [2:p.70], The other cases W¥:= 05 and ¥:= 05; j=1,2, of (3.16) can

be derived in a similar manner by differentiating the simplified
Garrick equations (3.10a,b) and (3.11a,b).

m
Remark 3.1 The bounds for || ©-1 || and | o-1 ||, given by (3.16b), can
be replaced respectively by

1
| 01 || < (g1 + 2¢e2q9) /(1 — 82)2, (3.19a)

and

N

| 6'-1 || < (en + 2e19) /(1 — £9), (3.19b)

where as before e:= max(e;,e2,)- These follow from the inequalities
(3.17), by substituting the bounds for ||©'|| and ||©]| given by (3.16a).

Hence, from (3.19) and the bounds for || @'1 || and|| (:32 -1 given by
(3.16b) we have that

1
| -0 <2 (ep + £1q) /(1 — £9)? , (3.20a)

and

(NI

| 60 || <2 (ep + e1a) / (1 — D)7, (3.20b)
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Lemma 3.2 If the curves Fj; j=1,2, satisfy the assumptions A3.1,

then:
|0 -0y [Saley, o). leas + exa), (3.21a)
and
| 6 —éz |<a(ey, e) .{s2q§ + e19}, (3:21b)
where
1
ales, €)= 2/((1 - e9) (1 - e9)?); 5 = 1,2 (322)

and € :=max(eq, €2).
Proof The Garrick equations (2.14a) and (3.10a) imply that
0(@) = 01(¢) = (K + Rg) [10ogp1(0(@) ) — 1ogpy — (O1(9)) ]

“(Rg  ~ Rq) [109p101(®) ) ] + sqllogpy — O@)) 1.

Hence,
[0 -01 | < [[K+Rg [[d1] ©—-01 |

p' ' P'D A A
+1l Rgy — Rg Il _pll ©).07 | +1sq I | p_;(@),@ I,

where we made use of (2.8) and (3.14b). Therefore, by using (2.3),
(3.12), (3.15) and (3.16a) we find that

2 2 2
( - )
||@®1<[1+q}11991+(1 q1211q 2) L 1
- q —af a2
L% dp

2
<ep || @ -0 | +———{(£1a] + 23}
(1 - &%)
Since €&; < 1, this yields the inequality (3.21a). The inequality

(3.21b) is derived in a similar manner from the equations (2.14b) and

(3.11b).
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Theorem 3.1 If the curves Fj : j = 1,2, satisfy the assumptions A3.1,

then

| logg — (logqgy + logqgp) [ =dja(eg, €), {slq% + qu}

+doa (ep, €), {fzqg + slq} (3.23)
where o (+ , *)is given by (3.22).

Proof The equations (2.14c), (3.10c) and (3.11) in conjunction with
the Schwarz inequality and the inequalities (3.14b,d) give that

| logg — (loggy + logap) I<|| logp1(©) — (logp1(01) ||

+|| Logp2(0) — (Logpr(@2) |

<dp | @-0p | +dp | © -6 |

The theorem then follows by substituting the bounds for || © — 01 || and
| 0 - é2 || given in Lemma 3.2.

|

Theorem 3.2 If the curves 'y j=I1,2, satisfy the assumptions A3.1,
then for ¢ € [0,2 7 ],

1
O(@) — O1(@) < Vrp (e1, €) fe1 + s2q}%.{s1q§ + s2qf2 (3.24a)
and

~

1
| O(@) — O2() | < & (g9, €) .{82 + Slq}é.{i2q§ + Squ (3.24b)

where

1
B(ey, ) = x/g/{(l —&9) (1 - 82)F; Jj =12 (3.25)

and £ = max (&7, €7).

Proof The first part of Lemma 3.1 and the normalizing conditions
(2.13), (3.9), imply respectively that ® — @1, 0 — O, € w,, and
2n {A

2 ~
;" {ew - 010 Yo =] Be) — 62010 = o.

0
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Thus, the Warschawski inequality (2.6) is applicable to the functions

O — O7and 0 - @)2. The theorem follows by applying this inequality to
each of the two functions, and using the bounds for|| 0 - o1 |l , |l 0 - é'2 I
and | © — 01 ||, || © — &5 | given by (3.20) and (3.21).

m
Remark 3.2 For any ¢ €[0,270, |logp1(®(¢p)) — logp1(®1(p1))|can be
bounded by the right hand side of (3.24a) multiplied by d;, and
| logp2(é((p)) - logp2(é2((p)) | can be bounded by the right hand side of

(3.24b) multiplied by d,. This follows at once from the inequalities
(3.14a) and (3.14c¢).

