
 TR/03/92 April 1992

TOOLS FOR REFORMULATING
LOGICAL FORMS INTO

ZERO-ONE MIXED INTEGER
PROGRAMS (MIPS)

by

C. Lucas, G. Mitra and S. Moody

CONTENTS

0. ABSTRACT

1. INTRODUCTION

2. REFORMULATION OF PROPOSITIONAL LOGIC

STATEMENTS INTO 0-1 DISCRETE
PROGRAMMING PROBLEMS

2.1 Background

2.2 Logical Forms Represented by 0-1 Variables

2.3 Bound Analysis and Logically Relating the Constraints

2.4 Polish Representation

2.5 The Algorithm

3. OUTLINE OF A PROTOTYPE SYSTEM

3.1 An Illustrative Example

3.2 An Extension of the Modelling Language Syntax

3.3 Realization within a Modelling System

4. CONCLUDING REMARKS

5. REFERENCES

ABSTRACT

A systematic procedure for transforming a set of logical statements or logical
conditions imposed on a model into an Integer Linear Programming (ILP)
formulation or a Mixed Integer Programming (MIP) formulation is presented. A
reformulation procedure which uses the extended reverse polish representation of a
compound logical form is then described. A prototype user interface by which
logical forms can be reformulated and the corresponding MIP constructed and
analysed within an existing Mathematical Programming modelling system is
illustrated. Finally, the steps to formulate a discrete optimisation model in this way
are demonstrated by means of an example.

1
1. INTRODUCTION

Computer based languages for constructing and analysing Mathematical
Programming models have been investigated over the last two decades. There are
many experimental and commercial systems currently available which provide
modelling support. For an uptodate review of such systems the reader is referred to
[STESHAR91], [GREENB91]. Most modern modelling systems enable the
modeller to specify models in a declarative algebraic language. A set of algebraic
statements in a modelling language both specifies and documents a model, whereas
the generation of a machine readable constraint matrix takes place in the
background.

Although some modelling systems have been extended to incorporate non-linearities
[BISMEE82] and to help with a greater variety of discrete optimisation problems
[BISFOR92], very little attention has been given to the modelling of discrete programming
extensions of LP problems. Many Mathematical Programming problems involve
logical restrictions which may be expressed relatively easily using propositions calculus,
but the reformulation of such statements into Mixed Integer Programs (MIPs) is
conceptually difficult. This reformulation may be carried out systematically
[WILLMS87], [WILLMS89] but as yet there is no computer support for this task
within a Mathematical Programming modelling system.

In order to put our work in context we briefly consider its relationship to other
wider modelling or knowledge representation paradigms. In the field of
management science, within the structured modelling system SML [GEOFFR90], it
is possible to represent problems of first order logic, namely propositional and
predicate calculus. Constraint Logic Programming, also known as constraint
programming systems (CPS), are in essence programming paradigms which seek to
satisfy arithmetic constraints within an otherwise logic programming framework.
The motivations, methodologies and their scope of application are well discussed by
Hentenryck [HENTRK89] and Chinneck et al [BCHNKM89]. When the constraints
(usually linear) involve expressions in real numbers, the simplex algorithm is applied to
achieve constraint satisfaction; Lassez CLP(R) [LASSZC87] and Colmerauer
[COLMRA87] PROLOG III are two such CPSs. For constraints stated in discrete
integers (natural numbers) tree search method or interval arithmetic is applied to
achieve constraint satisfaction. Hentenryck [HENTRK89] CHIP and Brown and
Chinneck [BNPRLG88] BNR-PROLOG report two systems of this type. The
growth in AI based wider modelling techniques can be traced back to development
of inference procedures and computational logic: thus developments in natural
language understanding, theorem proving and rule based expert systems utilize the
computational underpinning of first order logic. Rule/based expert systems
[BSHORT84], constraint satisfaction and planning [ALLENJ83], mathematical
puzzles and Combinatorial Programming [LARIER78] are typical examples which
are well suited for solution through the application of computational logic
[HOOKER88].

The focus of this paper is to develop a systematic approach for transforming
statements in propositional logic into integer or mixed integer programs. This
method is particularly suitable as a modelling technique which allows one to
automate the reformulation process to construct equivalent IP or MIP models. The

2

final goal is to integrate this modelling function into an "intelligent" mathematical
programming modelling support system. The rest of the paper is organized in the
following way. Section 2 contains a summary description of the important results
in propositional logic and the corresponding 0-1 discrete programming equivalent
forms. In this section the systematic reformulation procedure is stated as an
algorithm. In section 3, a prototype system which supports this modelling function is
described and an example is set out to illustrate both the reformulation procedure and
its realization within the modelling system.

2. REFORMULATION OF PROPOSITIONAL LOGIC STATEMENTS

INTO 0-1 DISCRETE PROGRAMMING PROBLEMS

2.1 Background

A simple (or atomic) proposition is a statement which can take only one of the
truth values, true or false. Propositional calculus enables compound propositions to
be formed by modifying a simple proposition with the word "not" or by connecting
propositions with the words "and", "or", "if ... then" (or implies) and "if and only if".
These five words are called propositional or logical connectives and they are known
as the negation, conjunction, disjunction, implication and equivalence, respectively. By
repeatedly applying the connectives, the compound propositions can be used in turn
to create further compound propositions. The symbolic representation of these connectives
and their interpretation are shown in Table 1.

TABLE 1: Propositional Connectives
 No Name of

connective
symbol Meaning of

connective
Other common words

1 negation P~ not P
2 conjunction QP∧ P and Q Both P and Q
3 Inclusive

disjunction
 QP∨ P or Q Either P or Q/at least one of

P or Q
4 non-equivalence

(exclusive
disjunction)

Q)(P .∨
 Q/ P≡

P xor Q

Exactly one of P or Q is true

5 implication QP →

If P then Q P implies Q…P is a sufficient
condition for Q

6 equivalence QP ↔
)QP(≡

P iff Q P if and only if Q/P is a necess-
ary and sufficient condition for
Q

7 joint denial)QP(~ ∨ P nor Q

Neither P nor Q/None of P or
Q is true

8 non-conjunction)QP(~ ∧

 P nand Q not both P, Q

There are two meanings of the disjunction connective: the inclusive or meaning
that at least one disjunct is true (allowing for the possibility that both disjuncts
hold) and the exclusive or which is true if exactly one disjunct is true but not both.
The latter operation is also known as "non-equivalence". Using the implication

3

connective, a compound proposition has the form "if ... then ...", the proposition
following "if" is the antecedent and the proposition following "then" is the
consequent. Thus, the antecedent "implies" the consequent.

