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Abstract

Click-Through Rate (CTR) prediction is crucial in calculating advertisements

and recommendation systems. To effectively predict CTR, it is important to

properly model the interaction among features of data. This work tends to

fully utilise the interaction information among features while employing deep

neural networks for CTR prediction. To this end, we propose a Deep Field

Relation Neural Network (DFRNN), which models feature interaction via a 3-

dimensional relation tensor. The proposed method is evaluated on real data sets

and compared with related methods. The results demonstrate that our method

could be used to derive significant information contained in feature interaction

and achieve an accurate CTR prediction.

Keywords: Click-through rate, Neural network, Feature interaction, Relation

tensor.

1. Introduction

Many industrial applications, such as online advertising [31], recommenda-

tion system [23] and web search [3], are Cost Per Click (CPC) for most of
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Internet companies. In the CPC advertising system, the ranking sore of an ad-

vertisement is usually determined by the product’s bid price and Click-Through5

Rate (CTR) [46]. Therefore, correctly predicting CTR of advertisements is a

prerequisite for ensuring revenue and user experience.

The CTR prediction is a typical supervised machine learning problem, whose

goal is to accurately predict the probability of user’s behaviour under a given

advertising context. Denoting features of the problem as x and the target as10

y, a large number of labeled samples (xi, yi) can be obtained from online ad-

vertisement’s click logs for training purpose. By employing a parameter w to

model the probability of click, the CTR can be written as:

CTR = Probability(click|AD,User,Query) = f(x,w). (1)

Consequently, the problem can be transferred to an optimisation problem and

solved by searching for a proper value of w, which minimises the objective loss15

function L(y, f(x,w)). The negative log-likelihood function is typically used as

the loss function for CTR prediction. Many classical machine learning mod-

els, including Logistic Regression (LR) [34], Bayesian models [13], polynomial-2

(Poly2) [33], gradient boosting decision tree [4, 16], tensor-based models [24],

and Factorization Machines (FM) [19, 20, 32], have been proposed to deal with20

the problem.

To build an effective machine learning model for CTR prediction, it is crucial

to model interactions among features of the data. In feature engineering, first-

order discrete features are often combined in pairs to form high-order combina-

torial features to improve the fitting capability of complex relationships. For ex-25

ample, suppose there are two discrete features: language={Chinese,English}

and type={movie, teleplay}. They can be crossed to obtain a new feature: lan-

guage type={Chinese−movie, Chinese−teleplay, English−movie, English−

teleplay}. It has been proved in the Kaggle competition [20] that crafting com-

binatorial features is an effective way for CTR prediction [2, 28, 29, 35]. How-30

ever, this approach is usually problem dependent and relies on manual feature

engineering as well as domain knowledge.
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Figure 1: An example of learning feature interactions from the raw data.

Instead of designing new features manually, feature interactions can be

learned from raw data by applying machine learning algorithms. Suppose the

raw data contain information of age, gender, occupation and item. A decision35

tree can be constructed based on these data and tags (i.e., clicked/unclicked),

as shown in Figure 1. In Figure 1, each path from the root node to the leaf

node can be regarded as a way of feature interactions. By defining wij as the

feature interaction coefficient of features i and j, then it can be learned from

machine learning models such as LR. Factorization machines [32], proposed40

to solve the automatic feature combination problem via inner product of fea-

ture embedding vectors, is regarded as one of the most successful embedding

models [43]. Deep Neural Networks (DNN) have been successfully applied in

image classification [14, 25], Natural Language Processing (NLP) [8] and speech

recognition [11] over the past years. DNN can automatically capture feature45

representations and dependencies for prediction purpose. As a result, several

DNN based methods have also been proposed for CTR prediction. One chal-

lenging issue of applying DNN for CTR prediction is data sparsity [40]. Most of

the data (e.g., user ID, gender and city) in CTR problems are non-contiguous
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and discrete. These data are typically converted to a set of high-dimensional50

sparse features via the one-hot encoding [6, 35] for CTR prediction. In such a

situation, they first need to be converted into dense feature embedding vectors

before inputting to neural networks. Further, appropriate representations for

feature interactions in the neural network structure are required. Intuitively,

we can directly utilise a feature interaction vector to represent the interaction55

of two features. However, by employing such a representation, there are usually

not enough data to estimate interactions between features. As a result, the

parameters of feature interaction vector cannot be trained adequately. To deal

with this issue, the methods of employing two feature embedding vectors, such

as element-wise product [15, 39] and inner product [29, 32], could be used to60

calculate feature interactions.