Remark 3.3 If the outer boundary curve I7 of Q is a circle of radius
r, it.e. if py(@)=1 >1, then the domain Q7 reduces to a circular
annulus of inner radius 1 and outer radius ry. Thus, in this case,
fi(w)=riw and hence gj =1/r and el(q)):él((p): ¢. Therefore,
since di = ¢1 =0 and e = ey results of Theorems 3.1 and 3.2 simplify
to the following:

| logg + logr] —logqgp [ < afep, €2). €2d2q§, (3.26)
and

| 0@) — ¢ | < /mB (0, €2) . £2q, (3.27a)

| O@) — 02(¢) | < VTR (2, €2) . £a2, (3.27b)

where a(., .) and B(., .) are given by (3.22) and (3.25). Similarly, if
the inner boundary curve Iy is a circle of radius rp, i.e. if
p2(0) = 1 <1, then the results of the two theorems simplify as
follows:

| logg — logqy — logry | < ey, €1). €1d1q%, (3.28)
and
| 0@ — @1(@) | </mB (e1, 1) - £191, (3.29a)

| O(@) — ¢ | <~mB (0, e1) . e1q. (3.29b)
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Furthermore, it is easy to see that the results (3.26)-(3.29) hold
under the somewhat less restrictive assumptions obtained by replacing
the inequalities (3.13) of A3.1(iii) by:

1+ m%
- gp=dy 5 < 1, when p1(0) = ry, (3.30a)
1 - m5
and
1+ m%
- g1 = d1 S < 1, when p20) = (3.30b)
1 - my

(This follows by modifying the analysis in an obvious manner, after
first observing that in each of the two special cases wunder
consideration the Garrick equations (2.14) take the simplified forms
(3.10)-(3.11).) In addition, it is easy to see that the results

(3.27) and (3.29) also hold in the limiting cases where r{ = 1 or

rop = 1. Thus, in particular, (3.29b) and (3.27a) imply respectively
that

| 01(9) — @ | <mB (0, £1) e1a1 (331a)
and
| 62(0) — ¢ | < VB (0, £2) £2a7 , (331b)

where él and Oy are the boundary correspondence functions defined
by (3.8).
Theorem 3.3 For any p, where q <p < 1, let

f (pei(P) =p(p, 9 P (P/9) , ¢ €[0, 2n]. (3.32)

If the curves Pj; j=1,2, satisfy the assumptions A3.l1 and, in

addition, are both symmetric with respect to the real axis, then

| @ (p, ¢) —¢ <R (O, &) {e1p + £2(a/p)}, (3.33)
and
| logp(p, @) — logp + logky | S%x/EB (O,e){81p+€2(q/p)}
+ dj O((Sj,S) {sjqjg +e3-49f; 3=1,2, (3.34a)
with

K1 =91 and kp := g/qp, (3.34b)
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where a(.,.) and B(.,.) are given by (3.22) and (3.25) and

€:= max(&1,€2).
j=1,2, implies that the

Proof. The symmetry of the curves I5;
Fourier series of the functions u(@:= logp1©O@ ) and
U (@) = logp2((§((p) ) are of the form
00 o0
1 A 1. -
u(@)= —ap + Z ax coskpandu(p) =—ap + Z ak coskeo.
2 k=1 2 k=1

The symmetry also implies that the function
F (W) :=log{f (W) /W},

has the Laurent series expansion
o0

F(W) = Y ckwk , W e BAg ,
k=—00

where the coefficients cx are all real and are related to the Fourier

coefficients ap, axby

1 211
co=780 = b logp1 (O(9) ) de
Ck = {ak - équ}/ [l - qsz and c_g = {équ - aquk}/ [1 - q2kJ;

K=1,2,...;

see [5:p.270]. It follows that for any fixed p, q <p <1,

F(pe'®) =co + Uplp) + 1Vp(@), ¢ € [0,21],

where the functions Up and Vj, have the Fourier series representations

e} e}
Up(p) = Z ag cosk@ and Vp(Q) = Z Bk sinke,
k=1 k=1
with
ak==%kkgk’— qZKJ-Féqub-— p2kJ> %k[l—-q2kﬁ,(335@
" Bk=:%kE2k‘*q2kJ"équb‘*szh/%ﬁh"q2kﬁ-@3sm

This implies that

' 1 «— 22 ' 1 «— 22
10 1= 12 3 Wl and |V = 12 3 kE
k=1 k=1

N
N
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Hence, by substituting the values (3.35) of a, and B, and applying the
Minkowski inequality to each of the resulting right hand sides, we

find that
1 1
0 2 0 2
' 1 2.2 q 1 242
Up|<p{zzkak} +{g}{z Zkak}
k=1 k=1
1
< — . {eaip + eata/p) )
(1 - e%)?
and

< - . {slp + sz(q/p)} :

(1 - e%)2
(In deriving the above we made use of the two inequalities

N

1 1
oo 2 1 2
1
{E 3 k2ai} < d /(1—822and{ Z k%4 } <dp/(1-¢9)2 ,
k=1

which are obtained by recalling that u, G € W and using (3.12) and

(3.16a) , i zkak_znu 12 =2 z—l ©).0' %, e.t.c)
1
To complete the proof, we observe that

21 21

0 Up (@) de = 0 Vp (@) de = 0,
and recall Wirtinger's inequality (2.7). Hence, by applying the
Warschawski inequality (2.6) to each of the functions Up and Vp we
find that

' ' 211
| Up(©) %< onm | Up Il Il Up I 2m] Up I < m {e1p + eo(a/p)?
(3.362)
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and

2 ' ' 2 811
| Vp@) " <2n || Vp [ | Vp || < 2m || Vp || 7 < -2 {e1p + e2(a/p)?-
-

(3.36b)
The inequality (3.33) then follows at once from (3.36b) because

Vp((P) = (D(pl (P)—(P-
Similarly, the inequality (3.34) follows easily from (3.36a) and
(3.21) by observing that