It is possible to define all propositional connectives in terms of a subset of them.
For example, they can all be defined in terms of the set (∧,∨,~) so that a given
expression can be converted on to a "normal form". Such a subset is known as a
complete set of connectives. This is a accomplished by replacing a certain expression
by another "equivalent" expression involving other connectives. Two expressions
are said to be "equivalent" if and only if, their truth values are the same, and this is
expressed as , that is P is equivalent to Q. QP ↔)QPor(≡

For example, and ~~PQP →)QP~ ∨≡ ≡P, are equivalent expressions. The following
laws of propositional logic are know as De Morgan’s Laws and Distributive Laws:

 De Morgan’s Laws

()
() Q~P~QP~

Q~P~QP~
∧≡∨
∧≡∨

 Distributive Laws

()
() R)P(Q)P(RQP

R)P(Q)P(RQP
∧∨∧≡∨∧
∨∧∨≡∧∨

In the first law, "∨ " distributes across "∧ " while in the second law " " distributes
across " ".

∧
∨

By De Morgan’s laws, conjunction can always be expressed in terms of negation
and disjunction. First use De Morgan’s laws to get negations against atomic
proportions, and then recursively distribute "∧ " over "∧ " where it applies. This
transforms a general compound proposition R to an equivalent proposition of the
form R1 ∧R2 ∧ ...Rn in which every Ri, i=l, n is a disjunction of atomic
propositions or their negation. The logical form R1 ∧R2 ∧….Rn is called a
Conjunctive Normal Form (CNF) for R and the Ri are clauses of the CNF. For
example, applying De Morgan's and distributive laws ~P∧ (Q∨R)→(S T) can be
written as (P∨ ~Q∨ S T) (P∨ ~R S T).

∨
∨ ∧ ∨ ∨

Similarly De Morgan's laws followed by the second distributive law are applied to
transform R to an equivalent proposition of the form in which each m21 S...SS ∨∨
Sj j=l,....m is a conjunction of atomic propositions or their negation. In this case

m21 S...SS ∨∨ is called a Disjunctive Normal Form (DNF).

In both normal forms, negation is only applied to atomic propositions. All
conjunctions may be removed leaving an expression entirely in "~" and " ∨ ".
Similarly, all disjunctions may be removed leaving an expression entirely in "~" and
" ". Clearly, (~,∨) or (~,∧) define complete sets of connectives. This implies that any
expression can be converted to a conjunction or disjunction of clauses by using the
equivalent statements given in Table 2. It should be pointed out, however, that in
general, a number of conjunctive or disjunctive normal forms are possible,
leading to more than one representation for a particular compound proposition.
Using the method described above, the most computationally efficient
representation of a logical form is not necessarily achieved. The authors therefore

∧

4

aim to provide a systematic reformulation procedure with computer support,
whereby alternative (discrete) mathematical programming formulations can be
constructed for a given logic form.

TABLE 2: Transformation of Logical Statements
 into Equivalent Forms

No Statement Equivalent Forms
 1 ~~P P
2 P Q .∨ (~P∧Q)∨(P∧~Q) Exclusion
3 ~(P∨Q) ~P∧~Q De Morgan’s Laws
4 ~(P∧Q) ~P∨~P
5 P Q → ~P∨Q Implication
6 P Q or ↔

(P Q) ≡

(P Q)∧(Q→P) →

(~PVQ)∧(~QVP)
 .

7 P Q∧R → (P Q)∧(P→R) → .
8 P Q∨R → (P Q)∨(P→R) → .
9 P∧Q R → (P R)∨(Q R) → → .
10 P∨ R → (P R)∧(Q R) → → .
11 P∧(Q∨R) (P∧Q)∨(P∧R) Distributive Laws
12 P∨ (Q∧R) (P∨Q)∧(P∨R)

2.2 Logic Forms Represented by 0-1 Variables

The main task of reformulation is to transform a compound proposition into a
system of linear constraints so that the logical equivalence of the transformed
expressions is maintained. The resulting system of constraints clearly must have
the same truth table as the original statement, that is, the truth or falsity of the
statement is represented by the satisfaction or otherwise of the corresponding set of
linear equations and inequalities.

In order to explain the transformation process and the underlying principles more
clearly, two cases are distinguished, namely, connecting logical variables and
logically relating linear form constraints. The former is considered in this sub-
section and the latter is explained in subsection 2.3.

Let Pj denote the jth logical variable which takes values T or F and represents an

5

atomic proposition describing an action, option or decision. Associate an integer
variable with each type of action (or option). This variable, known as the binary
decision variable, is denoted by "δj" and can take only the values 0 and 1 (binary).
The connection of these variables to the propositions are defined by the following
relations:

δj = 1 iff proposition Pj is TRUE
δj = 0 iff proposition Pj is FALSE

Imposition of logical conditions linking the different actions in a model is achieved
by expressing these conditions in the form of linear constraints connecting the
associated decision variables.

