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Abstract—Solar energy and bioenergy are two leading re-
newable forms of energy in the move toward a near-zero-
emission electric power industry. Concentrated solar power units
coupled with thermal storage and biomass power plant offer
dispatchable electricity, raising their ever-growing role in future
renewable-dominated networks. This paper proposes a day-
ahead and intraday dispatch model for maximizing the profit
of an Integrated Biomass-Concentrated Solar (IBCS) system
considering the synergies arising from their coupled operation.
To sensibly capture uncertainty and decision sequence of real-life
electricity markets, a two-stage stochastic structure is proposed,
while the solar-related uncertainty is involved using Information
Gap Decision Theory (IGDT). The model is complemented with
a novel multi-objective architecture based on the compound
of IGDT and Conditional Value-at-Risk (CVaR), which allows
handling risk exposure to both stochastic and IGDT inputs.
The Pareto strategies in the multi-objective model are extracted
through an expanded form of the ε-constraint method, whereas
a posteriori approach based upon the out-of-sample assessment is
applied to derive the optimal dispatch pattern among the gener-
ated Pareto strategies. The simulation results demonstrate that:
1) the proposed integrated dispatch model achieves substantial
profitability, and 2) the performance of the suggested CVaR-
IGDT model is superior to conventional approaches.

Index Terms—Day-ahead and intraday dispatch, Integrated
Biomass-Concentrated Solar (IBCS) system, out-of-sample as-
sessment, risk management.

NOMENCLATURE

A. Sets and Indices
R(.) Uncertainty set of thermal power in solar field

using the IGDT-based technique.
s(S), t(T ) Indices (Sets) of scenario and time.
B. Parameters
Cb Cost of biomass feedstock [C/ton].
Cab Calorific value of biomass feedstock

[MWh/ton].
Ḡf
t Forecasted thermal power of the solar field

[MW].
GG Thermal power capacity of the solar field

[MW].
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Mb Maximum amount of available biomass feed-
stock within the scheduling horizon [ton].

p Number of equally distributed parts in the
Pareto frontier.

STD Standard deviation.
toff,bo, toff,pb Minimum down-time of biomass boiler and

power block [hr].
ton,bo, ton,pb Minimum up-time of biomass boiler and

power block [hr].
βscheme1,2 Expected profit deviation factor in the IGDT-

based technique for risk-controlling schemes
1 and 2.

γSU Required thermal power for start-up the
power block [MW].

γTS
0 Available energy in the thermal storage at the

beginning of the scheduling horizon [MWh].
Γbo,Γbo Minimum and maximum thermal power lim-

its of the biomass boiler [MW].
Γpb,Γpb Minimum and maximum thermal power lim-

its of the power block [MW].
ΓTs,ΓTs Minimum and maximum limits of the energy

stored in thermal storage [MWh].
∆down,∆up Ramp-down and ramp-up limits of the power

block [MW/hr].
ζch, ζdis Maximum charging and discharging rates

[MW].
ηbo, ηpb Efficiency of biomass boiler and power block.
ηch, ηdis Efficiency of thermal storage during charging

and discharging.
κ Confidence level in CVaR theory.
κt,s Parameter indicating the difference between

intraday and day-ahead prices.
Λ Risk-averse parameter in conventional CVaR

model.
Ξpb Electric power capacity of the power block

[MW].
ρ Hourly thermal energy loss in thermal stor-

age.
σDA
t,s , σ

I
t,s Day-ahead and intraday prices [C/MWh].

Υ Parameter limiting the intraday power dis-
patch.

C. Variables
CVaRκ,Π CVaR in confidence level κ and expected

profit of the integrated system [C].
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G̃f
t Uncertain thermal power of the solar field

[MW].
mb
t,s Mass of biomass feedstock injected to the

biomass boiler [ton].
Nε The εth range of αscheme1 or αscheme2 .
rt Binary variable indicating the start-up of the

power block.
ubo
t , u

pb
t Commitment statuses of biomass boiler and

power block.
zch
t , z

dis
t Commitment statuses of thermal storage in

charging and discharging.
αscheme1,2 Uncertainty radius in the IGDT-based tech-

nique for risk-controlling schemes 1 and 2.
γbo
t,s Thermal power output of the biomass boiler

[MW].
γh,bo
t,s , γh,f

t,s Thermal power transferred from biomass
boiler and solar field to the thermal storage
[MW].

γk,bo
t,s , γk,f

t,s , γ
l
t,sThermal power transferred directly from

biomass boiler, solar field, and thermal stor-
age to the power block [MW].

γTs
t,s Energy level of the thermal storage [MWh].
ϑ Extra variable used for ε-constraint approach.
ξDA
t,s , ξ

I
t,s Day-ahead and intraday power dispatches

[MW].
ξpb
t,s, γ

pb
t,s Electric and thermal power of the power

block [MW].
ξk,bo
t,s , ξk,f

t,s , ξ
l
t,sElectric power generated directly from

biomass boiler, solar field, and thermal stor-
age [MW].

Π0 Expected profit of the integrated system cor-
responding to Ḡf

t.
Ψ, Qs Extra variables used for CVaR modeling.
D. Functions
F(y,Θs) Profit function of the integrated system.

I. INTRODUCTION

THE significance of renewable energy sources, such as
solar and bioenergy, is constantly increasing to fulfill the

ambitious goals of policymakers for greenhouse gas emission
mitigation and moving toward a sustainable electricity supply
[1]. The electricity produced by solar energy however is
intermittent, posing important challenges to the power system
operators for its accommodation [2]. Nevertheless, emerging
technologies like concentrated solar power units, similar to
biomass energy resources, do not suffer from this deficiency,
while they are able to generate dispatchable electric power,
facilitating their integration into power systems.

The literature related to the participation of biomass energy
resources in the power system operation and the electricity
markets is somehow limited and disparate [3]–[8]. In [3],
Panos and Kannan investigated the long-term role of domestic
biomass in Switzerland’s electricity and heat markets. Lai and
McCulloch [4] researched the optimal sizing of a biomass-
solar system with energy storage. In [5], Li et al. explored
the optimal scheduling of a combined heat and power-based
energy system with solar and biogas energy sources in order

to mitigate the dependence on batteries in remote regions.
Yang et al. [6] introduced an expansion planning model for the
coupled electric power system and biomass delivery networks
using a multi-stage stochastic programming framework. In
[7], Blanco et al. developed a self-scheduling model for
combined heat and power systems in the day-ahead market
considering wood chips and natural gas boilers for the intended
combined heat and power system. Wang [8] et al. proposed a
scheduling model for optimal operation of an integrated solar-
biomass power plant. This is one of the few published works
relevant to large-scale biomass energy resources participating
in electricity markets.