In this work, we propose a Deep Field Relation Neural Network (DFRNN)

for CTR prediction. The proposed method tends to enhance DNNs by modelling

2-order feature interactions after feature embedding. Such a feature interaction

operation is devised to improve the capability of neural network to learn feature65

cross information. Further, we deepen the shallow model by combining it with

a classical DNN component, thus effectively modelling high-order and nonlinear

feature interactions. Comparing with traditional methods, which perform inner

product or element-wise on embedding vectors to model feature interaction in

low levels, the proposed feature interaction operation is able to encode more70

informative feature interactions, thus facilitating the deep layers in our model

to learn meaningful information. The proposed method has been evaluated on

two real-world datasets and compared with related methods. The results show

our method is able to achieve an accurate CTR prediction and outperform

related methods, including classical models of FM and recently proposed deep75

models such as PNN and DeepFM.

The remainder of the paper proceeds as follows. Firstly, a brief review of

related work is given in Section 2. Then, the details of proposed method are

described in Section 3. Section 4 provides experiments and analysis. Finally,

Section 5 concludes the paper with a summary and future work.80
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2. Related Work

Many methods have been proposed to process high dimensional sparse data.

In this section, we will briefly review shallow and neural network based methods,

which are related to our work.

2.1. Shallow Methods85

The CTR task can be transformed into an optimisation problem, which

is unconstrained convex with a unique optimal solution. To deal with this

problem, LR [22], which is a linear model, could be employed. LR can be

applied on problems with large-scale features and is able to quickly converge to

the optimal solution through the commonly used gradient descent method. The90

LR model also possesses a good interpretability. By employing this model, the

weights corresponding to features as well as the importance of each feature and

its influence on the click rate can be analysed. However, the feature expression

capability of LR is generally weak since it relies on manual feature engineering

or feature selection techniques.95

FM [32], which is proposed to learn feature interactions using the inner

product, is one of the most successful CTR models. The FM is defined as:

ŷFM (x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

〈vi, vj〉 · xixj , (2)

where w0 ∈ R is a global bias, wi ∈ R is the weight of i-th feature, vi ∈ Rk is a

k-dimensional vector and 〈vi, vj〉 defines the inner product. FM performs well

on large sparse data and has a low time complexity. By introducing the concept100

of field, Lin et al. proposed a Field-aware Factorization Machine (FFM) [19, 20].

Comparing with FM, in FFM, each feature is allowed to use different vectors

to interact with other features of different fields, thus improving the feature

expressiveness. However, FFM requires a large memory and, thus, is not easily

applicable to address real CTR tasks. In addition, both FM and FFM tend to105

learn all interactions between each pair of features, which is not able to model

high-order feature interactions.
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2.2. Neural Network based Methods

Recently, many deep learning models have been developed for CTR [17, 27,

48]. For these models, effectively modelling the feature interactions is crucial110

for their performance. In traditional DNN models, the input of network is usu-

ally required to be dense and numerical. For the CTR task, the dimension

of data could be over one million after one-hot encoding. In this case, these

models are typically not applicable. To deal with such an issue, Factoriza-

tion machine supported Neural Networks (FNN) have been proposed. In this115

method, an embedding layer pretrained by FM, which is used to convert sparse

features to low-dimensional dense data, is combined with a DNN component

for capturing high-order feature interactions [43]. FNN can be thought as a

deepened version of FM. While, Operation-aware Neural Networks (ONN) [41],

which utilises a new embedding method named operation-aware embedding for120

learning feature representations, is a deepened version of FFM. To strengthen

the capacity of feature interactions, Product-based Neural Network (PNN) [29]