Using the propositional connectives given in Table 1, and the equivalent statements,
given in Table 2, a list of standard form "variable transformations" Tl.l ... T1.23
are defined. These transformations are applied to compound propositions involving
one or more atomic propositions Pj, whereby the compound propositions are
restated in linear algebraic forms involving decision variables. The two expressions
are logically equivalent.
TABLE 3: VARIABLE TRANSFORMATIONS
Statement Constraint Transformation
~P1 δ1 = 0 T l .l
P1∨ P2 δ1 + δ2 ≥ 1 T 1.2
P1

.∨ P2 δ1 + δ2 = 1 T 1.3
P1∧ P2 δ1 = 1, δ2 = 1 T 1.4
~(P1∨ P2) δ1 = 0, δ2 = 0 T 1.5
~(P1∨ P2) δ1 + δ2 ≤ 1 T 1.6
P1 → ~P2 δ1 + δ2 ≤ 1 T 1.7
P1 → P2 δ1 - δ2 ≤ 0 T 1.8
P1↔P2 δ1 - δ2 = 0 T 1.9
P1 → P2 ∧P3 δ1 ≤ δ2, δ1 ≤ δ3 T 1.10
P1 → P2 ∨P3 δ1 ≤ δ2 + δ3 T l.11
P1 ∧ P2 → P3 δ1 + δ2 - δ3≤ 1 T 1.12
P1 ∨ P2 → P3 δ1 ≤ δ3, δ2 ≤ δ3 T 1.13
P1 ∧ (P2 ∨ P3) δ1 = 1 δ2 + δ3 ≥ 1 T 1.14
P1 ∨ (P2 ∧ P3) δ1 + δ2 ≥ 1, δ1 + δ3 ≥ 1 T 1.15
Some general forms of transformations are stated below:
P1 ∨ P2∨... Pn δ1 + δ2 … + δn ≥ 1 T 1.16
P1

.∨ P2
.∨ … P1 δ1 + δ2 … + δn = 1 T 1.17

6
P1 ∧ … Pk → Pk+1 ∨ … Pn (1- δ1) …+ δk+1 + … + δn ≥ 1 T 1.18
"at least k out of n are TRUE" δ1 + δ2 ... + δn ≥ k T l .19
"exactly k out of n are TRUE" δ1 + δ2 ... + δn = k T l .20
"at most k out of n are TRUE" δ1 + δ2 ... + δn < k T l .21
Pn δ≡ k21 p...pp ∨∨ 1 + δ2 ... + δk > δn , T 1.22

 (- δj + δn > 0, j = 1 , …, k)
Pn - δ≡ k21 p...pp ∧∧ 1 - δ2 ... - δk + δn , > 1-k, T 1.23

 (δj - δn > 0, j = 1 , …, k)

2.3 Bound Analysis/Logically Relating Linear Form Constraints

In order to reformulate "logical constraints in the general form", it is well known
that finite upper or lower bounds on the linear form must be used, [SIMNRD66],
[BRMTWL75], [WILLMS89].

Consider the linear form restriction

 ∑
=

n

1j
kjkjk b}{xa:LF ρ

where ρ defines the type of mathematical relation, },{ =≥≤∈ρ . Let Lk, Uk,
denote the lower and upper bounds, respectively, on the corresponding linear form,
that is

 ∑
=

≤−≤
n

1j
kkjkjk .UbxaL

Finite bounds Lk and Uk are used in the reformulation procedure. These bounds
may be given or, alternatively, can be computed for finite ranges of xj

[BRMTWL75]. For example, if jjj ux <<l (j = l,...,n) then

.b

N
a+

N P
ua=Uandbua+

P k
kkj

k�¸j

j : a

a=L k
k�¸j

jkj
�¸j k�¸j

jkjkjjkjk ‡”‡” ‡”‡” ll

where Pk = { 0} and Nkj > k a = {j :

Const Imp ion F

 If antecedent then consequent

kj < 0}.

A "Logical raint in the licat orm" (LCIF) is a logical combination of
simple constraints and is defined as

where the antecedent is a logical variable and the consequent is a linear form
constraint.

A "logical constraint in the general form" can be always reduced to an LCIF using
standard transformations. To model the LCIF, a 0-1 indicator variable is linked to
the antecedent. Whether the linear form constraint LFk applies or otherwise is
indicated by a 0-1 variable δ'k’

7

δ'k = 1 i f f the k th l inea r r es t r i c t ion app l i es
 = 0 i f f the k th l inea r r es t r i c t ion does no t app ly

A set of constraint transformations T2 are defined below which illustrate how this
binary variable, namely the indicator variable of the antecedent, using the bound
value relates to the linear form restriction, that is the consequent.

TABLE 4: CONSTRAINT TRANSFORMATIONS

 Statement Constraint Transform

 kkk Lx1 ≥→=δ′ kkk 'Lx δ≥ T2.1

 0x0 kk ≤→=δ′
k'kk Ux δ≤ T2.2

 ∑ ≤→=δ′
j

kjkjk bxa1 ∑ δ−≤−
j

kkjkj)k'1(Ubxa T2.3

 ∑ ≥→=δ′
j

kjkjk bxa1 ∑ δ−≥−
j

kkjkj)k'1(Lbxa T2.4

 ∑ =→=δ′
j

kjkjk bxa1 ∑ ≤→=δ
j

kjkjk)bxa1'(3.2T T2.5

 ∑ ≥→=δ
j

kjkjk)bxa1'(4.2T

2.4 Polish Notation and Expression Trees

Using the normal precedence operators and the conventional evaluation of
expressions the following logical form

 SR~QP ∧∨∨
would be written as

))S)R((~)QP((∧∨∨

Not using brackets as above but simply placing the operator symbols at the nodes,
one can build up a tree representation which was discovered by Lukasiewicz
[LUKSWZ63] and is well known as the Polish notation. Choice of the directions in
which the variables and symbols are scanned leads to two well known variations,
namely, forward (right to left scan) or reverse (left to right scan) Polish notation.
The Polish notation for an expression is not unique and within forward Polish, for
instance, early-operator form or late-operator form lead to two different notations
and corresponds to inserting Church's brackets [CHURCH44] from the left or from
the right respectively. The given expression can be written as

))SR((~)QP((∧∨∨
 or

)))SR((~)QP(∧∨∨

The tree representation for the first of these expression is shown in Diagram 1.

8

))SR(~)QP((∧∨∨

Diagram 1

For the purposes of this paper, this is referred to as an "expression tree". Here the
Propositional calculus is limited to only unary and binary logical operators. The
extended logical operators which involve n-tuples and n-place predicates (see next
section where connectives such as "exactly k out of n", "at most k out of n" are
introduced and can be used to construct "extended expression trees"). Illustrations
of extended expression trees are provided in the example discussed in section 3.