Many studies have focused on the contribution of concen-
trated solar power units in power systems [9]- [13]. Du et
al. [9] established a four-day unit commitment model for a
power system equipped with concentrated solar power units.
In [10], Wu et al. presented a profit-allocation algorithm for
wind farms and concentrated solar units jointly participating in
electricity markets using a stochastic model. Zhao et al. [11]
provided an Information Gap Decision Theory (IGDT)-based
structure to tackle the self-scheduling problem of concentrated
solar power units and various responsive loads. In [11], market
prices, solar- and demand response-involved uncertainties were
handled by the IGDT technique. Khaloie et al. [12] addressed
the behavior problem of concentrated solar units along with
wind, demand response, and compressed air energy storage
resources in electricity markets using a three-stage stochastic
architecture. In [13], Zhao et al. presented a mixed Conditional
Value-at-Risk (CVaR)-IGDT framework for day-ahead and
real-time offering strategy of a concentrated solar power unit.
It is important to note that the proposed CVaR-IGDT in
this paper differentiates from the methodology suggested in
[13], whereas the paradigm established in [13] suffers from
fundamental deficiencies, as highlighted in the following.

Although previous papers have tackled several problems in
the modeling and participation of biomass or concentrated
solar systems in electricity markets, a number of weaknesses
can be observed. First, the model for the optimal operation
of large-scale biomass power plants in electricity markets
[8] suffers from two issues: 1) The biomass power unit has
been treated as a zero-cost energy resource, such as wind
and photovoltaic systems, while the biomass feedstock cost
accounts for a substantial portion of the operating cost [14];
2) Simultaneous injection of two different biomass fuels was
considered for the biomass unit’s daily operation, while most
large-scale power units are designed and operated with only
one kind of biomass feedstock, especially in daily operation
[14]. Despite manifold advantages stated in the literature for
the hybridization of concentrated solar and biomass power
units [15]- [18], the effect of such hybridization in power
system studies and its behavior in electricity markets have
not been adequately covered, so far. Besides, the profitability
of such hybridization from the viewpoint of power producers
taking part in electricity markets has not been addressed yet.
The principal advantages of the solar-biomass hybridization
compared to stand-alone concentrated solar and biomass sys-
tems are:
• Greater electric power output and higher thermal system
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stability [15].
• Lower capital costs [16].
• Improving the system’s dispatchability and stable elec-

tricity generation [17].
• Decreasing annually biomass feedstock consumption, en-

hancing the entire system efficiency, and boosting maxi-
mum running hours [18].

• Reducing the size of biomass storage sites [16].

One of the paramount issues in power and energy studies
is the risk-handling arising from uncertainties. There is a
wide range of methods to handle uncertainties that possess
their pros and cons. By benefiting from the advantages of
stochastic and IGDT techniques together, the combination
of stochastic-IGDT is among the promising methodologies
[13]. Authors in [13] proposed a CVaR-IGDT approach using
weighted sum method, but their suggested methodology had
the following drawbacks: 1) The method could not directly
handle the original CVaR index, while it relied on optimizing
an extra variable, called mixed CVaR, which is not a risk
evaluation parameter; 2) The objective functions’ scaling was
not considered, lessening the applicability of the suggested
methodology to build efficient Pareto solutions; 3) The built
efficient Paretos were irregularly distanced solutions, hard-
ening the decision-making process for the administrators; 4)
The objective functions’ range was not optimized and was not
included in the developed methodology, resulting in unrealistic
solutions; 5) The solar field’s capacity was not incorporated
into the formulation of the CVaR-IGDT method; 6) The
authors did not work toward finding the optimal strategy; 7)
The performance of the method should be evaluated through
an out-of-sample assessment, while it was not covered in
[13]. The significant difference between the obtained values
for the after-the-fact analysis in [13] clearly illustrates the
room for improvement of the developed approach. Thus, the
third weakness appertains to the lack of a comprehensive and
precise CVaR-IGDT model in the literature.

To fill the research gaps outlined above, this study is
directed toward presenting a day-ahead and intraday dispatch
pattern for an Integrated Biomass-Concentrated Solar (IBCS)
system, while both systems are paired corresponding to the
practical operating model of such systems in real-world ap-
plications. The day-ahead and intraday dispatch problem is
affected by various uncertain data, including market prices and
solar-related uncertainty. In this vein, uncertainty originating
from market prices is handled through a two-stage stochastic
model, whereas the IGDT procedure characterizes the uncer-
tainty caused by solar energy. In order to accurately model
the risk exposure to both stochastic and IGDT parameters, a
comprehensive CVaR-IGDT model founded on lexicographic
and multi-objective optimizations is proposed. To facilitate
the decision-making process for the IBCS system in terms
of finding the best operating strategy, a posteriori procedure
relying on the out-of-sample assessment is accomplished.
Finally, a validation process relying on an out-of-sample test is
performed to analyze the efficiency of the hybrid CVaR-IGDT
method compared to deterministic and stochastic approaches.
The major contributions of this paper are summarized as

follows:
1) Proposing a day-ahead and intraday dispatch model for

an IBCS system considering the synergies associated
with the hybridization of biomass and concentrated solar
resources. For the first time in the literature, the prof-
itability of an IBCS system participating in electricity
markets is examined in this paper.

2) Feeding the model (contribution 1) by a new operating
model for large-scale biomass power resources following
their real-world operational structure.

3) Presenting a novel, comprehensive, and accurate CVaR-
IGDT model using lexicographic and ε-constraint proce-
dures along with executing a posteriori analysis to find
the optimal dispatch plan. Moreover, the effectiveness of
the proposed CVaR-IGDT model is validated through a
comparative study with existing models [13].

4) Implementing in-sample and out-of-sample assessments
to evaluate the efficiency of the proposed CVaR-IGDT
method compared to conventional deterministic and full
stochastic approaches.

The paper proceeds as following. Section II indicates the con-
sidered market framework and problem assumptions. Section
III presents the problem formulation of the IBCS system based
on stochastic programming. The procedure of incorporating
CVaR and IGDT into the stochastic formulation is discussed
in Section IV. Section V is dedicated to the suggested CVaR-
IGDT model. Section VI presents the simulation results, and
finally, conclusions are given in Section VII.

II. MARKET FRAMEWORK AND MODEL ASSUMPTIONS

In this paper, the market framework is in line with many
European electricity markets, which possess various trading
floors. Focusing on the Iberian electricity market [19], this
work is founded on the participation of the IBCS system in
the day-ahead and intraday markets as these markets concern
the majority of daily transactions of renewable resources. The
day-ahead and intraday markets are cleared at 10 a.m. and
11 p.m. of the day before energy delivery, respectively [19].
First, the IBCS system participates in the day-ahead market
without knowing the day-ahead market-clearing prices. After
revealing the day-ahead prices, the IBCS system takes part
in the intraday market prior to understanding the behavior
and outcomes of this market. Like extensive offering models
developed for the Iberian electricity market, the IBCS system
does not participate in the real-time market since it follows
a dual pricing mechanism where the energy can only be sold
at a price lower than the day-ahead market. To summarize,
the market framework for the IBCS unit follows a two-stage
sequential model [19].