Up(@) = logp(p,®) — logp - co
=logp(p,9) — logp + loggy — (cp + logqy)
=logp(p,9) - logp + log(g/gp) — (cg + log(a/qgp)),

where from (3.10c¢) and (3.14b)
| co+logqy | < dilfe&—-061 |,

and from (2.14c), (3.11¢) and (3.14d)
| co + loga/ap | < dp [[©6-06].
O

Remark 3.4 1If, as in Remark 3.3, the outer boundary curve Iy is a

circle of radius ri{> 1, then (3.33) and the case j =1 of (3.34)

simplify respectively to
| ©(p, @ — 91 | < JmB(0,ep)ep a/p, (3.37)
and
1
| Logp (p, ¢) = logp —logn |< - JaB (0, e9) €5 a/p. (3.38)

In particular, in the limiting case p=1 the function ® coincides with
the boundary correspondence function 6 and, as might be expected,

(3.37) coincides with the result (3.27a) of Remark 3.3. Similarly, if
the inner boundary curve I, is a circle of radius rp<1, then (3.33)

and the case j=2 of (3.34) simplify to

| ® (p, 0 — @ | < Jop(0,e1)e1 P, (3.39)



22

and

1
| logp (p, ¢) — logp + log (q/m) | < E\/H—B(O'Sl)sl D, (3.40)

and in the limiting case p=q (3.39) coincides with (3.29b).

Remark 3.5 The additional symmetry condition, under which
Theorem 3.3 was proved, was imposed because our work of Section 4 is

concerned only with the case where both the curves Fj; j=1,2, are

symmetric with respect to the real axis. However, the results of the
theorem remain valid even when this condition is not fulfilled, except
that in the non-symmetric case the estimate in the right hand side of
(3.33) and the first term in the right hand side of (3.34) must be
multiplied by 2. (The details of the proof are the same, but in the
non-symmetric case the Laurent series expansion of the function F must

be replaced by that given in [5:p.264].)

Remark 3.6 Estimates similar to those given by (3.33)-(3.34) can
also be obtained under the less restrictive assumption that the

functions p4; j=1,2, are only continuous. For example, by modifying

the details of the proof that come after the two equations (3.35), it

is easy to show that

20 E1 + E
| o(p, @ —¢ | < 2{1 P2

}/ a<p< 1,

1-q l-p pP-g
and
E E
| logp (p, @) —logp—cqp | < ﬁ{i + g },q<p<1,
1-p p-q
where:

(i) co has the same meaning as in Theorem 3.3.

(i1) By = max {log P4(6) }— min {log P4(6) };j = 1,2
6 €[0,2m1 ] 6 €[0,2m ]

(iii) ¢=1 when the curves I5; j= L2 are both symmetric with

respect to the real axis and ¢/ = 2 otherwise.
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In the special case where p1(6) = 1 estimates of the above form

can also be deduced directly from the so-called distortion theorems of

Gaier and Huckemann [4] and Menke [10]. For example, if p7(6) = 1 and

oo is continuous, then Theorem 2(ii) of [10] implies that

< 1 qk 1 - p?k q
llogp(p,@)—logp|£22—(—j o gz{ }
k=lk P 1+qg Pp-4g

Theorem 3.4 If the curves Fj; j=I1,2, satisfy the assumptions A3.1

and, in addition, are both symmetric with respect to the real axis,

then

max| logf (w)— Logfi(W) |: W e Agqp < max {M1, N1}, (3.41a)
and

maxﬂ logf (qW/qgp) — logfh(W) |: W e Kq2 }S max {M2, Nz} , (3.41b)
where

1 1
L 1 .
My =+m(1 + djz.)2 B (g5, €) {ej + 83_jq}2 {qujz. + 83_jq?,' 3 =1,2, (342a)

2
Il

1
K Ex/EB(O,S) {5quj + 383_j(q/qj)}

+ dj o (Sj, ) {qujg + 83_jq},‘ 3=1,2, (3.42b)
and where a(.,.), B(.,.) are given by (3.22), (3.25), and
€ = max (g1, €p) .
Proof Let
E == max { logf (W) - logfi(W) | : W € Aq, |,
and observe that the function logf(W)-logf;(W) is regular and
single-valued in Ag

and continuous on Ay, . Therefore, by the

1 1

principle of maximum modulus,
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E £ max max | logf (ei(p) - logfl(ei(P) |,
¢© € [0,20]
max | logf (q1e*?) - logfy(qie’®) | ¢,
¢ € [0,2m]

where, for ¢ € [0,20],

| Logf (e7?) — 1ogf (e™®) | =| {loge1 @) ) — Logps ©O1 (@) )}
+1{0 (@) - 01 (@} |

1
< [1 + d%F | ©(p) — O1(9) |
<My, (3.43a)

and, with the notation of Theorem 3.3,

1109 (q167®) - 1ogfy (q1 €M) | =1 logp (ar, @ +1 o (a1, ) - O1(@)]]

<|logp(ql, @ | + | (a1, @ -0 | + | O1(@) - ¢ |

<Njp . (3.43b)
(In deriving (3.43a) we made use of (3.14a) and (3.24a), and in

deriving (3.43b) we made use of (3.33)-( 3.34) , with p=q and j =1, and

of (3.31a).)
The inequality (3.41a) follows at once from the above. The

inequality (3.41b) is established in a similar manner, by observing

that the function logf(qW/qy) — 1ogf,(W) is regular and single-valued

in qu , and continuous on Kq2 , and then showing that

| logf(qeiw/qz)—logfz(ei@) | <N ,

and

| logf(qei(p) - logf2(qzeiq)) | < Mp.
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Figure 3.1

Figure 3.2

Figure 3.3
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4, Domain decomposition.