Reverse Polish notation found natural application in algebraic expression evaluation
in compilers for automatic computers. It is no coincidence therefore that the
following reformulation (translation) procedure is based upon this fundamental
representation, that is the "extended expression tree".

2.5 The Algorithm

Having represented in the previous sections, compound propositions as
(in)equalities, the next step is to model more complicated logical statements by
further inequalities. As a result of the many, but equivalent, forms any logical
statement can take, there are often different ways of generating the same or
equivalent mathematical reformulations.

One possible way would be to convert the desired expression into a normal form
such as the conjunction of disjunctive terms, the clauses. Each clause is then
transformed into a linear constraint (applying transformation T1.16) so that the
resulting CNF can be represented by a system of constraints, derived in this
manner, which have to be satisfied invoking the logical "and" operation.

In the absence of a systematic approach, the above process appears to be unduly
complicated. This has motivated us to propose a systematic procedure to

9

formulate a logical condition imposed on a model into a set of integer linear
constraints. Our approach, in essence, involves identifying a precise compound
statement of the problem and then processing this statement. This compound
statement (S) is represented as an extended expression tree by the Polish notation
(see section 2.4) and two working stack mechanisms, namely VSTACK for variables
and CSTACK for constraints are created. The expression tree is traversed, that is,
the expression is analysed and constraints are created (using variable and constraint
transformations of section 2) in CSTACK using variables which are introduced in
VSTACK. The steps of the procedure which fully processes and resolves the tree
are set out below.
STEP 1 Write explicitly the required condition in words, in the form of a logical

compound statement, using known logical operators. Let S be this
statement.

STEP 2 Identify simple (atomic) propositions Pj which can be used to state S.
Express S in terms of the (extended) set of logical connectives - "not",
"and", or", "implies" (see Table 1), "at least k out of n", "exactly k out of
n", "at most k out of n" (see Table 4 for these extensions), and the
atomic propositions Pj. Use Church's brackets to indicate precedence of
sub-expressions. If necessary, apply transformations from Table 3 to
obtain an equivalent statement of S.

STEP 3 Construct the expression tree for S based on the forward/backward
Polish notation whereby each logical connective in S is used as a
predicate, that is, connective - name (list of arguments).
Construct this tree using the (extended) set of connectives as
intermediate nodes and the simple propositions Pj or their negations as
terminal nodes. Any subtree represents a compound proposition.
Define 0-1 decision variables d: to represent the truth or falsity of each
one of the simple propositions Pj, that is

 δj = 1/0 iff Pj is true/false
 Introduce the variables δj into VSTACK.
STEP 4 Traverse the tree from the bottom, that is, use the terminal node index k

to identify the corresponding compound proposition Qk. (subtree) and the
related 0-1 indicator variable δ'k Introduce δ'k into the VSTACK.
Convert the first-order compound propositions at the lowest levels of the
tree into associated linear restrictions using Table 3 of variable trans-
formations. Introduce these into CSTACK.
Apply the constraint transformations of Table 4 to convert the resulting LCIF

kk Q→= 1'δ into an integer linear restriction for this node. Pop-up
the most recently placed constraint in CSTACK and then insert this new
restriction into CSTACK. All terminal nodes are processed in

10

 this way and the resulting integer linear constraints are inserted in the
 'constraint' stack.

STEP 5 Continue traversal of the tree upwards by processing all nodes of the
 tree in the following way.

 Introduce an indicator variable δk for any node k at intermediate to top
 levels in the tree, and update VSTACK.

 Produce an LCIF for this node involving s: and the compound
 Propositions Qk1.....Qkn or their associated indicator variables δ’k1.....δ’kn,
 corresponding to the n branches of node k.

 Apply the variable and constraint transformations of Tables 3 and 4,
 respectively, to convert the resulting LCIF into an integer linear

restriction and add it to CSTACK.

 If at any node in the two highest levels of the tree, a standard tree
 Representation from Table 3 is identified and all associated nodes are

processed, do not introduce a new indicator variable for this node, but
simply add the corresponding integer constraint, as obtained from Table
3, directly to CSTACK. The node is then considered processed.

STEP 6 If all nodes of the tree are resolved then stop. At the end of the
 procedure, CSTA K contains all integer linear constraints and the C
 VSTACK contains the decision and indicator variables used by these
 constraints.

3. OUTLINE OF A PROTOTYPE SYSTEM

3.1 An Illustrative Example

Consider the following problem.

In order to satisfy a country's energy demands, it is possible to import coal, gas and
nuclear fuel from three neighbouring countries. There are three grades of coal and
gas (low, medium and high) and one grade of nuclear fuel which may be imported.

The import costs for each fuel (in £s per gigajoule of energy obtained) are provided
together with upper and lower limits on the fuel supplied by each country. The
problem is to decide what quantities of each fuel should be imported from each
country so that the total import cost is minimized and the country's energy
requirements are met.

In addition, there are the following logical conditions which must also be satisfied:
(i) Each country can supply either up to three non-nuclear, low or medium grade
 fuels or nuclear fuel and one high grade fuel.

11

(ii) Environmental regulations require that nuclear fuel can be used only if
 edium and low grades of gas and coal are excluded. m

(iii) If gas is imported then either the amount of gas energy imported must lie

between 40 - 50% and the amount of coal energy must be between 20 - 30%
of the total energy imported or the quantity of gas energy must lie between
50 - 60% and coal is not imported.

This problem, without the logical restrictions, may be expressed as follows:

Sets, Indices

 I = {low, medium, high} fuel grades
 J = {coal, gas} (non-nuclear) fuel type
 K = {1, 2, 3} countries

Variables

)Kk,Jj,Ii(0x ijk ∈∈∈≥ quantity of grade i, (non-nuclear) fuel energy j
 imported from country k (in gigajoules)

)Kk(0yk ∈≥ quantity of nuclear energy imported from
 country k (in gigajoules)

Coefficients
ijkc unit cost of importing grade i, (non-nuclear) energy j (in gigajoules),

 from country k (in £s).
n
kc unit cost of importing nuclear energy (in gigajoules) from country k

 (in £s).
e energy import requirement.

ijkl lower limit on quantity of grade i, (non-nuclear) energy j, supp l ied by
country k.

ijku upper limit on quantity of grade i, (non-nuclear) energy j, supplied by
country k

n
kl lower limit on nuclear energy supplied by country k.
n
ku upper limit on nuclear energy supply by country k.

