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ABSTRACT 
 
A systematic procedure for transforming a set of logical statements or logical 
conditions imposed on a model into an Integer Linear Programming (ILP) 
formulation or a Mixed Integer Programming (MIP) formulation is presented. A 
reformulation procedure which uses the extended reverse polish representation of a 
compound logical form is then described. A prototype user interface by which 
logical forms can be reformulated and the corresponding MIP constructed and 
analysed within an existing Mathematical Programming modelling system is 
illustrated. Finally, the steps to formulate a discrete optimisation model in this way 
are demonstrated by means of an example. 
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1. INTRODUCTION 
 
Computer based languages for constructing and analysing Mathematical 
Programming models have been investigated over the last two decades. There are 
many experimental and commercial systems currently available which provide 
modelling support. For an uptodate review of such systems the reader is referred to 
[STESHAR91], [GREENB91]. Most modern modelling systems enable the 
modeller to specify models in a declarative algebraic language. A set of algebraic 
statements in a modelling language both specifies and documents a model, whereas 
the generation of a machine readable constraint matrix takes place in the 
background. 
 
Although some modelling systems have been extended to incorporate non-linearities 
[BISMEE82] and to help with a greater variety of discrete optimisation problems 
[BISFOR92], very little attention has been given to the modelling of discrete programming 
extensions of LP problems. Many Mathematical Programming problems involve 
logical restrictions which may be expressed relatively easily using propositions calculus, 
but the reformulation of such statements into Mixed Integer Programs (MIPs) is 
conceptually difficult. This reformulation may be carried out systematically 
[WILLMS87], [WILLMS89] but as yet there is no computer support for this task 
within a Mathematical Programming modelling system. 
 
In order to put our work in context we briefly consider its relationship to other 
wider modelling or knowledge representation paradigms. In the field of 
management science, within the structured modelling system SML [GEOFFR90], it 
is possible to represent problems of first order logic, namely propositional and 
predicate calculus. Constraint Logic Programming, also known as constraint 
programming systems (CPS), are in essence programming paradigms which seek to 
satisfy arithmetic constraints within an otherwise logic programming framework. 
The motivations, methodologies and their scope of application are well discussed by 
Hentenryck [HENTRK89] and Chinneck et al [BCHNKM89]. When the constraints 
(usually linear) involve expressions in real numbers, the simplex algorithm is applied to 
achieve constraint satisfaction; Lassez CLP(R) [LASSZC87] and Colmerauer 
[COLMRA87] PROLOG III are two such CPSs. For constraints stated in discrete 
integers (natural numbers) tree search method or interval arithmetic is applied to 
achieve constraint satisfaction. Hentenryck [HENTRK89] CHIP and Brown and 
Chinneck [BNPRLG88] BNR-PROLOG report two systems of this type. The 
growth in AI based wider modelling techniques can be traced back to development 
of inference procedures and computational logic: thus developments in natural 
language understanding, theorem proving and rule based expert systems utilize the 
computational underpinning of first order logic. Rule/based expert systems 
[BSHORT84], constraint satisfaction and planning [ALLENJ83], mathematical 
puzzles and Combinatorial Programming [LARIER78] are typical examples which 
are well suited for solution through the application of computational logic 
[HOOKER88]. 
 
The focus of this paper is to develop a systematic approach for transforming 
statements in propositional logic into integer or mixed integer programs. This 
method is particularly suitable as a modelling technique which allows one to 
automate the reformulation process to construct equivalent IP or MIP models.  The 
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final goal is to integrate this modelling function into an "intelligent" mathematical 
programming modelling support system. The rest of the paper is organized in the 
following way. Section 2 contains a summary description of the important results 
in propositional logic and the corresponding 0-1 discrete programming equivalent 
forms. In this section the systematic reformulation procedure is stated as an 
algorithm. In section 3, a prototype system which supports this modelling function is 
described and an example is set out to illustrate both the reformulation procedure and 
its realization within the modelling system. 
 
2. REFORMULATION OF PROPOSITIONAL LOGIC STATEMENTS 

INTO 0-1 DISCRETE PROGRAMMING PROBLEMS 
 
2.1 Background 
 
A simple (or atomic) proposition is a statement which can take only one of the 
truth values, true or false. Propositional calculus enables compound propositions to 
be formed by modifying a simple proposition with the word "not" or by connecting 
propositions with the words "and", "or", "if ... then" (or implies) and "if and only if". 
These five words are called propositional or logical connectives and they are known 
as the negation, conjunction, disjunction, implication and equivalence, respectively.   By 
repeatedly applying the connectives, the compound propositions can be used in turn 
to create further compound propositions. The symbolic representation of these connectives 
and their interpretation are shown in Table 1. 
 