We recall the notations (1.2)-(1.12) concerning the quadrilaterals

Q and Q4 : j=1,2, defined by (1.3)-(1.5), their conformal modules

h:= m(Q) and hy: = m(Qy); j=1,2, (4.1)

and the three associated conformal maps
g : Rpi-h1} > G, 91 : Ry {+h1} = Gp and g2 : Ry, {0} > Gy, (4.2)
illustrated in Figures 1.1-1.3. We also recall that the decomposition
method outlined in Section 1 consists of the following:

- Decomposing the quadrilateral Q 1into the two smaller

quadrilaterals Q7 and Q».

- Approximating the conformal module of Q by the sum of the
conformal modules of Q; and Q», i.e. approximating h by
h:=hy + hy . 4.3)
- Approximating the rectangle Ry{-hi} and the conformal map g

respectively by Ry {-hy} and

~

g (w

)__[gz(w) :Rp, {0} — Gz, for w € Rp, {0}, 44)

T lg1(w) : Rhl{—hl}—> Gy for w € Rhl {-h1} .
In this section we study the errors (1.16) of the domain
decomposition approximations (4.3)-(4.4), and show that estimates of
these errors can be deduced directly from our results of Section 3.
We do this by first making the following elementary observations,
which establish a well-known connection between the conformal maps

(4.2) and those studied in Section 3; see e.g. [5:§5].
- By using the Schwarz reflection principle, the conformal map g

can be extended to map the infinite strip { (§, ) : -0 < £< o, —h] <1 < h - hy}

onto the infinite domain bounded by the two curves y = — r{lp}(x) and

y = '[{2p}(X), where ‘E%p}; j=1,2, are the periodic functions defined by

T%p}(iX)ZTj (x), x € [0,1], and T%p}(2+x)=I§p}(x).



27

Similarly, the conformal maps g; and g, can be extended to map

respectively the infinite strips {(¢,n) : —w < f<w,—-h;<n<o0} and
{(£,n):— 0<E<w,0<n<hplonto the infinite domains bounded by the real
axis and the curve y = - r{lp} (x), and the real axis and the curve
y = - I{ZP} (x). The above also show that the functions g(w)-w and
g(w) — w; 3=1,2, are periodic with period 2.

- The -exponential function z = expimz maps the domain G

conformally onto the upper half of the symmetric doubly-connected

domain
Q:= (IntI'7) N (ExtIyp), (4.5)

where

Pj:={z:z=pj(e)eie,oses2n},-j=1,2, (4.6a)
with

05 (86: = exp {(—1)j_1n T4 (8 / n)}, 6el0, 1], (4.6b)
and

o5 (8) = py(2m-0), 0 e [m,2n0].
Similarly, z = expimnz maps respectively the domains G; and Gy

conformally onto the upper halves of the symmetric doubly-connected
domains

Q1 := (IntT7) N (ExtCy), 4.7
and

Qo := (IntCy ) m (ExtIy), (4.8)
where Cj is the unit circle (3.3) and I'y; 3=1,2, are the curves (4.6).

1

- Let q_1 and qu ; J=1,2, be respectively the conformal modules

of the doubly-connected domains Q ande; j = 1.2, given by (4.5)-(4.8),

and let f and £5; j=1,2, denote the associated conformal maps
f:Aq%Qandfj:qu—)Qj; j=1,2. 4.9

Also, let h:=-{logqg}/m and h4: = -{logqs}/mn; j=1,2. Then, the

exponential function W = exp{in(w+ih|)} maps the rectangles Ry {-h7}
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and Rp, {-h1} conformally onto the upper halves of the annuli Ay and
Aqq respectively Similarly, the function W = expinmw maps the rect-
angle Rhy {0} conformally onto the upper half of Ag, -
It follows from the above that the conformal modules (4.1) and the
1 1

mapping functions (4.2) are related to the modules g ~ and qj_ and the
mapping functions (4.9) respectively by
g =exp(-nh), gy = exp(mnhy; J=1,2, (4.10)
and
exp{ing(w)}=f{exp (in(w + ihy)) }, (4.11a)
exp{ingj (w) }=1f] {exp(in(w + ihq1))},, (4.11b)
exp{ingy (w)} = fo{exp(inw)}. (4.11c)

In other words the problem of determining the three conformal maps
(4.2) is essentially equivalent to that of determining three conformal
maps of the type studied in Section 3.

Let
x(£):=Reg (¢ —1ihy), %(£):= Reg (£+1i(h —hy)),

x1 (&)

Regi (€ — ih1), %1 (§):=Regy(¢),
and

x5 (£):= Regy (£), %(€):=Regs (& + ihy) ..