and its extension Product-network In Network (PIN) [30] introduced product

operations, which are performed on the embedding layer before applying full-

connected DNN. Wide & Deep’s model [7] tended to train both shallow and125

deep components at the same time. The shallow component in this method is

based on a linear model such as LR, which carries the benefit of memorisation

of low order features while the deep component is based on DNN, which can be

used to improve the generalisation capability of the model. However, to ensure

a good performance, the features of linear component in this model, which are130

used directly for final prediction, require to be designed manually. To alleviate

this issue, DeepFM [12] tried to replace the linear part of Wide & Deep model

with FM to learn feature interactions, thus avoiding manual feature engineering.

By jointly training the FM and DNN parts, DeepFM is deemed to be one of the

best performing models. In [15], a model called Neural Factorization Machines135

(NFM), which employs DNN to improve FM, has also been proposed. Since the

contribution of each feature interaction to the CTR prediction result could be

different, Xiao et al. [39] proposed an Attention neural Factorization Machines
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Figure 2: The architecture of our proposed model. The input raw multi-field feature vector

is first converted to field embedding vectors via an embedding layer and then fed into the

feature interaction layer to model feature interactions. A neural network layer is applied on

the output of feature interaction layer to predict the click through rate ŷ.

(AFM), which employs an attention mechanism originated from Neural Machine

Translation (NMT) field [1], to learn the weights of feature interactions. While140

in [46], Zhou et al. devised a Deep Interest Network (DIN), in which a local

activation unit structure is designed to adaptively capture diverse interests of

the users from historical behaviours.

One of the key limitations of existing CTR models, which use inner product

and/or element-wise product schemes for interaction representation, is that they145

generally have difficulty to effectively calculate the interactions of feature vec-

tors. To improve the prediction accuracy, it is useful to provide representations

for feature interactions after the raw feature embedding layer. Here, we there-

fore propose a feature interaction representation scheme to support the neural

network by learning informative feature interactions at the low level. Further,150

we deepen the shallow model by combining a classical deep neural network com-

ponent to appropriately model high-order and nonlinear feature interactions.

3. Proposed Method

In this section, we propose a deep field relation neural network model, which

can effectively model the feature interaction, for CTR prediction. In the pro-155
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posed method, DNNs are enhanced by modelling 2-order feature interactions af-

ter feature embedding. This feature interaction operation is devised to improve

the capability of neural networks to learn feature cross information. Specifically,

our proposed feature interaction operation employs two embedding vectors to

calculate the interaction vector. In this operation, rather than calculating the160

feature interactions using element-wise product or inner product, we tend to

support the neural network by learning informative feature interactions at the

low level. Further, in our method, the shallow model is deepened by combining

a classical DNN component, thus effectively modelling high-order and nonlinear

feature interactions. In the proposed method, an embedding operation is used165

to map high-dimensional sparse input into low-dimensional dense real-valued

vectors. Then, several operations (including relation matrix definition and in-

teraction vector calculation) are applied on embedding vectors in the feature

layer to model 2-order feature interactions. A multiple hidden layer network is

finally employed on the combination vector to learn nonlinear relations among170

features. These components can be used to appropriately process the data at

different stages thus forming an inherent structure to properly deal with CTR

prediction tasks. An overall architecture of the proposed DFRNN is illustrated

in Figure 2. In the following subsections, we should present the details of main

components (including sparse input, embedding, feature interaction, combina-175

tion, multiple hidden and output layers) of the proposed model.

3.1. Sparse Input and Embedding Layers

Unlike image classification or speech recognition, the data of CTR tasks

are usually non-contiguous and categorical. To represent raw input features,

they are usually converted to high-dimensional sparse features via the one-hot

encoding. For example, for the features of user id = {001, 002, . . . }, goods =

{book, basketball, . . . } and gender = {male, female}, after the one-hot encod-

ing, an input instance can be written as:

[1, 0, 0, 0, ..., 0]︸ ︷︷ ︸
user id=001

[0, 1, 0, 0, ..., 0]︸ ︷︷ ︸
goods=book

[0, 1]︸︷︷︸
gender=female
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Figure 3: The architecture of embedding layer.