Linear Constraints

 Minimize cost = k
n
k

Kk
ijkijk

KiJiIi
YCxc ∑∑∑∑

∈∈∈∈
+

subject to:

(energy import requirement) ∑ ∑∑∑

∈ ∈∈∈
=+

Ki Kk
kijk

JiIi
.eYx

12

The supply limits for each country may be modelled by introducing two binary
variables δijk and such that n

kδ

⎪⎩

⎪
⎨
⎧

=

>
=δ

0xiff0

0xiff1

ijk

ijk
ijk

⎩
⎨
⎧

=
>

=δ
0Yiff0
0Yiff1

k

kn
k

The supply limits may be thus stated as:

(non-nuclear) Kk,Jj,Iiux ijkijkijkijkijk ∈∈∈∀δ≤≤δl
 (3.1.0)

(nuclear) .KkuY n
k

n
kk

n
k

n
k ∈∀δ≤≤δl

As these are logical restrictions, it is also possible to deduce these conditions using
the reformulation procedure.

The reformulation procedure is now used to illustrate the modelling of the three
logical conditions set out in the example.

(i) Each country can supply either up to three (non-nuclear) low or medium
 grade fuels or nuclear fuel and one high grade fuel.

STEP 1

Let S1 be the following statement:

 "Each country can supply either at most three of {low coal, medium coal, low
 gas, medium gas} or (nuclear fuel and exactly one of {high coal, high gas})"

STEP 2

Define the simple (atomic) propositions

 Pijk = "grade i, fuel j is imported from country k"
 Nk = "nuclear fuel is imported from country k"

S1 may be rewritten ass
"Either at most 3 of Pijk are TRUE (where i∈ I, i ≠ high; j∈ J) or Nk and
 exactly one of Pijk is TRUE (where i ∈ I, i = high; j ∈ J)"
 for all k ∈ K.

STEP 3
The tree representation of S1 is shown below. Define decision variables (i ijkδ ∈ I,
j ∈ J, k ∈ K) and kδ (k ∈ K) such that ijkδ = 1/0 iff Pijk is true/false and = 1/0
iff N

kδ

k is true/false for given k ∈K.

13

STEP 4

Consider the terminal nodes 2 and 4. Let Q2 and Q4 label the following compound
propositions (subtrees):

Q2 : "at most 3 of Pijk i ≠ high, i ∈ I, j ∈ J are TRUE" for a given k ∈ K
Q4 : "exactly one of Pijk. i = high, j∈ J is TRUE" for a given k ∈ K.

Assign a binary indicator variable for each node;

 i.e. δ’2 =1/0 iff Q2 is true/false
and δ’4 = 1/0 iff Q4 is true/false.

Apply variable transformations (Table 3) to Q2 and Q4 to convert them into linear
constraints

Q2 using (Tl .21) for a given k ∈ K
highi
Ii Jj

ijk 3

≠
∈ ∈
∑ ∑ ≤δ

Q4 1

Jj
ijk =δ∑

∈
 (i = high) using (T1.17) for a given k ∈ K

The terminal nodes of the tree can be resolved by imposing the logical constraints
(LCIF's)

Node 2 :
highi

Ii Jj
ijk1 31'

≠
∈ ∈
∑ ∑ ≤δ→=δ

 for a given k ∈ K

Node 4 : ∑
∈

=δ→=δ
Jj

highjk4 11' for a given k ∈K

14

Apply constraint transformations (Table 4) to convert the resulting LCIF's into
integer linear constraints.

Node 2 : ∑ ∑
≠
∈ ∈

≤δ+δ

highi
Ii Jj

22 4'' using (T2.3) for a given k ∈K (3.1.1)

⎪
⎪

⎭

⎪
⎪

⎬

⎫

δ≥δ

≤δ+δ

∑

∑

∈

∈

Jj
4highjk

Jj
4highjk

'

2'

: 4 Node

 using (T2.5) for a given k ∈K (3.1 2)

All terminal nodes are now resolved.

STEP 5

Consider the intermediate node 3. Associate the indicator variable and produce
the following LCIF.

3'δ

 for a given k ∈K 4k3 QN1' ∧→=δ
 1',11' 4k3 =δ=δ→=δ using (T1.4) for a given k ∈ K .

Applying constraint transformation (T2.5) gives:

 1k ≤δ (3.1.3)

 3k 'δ≥δ (3.1.4)

 1'4 ≤δ (3.1.5)

 34 'δ≤δ (3.1.6)

Consider node 1. The tree representation corresponding to variable transformation
(T1.3) can be identified. Since nodes 2, 3 and 4 are resolved, the root node 1 is
resolved by simply adding the following integer linear constraint

 .1'' 32 =δ+δ (3.1.7)

STEP 6

All nodes are resolved. The complete IP representation is given by constraints
(3.1.1) - (3.1.7) and).Kk,Jj,Ii(}1,0{',',',, 432kijk ∈∈∈∈δδδδδ

15

(ii) Environmental regulations require that nuclear fuel can be used only if
 medium and low grades of gas and coal are excluded.

STEP 1

Let S2 be the following statement

 "If nuclear fuel is imported then none of the medium and low grades of gas
 and coal are imported"

STEP 2

Define the simple (atomic) propositions
 Nk = "nuclear fuel is imported from country k"
 Pijk = "grade i, (non-nuclear) fuel j is imported from country k"

S2 may be rewritten as.

 "If at least one of Nk (k ∈ K) is TRUE then none of Pijk (i ≠ high, i ∈ I, j ∈ J,
 k∈ K) is TRUE.

STEP 3

The tree representation of S4 is shown below. Define 0-1 decision variables

k (k ∈ K) such that δk = 1/0 iff Nk is true/false and (i) δ
(ii) δijk (i ∈ I, j ∈ J, k ∈ K) such that δijk = 1/0 iff Pijk is true/false.