Also, let O, Oj; 7=1,2, andé, éj; j=I1,2, be respectively the outer and
inner boundary correspondence functions associated with the conformal

maps £, £5; j=I1,2, of the three doubly-connected domains (4.6)-(4.8).
Then, the relations (4.11) imply that:

1 1
x(g) = — 0 (ng), x5(8) = — ©5(m&); J=1,2, (412a)
IT IT
A 1 4 . 1 A .
Xx(g€) = — 0 (ng), X5(8)= — O5(mg); J=1,2, (4.12b)
IT I
and
1 1
tl(x(i))=Elogpl(G(ni)),rl(xl(E))=Elogpl(61<né)),
(4.12¢)
- 1 A 1 -
TZ(X(E)):Elngz(G(HE)),Q(}A{g(E)):—Elogp2(02(n§)).

(4.12d)
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It is now easy to express the main results of Section 3 in terms of
the notations associated with the conformal maps (4.2). We do this
below, after first observing that the conditions of Assumptions A3.1

can be expressed in terms of the functions 55 j=1.2, as follows:

Assumptions A4.1 The functions GE j=1, 2, satisfy the following:

(1) Tj(X)>O;j=1,2,Xe[O,l].

(i1) Ty; J=1,2, are absolutely continuous in [0,1], and

dy:= ess supta(x) < © . (4.13)
0<x<1
@) If
my 1= (oncilexp(-mty(x))} ;3 = 1,2, (4.14a)
then

1+ my
g5 1=dj < 1; 3=1,2. (4.14b)

1 - m

Theorem 4.1 If the functionrj; j=1, 2, satisfy the assumptions A4.1,
then
Enh =h—(h] +hp)< n_ldl o(e], € ){21 e7emhy g e I h}
- n_ldz a(ep, € ){22 e~?mhy 4 g1e” h}, (4.15)

where o(.,.) is given by (3.22) and €:= max(&;, €2).

Proof At once from Theorem 3.1, by recalling the relations (4.10).
m

Remark 4.1  Since h > hy + hp, the theorem implies that

Ep =h — (h + h2)=0{exp (—2mh’) } (4.16a)

where

*

h = min(hq, hy). (4.16b)
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Theorem 4.2 If the functions SE j=1,2, satisfy the assumptions
A4.1, then for £ € [0,1],
1
- anly [ —emhy _nh|2
| XE) — X (E) | <m 2 B(g,e)] +epe 21g1e + e0e ,
and (4.17a)

1

1
S 5 —th —2mhy —mh 2
| X(E)—Xp(E) | <11 2B (e9,8) ep + £1€ 2de0e + e ,

(4.17b)
where (.,.) is given by (3.25) ande := max (g7, €3).

Proof At once from Theorem 3.2, by recalling the relations (4.12a,b).

m
Remark 4.2 For any &e [0,1], | 11 (x(&)) — 11(x%x7(&)) | and
\ (X(E)) — 12 (X2 (8)) ‘can be bounded respectively by the right hand

side of (4.17a) multiplied by d; and the right hand side of (4.17b)
multiplied by d,. This follows from the relations (4.12c,d), by

recalling the comment made in Remark 3.2.

Theorem 4.3 For any point § + in € Ry {—hy}, let

x(&,n)=Reg (£+1in)and y(&,m):=Img. (£ +1in) .

If the functions Tj; j=1,2, satisfy the assumptions A3.1, then

_1
1x(§,m)—E| < 1 2B<o,s){z1 g(h+n) €2e_H(h_h1_m}, (4.18a)
and
,
ly(&m-nl< n 2p(0,e) g e B FN) 4 gZe_H(h_hl_n)}

+ ol ae],e) ele_znh1+ €2e_nh}, (4.18b)
where a (.,.) and B (.,.) are given by (3.22) and (3.25) and

€:= max (€1, €7) .

Proof At once from (3.33) and the case j=1 of (3.34), by observing
that if
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—n(hy +
pzen(1 n) and ¢ = ¢

then

®(p,¢) = nx(§,n) and loggp,¢) = —uy(§,n);
see Eq.(4.11a).

O
Remark 4.3 In particular, the theorem implies that

| x(§,0)—E | = O{exprmh )}, and | y(§,0)=¢ | = 0{exp(-mh)},

where h*:= min(h;,h;). More generally, the theorem implies that if Qg
and Qo are "long" quadrilaterals then, at points sufficiently far from
the two sides n = -h] and n=h-hy of Ry{hj} the conformal map g can be

approximated closely by the identity map.

Theorem 4.4 Let
l —
By i=max{ g(w)-g (w) |: weRy {-hi}},
and
2 . _
By )= max{g(w+iB, ) =g (w)l: w € Ry, (0}
where Ep:=h—(hy+hyp). If the functions Tj; j=1,2. satisfy the

assumptions A4.1, then

E{gj} < max {Mj,Nj}; 3=1,2, (4.192)
where
—1 o b —rh b —2rhj —rh b :
Mj =11 2 l+o'lj B(Sj,s) €j+€3_je ge +€3_je ; 7=1,2
and (4.19b)

1 1 — : — —
N- :ZEH 2 B(0,¢€) {5€j e hl 3e3—4 € m(h hj)}

+ n_ldja(s.j,s) {Sj e 2mhd | 83— e_nh} ; j=1,2, (4.19¢)
and wherea(.,.) B(.,.) are given by (3.22),(3.25) and

€ 1= max(€e] ,€2) .
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Proof At once from Theorem 3.4, by recalling the relations (4.11)
and observing that
w € Rhl {—hy} = expin(w+ih)} € Aql,
and
weha{O} = exp 1nm eAq2.
m

Remark 4.4 Theorem 4.4 implies that

£} = 0fexp(—nh*)}; i=1,2 420
g - p I )}' j ll ’ ( )

where, as in (4.16), h* := min(hj,hy). In other words, the error in the

domain decomposition approximation (4.4) is O{exp(-mh*)}, whilst

the error in (4.3) is O{exp(-2mh*)}.