The dimension of features could become huge after encoding. For example,

to encode 550 goods, the dimension of features for “goods” will become 550

after coding and only one of them is effective. In this case, DNNs are usually180

not directly applicable. Here, we propose to transform sparse features into a

continuous, dense real-valued vector with a low dimension. The architecture of

embedding layer is illustrated in Figure 3. The result of embedding layer is a

wide concatenated field embedding vector, E = [e1, e2, . . . , ei, . . . , em]. Here, m

denotes the number of fields and ei ∈ Rk is the embedding vector of i-th field,185

where k denotes dimension of the vector.

3.2. Feature Interaction Layer

To improve prediction accuracy of CTR task, it is useful to provide repre-

sentations for the feature interactions after raw feature embedding layer [41].

The feature interaction layer aims to model the second order feature relations190

in a precise and effective way. Intuitively, we can directly utilise the feature

interaction vector pij to represent interaction between i-th and j-th features.

The number of feature interaction vectors is therefore n ∗ (n − 1)/2, where n

denotes the number of coded features. However, it is difficult to adequately

train the vector pij in real application scenarios where data sparsity is com-195

mon. The reason is that training each parameter pij requires a large number

of samples with non-zero xi and xj . Since the data are inherently sparse, the

samples, which satisfy the above requirement could be very few, thus leading to

insufficient training samples. This, in turn, results in an inaccurate calculation

of parameter pij , which will ultimately affect the performance of the model. To200
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deal with such an issue, a possible solution is to employ the embedding vector

x to calculate the interaction vector p. Inner product and element-wise product

are perhaps the most popular methods for calculating feature interaction. The

inner product and element-wise product can be defined as:

finner(ε) = {(vi · vj)xixj}(i,j)∈RX , (3)

205

felement−wise(ε) = {(vi � vj)xixj}(i,j)∈RX , (4)

respectively. Here, RX = {(i, j)}i∈X ,j∈X ,j>i}, vi denotes the i-th embedding

vector, the symbol “ · ” means inner product, � defines element-wise product

and ()k denotes k-th dimension value of the vector, i.e., (vi � vj)k = vikvjk.

A key issue with inner product and element-wise product methods in in-

teraction representation is that they are not able to effectively calculate the210

interactions of feature vectors. To improve the situation, here, we propose a

new scheme to represent the feature interaction vector. Specifically, in our rep-

resentation, feature interaction vector pij of two feature vectors is defined as:

pij = [p1ij , ..., p
u
ij , ..., p

l
ij ]. (5)

Here, puij is the u-th dimension value of interaction vector, l is the dimension of

interaction vector puij , which can be expressed as:215

puij = vi ·Wu · vTj . (6)

Here, W ∈ Rk×k×l is a 3-dimensional tensor. Each slice Wu,u∈{1,2,...,l} of the

tensor W represents the i-th relation matrix. Figure 3 shows the representations

of different feature interaction methods. By employing the above representa-

tion scheme based on the original embedding E, we can obtain the results of

feature interaction layer, denoted as {p1, ..., pi, ..., pn}. It should be noted that,220

computing pij has a complexity of O(lk2), where l and k are the dimension

of interaction vector puij and feature vector, respectively. The feature interac-

tion layer, thus, has a complexity of O(nlk2), where n is the number of field

interactions.
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Figure 4: An illustration of different methods for calculating feature interaction.

3.3. Deep Network225

The interaction vector p obtained at the interaction layer will be concate-

nated and fed into the deep component, which is a feed-forward neural network.