17

(3.1.8) - (3.1.10) and).Kk,Jj;Ii(}1,0{',',, 32kijk ∈∈∈∈δδδδ {0,1} (i ∈ I; j∈ J, k∈ K).

(iii) If gas is imported then either the amount of gas energy imported must lie
between 40 - 50% and the amount of coal energy must be between 20 - 30% of the
total energy imported or the quantity of gas energy must lie between 50 - 60% and
coal is not imported.

STEP 1

Let S3 be the following statement:
 "If gas is imported then either the total imported energy consists of between
 40 – 50% gas and between 20 - 30% coal or it consists of 50 - 60% gas and
 coal is not imported".

STEP 2

Define the simple (atomic) propositions

 Pijk. = "grade i, fuel j is imported from country k" (i ∈ I, j ∈ J, k ∈ K)

 ∑ ∑

∈ ∈
==≤=

Ii Kk
coalgasijkjlowj "2.0,4.0wherexe"Q lll

 ∑ ∑
∈ ∈

==≤=
Ii Kk

coalgasjijkhighj "3.0u,5.0uwhereeux"Q

 ∑ ∑

∈ ∈
≤=

Ii Kk
igasklowgas "xe5.0"R

 ∑ ∑

∈ ∈
≤=

Ii Kk
igaskhighgas "e6.0xR

S3 may be rewritten as

"If any of Pigask (i ∈ I, k ∈ K) then either (Qlowj and Qhighj) (j ∈ J) or (Rlowgas and
Rhighgas and (I icoalkp ∈ I, k∈ K)”

18
STEP 3

Tree representation of S3 :

19

Define 0-1 decision variables Kk,Jj,Ii,,,, R
highgas

R
lowgas

Qhigh
j

Qlow
j

p
ijk ∈∈∈∀δδδδδ

such that

 = 1/0 iff Pp
ijkδ ijk is true/false

 = 1/0 iff QQlow
jδ lowj is true/false

 = 1/0 iff QQhigh
jδ highj is true/false

 =1/0 iff RR
lowgasδ lowgas istrue/false

 =1/0 iff RR
highgasδ highgas true/false

STEP 4

Consider terminal nodes 2, 4 and 6. Let Q2 Q4 and Q6 be the first order compound
propositions (subtrees):

 Q2 = "at least one of Pigask (i∈ l, k∈ K)"

 Q4 = "all of Qlowj and Qhighj (j∈ J)"

 Q6 = "none of Picoalk (i, ∈ I, k∈ K)”

Assign corresponding 0-1 indicator variables

i.e. δ'2 = 1/0 iff Q2 is true/false

 δ'4 = 1/0 iff Q4 is true/false

 δ'6 = 1/0 iff Q6 is true/false

 Apply variable transformations (Table 3) to obtain the following LCIFs:

 Node 2 : using (T1.16) ‡” ‡”

I�¸i K�¸k

p
igask2 1¡Ý�¨1=' δδ

Node 4 : using (T1.4) J�¸j�Í1=,1=�¨1' Qhigh

j
Qlow
j4 δδδ

Node 6 : using (T1.5) K�¸k,I�¸i�Í0=�¨=' p

icoalk6 δδ

Apply constraint transformations (Table 4) to convert these LCIFs into integer
linear restrictions.

20

Node 2 :

 2

I�¸i K�¸k

p
igask �¡Ý‡” ‡” δδ using (T2.4) (3.1.11)

Node 4 :

 J

J

J

J

K

K

�¸j�Í1¡ÜQlow
jδ

 �¸j�Í1¡ÜQhigh
jδ

 using (T2.5) (3.1.12) �¸j�Í�Œ¡Ý 4
Qlow
j δδ

 (3.1.13) �¸j�Í�Œ¡ÝQhigh
j δδ

Node 6 :

 using (T2.5) (3.1.14) �¸k,I�¸i�Í�Œ_1¡Ü 6

p
icoalk δδ

 �¸k,I�¸i�Í0¡Ýp
icoalkδ

STEP 5

Consider intermediate node 5. Associate the indicator variable 3�δ and produce the
following LCIF:

 using (T1.4) 1=�Œ,1=,1=�¨1=�Œ 6

R
highgas

R
lowgas5 δδδδ

Apply constraint transformations (T2.5) to obtain:

. 5

R
lowgas �¡Ýδδ (3.1.15)

 5
R
highgas �¡Ýδδ (3.1.16)

 56 �¡Ý�Œδδ (3.1.17)

Consider intermediate node 3. Associate the indicator variable 3�δ and produce the
following LCIF:

1=�Œ+�Œ�¨1=�Œ 543 δδδ using (T1.3).

Using constraint transformation T2.5 to obtain the integer linear restrictions:

 543 �_�Œ_2¡Ü�Œ δδδ (3.1.18)

 543 �+�Œ¡Ü�Œ δδδ (3.1.19)

21

Consider node 1, the tree representation of T1.8 is identified, hence the integer
linear constraint

0¡Ü~ 32 δ′δ′ (3.1.20)

STEP 6

All nodes are resolved.

The complete IP representation is given by constraints (3.1.11) - (3.1.20) and

,P
ijkδ

.)K�¸k,J�¸j,I�¸i(}1,0{�¸�Œ...�Œ,,,, 62
R
highgas

R
lowgas

Qhigh
j

Qlow
j δδδδδδ

3.2 An Extension of the Modelling Language Syntax

The syntax of algebraic modelling languages for formulating LPs is well established
and understood [ELSMIT82], [FOGAKER87], [GREENB901], [HURLIM90],
[MAXIMAL91]. In order to reformulate logical statements into 0-1 mixed integer
programs, the syntax has to be extended such that propositional calculus statements
can be analysed and corresponding restrictions generated. Then using the following
metalinguistic notations:

(i) '::=' is the meta language connective meaning 'is syntactically defined as';

(ii) Optional components of syntax are placed in square brackets [...] while braces

{...} indicate obligatory components of the syntax;