Remark 45 Considerable simplifications occur in the case where
one of the two subdomains G; or G, is a rectangle. For example, if
11 (x) =c >0, x € [0,1], i.e. if

Gl :={(x,y): 0<x<1l, —c<y<0}=Rs{-c},
then gj(w)=w, hy=c, dj=¢; =0, and the results of Theorems 4-1-4.4

simplify respectively as follows:

- E, := h—(c+hy) < Tt doa(er,€0) €0 e, (4.21)
C %) — £l ST 2B(0,e)ee D, (4.22a)
and
- - -1 —mh
IX(€) — x2(&)l < m 2B(ep,e0)epe 2. (4.22b)
- Ix(&,n) — &l = T B(0,e0) e g(h—c—n ), (4.23a)
and
Iy (E,m) — 01l < é n2 B0, ep)epe AT, (4.23b)
— 3 1 — -
et =max{{g(w)-wl: weR{-c] < S B(0,e)ee m(h-c)
(4.24a)
and

BL?) =max{l g(w+ i) — g (w) i w e Rp, {0}f < max {Mp, N}
(4.24b)
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where

_1 -
My =1 2(1 + d%)zﬁ(sz, €9) €pe Hh2,

and

h,

5 1 - - .
N s 2B (0 gp) e0e mh 4o ldza(ezrsz)%e ’

Furthermore, all the above results hold under the less restrictive

assumptions obtained by replacing the inequalities (4.14) of A4.1 by

1+ m%
ep = do > <1; (4.25)
1- m5

see Remark 3.3.
The results (4.23) are of particular interest. These results

show that for any point w:=¢ + ine Rq{—c},
| g(w) —w|=0{exp(-mm(hy —1n)}; (4.26)
see also (4.22a) and (4.24a). In other words, if Q, is a "long"

quadrilateral, then in the rectangle R {-c} the conformal map g can be

approximated closely by the identity map.

Remark 4.6 The observations concerning the identity map, which were
made in Remarks 4.3 and 4.5, suggest the use of a more general
decomposition procedure where the original quadrilateral Q is
subdivided into a quadrilateral of the form (1.4) at the lower end, a
rectangle in the middle and a quadrilateral of the form (1.5) at the
top. This procedure can be described as follows:
Let

G = {(x,y): O<x <1, —m((x) <y<mnpn((x) + c},
where ¢ > 0, let

G = {(x,y): O<x<1l, —7(x) <y<O0 },
and

Gy = {(x,y): O<x <1, c<y<1m(x) +c},
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so that
G=6 U R (0} U &,
and let
71 = — it (0), zp = 1—1ity(1),
z3 =1 + i(tp(l)+c),zq = 1i(p(0)+c).

Then the procedure under consideration consists of the following:

- Subdividing the quadrilateral Q:= {G; z1,zp, z3, z4} into three
smaller quadrilaterals, i.e. the quadrilaterals Q1 = {G; z7,22,1,0}
and Qy = {Gyp; ic, 1+ ic,z3,2z4}, at the lower and upper ends, and the

rectangular quadrilateral

{Re {0}: 0,1,1+ ic,id ,

in the middle.

- Approximating the conformal module h:= m(Q) by
h:=h; + hy + ¢, (4.27)
where hy = mQy) 7 J=1,2.
- Approximating the rectangle Ry, {~hj} and the conformal map
g: Rp {-h1} — G respectively by Ry {-hj}and
gp(w): Rh2 {c}>Gy, forw €eRp {c},

g(w):= {w, for w ERC2 {0}, (4.28)
g1(w): Rh1 {h1}—>Gy, forw GRh1 {hq}.

Let Ep, Egj }; j=1,2, and E{gC}denote the errors in the approxi-
mations (4.27)-(4.28). That is,

E, = h—-(h1 +hy +0),

£

Lo max{l gw) — g (W) : we ﬁhl {—hl}},

E%Z}::maxilg(w+iEh)—g2(w) | : w e f{hz{c}},
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and
EEJC}:zmax{l g(w) — w | :w e ﬁC{O}}.