The result of combination layer is defined as:

Fconcat(p1, ..., pi, ..., pn) = [c1, ..., ci, ..., ck]. (7)

The deep network is used to capture high-order interaction among features and

generate the model result. Let h(0) = [c1, c2, ..., cn] denote inputs of the deep230

network, where n is the total size of interaction vectors. Each fully-connected

neural network layer is defined as:

h(l) = σ(W (l)h(l−1) + b(l)), (8)

where l is the layer number of deep network and σ denotes the activation func-

tion. Here, Wl ∈ RDl+1×Dl , b(l) and hl ∈ RDl are the model’s weight, bias and

output, respectively, of the l-th layer. The deep network is allowed to capture235
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high-order feature interactions by employing non-linear activation functions,

such as sigmoid, tanh and ReLU. The output vector of the final neural network

layer, which is used to calculate the final CTR prediction, is generated as:

yd = σ(W |L|+1h|L| + b|L|+1). (9)

Here, |L| denotes the depth of DNN and σ represents the sigmoid function,

which is defined as σ(x) = 1/(1 + e−x). It should be noted that our model is

equivalent to FM if the neural network part of the model is removed and the

relationship dimension u in relationship tensor is set to 1 while the relationship

matrix W is set to be: 
1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 ∈ R
k×k,

where k is the dimension of feature vector. On the other hand, a shallow CTR

model can be obtained by summing each element in the vector c in our proposed240

model and employing a sigmoid function to generate the prediction value.

3.4. Learning

Based on the above components, the DFRNN model’s output can be written

as:

ŷ = σ(w0 +

n∑
i=1

wixi + yd), (10)

where w0 is a global bias, which is used to control the activation state, ŷ ∈ (0, 1)245

denotes the value of CTR prediction, σ represents the sigmoid function, n is

the total size of features, xi is the i-th feature value and wi is the weight of

i-th feature. The proposed model will be used to address CTR tasks. The

objective function is a negative log-likelihood function. In experiments, we aim

to minimise the following loss function:250

loss = − 1

N

N∑
i=1

(yi log(ŷ) + (1− yi) log(1− ŷi)), (11)
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where yi is the ground truth of instance x, ŷi is the prediction value of CTR

and N denotes the total size of instances for training.

In practice, a large size of training data is usually used to train deep neural

networks, especially for CTR tasks. In this case, it could be very expensive

to calculate the gradient on entire training data during the training process.255

To improve the efficiency of training, mini-batch gradient descent is often em-

ployed. However, gradient descent methods depend critically on the value of

learning rate, which is an important hyper-parameter in neural network. It

has been shown that adaptively adjusting the learning rate could be a viable

choice and various methods such as AdaGrad [9], RMSprop [37], AdaDelta [42]260

and Adam [21] have been proposed. Here, the Adam algorithm [21], which is a

combination of RMSProp and momentum methods, has been employed as the

optimiser to obtain the learning rate. The algorithm is defined as:

Mt = β1Mt−1 + (1− β1)gt, (12)

Gt = β2Gt−1 + (1− β2)gt � gt, (13)
265

∆θt = −α Mt/(1− βt
1)√

(Gt/(1− βt
2)) + ε

. (14)

Here, β1 and β2, which denote the decay rates of two moving averages, are set to

be 0.9 and 0.99, respectively. The symbol of ε denotes a small constant, which

is used for numerical stability and is empirically set to be 10−8. The Mt and Gt

represent the first and second moment, respectively, while gt is a real gradient

at training step t. The learning rate of Adam is selected via a grid search among270

values of [0.0001, 0.0005, 0.001, 0.005, 0.01] by employing cross validation.

3.5. Regularisation

Sparse L2 Regularisation. To avoid feature vector representations overfitting

the data, L2 regularisation will generally be employed. This regularisation

method, however, could result in an intensive computation especially when the275

input data is sparse. To deal with this issue, instead of L2 regularisation, sparse

L2 regularisation has been employed in our method. Rather than all sparse
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input x, the sparse L2 regularisation penalises only the embedding feature v =

embed(x) [23].