The assumptions considered in this work are as follows:
1. The IBCS system is a price-taker agent taking part in day-
ahead and intraday markets. To avoid being a price-maker
agent in the intraday trading floor, the intraday dispatch power
is limited to a portion of its day-ahead power dispatch.
2. Like many biomass power plants running in Spain, forest
residues are the feedstock used to generate electricity. The
feedstock cost arises from the process of collecting and
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Fig. 1: Configuration of the proposed IBCS system.

transporting forest residues to the site. The feedstock cost
is assumed constant. Moreover, the daily available biomass
feedstock is limited [14].
3. To fully tackle the sequence of market decisions, a two-stage
stochastic paradigm is adopted for uncertainty characterization
of day-ahead and intraday prices. Moreover, using the CVaR
index, the IBCS system can exceedingly take risk-averse
actions against uncertainties originating from the markets.
Given that the market prices depend on various factors such as
market participants’ offering and bidding strategies, equipment
contingencies, renewable power generation of market players,
etc., taking risk-averse actions against market uncertainties is
a more established attitude compared to the risk-seeker one
[19]. Therefore, in this paper, only risk-averse actions are taken
when facing market uncertainty.
4. To cope with the solar-related uncertainty, the IGDT pro-
cedure is applied. The IGDT technique’s superiority lies in
the uncertainty handling of any parameter without perceiving
its historical behavior, meaning that the IGDT procedure can
be applied for any parameter for which there is a lack of
sufficient historical data. Therefore, this method would be
beneficial in circumstances wherein the decision-maker has
less or insufficient historical data of the uncertain parameter.
It is worth highlighting that enough historical data is required
to model the stochastic nature of an uncertain parameter.
However, there are other methods than IGDT that can be
applied when there is insufficient historical data, such as fuzzy,
robust, etc., whereas, among all other methods, the IGDT
can take both risk-averse and risk-seeker actions against the
uncertain parameter individually. In this regard, the IGDT
procedure gives the IBCS system the possibility to take both
risk-averse and risk-seeker actions for the uncertainty related
to solar energy. Since this uncertain source merely depends
on solar energy forecasting, taking both risk-averse and risk-
seeker actions is a well-founded practice [13], [20].

III. PROBLEM FORMULATION OF THE IBCS SYSTEM

Fig. 1 presents the configuration of the IBCS system. The
IBCS system comprises four main blocks: biomass boiler,
solar field, thermal storage, and power block. The thermal
energy produced by the biomass boiler and solar field can
be transferred to the power block or stored in the thermal
storage for later use. The transferred thermal energy to the
power block spins a steam turbine coupled with an electric
generator to produce electricity.

TABLE I: Classification of Decision Variables in the Proposed
Two-Stage Stochastic Programming.

First-stage Second-stage
Here-and-Now Special Here-and-Now Wait-and-See

rt, ubo
t , upb

t ξDA
t,s

ξI
t,s,m

b
t,s

zch
t , z

dis
t

γbo
t,s, γ

h,bo
t,s , γh,f

t,s

γk,bo
t,s , γk,f

t,s , γ
l
t,s

γTs
t,s, ξ

pb
t,s, γ

pb
t,s

ξk,bo
t,s , ξk,f

t,s , ξ
l
t,s

The formulation of the day-ahead and intraday dispatch
for the IBCS system using two-stage stochastic programming
is addressed in the following. The first- and second-stage
decisions of the IBCS system are listed in Table I. Note that all
binary variables fall into the here-and-now decisions, while the
power offered to the day-ahead trading floor is a special here-
and-now decision [21], [22]. All other remaining variables are
placed in wait-and-see decisions. The IBCS system aims to
earn maximum revenue through appropriate offering in day-
ahead and intraday trading floors, as manifested by objective
function (1):

Π = Maximize
ξDA
t,s ,ξ

I
t,s,m

b
t,s

E {F(y,Θs)} (1)

E {F(y,Θs)} =∑
t∈T

[
ES1

[
σDA
t,s ξ

DA
t,s︸ ︷︷ ︸

=1

+ES2|S1
[σI
t,sξ

I
t,s︸ ︷︷ ︸

=2

−mb
t,sC

b︸ ︷︷ ︸
=3

]
]]

(2)

where Π and F(y,Θs) are expected profit and profit func-
tion of the integrated system, respectively, and y and Θs are
the vectors of decision variables and stochastic parameters,
respectively. =1 in (2) represents the revenue of the IBCS
unit from the day-ahead trading floor (first-stage, i.e., S1). =2

represents the intraday revenue, while =3 refers to the biomass
feedstock cost injected into the biomass boiler. Both =2 and
=3 are related to the second-stage, i.e., S2. The operational
constraints of the IBCS system are given below.

γbo
t,s = ηboCabmb

t,s ∀t, s (3)

Γboubo
t ≤ γbo

t,s ≤ Γboubo
t ∀t, s, ∀ubo

t ∈ {0, 1} (4)

0 ≤
∑
t∈T

mb
t,s ≤Mb ∀s (5)

ξpb
t,s = ξk,bo

t,s + ξk,f
t,s + ξl

t,s ∀t, s (6)

ξpb
t,s = ξDA

t,s + ξI
t,s ∀t, s (7)

0 ≤ ξpb
t,s ≤ Ξpb ∀t, s (8)

ξk,bo
t,s = ηpbγk,bo

t,s , ξk,f
t,s = ηpbγk,f

t,s , ξ
l
t,s = ηpbγl

t,s ∀t, s (9)

γbo
t,s = γk,bo

t,s + γh,bo
t,s ∀t, s (10)

γk,f
t,s + γh,f

t,s ≤ Ḡf
t ∀t, s (11)

γpb
t,s =

ξpb
t,s

ηPB
+ γSUrt ∀t, s, ∀rt ∈ {0, 1} (12)
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Γpbupb
t ≤ γ

pb
t,s ≤ Γpbupb

t ∀t, s, ∀upb
t ∈ {0, 1} (13)

rt = upb
t − u

pb
t−1 ∀t, ∀(rt, ubo

t ) ∈ {0, 1} (14)

γTs
t,s = (1− ρ)γTs

t−1,s + ηch
(
γh,bo
t,s + γh,f

t,s

)
−
γl
t,s

ηdis
∀t, s

(15)

γTs
t,s = γTs

0 ∀t = 24, s (16)

ΓTs ≤ γTs
t,s ≤ ΓTs ∀t, s (17)

γh,bo
t,s ≤ ζchzch

t , γ
h,f
t,s ≤ ζchzch

t ∀t, s, ∀zch
t ∈ {0, 1} (18)

γl
t,s ≤ ζdiszdis

t ∀t, s, ∀zdis
t ∈ {0, 1} (19)

zch
t + zdis

t ≤ 1 ∀t, ∀(zch
t , z

dis
t ) ∈ {0, 1} (20)

upb
t ≤ zdis

t ∀t, ∀(upb
t , z

dis
t ) ∈ {0, 1} (21)

t−1∑
δ=t−ton,X

uX
δ ≥ ton,X

(
uX
t−1 − uX

t

)
∀t,X = [pb,bo] (22)

t−1∑
δ=t−toff,X

(1− uX
δ ) ≥ toff,X

(
uX
t − uX

t−1

)
∀t,X = [pb,bo]