Then, estimates of the above errors can be deduced easily from those
given in Theorems 4.1, 4.3 and 4.4 and in Remark 4.5. For example, if

the functions t4; j = 1,2, satisfy the assumptions A4.1, then by using

(4.15) and (4.21) it is easy to show that, for any ¢>0,

Ep < nt dy o (g1, €) {81 e~2mhy 4 sze_nh}
+ H_ldz a(en, €) {eze_zn(h2+c) +g1e mh }
—2mh

+ H_le a(ep, €9) gpe
More generally, it is easy to show that if the functions tw4; j=1,2,
satisfy the assumptions A4.1 then, for any ¢>0,

E, = Of{exp(-2mh’)},
and
E{gj} = O{exp(—nh*)}; j=1,2, and E{gC} = O{exp(—nh*)}

where h*:= min(h; ,h2).
Remark 4.7 Let Q:= {G; 21,29, 23, z4} be of the form illustrated in
Figure 1.4. That is, let Q consist of a domain G bounded by a segment
{1 =(z,z1)of the real axis, a straight line /5 := (zp,2z3) inclined
at an angle am, 0 < a <1, to /1 and two Jordan arcs y; = (z,2p) and

Y2 = (23, z4)where

yjz={z: z =p5(8)er 9,0 S@SO(H}; i=1,2,

with o7 (6) > 1 and 0py(6) < 1.

It is easy to see that the domain decomposition method and the
associated theory can also be applied to quadrilaterals of the above
form, provided that the crosscut of subdivision is taken to be the arc

c:={z: zzele, 0< 6 < a1} of the unit circle. For example, this can

be seen by observing that the transformation
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Z —>

: logz
lom

maps the quadrilaterals Q and
G1s zl,zz,elom,li, {Gz; 1, 95, Z3r24 |1
illustrated in Figure 1.4, onto three quadrilaterals of the form
(1.3)-(1.5), with
(1771

Ij(x):—logpj (aomrx); 3 =1,2
QI

5. Numerical examples and discussion

Each of the two examples given below involves the mapping of a
quadrilateral Q of the form (1.3) and, in each case, the decomposition

is performed by subdividing Q into two quadrilaterals Q4;3=1, 2, of

the form (1.4)-(1.5). In each example, we use the following notations

for the presentation of the results:

- En and Egj }; j=1,2: As before, these denote the actual errors
(1.16) in the domain decomposition approximations to the module
h:= m(Q) and the conformal map g:Ry{-h;} >G. More precisely, the
values Ep and E;{Jj} listed in the examples are reliable estimates of
the actual errors. They are determined from accurate approximations to
h, hj; j=1,2, and g, 9j; 3=1,2, which are computed by using the iterative
algorithms described in [5]. In particular, Egj }; j=1,2, are the

maxima of two sets of values, which are obtained by sampling respec-
tively the approximations to the functions g (w) -g; (w) and
gw + iEp) — g2(w) at a number of test points on the boundary segments

n = -hq,00f Ry {-hj}landn = 0,hy of Ry {0}.
1 2

-T(Eh)andT(Egj });j=l, 2: These denote the theoretical esti-

mates of the errors E;, and Egj };j =1, 2,which are given respectively

by the expressions in the right hand sides of (4.15) and (4.19).
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Example 5.1 Let Q and Q5;3j=1,2, be defined by (1.3)-(1.5) with:

1(x)=1.5+0.2sech? (2.5%)+ /,
and

To(x)=0.25% —0.375% +0.33x+1.25+(,
where ¢ >0.

In this case dj = 0.3849, dy = 0.5830, and the largest values of
e5; J=1,2, i.e. g1= 0.3918 and e = 0.6064, occur when ¢ = 0.

Therefore, the functions K j=1, 2,satisfy the assumptions A4.1, for

all ¢>0.

The numerical results corresponding to the values ¢ = 0.0(0.25)1.0
are listed in Tables 5.1(a) and 5.1(b). These tables contain
respectively the computed values of the conformal modules, which are

expected to be correct to seven significant figures, and the values

of the error estimates Ey, T(Ep) and Egj },T(E{gj }) ;J=1,2.

/ hj hy h
0.00 1.565 514 72 1.333 348 92 2.898 870 58
0.25 1.815 515 54 1.583 350 99 3.398 867 97
0.50 2.065 515 71 1.833 351 42 3.898 867 43
0.75 2.315 515 74 2.083 351 51 4398 867 31
1.00 2.565 515 75 2.333 351 53 4.898 867 29
TABLE5.1(a)
¢ E T(Ep) {1} {1} {2} {2}
h Eg T(Eg ) Eg T(Eg )
0.00 7.0E-6 2.6E-4 2.1E-3 42E-2 2.1E-3 5.5E-2
0.25 1.5E-6 5.1E-5 9.6E-4 1.9E-2 9.6E-4 24E-2
0.50 3.0E-7 1.0E-5 44E-4 8.4E-3 44E-4 1.1E-2
0.75 6.3E-8 2.1E-6 2.0E-4 3.8E-3 2.0E-4 5.0E-3
1.00 1.3E-8 4 4E-7 9.1E-5 1.7E-3 9.0E-5 22E-3

TABLE 5.1(b)
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Example 5.2 Let Q and Q3 3=1,2, be defined by (1.3)-(1.5) with:

1(x) = c > 0 and 1y(x)=0.25% —0.5¢ +2.0+(, (>0

In this case Q is of the special form considered in Remark 4.5,
ie. gy (w)=w, hy:= m(Q1)=c and dj=¢1=0. Also, d2=0.3849 and, for all

¢ > 0, mp<4.1x1073. Hence, (4.25) gives that

2
1+ m
£y = dy g <0.385, V>0,

i.e. the simplified results (4.21)-(4.24) hold for all ¢ > 0.