Dropout. The dropout approach [36], which randomly discards a part of neurons280

(as well as their corresponding connected edges), has been widely employed

to avoid overfitting. In our DFRNN model, the dropout will be applied in

the feature interaction layer to investigate its impact on feature interaction

representations. Specifically, after performing the feature interaction layer, we

randomly drop the concatenated vector with a probability of p. Additionally,285

the dropout has also been employed to train neural network in the proposed

method. In experiments, six different dropout rates (i.e., 0.0, 0.1, 0.2, 0.3, 0.4

and 0.5) have been evaluated on the validation dataset and the one with the

best performance has been chosen as the dropout rate for our method. As a

result, we set the dropout rate as 0.0 and 0.5 on Criteo and Avazu dataset,290

respectively.

Batch Normalisation. During the training of deep neural network, the input of

a middle layer is the output of previous neural layer. Therefore, changes in the

parameters of the neural layer will cause a large difference in the distribution

of its output. From the perspective of machine learning, if the input distribu-295

tion of a neural layer changes, then its parameters need to be relearned. This

phenomenon is called internal covariate shift. To deal with this problem, it

is necessary to make the distribution of the input of each neural layer to be

consistent during the training process. The simplest approach is to normalise

each neural layer to make its distribution stable. For this purpose, the Batch300

Normalisation (BN) [18] method has been adopted in our method. The BN

is an effective layer-by-layer normalisation method, which can normalise any

intermediate layer in the neural network.

4. Experiments

In this section, we evaluate our model and compare it with related methods.305

In the following subsections, we will provide the details of datasets, methods to
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Table 1: Dataset statistics.

Dataset #instance #categories #fields pos ratio

Criteo 1× 108 1× 106 39 0.5

Avazu 4× 107 6× 105 24 0.17

be compared, evaluation metrics, data processing, experimental settings, per-

formance comparison and relevant analysis.

4.1. Datasets

Criteo1 data consists of 98 millions of click records. It is a widely used310

industry benchmarking dataset for evaluating CTR models. The goal is to

predict the probability that a user will click on a given advertising item. The

data has 13 continuous and 26 categorical features, with no feature description

available. The dataset will be split into two parts: “day6-12” for training and

“day13” for testing. For numerical features, they are discretised using bucketing.315

The bucket label is used to replace the numerical value. For categorical features,

we set the categories appeared less than 20 times as “other”. Due to enormous

data volume and extremely unbalanced labels (only 3% samples are positive),

negative sampling is used to obtain a positive sample ratio of about 0.5. After

one-hot encoding, the feature space could reach approximately 1M.320

Avazu2 is published in Avazu click-through rate prediction contest. The

FFM [19, 20] achieves the best performance in this contest. Avazu data contains

several days of click-through data (40 million click records). In this data set,

each click instance has 24 data fields. We randomly split the dataset into two

parts: 80% for training and 20% for testing, and remove categories appeared325

less than 20 times to reduce the dimension.

1Criteo http://labs.criteo.com/downloads/download-terabyte-click-logs/
2Avazu http://www.kaggle.com/c/avazu-ctr-prediction
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4.2. Methods to be Compared

The following six classical and state-of-the-art models have been included

for comparison. These models are implemented with Tensorflow and trained

using the Adam optimisation algorithm.330

LR [34]: LR is a classical model for CTR task, which treats the recommen-

dation as a classification problem and ranks items by predicting the probability

of positive samples.

FM [32]: FM learns a feature vector for each feature, and the inner product

of two feature vectors is used as feature interactions.335

FNN [43]: FNN initialises an embedding layer with latent vector of FM as

the input of neural network.

PNN [29]: In this method, embedding vectors of different features employ

product operations to perform pairwise feature interactions to obtain the inter-

action information.340

Wide & Deep [7]: This method is based on a hybrid model consisting of a

single layer of wide part and multiple layers of deep part.

DeepFM [12]: This method improves the Wide & Deep model by replacing

the wide part with FM.