(23)

ξpb
t−1,s ≤ ξ

pb
t,s + ∆down ∀t, s (24)

ξpb
t,s ≤ ξ

pb
t−1,s + ∆up ∀t, s (25)

0 ≤ ξI
t,s ≤ ΥξD

t,s ∀t, s (26)

ξDA
t,s ≥ ξDA

t,s′ if σDA
t,s ≥ σDA

t,s′ ∀t, s, s′ (27)

ξDA
t,s = ξDA

t,s′ if σDA
t,s = σDA

t,s′ ∀t, s, s′ (28)

ξI
t,s = ξI

t,s′ if σDA
t,s = σDA

t,s′ ∀t, s, s′ (29)

Equation (3) simulates the thermal energy produced by the
biomass boiler, while constraint (4) restricts it within ac-
ceptable boundaries. Inter-temporal constraint (5) imposes
the limit of the injected feedstock to the biomass boiler
during the scheduling horizon. Equations (6) and (7) denote
the electric power generated by the power block, whereas
constraint (8) restricts it within tolerable bounds. Equation
(9) defines the electric power generated via thermal energy
transfer from the biomass boiler, solar field, or thermal storage.
The thermal energy from the biomass boiler and solar field
can be transferred to the power block or thermal storage, as
expressed in (10) and (11). Equation (12) represents the power
block’s input thermal energy, and constraint (13) restricts this
variable within acceptable boundaries. Equation (14) defines
the start-up state of the power block. The energy level of the
thermal storage at each hour is calculated via (15). Moreover,
constraint (16) enforces that the energy level at the final hour
of the scheduling horizon must be equal to its initial energy.
The energy level calculated in (15) must be kept within the
tolerable bounds, as stated in (17). Maximum charging and
discharging rates of the thermal storage are imposed through
(18) and (19). Concurrent charging and discharging of the
thermal storage is prevented by (20). Constraint (21) states
that thermal storage can be discharged if and only if the power

block is running. Minimum up- and down-times limits for
the biomass boiler and power block are enforced in (22) and
(23). The power block’s ramp-down and ramp-up constraints
are imposed by (24) and (25). Constraint (26) restricts the
intraday dispatch power to a portion of the day-ahead power
dispatch. The day-ahead power dispatch must be ascending,
as denoted in (27). Nonanticipativity restriction of day-ahead
and intraday dispatch powers is enforced by (28) and (29). In
preceding operational constraints, constraints (14), (20)-(23),
(27), and (29) are first-stage constraints, whereas the remaining
constraints act as linking constraints, encompassing both first-
stage and second-stage variables. It is essential to remark
that in the above model, the correlation between day-ahead
and intraday price scenarios is captured by defining a new
parameter κt,s serving as the difference between intraday and
day-ahead prices (see Appendix A). Therefore, the parameter
σI
t,s should be replaced by κt,s + σD

t,s to account for the
correlation between day-ahead and intraday price scenarios
[19].

IV. INCORPORATING RISK EVALUATION INDICES

In this section, the inclusion of CVaR and IGDT man-
agement risk indices in the stochastic formulation given in
the preceding section is discussed. First, the incorporation
of the risk evaluation index for uncertain stochastic inputs
(σDA
t,s , σI

t,s), i.e., CVaR, is presented in subsection IV-A.
Subsequently, the consolidation of the IGDT technique for
uncertain thermal power of solar field (G̃f

t) is discussed in
subsection IV-B.

A. Incorporating CVaR Risk Evaluation Index

To incorporate the CVaR criterion into the stochastic for-
mulation provided in Section III, the objective function (30)
subject to constraints (31)-(33) must be optimized [19]. It is
worth mentioning that Λ in (30) is a non-negative number
reflecting the risk-averse degree of the decision-maker, and
the resulting formulation remains mixed-integer linear.

Maximize
ξDA
t,s ,ξ

I
t,s,m

b
t,s,Ψ,Qs

E {F(y,Θs)}+ (Λ× CVaRκ) (30)

CVaRκ = Ψ− 1

1− κ
∑
s∈S

πsQs (31)

Ψ−
∑
t∈T

σDA
t,s ξ

DA
t,s + σI

t,sξ
I
t,s −mb

t,sC
b ≤ Qs ∀s (32)

Constraints (2)− (29), Qs ≥ 0 ∀s (33)

B. Incorporating IGDT Risk Evaluation Index

Accounting for the uncertainty of the thermal power output
from the solar field, the IGDT approach is employed here.
Under such an approach, the IBCS system can take both risk-
averse and risk-seeker actions against solar-related uncertainty,
both leading to different formulations as explained hereunder.
Using the envelope-bound IGDT pattern [20], the uncertainty
set of thermal power output from the solar field R(α, Ḡf

t) is
mathematically expressed as:
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R(α, Ḡf
t) = {G̃f

t : |G̃f
t − Ḡf

t| ≤ αḠf
t} α ≥ 0,∀t (34)

where α is the uncertainty radius (or horizon), and Ḡf
t and G̃f

t

are the forecasted and uncertain thermal power output from
the solar field, respectively. In line with this approach, the
risk-averse and risk-seeker day-ahead and intraday dispatch
models facing the solar-related uncertainty are developed in
the following.

1) Risk-Averse IGDT model

The risk-averse IGDT pattern for day-ahead and intraday
dispatch of the IBCS system facing solar-related uncertainty
is formed as the following bi-level programming problem.

Maximize
[ξDA

t,s ,ξ
I
t,s,m

b
t,s]∪G̃f

t

{αscheme1} (35)

s.t.
[

Minimize
G̃f

t∈R(α,Ḡf
t)
E {F(y,Θs)}

]
≥
(
1− βscheme1

)
Π0 (36)

γk,f
t,s + γh,f

t,s ≤ G̃f
t ∀t, s (37)

Constraints (2)− (10), (12)− (29) (38)

where (35) and (36) are the objective functions of the upper
and lower levels, respectively. The aim of the upper level is to
maximize the uncertainty radius αscheme1 in such a way that
the objective of the lower level is met. Since the lower level
problem is a linear programming problem, the minimum value
of the lower level problem is acquired when G̃f

t takes its lower
bound. It has to be noted that Π0 stands for the expected profit
of the integrated system corresponding to the optimized value
obtained by the optimization problem (1)-(29). In this regard,
the single-level counterpart for the risk-averse IBCS system is
established as follows:

Maximize
[ξDA

t,s ,ξ
I
t,s,m

b
t,s]∪G̃f

t

{αscheme1} (39)

s.t. E {F(y,Θs)} ≥
(
1− βscheme1

)
Π0

(40)

γk,f
t,s + γh,f

t,s ≤
(
1− αscheme1

)
Ḡf
t ∀t, s (41)

Constraints (2)− (10), (12)− (29) (42)

C. Risk-Seeker IGDT model
The risk-seeker IGDT paradigm for day-ahead and intraday

dispatch of the IBCS system encountering the uncertainty
of the thermal power from the solar field is formed as the
following bi-level programming problem.