The numerical results corresponding to the values ¢ = 1 and
{= 0.0(0.5)2.0 are listed in Tables 5.2(a) and 5.2(b). As in Example
5.1, the two tables contain repectively the computed values of the

conformal modules h and h,, and the values of the error estimates
En, T(ER) and Egj },T(E({gj }); j=1,2.

We recall that hy = 1, and observe that the values of h and hj

listed in Table 5.2(a) are expected to be correct to the number of

figures quoted. (The algorithms of [5] achieve this remarkable

accuracy because, in this case, the curve I: z:pz(O)ele corresponding
to the arc y = 19(x) is analytic; see the comment made in Remark 3 of

[5:p.279].) We also observe that the estimates given in Table 5.2(b)

remain unchanged for any value ¢ > 0; see Remark 4.5.

1 h» h

0.0 1.859 568 647 615 | 2.859 569 034 971
0.5 2.359 569 018 925 | 3.359 569 035 644
1.0 2.859 569 034 971 | 3.859 569 035 694
1.5 3.359 569 035 664 | 4.359 569 035 695
2.0 3.859 569 035 694 | 4.859 569 035 695

TABLE 5.2(a)
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1 1 2 2
¢ Eh T(Ep ) e Lol | e | el
0.0 3.9E-7 1.4E-6 5.0E-4 2.9E-3 5.0E-4 4.8E-3
0.5 1.7E-8 6.1E-8 1.0E-4 6.0E-4 1.0E-4 1.0E-3
1.0 7.2E-10 2.6E-9 22E-5 1.3E-4 2.1E-5 2.1E4
1.5 3.1E-11 1.1E-10 4.5E-6 2.6E-5 4.5E-6 4.4E-5
2.0 1.4E-12 49E-12 9.3E-7 54E-6 9.3E-7 9.0E-6
TABLE 5.2(b)

We end this section by making the following concluding remarks:

Remark 5.1 The results of the two examples given above illustrate
the remarkable accuracy that can be achieved by the domain
decomposition method, even when the quadrilaterals involved are only
moderately long. Furthermore, the results confirm the theory of
Section 4 and show that the error estimates given in Theorems 4.1 and
4.4 reflect closely the actual errors in the domain decomposition

approximations.

Remark 5.2 We recall the method used for computing the values
Egl}and Eif} listed in Tables 5.1(b) and 5.2(b), and note that in

both examples the maxima of |g(w)—dgj(w)| and |g (W+iEh)—gz(w)| occur
on the common boundary segment n = 0 of Rh1 {~hy} and ha {0}.

The errors on the sides n=-hj of Rh1 {-h1} and n = hp of ha {0} are

much smaller, indicating that the estimates of

EY = max [X© -X10)] ad B max 1X@) -X20@)1,
0<&<1 X o0=<e<l

given in Theorem 4.2, are pessimistic. In fact, there is strong

experimental evidence which suggests that Eé(l}and E%}are both

O{exp(-2mh*)}, rather than O{exp(-mh*)} as predicted by (4.17).
(Of course, exactly the same remark applies to the estimates

referred to in Remark 4.2).



40

The very close agreement between the values Egl} and Eif} listed

In the tables is related to the above observations, and can be

explained by the results of Theorem 4.3 and those given in Remark 4.5.
Remark 5.3 Since h > hy + hp, the results of Theorems 4.1-4.4

provide computable error estimates, i.e. estimates that can be

computed easily once the approximations to the conformal modules hj
and hy are determined. In addition the results of the theorems can be

used to provide a priori error estimates, i.e. estimates that can be
determined before the approximations to h; and h2 are computed. This
can be done by observing that

hs 2 min 14(x):= by, J=1,2
J 0<x<x J bj
and

h 2 by + by=b,

and replacing the values of h and hj; j=L,2, respectively by the lower
bounds b and by; =1, 2.

Remark 5.4 Our final remark concerns the assumptions A4.1 under
which the theoretical results of Section 4 were established. The most
restrictive of these assumptions is, of course, condition (4.14) which

requires that the quantities e5; J=1,2, are less than unity. In

practice, (4.14) is more or less equivalent to requiring that the

slopes of the two curves y = t4(x); J=1, 2, are numerically less than
unity in [0,1]. This is so because the values my; j=1,2, given by
(4.14a) are "small", even when the two quadrilaterals Q4; J=1,2, are

only moderately "long".

The condition (4.14) is certainly needed for our method of proof.
However, the results of the example considered in Section 5 of [12]
and those of several other numerical experiments given in [14]

indicate clearly that:

(a) Eh =0 { exp (—21‘mh*}and (b) Egj Y=o {exp (-mh*); j=1,2,

(5.1)
with h* = min (hy,hp), even when (4.14) is not fulfilled. In fact
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there is very strong experimental evidence which suggests that the

results (5.1) hold when the functions L j=1, 2,satisfy only the
first two conditions (i) and (ii) of A4.1.

A partial explanation of the above experimental observation is
provided by recalling that results similar to those of Theorem 4.3 can

be obtained under the assumption that the functions K 3=1,2, are
only continuous in [0,1]. From this, it should be possible to argue
that Ep and E{gj}; j=1,2, are all.O{exp(—Hh*)}- At present, however,

we do not know of a way of proving (5.la), unless we impose the

condition (4.14).
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