4.3. Evaluation Metrics345

The area under curve (AUC) and log loss have been used as the evaluation

metrics. AUC refers to area under ROC curve, which has been widely used in

binary classification. This metric is insensitive to positive ratio and classifica-

tion threshold. AUC can quantitatively reflect the model’s performance based

on the ROC curve. Generally, a larger value of AUC means a better classifica-350

tion performance. Log loss can be used to measure the distance between two

distributions, which is another widely used metric for binary classification. The

lower bound of log loss is 0, indicating the two distributions perfectly match,

and a smaller value indicates a better performance.
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Table 2: Comparing the performance of various methods.

Method Criteo Avazu

AUC Log loss AUC Log loss

LR 0.7742 0.5742 0.7545 0.3996

FM 0.7922 0.5509 0.7765 0.3820

FNN 0.7987 0.5431 0.7802 0.3801

PNN 0.7994 0.5425 0.7807 0.3797

Wide & Deep 0.7986 0.5432 0.7806 0.3800

DeepFM 0.7986 0.5428 0.7804 0.3797

DFRNN 0.8020 0.5409 0.7834 0.3780

4.4. Performance Comparisons355

In this section, we will evaluate our proposed method by comparing it with

related methods. In experiments, all models are implemented using Tensorflow3.

To make the comparison fair, the size of embedding vector is set to be 50 and

30 for Avazu and Criteo data, respectively, for all methods. The Adam [21],

which has been adopted in our model, is configured with a mini-batch size of360

500 and 1000 on Criteo and Avazu data, respectively, along with a learning rate

of 1.0E-4. For all deep network based methods, the layer depth is configured to

be 5 while the number of neurons per layer is set to be 700 and 500 for Criteo

and Avazu data, respectively. The RELU is used as the activation function.

For initialisation, DNN’s hidden layers are initialised with xavier [10] while365

the embedding vectors are initialised using uniform distributions (the ranges of

which are selected from {
√

c
Nk ,

√
c
nk ,

√
c
k}), where c={1, 3, 6}, N is the input

dimension, n denotes the number of fields and k is the embedding size). All

experiments are conducted on a machine with 2 GTX 1080Ti GPUs.

3Tensorflow: https://www.tensorflow.org/
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Figure 5: Comparing the performance of proposed method with different embedding sizes.

Figure 6: Comparing the performance of proposed method with different network depths in

DNN.

Figure 7: Comparing the results of the proposed method with different sizes of feature inter-

action vector.
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Table 3: The impact of BN and dropout on the proposed method.

Method Criteo Avazu

AUC Log loss AUC Log loss

DFRNN 0.8020 0.5409 0.7818 0.3785

DFRNN+drop 0.7983 0.5435 0.7834 0.3780

DFRNN+BN 0.8003 0.5412 0.7796 0.3812

Table 2 shows the performance of various methods on Avazu and Criteo370

datasets. The results clearly show that our proposed DFRNN achieves the best

performance among the methods to be compared on both datasets. For exam-

ple, DFRNN outperforms FNN by 0.413% and 0.405% in terms of AUC and

log loss, respectively, on the Criteo data. While, comparing to DeepFM, our

method outperforms it by 0.384% and 0.448% in terms of AUC and log loss,375

respectively, on the Avazu data. These results thus reveal that our proposed

feature interaction mechanism is viable to model the feature interaction. We

can also find that, comparing FM with LR in terms of AUC and log loss, FM

outperforms LR on both datasets. Looking at NN based models, all of them

achieve a better performance than FM, which only models two-order feature380

patterns. This could demonstrate the importance of modelling high-order fea-

ture interactions in a nonlinear manner. The results show that both PNN and

DFRNN outperform FNN as well as DeepFM. A possible reason is that, by

concatenating feature vectors as the input of NNs, FNN has the difficulty to

explore all possible feature interactions. While for DeepFM, which directly con-385

catenates feature vectors as the input of NNs in the deep part of model, it

lacks the interaction representation of feature vector. This may confirm that

providing a representation of feature interaction at the bottom layer helps the

NN based model to gain expressive power, thus facilitating the model to learn

feature interactions. The above results also indicate that combining NNs with390
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our proposed feature interaction operation is effective for CTR prediction. This

is due to, in our method, the shallow model is deepened by combining a clas-

sical deep neural network component, which helps to boost the capability of

modelling high-order and nonlinear feature interactions. On the other hand, an

effective feature interaction operation has been designed to support the NN to395

learn informative feature interactions at the low level.