Minimize
[ξDA

t,s ,ξ
I
t,s,m

b
t,s]∪G̃f

t

{αscheme2} (43)

s.t.
[

Maximize
G̃f

t∈R(α,Ḡf
t)
E {F(y,Θs)}

]
≥
(
1 + βscheme2

)
Π0 (44)

γk,f
t,s + γh,f

t,s ≤ G̃f
t ∀t, s (45)

Constraints (2)− (10), (12)− (29) (46)

where (43) and (44) are the objective functions of the upper
and lower levels, respectively. The purpose of the upper level
is to minimize the uncertainty radius αscheme2 in a manner that
the objective of the lower level is fulfilled. As the lower level
problem is a linear optimization problem, the maximum value
of the lower level problem is achieved if G̃f

t takes its upper
bound. In this vein, the single-level counterpart for the risk-
seeker IBCS system is mathematically formulated as follows:

Minimize
[ξDA

t,s ,ξ
I
t,s,m

b
t,s]∪G̃f

t

{αscheme2} (47)

s.t. E {F(y,Θs)} ≥
(
1 + βscheme2

)
Π0

(48)

γk,f
t,s + γh,f

t,s ≤
(
1 + αscheme2

)
Ḡf
t ∀t, s (49)(

1 + αscheme2
)
Ḡf
t ≤ GG ∀t (50)

Constraints (2)− (10), (12)− (29) (51)

When seeking opportunistic circumstances for the thermal
power output of the solar field, constraint (50) must be
included in the methodology to limit this parameter within the
maximum available capacity. This constraint was neglected in
[13].

V. PROPOSED MULTI-OBJECTIVE CVAR-IGDT
ALGORITHM

This section is dedicated to the procedure of managing
CVaR and IGDT risk criteria simultaneously and deriving the
optimal scheduling strategy among several generated strate-
gies. By setting up the proposed hybrid risk management
model, the IBCS system could adopt the following risk-
controlling-schemes:

• Risk-Controlling Scheme 1: The decision-maker takes
risk-averse actions against both stochastic and IGDT
inputs.

• Risk-Controlling Scheme 2: The decision-maker takes
risk-averse actions against stochastic inputs while seeking
opportunistic situations concerning the IGDT parameter.

It should be noted that there is no specific relation between
IGDT and CVaR risk criteria, especially in the mathematical
modeling of each risk criterion. The algorithm of adopting
day-ahead and intraday dispatch strategies based upon risk-
controlling scheme 1 is summarized in Algorithm 1. To
avoid repetition, the algorithm for risk-controlling scheme 2 is
provided in Appendix B. Note that the proposed CVaR-IGDT
model is generic and can be applied to other scheduling prob-
lems with different sources of uncertainty (jointly involving
market-related and weather-related parameters).

Aside from extracting diverse risk-controlling strategies
using the proposed CVaR-IGDT procedure, it is of great
importance to derive the final optimal strategy for the IBCS
system. To this end, a posteriori approach [20] based on
the out-of-sample assessment [23] is conducted in this pa-
per. The algorithm of a posteriori approach is delineated in
Algorithm 2.
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Algorithm 1 Algorithm for Risk-Controlling Scheme 1.

1: Generate a large enough number of scenarios for day-
ahead and intraday prices using normal distribution func-
tion and reduce them to the intended number. The set
of reduced scenarios employed for the main optimization
process are called in-sample scenarios [23].

2: Optimize objective function (1) subject to constraints (2)-
(29) using in-sample scenarios to get the value of Π0.

3: Set the values of confidence level κ and expected profit
deviation factor βscheme1 .

4: Specify the objective functions involved in the optimiza-
tion process. For risk-controlling scheme 1, the objectives
are the maximization of αscheme1 and CVaRκ denoted by
(39) and (31), respectively.

5: Acquire the range of objective function αscheme1 leverag-
ing the lexicographic principle [24], [25]. To do so, three
following optimization problems must be solved.

Ω1 = Maximize
Ψ,Qs

{CVaRκ}

s.t. (31), (32), (40)− (42), Qs ≥ 0 ∀s (52)

Ω2 = Maximize
[ξDA

t,s ,ξ
I
t,s,m

b
t,s]∪G̃f

t

{αscheme1} s.t. (40)− (42)

(53)

Ω3 = Maximize
ξDA
t,s ,ξ

I
t,s,m

b
t,s

{αscheme1 |CVaRκ = Ω1}

s.t. (31), (32), (40)− (42), Qs ≥ 0 ∀s (54)

Then, the range of αscheme1 is equal to Ω3 − Ω2.
6: Generate different optimal Pareto strategies for objectives

specified in step 4 leveraging ε-constraint method. This
is accomplished by means of optimizing the following
problem.

Maximize
ξDA
t,s ,ξ

I
t,s,m

b
t,s,Ψ,Qs,ϑ

CVaRκ −
ϑ

Ω3 − Ω2

s.t. αscheme1 − ϑ = Nε

Nε = Ω2 +

(
Ω3 − Ω2

p

)
× ε, ε = 0, 1, ..., p

(31), (32), (40)− (42), Qs ≥ 0 ∀s, ϑ ≥ 0
(55)

In (55), ϑ refers to an extra variable. By selecting the
desired value for p, p+1 Pareto strategies will be obtained.

VI. RESULTS

In this paper, a 100-MW IBCS system created by in-
tegrating 50-MW biomass and concentrated solar units is
considered to assess the benefits of the proposed structure.
The parameters of the intended IBCS system, along with
the set of data used for the scenario generation of stochastic
parameters (σDA

t,s , σ
I
t,s), are presented in Appendices A and C.

To generate large enough scenarios for stochastic inputs, the
normal distribution function is used. To relieve computational
burden, the forward reduction mechanism is exploited to
decrease the set of scenarios produced for each stochastic
input to twenty samples, known as in-sample scenarios. The
mathematical programming model has been coded in GAMS
and solved using CPLEX as the solver. All simulations are

Algorithm 2 Algorithm for a posteriori approach.

1: Generate an adequate number of scenarios for both
stochastic and IGDT inputs. These scenarios are named
out-of-sample scenarios. It is worth emphasizing that the
set of generated scenarios is totally different from the
in-sample scenarios utilized for the main optimization
process.

2: For each Pareto strategy obtained from risk-controlling
schemes, extract the first-stage decision variables.

3: Optimize the deterministic model of the second-stage
problem (1)-(29) for each out-of-sample scenario by fixing
the first-stage variables to the extracted values in the
previous step.

4: Reiterate step 3 for all out-of-sample scenarios and calcu-
late the expected profit of the IBCS system.

5: Reiterate steps 2 to 4 for all Pareto strategies and report
the expected profit values obtained from step 4.