(iii) Alternatives may appear within braces or within square brackets and are

written above each other;

a proposition is defined as

=::>npropositio<

>npropositio< >operatormultiway <
>npropositio< >npropositio< >operatorprefix binary <

>npropositio< >operatorbinary < >npropositio<
>npropositio< >operatorunary <

 >npropositio simple<

22
The operators available are set out below

OPERATOR TYPE DESCRIPTION

NOT unary Negation

IMPLIES binary Implication
IFF binary Equivalence
OR binary Inclusive disjunction
XOR binary Exclusive disjunction
AND binary Conjunction

NONE binary prefix Joint denial
NAND binary prefix Non-conjunction

ATMOST k multiway At most k out of n are TRUE
ATLEAST k multiway At least k out of n are TRUE
EXACTLY k multiway Exactly k out of n are TRUE

OR multiway Inclusive disjunction over k propositions
XOR multiway Exclusive disjunction over k propositions
AND OVER k multiway Conjunction over k propositions
NONE multiway Denial over k propositions
NAND multiway Non-conjunction over k propositions

The following example is used to illustrate the syntax. Consider the following
propositions

m...,,1=i0¡Ýx:P ii
n...,,1=j1=y:Q jj

n,...,1=j)mP�É...�ÉP�ÉP(�ÉQ�ßR 1_21jj

Having defined the simple propositions Pi and Qj, the propositions Rj are defined
as follows:

R(j) : Q(j) OR [OR OVER i : i < m P(i)] .

3.3 Realization within a Modelling System

The following shows how reformulation support for logical statements is to be
incorporated into the modelling system, CAMPS, [LUCMIT88]. The modelling
menu (MODEL), and the information flow diagram of CAMPS is set out in
Diagrams 2 and 3. The primary revisions to CAMPS concerns the model
specification, whereby a model is declared as the minimisation or maximisation of a
function subject to certain propositions. A further utility is planned whereby the
generated reformulations can be browsed. The DOCUMENT option of the
UTILITIES menu enables the user to obtain an annotated statement of their model.

23

1. DIMENSIONS
2. TABLES
3. VARIABLES
4. CONSTRAINTS
5. MODEL STATEMENTS
6. RETURN

DIAGRAM 2

MODEL GENERATE OPTIMIS REPORT UTILITIES

INTERNAL
EEXTERNAL

MODEL
PROGRAM
INTERFACE

PREPARE
RUN
SUMMARY
…..

VARIABLES
ROWS
…..

LIST
RENAME
DELETE
PRINT
DOCUMENT
REFORM-
ULATION
DEBUG

Hierarchical relationship of main options
and

Information flow through the five master files
As effected by the subsystem

ROGM AR
1A

UT

 DIMENSIONS
TABLES

V VARIABLES
CONSTRAINTS
 MODEL-
 STATEMENTS

 IA GM GM AR RO UT AR UT

UT AR UT RO UT AR

MODEL
DOCUMENT

ATION

ANALYSE
AND

REPORT

MODEL
SOLUTION

MPSX
DATA

FORMAT

MODEL
DATA

DIAGRAM 3

24

Diagram 4 contains the documentation listing for the example of section 3.1.
Associated with each variable, bound and constraint is a unique proposition. These
propositions are logically related in the MODEL STATEMENT section to specify the
energy problem.

SPECIFICATION OF THE EXAMPLE ENERGY MODEL

SETS

i = {low,med,high /*difference quality grades*/
j = {gas,coal} /*non nuclear energy sources*/
k = {gb,fr,ic} /*countries exporting energy*/

TABLES

ENRGYCST(i,j,k) /*non nuclear energy cost, cijk*/
NUCLRCST(k) /*nuclear energy cost, */ n

kc
MINNNTAK(i,J,k) /*minimum export amount of non nuclear, */ ijkl

MAXNNTAK(i,j,k) /*maximum export amount of non nuclear, uijk*/
MINNUTAK(k) /*minimum export amount nuclear, */ n

kl

MAXNUTAK(h) /*maximum export amount nuclear, */ n
ku

MINREQE /*minimum energy take if coal and gas, scalars*/
MAXREQE /*maximum energy take if coal and gas, scalars*/
MINALT /*minimurn gas take if gas energy only, scalars*/
MAXALT /*maximum gas take if gas energy only, scalars*/
ENREQ /*desired energy import amount, e*/

VARIABLES

/*Proposition name Variable name*/
IFNONNUC(i,j,k) : AMNTENGY(i,j,k)/*Pi1k and xijk */
IFNUCLAR(k) : AMNTNUCLR(k)/*Nk and yk*/

BOUNDS

/*Proposition name Bound definition*/
LWNONNUC(i,j,k) : AMNTENGY(i,j,k) >= MINNNTAK(i,j,k)/*Qijk*/
UPNONNUC(i,j,k) : AMNTENGY(i,j,k) <= MAXNNTAK(i,j,k)/*Rijk*/
LWNUCLAR(k) : AMNTNUCLR(k) >= MINNUTAK(k)
UPNUCLAR(k) : AMNTNUCLR(k) <= MAXNUTAK(k)

ROWS

COST : SUM OVER i,j,k ENRGYCST(i,j,k)*AMNTENGY(i,j,k) +
 SUM OVER k NUCLRCST(k)*AMNTNUCL(k)
/*definition of the objective function*/
ENGYBAL : SUM OVER i,j,k AMNTENGY(i,j,k) +
 SUM OVER k AMNTNUCL(k) = ENREQ
/*Energy balance row to meet countries energy requirement*/

25

MIXLOWl(j) : SUM OVER i,j AMNTENGY(i,j.k) >= MINREQE*ENREQ
/*lower bound requirements i oth gas and coal imported*/ f b

MIXLOW2 : SUM OVER i,k MNTENGY(i,gas,k) >= MINALT*ENREQ

MIXHIGHl(j) : SUM OVER i,k AMNTENGY(i,j,k) <= MAXREQE*ENREQ
/*upper bound requirements if both gas and coal imported*/

A

MIXHIGH2 : SUM OVER i,k AMNTENGY(i,gas,k) <= MAXALT*ENREQ
/*lower bound energy mix requirement if gas and not coal imported*/