4.5. Parameter Study

In this section, we will investigate the impact of hyper-parameters as well

as the BN and dropout technique in our model. Three key hyper-parameters

(i.e., the size of embedding vector, the depth of DNN and the size of feature400

interaction vector) have been considered and evaluated.

First, the impact of different embedding sizes is investigated. For this pur-

pose, we evaluate our method using the embedding sizes = {10, 20, 30, 40,

50} on Criteo and Avazu data. The results are shown in Figure 5. It can be

seen from the results that, on Avazu, the performance of our model generally405

improves along with the increase of embedding size from 10 to 50 in term of

the loss. While on Criteo data, it is difficult to fit the parameters in memory

and the model could become over-fit when the size is large. The results show

that the best performance is obtained with an embedding size of 30 on Criteo

data. A larger embedding size means more parameters in the model. Generally,410

it could be more difficult for our model to optimise on Criteo data than Avazu

data. This is due to Criteo data contain much more features than Avazu data.

Then, the impact of different network depths in our model is evaluated. To

this end, we test the model with network depths = {1, 2, 3, 4, 5}. The results

are shown in Figure 6. From the results, we can see that the performance of415

our model generally improves along with the increase of network depth on both

datasets. It should be noted that increasing the depth of network will lead to an

increased complexity of the model and affect its capability to learn high-order

features.

Subsequently, we evaluate the impact of the feature interaction vector size420
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by changing it from 10 to 40 in the feature-interaction layer. The results are

shown in Figure 7. From the results, we can find that the values of 30 and

10 are the best feature interaction vector sizes for Criteo and Avazu datasets,

respectively. In addition, the results show that, on Avazu data, the performance

of our method is generally stable along with the increase of feature interaction425

vector size.

Finally, we evaluate the impact of BN and dropout technique in DNN struc-

ture. Dropout [36] is a technique developed for DNN, which randomly discards

a part of neurons to avoid overfitting. BN [18] is used to deal with internal

covariate shift and accelerate training of DNN model. In order to show the im-430

pact of these two techniques, a BN layer and/or a dropout scheme with a rate

of 0.5 is added to DNN layers for comparison. The results are shown in Table

3. The results show that DFRNN without BN outperforms DFRNN with BN

on both Criteo and Avazu data in terms of AUC and log loss. The failure of

BN for CTR prediction tasks is mainly due to the input data is sparse, as BN435

relying on statistics of a mini-batch [30]. While, for the dropout scheme, the

results show that it has little impact on the performance of DFRNN.

5. Conclusions

In this work, we propose a novel neural network model called DFRNN, which

brings together the effectiveness of feature interaction machines with a strong440

representation capability of non-linear neural networks for CTR prediction. In

the proposed model, a new feature interaction operation is designed to support

the neural network to learn informative feature interactions at the low level.

Further, we deepen the shallow model by combining a classical deep neural net-

work component to effectively model high-order and nonlinear feature interac-445

tions. Experiments on two real-world datasets show that, with only one hidden

layer, our method could achieve accurate CTR prediction and significantly out-

perform LR, FM and state-of-the-art deep learning methods including Wide &

Deep and DeepFM. The proposed work can be extended in a few directions such
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as investigating the graph attention networks [38] for improving the expressive450

capability of learning useful high-order feature interactions, employing recur-

rent neural networks to deal with dynamic CTR prediction [44, 47], exploring

the interpretability of deep model for CRT prediction as well as employing fil-

tering [45, 49] and Markovian [5, 26] models to deal with noise and unlabelled

data, which are widely existed in real CTR problems.455
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