6: Select the Pareto strategy with the highest value of ex-
pected profit reported in the previous step as the optimal
dispatch plan.

conducted on a Laptop with an Intel Core i5 processor and
8GB DDR3 memory. Note that the model is mixed-integer
linear programming, and the value of κ is set to 0.95 in all
analyses and studies [12], [19].

To assess various aspects of this work, three different
studies are carried out in subsections VI-A to VI-C. Subsection
VI-A investigates the profitability of the suggested integrated
dispatch framework compared to the individual one. Sub-
section VI-B analyzes the effectiveness of the proposed risk
management architecture in offering various optimal dispatch
strategies. Subsection VI-C explores the performance of the
proposed CVaR-IGDT model versus conventional approaches.

A. Profitability Analysis of the Integrated Dispatch Model

This analysis aims to investigate the economic prosperity
of integrating biomass and concentrated solar units versus
individually dispatching them. In this analysis, the solar field’s
thermal power is considered deterministic, while stochastic
inputs are present in the model. The configuration of the IBCS
system is given in Fig. 1, while the configuration of individual
biomass and concentrated solar units is shown in Fig. 2. The
parameters of the IBCS system are provided in Appendix
A. For individual biomass and concentrated solar units, the
technical characteristics of the biomass boiler, solar field,
and thermal energy storage are the same as the ones of the
IBCS system. The parameters of the power block in individual
generating units (Fig. 2) has the following differences with the
IBCS system (Fig. 1):

• The electric power capacity of power blocks in individual
biomass and concentrated solar units is 50-MW. Note that
this parameter is equal to 100-MW for the IBCS system.
Therefore, minimum and maximum thermal power limits
of power blocks in individual generating units (Γpb,Γpb)
is 50-MW and 125-MW, respectively.

• The ramp-down and ramp-up limits of power blocks are
typically equal to 40% of their electric power capacity
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Fig. 2: Configuration of individual biomass and concentrated
solar units.

TABLE II: Added-value of the integrated dispatch model in
terms of profit and CVaR for each Pareto strategy [C].

P1 P2 P3 P4 P5
Profit 1,875.945 1,875.695 1,946.934 1946.141 1,945.338
CVaR 2,682.902 2,641.743 2,600.584 2559.426 2,518.267

P6 P7 P8 P9 P10
Profit 1,944.366 1,938.353 1,909.993 1,901.691 1,945.386
CVaR 2,477.109 2,435.949 2,394.791 2,353.632 2,312.474

[9]. Thus, ∆down and ∆up for individual biomass and
concentrated solar units are set to 20 MW/hr.

For the sake of a fair analysis and comparison, other
parameters of power blocks in the individual dispatch model
(toff,pb, ton,pb, γSU, and ηpb) are considered similar to the
IBCS system.

We provide a profit-CVaR study in this subsection to not
only examine the profitability of the integrated dispatch model
but also to assess the effect of this integration on the present
risk index, namely, CVaR. Hence, this analysis concerns a
multi-objective optimization model in which equations (1)
and (31) are the objective functions, while the optimization
constraints include constraints (2)-(29) and (32)-(33). This
multi-objective optimization is solved using lexicographic plus
ε-constraint, similar to the procedure described in Algorithm 1.
We set the input parameters of the multi-objective optimization
model such that ten Pareto strategies are derived for good
enough resolution. Fig. 3 shows the comparison results of the
integrated and individual dispatch models. In this figure, P1,
P2, . . . , P10 refer to the Pareto strategies obtained from the
multi-objective optimization discussed earlier. From Fig. 3, we
observe that the proposed integrated dispatch framework offers
greater profit and CVaR versus the individual dispatch model.
A cautionary note is that a larger CVaR implies lower risk
exposure. The added-value of the integrated dispatch model in
terms of profit and CVaR for different Pareto strategies denoted
in Fig. 3 is reported in Table II. As Table II shows, the added-
value of profit for the IBCS system is remarkable. It can be
seen that the added value of profit would be at least C1875
daily, considering all Pareto strategies. Also, it is observed
that the integrated dispatch model can significantly assist in
reaching lower-level risk strategies.

To further demonstrate the difference between individual
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Fig. 3: Profit versus CVaR in integrated and individual dispatch
models.

2 4 6 8 10 12 14 16 18 20 22 24
-3000

-1500

0

1500

3000

4500

Time [h]
Pr
of
it

[€
]

Integrated Dispatch Individual Dispatch

Fig. 4: Hourly profit of individual and integrated dispatch
models in Pareto strategy P1.

and integrated dispatch strategies, Figs. 4, 5, and 6 are
provided. The presented results pertain to Pareto strategy P1
with the greatest profit among all other Pareto strategies, as
specified in Fig. 3 and Table II. Fig. 4 compares the hourly
profit of integrated and individual dispatches. This figure
clearly shows how integration leads to higher profits of the
IBCS system. Contrary to the individual dispatch which aims
to gain more profit in the evening, the IBCS system allows
attaining higher profit from late morning to late afternoon.
The reason comes from the fact the integrated dispatch charges
the thermal energy storage during hours 4-6 (negative profit
in Fig. 4) for later use in the mentioned period (late morning
to late afternoon). It is worth noting that negative profit in
Fig. 4 arises from producing thermal energy by the biomass
boiler and transferring it to the thermal energy storage. It can
be seen that negative profit is not observed in the individual
dispatch, meaning that such an approach is not cost-effective
for individually dispatching biomass and concentrated solar
units.

To better illustrate the differences between integrated and
individual systems, the optimal dispatch of these systems at
two representative hours (10 and 22) is depicted in Figs. 5 and
6. As Fig. 5 shows, at hour 10 of the individual dispatch, 26.7-
ton biomass is burned at the biomass boiler to directly generate
38.9 MW power, while the whole solar energy is stored at the
thermal energy storage for later use in the evening. At the
same hour, a lower mass of biomass (25.4-ton) is burned at
the biomass boiler to directly transfer 56.2 MW thermal energy
to the power block in the integrated dispatch. In contrast to the
individual model, in the integrated dispatch, the whole solar
energy in the integrated dispatch and 0.7 MW thermal energy
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Fig. 5: Optimal dispatch of individual and integrated dispatch
models in Pareto strategy P1 at hour 10.

from the thermal energy storage are transferred to the power
block, resulting in a 54.7 MW power output. This shows that
the integrated dispatch results in greater output power (profit)
than the individual one at hour 10, as shown in Fig. 4. Note
that the integrated dispatch does not need the solar energy to
charge the thermal energy storage for later use, as done in the
individual model, since all required energy for the charging
process is provided by the biomass boiler during hours 4-6
(as discussed earlier).

The reason behind the greater profit of the individual
dispatch at hour 22 can be explicitly seen in Fig. 6. The
greater output electric power of the individual dispatch at this
hour arises from the higher rate of discharging power from
the thermal energy storage. This leads to the conclusion that
in the individual dispatch, the stored energy in the thermal
energy storage is exploited in the evening. In contrast, in the
integrated model, the stored energy is exploited over a longer
period, which leads to an overall higher profit of the integrated
dispatch.