/*upper bound energy mix requirement if gas and not coal imported*/

MODEL STATEMENT

NAME ENERGY
MINIMISE COST
SUBJECT TO

ENGYBAL
SUPLCOND(k) : [ATMOST 3 OVER i : i ≠ high, j IFNONNUC(i,j,k)]

XOR
[IFNUCLAR(k) AND [XOR OVER j IFNONNUC(high,j,k)]

ENVIRON : [ATLEAST 1 OVER k IFNUCLAR(k)] IMPLIES
[NONE OVER i : i ≠ high, j, k IFNONNUC(i,j.k)]

ALTMIX : [ATLEAST 1 OVER i, k IFNONNUC(i,gas,k)] IMPLIES
[[MIXLOWIO) AND MIXHIGHl(j)] XOR
[MIXLOW2 AND MIXHIGH2]]

BNDCOND l (ij,k) : IFNONNUC(i,j,k) IMPLIES [LWNONNUC(i,j,k) AND
 UPNONNUC(i,j,k)]
BNDCOND2(k) : IFNUCLAR(k) IMPLIES [LWNUCLAR(k) AND
 UPNUCLAR(k)]

DIAGRAM 4

4. CONCLUDING REMARKS

The quantitative formulation of logical conditions set out as propositional calculus
statements is an important research topic in discrete modelling. In this paper the
established syntax of representing LP models in an algebraic form is extended to
incorporate logical restrictions set out as propositional calculus statements. A
system constructed in this way not only provides discrete modelling support but can
also be used as a teaching aid to new modellers in MIP reformulation techniques.
The work reported in this paper also relates to the broader issues of knowledge
representation within the logic programming and AI modelling paradigm.

26

5. REFERENCES

[ALLENJ83] Allen, J. F., 1983, "Maintaining knowledge about temporal

intervals", Comm. ACM., 26.
[BCHNKM89] Brown, R. G., Chinneck, J. W. and Karam, G. M., 1989, "Optimization

with constraint programming systems", Impact of Recent Advances in
Computing Science on Operations Research, R Sharda et al editors, North
Holland, 463-473.

[BISFOR92] Bisschop, J. and Fourer, R., 1992, "New Constructs for the
Description of Combinatorial Optimization Problems in Algebraic Modelling
Languages" to appear in Annals of OR Publication

[BISMEE82] Bisschop, J. and Meeraus, A., 1982, "On the Development of a General
Algebraic Modelling System in a Strategic Planning Environment",
Mathematical Programming Study 20, North-Holland, Amsterdam.

[BNPRLG88] Bell Northern Research, 1988, Prolog Language Description, Version 1.0,
Ottawa, Canada.

[BRMTWL75] Brearley, A. L., Mitra, G., Williams, H. P., 1975, "Analysis of mathematical
programming problems prior to applying the simplex algorithm", Mathematical
Programming, 8, 54-83.

[BSHORT84] Buchanan, B. G. and Shortliffe, E. H., 1984, "Rule based expert systems:
the MYCIN experiments of the heuristic programming project, Addison-Wesley,
Reading, Mass., USA.

[CHURCH44] Church, A., 1944, "Introduction to Mathematical Logic", Annals of
Mathematical Studies, 13, Part 1.

[COLMRA87] Colmerauer, A., 1987, "Opening the PROLOG III Universe", Byte
Magazine, August 1987.

[ELSMTT82] Ellison, E.F.D., Mitra, G., 1982, "UIMP: User Interface for
Mathematical Programming, ACM Transactions on Mathematical Software,
Vol.8, No.3, p.229-255.

[FOGAKER87] Fourer, R., Gay, D.M., Kernighan, B.W., 1987, "AMPL: A
Mathematical Programming Language", Computing Science Technical Report
No. 133, AT&T Bell Laboratories.

[GEOFFR90] Geoffrion, A.M., 1990, "The SML language for strucutural modeling",
Working Paper No.378, Western Management Science Institute, University of
California, Los Angeles.

[GREENB90] Greenberg, H.J., 1990, "A primer for MODLER: Modeling by object-driven
linear element relationships", Mathematics Department, University of Colorado at
Denver.

[GREENB91] Greenberg, Harvey, J., 1991, "A Comparison of Mathematical Programming
Modelling Systems", University of Colorado at Denvery.

[HENTRK89] Hentenryck, P. V., 1989, "Constraint satisfaction in logic Programming",
MIT Press, Massachusetts, USA.

[HOOKER88] Hooker, J. N., 1988, "A quantitative approach to logical inference",
Decision Support Systems, 4, 45-69.

[HURLIM90] Hürlimann, T., 1990, "Reference Manual for the LPL Modeling
Language" (Version 3.5), Working Paper No. 175, Institute for Automation &
Operations Research.

[LARIER78] Lauriere, J. L., 1978, "A language and a program for stating and
solving combinatorial problems", Artificial Intelligence, 10, 29-127.

27

[LASSZC87] Lassez, C, 1987, "Constraint logic programming", Byte Magazine,

August 1987, 171-176.
[LUCMIT88] Lucas, C. and Mitra, G., 1988, "Computer-assisted mathematical

programming (modelling) system: CAMPS" , The Computer Journal, 31, 4,
1988.

[LUKSWZ63] Lukasiewicz, J., 1963, "Elements of Mathematics Logic" (English
Translation from Polish), Pergamon Press, Oxford.

[MAXIMAL91] Maximal Software, 1991, MPL Modelling System Release 2 User Manual,
Maximal Software.

[SIMNRD66] Simmonard, M., 1966, Linear Programming, Prentice Hall.
[STESHAR91] Steiger, D. and Sharda, R., 1991, "LP Modelling Languages for

Personal Computers: A Comparison", Oklahoma State University.
[WILLMS87] Williams, H. P., 1987, "Linear and integer programming applied to the

propositional calculus", International Journal of Systems Resarch and
Information Science, 2, 81-100.

[WILLMS 89] Williams, H. P. and McKinnon, K.I.M., 1989, "Constructing integer
programming models by the predicate calculus", Annals of Operations
Research, Vol.21, p.227-246.