B. Analysis of the proposed CVaR-IGDT model
In this part of the study, we focus on the functioning of the

proposed risk-controlling schemes described in Algorithm 1
and Algorithm 3. The values of βscheme1 and βscheme2 in
these algorithms are set to 0.09, meaning that the value
of expected profit for different Pareto strategies in risk-
controlling scheme 1/2 must be less/ greater than or equal
to the value of (1−βscheme1)Π0/(1 +βscheme2)Π0. Further, p
in both algorithms is set to nine to achieve ten different Pareto
Strategies. First, the performance of the proposed CVaR-IGDT
model with the one suggested in [13] is compared and then
various aspects of the proposed model are examined. For an
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Fig. 6: Optimal dispatch of individual and integrated dispatch
models in Pareto strategy P1 at hour 22.

efficient comparison, the input parameters of model [13] are
chosen in a similar fashion to that of [13] to obtain ten different
Pareto strategies. The comparison between the obtained Pareto
strategies in this paper and the one suggested in [13] for
both risk-controlling schemes is given in Fig. 7. Note that
in all simulations, the value of βscheme1 and βscheme2 is set
to 0.09. From Fig. 7, it can be seen that: (1) the proposed
model can build Pareto strategies that are regularly distanced
solutions, in contrast with Ref. [13]; (2) the proposed model
covers a wider range of values for all three variables presented
in Fig. 7, while Ref. [13] can only cover a limited area of
values as a result of not directly handling the original CVaR
index. Besides, as shown in Table III, the quality of Pareto
strategies obtained by the proposed model is higher than the
one of Ref. [13]. It should be noted that the results reported
in Table III pertain to Pareto strategies with an equal value
of profit. It is shown that in both risk-controlling schemes,
the proposed model holds a higher CVaR value compared
to Ref. [13], implying a lower risk exposure. Moreover, for
risk-controlling scheme 1, the proposed model attains a lower
uncertainty radius in comparison to Ref. [13], meaning that it
reaches a specific profit in a lower uncertainty radius of the
IGDT parameter.

Here, we specifically analyze the performance of the pro-
posed CVaR-IGDT model. By executing Algorithms 1 and
3, the set of Pareto strategies for risk-controlling schemes 1
and 2 are obtained, as shown in Fig. 8. Note that the set
of Pareto strategies in Fig. 8 are the same as the Pareto
strategies depicted in Fig. 7. As Fig. 8 shows in greater detail,
the proposed CVaR-IGDT model is proficient in generating
regularly distanced strategies. The trend of Pareto strategies
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Fig. 7: Comparison between the obtained Pareto strategies in
the proposed model and the model of Ref. [13].

TABLE III: Comparison between Pareto strategies with an
equal value of profit in the proposed model and the model
of Ref. [13].

Model

Risk-Controlling Risk-Controlling
Scheme 1 Scheme 2

Profit= C27555.434 Profit= C33005.960

αscheme1 CVaR [C] αscheme2 CVaR [C]

Ref. [13] 0.179 25243.414 0.181 30404.939

Proposed Method 0.176 25649.315 0.181 30726.660

in risk-controlling scheme 1 shows a continuous reduction for
CVaR by increasing the value of uncertainty radius (αscheme1 ).
The tendency of Pareto strategies in risk-controlling scheme
2 reveals the increment of CVaR following the increase of
uncertainty radius (αscheme2 ). In risk-controlling scheme 1, by
increasing the value of uncertainty radius (αscheme1 ) from 0
to 0.059, the profit follows a downward trend. Also, in risk-
controlling scheme 2, by increasing the value of uncertainty
radius (αscheme2 ) from 0.258 to 0.875, the profit follows an
upward trend. Moreover, by altering the uncertainty radiuses
for some Pareto strategies in both risk-controlling schemes,
the profit remains fixed. For those Pareto strategies with fixed
profit, it can be seen that a constant profit can be maintained
while the level of risk exposure is different.

As stated earlier, the decision-maker sets the parameter p
to nine to achieve ten different Pareto strategies. Nevertheless,
decision-makers may prefer to make decisions with respect to
a larger/smaller number of Pareto strategies. It is undeniable
that the larger (smaller) the number of Pareto strategies, the
more (less) the computational cost. Accordingly, the value of
parameter p should be set based on a trade-off between the
number of Pareto strategies and computational cost. Fig. 9
displays the Pareto front obtained for the multi-objective risk-
controlling scheme 1, aiming to achieve five, ten, fifteen, and
twenty Pareto strategies. This figure shows that the larger the
number of Pareto Strategies, the greater the coverage of the
Pareto front. However, the computation time to obtain five,
ten, fifteen, and twenty Pareto strategies is 239, 290, 410,
and 535 seconds, revealing the rise in computational cost by
increasing the number of Pareto strategies. All in all, it is up
to the decision maker’s preferences to select the number of
Pareto strategies based on the desired computational cost.
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Fig. 8: Various Pareto strategies obtained through risk-
controlling schemes 1 and 2.
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Fig. 9: Pareto front in risk-controlling scheme 1 under different
number of Pareto strategies.

To find the optimal dispatch plan, we run Algorithm 2 for
the set of Pareto strategies obtained from Algorithms 1 and
3. It is essential to note that 1,000 out-of-sample scenarios
are applied for a posteriori algorithm. To generate the out-of-
sample scenarios for stochastic inputs, the parameters given in
Appendix A are used. It has to be noticed that the set of gen-
erated scenarios for out-of-sample scenarios is quite distinct
from the one used for in-sample scenarios. For the IGDT input,
the standard deviation is assumed to be 10% of the forecasted
value. By running Algorithm 2, the optimal dispatch plans for
each risk-controlling scheme are attained, as denoted in Fig. 8.
The profit, CVaR, and uncertainty radius of optimal dispatch
plans are presented in Fig. 10. Since risk-controlling scheme
2 is seeking opportunistic situations in terms of solar-related
uncertainty, the optimal profit in this scheme is higher than
risk-controlling scheme 1. Accordingly, a greater profit yields
a higher CVaR in risk-controlling scheme 2. Another point of
attention is that the entire procedure of obtaining all Pareto
strategies and running a posteriori algorithm took 292 and
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Fig. 11: Optimal results in risk-controlling schemes 1 and 2.

204 seconds for risk-controlling schemes 1 and 2, respectively.
Consequently, under 30 seconds of computation time for each
Pareto strategy exhibits the satisfactory computational cost of
the proposed methodology.

Fig. 11 displays the optimal day-ahead and intraday dispatch
powers, along with the optimal pattern of energy level in
the thermal storage, for both risk-controlling schemes. From
Fig. 11, we observe that the day-ahead dispatch power in
the second scheme is higher than the first scheme during
hours 7-13, while the opposite is true for almost all remaining
periods of the scheduling horizon. Also, a higher intraday
dispatch power in the second scheme compared to the first
scheme can be observed for almost all periods during which
the IBCS system participates in the intraday trading floor.
According to Fig. 11, the energy level of thermal storage in the
second scheme is lower than in the first scheme. The reason
is that when the IBCS system takes a risk-seeker attitude
against solar-related uncertainty (risk-controlling scheme 2),
more energy from the thermal storage is discharged to the

TABLE IV: Definition of In-Sample and Out-of-Sample As-
sessments.

Model In-sample assessment Out-of-sample assessment

CVaR-IGDT

Solve the proposed

Extract the first-stage

CVaR-IGDT algorithm using

decision variables

a reduced scenario set

(see Table I) from the

named in-sample scenarios,

in-sample assessment. Then,

as denoted in the first step

solve the deterministic

of Algorithm 1 or 3.

model of the second-stage
Deterministic

Solve the deterministic

problem (1)-(29) for each

model of (1)-(29)

out-of-sample scenario by

by replacing the uncertain

fixing the first-stage decision

parameters with their

variables to the extracted

mean values.

values from the in-sample
Full stochastic

Solve two-stage stochastic

assessment.

model (1)-(29) using
in-sample scenarios and
by replacing the IGDT

parameter with a
reduced scenario set.

power block to boost the whole system’s revenue. The higher
discharge power from thermal storage is due to overestimating
the output thermal power of the solar field in opportunistic
circumstances.

C. Performance of the proposed CVaR-IGDT model
The performance of the proposed CVaR-IGDT risk-

controlling method against conventional approaches, namely,
deterministic and full stochastic methods, is evaluated in
this subsection. To this end, in-sample and out-of-sample
assessments according to Table IV are carried out [23]. It
has to be noted that we use the mean values of uncertain
inputs for the deterministic approach. In contrast, for the full
stochastic approach, we rely on twenty scenarios resulting
from a scenario generation and reduction process (similar to
step 1 in Algorithm 1) to characterize solar-related uncertainty,
whereas the day-ahead and intraday scenarios are the same
samples used in the proposed CVaR-IGDT model. For the
out-of-sample assessment, 1000 samples are employed. It is
worth noting that for both risk-controlling schemes under
the CVaR-IGDT model, we consider all values βscheme1,2 =
0.01, 0.02, 0.03, . . . , 0.15. The results of in-sample and out-
of-sample assessments for different approaches are reported
in Fig. 12. The results show that the proposed CVaR-IGDT
model in both in-sample and out-of-sample assessments leads
to a higher expected profit, manifesting the superior perfor-
mance of this model versus deterministic and full stochastic
approaches. Although the profit increment in the in-sample
analysis is more significant, the profit increase in the out-of-
sample assessment is also considerable. Based on the results, it
can be estimated that by leveraging the proposed CVaR-IGDT
model, a substantial annual added-value in the expected profit
of the IBCS system will be obtained.

VII. CONCLUSION

This paper presented a day-ahead and intraday dispatch
model for an IBCS system. The objective was to present a
suitable coupling scheme for large-scale biomass and con-
centrated solar power systems and explore the profitability of
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Fig. 12: In-sample and out-of-sample assessments for different
approaches.

such integrated model. To develop the day-ahead and intraday
dispatch problem under uncertainty, a comprehensive and
correct CVaR-IGDT model was proposed, letting the decision-
makers to follow risk-seeker and risk-averse attitudes against
the present uncertainties. The numerical results showed that:
1) The integrated dispatch of biomass and concentrated solar
units brings substantial profitability compared to the individual
dispatch of units; 2) The proposed CVaR-IGDT model serves
as a comprehensive risk management model, allowing the
decision-maker to pursue risk-averse actions against stochastic
inputs while seeking either risk-seeker or risk-averse actions
toward the IGDT input; 3) Despite the higher computation time
of the proposed CVaR-IGDT model compared to conventional
approaches, it is still a competitive and satisfactory model due
to its better performance in the out-of-sample assessment; 4)
As the out-of-sample test revealed, the proposed CVaR-IGDT
model performs better than deterministic and full stochastic
approaches.

As a future research direction, thermodynamic characteris-
tics of the IBCS system will be modeled, and the resulting
consequence on trading strategies will be explored.

APPENDIX A

The parameters of the day-ahead and intraday prices for
the scenario generation process using normal distribution are
presented in Table 6 and Table 7. As stated in section VI, the
difference between day-ahead and intraday prices is leveraged
to capture the correlation between stochastic inputs. This
difference is indicated by defining a new parameter κt =
σI
t − σDA

t . The mean values reported in Table 6 and Table 7
are referred to the Iberian electricity market on November
18, 2019, while standard deviations were obtained through the
whole year analysis.

APPENDIX B

The algorithm of risk-controlling scheme 2 is mapped out
in Algorithm 3.

APPENDIX C

The characteristics of the IBCS system is reported in
Table 4. The hourly forecasted thermal power of the solar
field is illustrated in Table VIII.

TABLE V: Mean and Standard Deviation (STD) of Day-Ahead
Price [C/MWh].

t Mean σDA
t STD σDA

t t Mean σDA
t STD σDA

t

1 40.74 11.16 13 50.77 9.75

2 39.69 11.28 14 50.00 9.86

3 36.89 11.52 15 50.45 10.10

4 35.68 11.52 16 52.23 10.01

5 39.11 11.38 17 54.54 10.06

6 46.05 11.06 18 60.52 9.83

7 51.73 11.04 19 63.05 9.54

8 51.05 10.70 20 62.55 8.92

9 52.19 9.97 21 59.15 8.73

10 51.49 9.84 22 54.54 9.03

11 50.45 9.76 23 53.79 9.65

12 50.47 9.72 24 43.28 11.00

TABLE VI: Mean and Standard Deviation (STD) of the
Difference between Intraday and Day-Ahead Price [C/MWh].

t Mean κ∗t STD κt t Mean κt STD κt
1 1.37 3.88 13 0.21 2.13

2 1.2 3.82 14 0.67 2.40

3 2.68 3.91 15 0.53 2.40

4 -1.61 3.32 16 0.40 2.34

5 1.00 3.10 17 1.00 2.38

6 -4.86 2.86 18 3.74 2.29

7 -0.51 2.52 19 1.21 2.12

8 1.51 2.28 20 0.43 2.16

9 0.47 2.31 21 -3.01 2.10

10 0.81 2.36 22 -0.50 2.20

11 0.22 2.26 23 -4.00 2.18

12 0.51 2.10 24 -0.77 5.09
∗κt = σI

t − σDA
t .

TABLE VIII: Forecasted Thermal Power of Solar Field [MW].

t Ḡf
t t Ḡf

t t Ḡf
t t Ḡf

t

1 0.00 7 0.00 13 70.00 19 20.00

2 0.00 8 20.00 14 80.00 20 0.00

3 0.00 9 40.00 15 80.00 21 0.00

4 0.00 10 80.00 16 80.00 22 0.00

5 0.00 11 80.00 17 80.00 23 0.00

6 0.00 12 50.00 18 50.00 24 0.00
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