TABLE 1: Propositional Connectives 
 No Name of 

connective 
symbol Meaning of 

connective 
Other common words 

1 negation     P~  not P   
2 conjunction  QP∧  P and Q Both P and Q 
3 Inclusive 

disjunction 
  QP∨ P or Q Either  P or Q/at least one of 

P or Q    
4 non-equivalence 

(exclusive 
disjunction) 

Q)(P .∨  
 Q/ P≡  

P xor Q 

 
 
 
 
 
 

Exactly one of  P or Q is true  
 
 

5 implication   QP →
 

If  P then Q P implies Q…P is a sufficient  
condition for Q  

6 equivalence  QP ↔  
)QP( ≡  

P iff Q P if and only if Q/P is a necess- 
ary and sufficient condition for 
Q 

7 joint denial )QP(~ ∨ P nor Q 

 
 

Neither P nor Q/None of  P or  
Q is true 

8 non-conjunction )QP(~ ∧  
 
 P nand Q not both P, Q 
 
There are two meanings of the disjunction connective: the inclusive or meaning 
that at least one disjunct is true (allowing for the possibility that both disjuncts 
hold) and the exclusive or which is true if exactly one disjunct is true but not both. 
The latter operation is also known as "non-equivalence". Using the implication 
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connective, a compound proposition has the form "if ... then ...", the proposition  
following "if" is the antecedent and the proposition following "then" is the 
consequent. Thus, the antecedent "implies" the consequent. 

It is possible to define all propositional connectives in terms of a subset of them. 
For example, they can all be defined in terms of the set (∧,∨,~) so that a given 
expression can be converted on to a "normal form". Such a subset is known as a 
complete set of connectives. This is a accomplished by replacing a certain expression   
by another "equivalent" expression involving other connectives. Two expressions 
are said to be "equivalent" if and only if, their truth values are the same, and this is 
expressed as  , that is P is equivalent to Q. QP ↔ )QPor( ≡

For example,  and ~~PQP → )QP~ ∨≡ ≡P, are equivalent expressions. The following 
laws of propositional logic are know as De Morgan’s Laws and Distributive Laws: 

 De Morgan’s Laws 

   
( )
( ) Q~P~QP~

Q~P~QP~
∧≡∨
∧≡∨

 Distributive Laws 

  
( )
( ) R)P(Q)P(RQP

R)P(Q)P(RQP
∧∨∧≡∨∧
∨∧∨≡∧∨

 

In the first law, "∨ " distributes across "∧ " while in the second law " " distributes 
across " ". 

∧
∨

By De Morgan’s laws, conjunction can always be expressed in terms of negation 
and disjunction. First use De Morgan’s laws to get negations against atomic 
proportions, and then recursively distribute "∧ " over "∧ " where it applies. This 
transforms a general compound proposition R to an equivalent proposition of the 
form R1 ∧R2 ∧ ...Rn in which every Ri, i=l, .... n is a disjunction of atomic 
propositions or their negation. The logical form R1 ∧R2 ∧….Rn is called a 
Conjunctive Normal Form (CNF) for R and the Ri are clauses of the CNF. For 
example, applying De Morgan's and distributive laws ~P∧  (Q∨R)→(S T) can be 
written as (P∨ ~Q∨ S T) (P∨ ~R S T). 

∨
∨ ∧ ∨ ∨

Similarly De Morgan's laws followed by the second distributive law are applied to 
transform R to an equivalent proposition of the form in which each m21 S...SS ∨∨
Sj j=l,....m is a conjunction of atomic propositions or their negation. In this case 

m21 S...SS ∨∨  is called a Disjunctive Normal Form (DNF). 

In both normal forms, negation is only applied to atomic propositions. All 
conjunctions may be removed leaving an expression entirely in "~" and " ∨ ". 
Similarly, all disjunctions may be removed leaving an expression entirely in "~" and 
" ". Clearly, (~,∨ ) or (~,∧ ) define complete sets of connectives. This implies that any 
expression can be converted to a conjunction or disjunction of clauses by using the 
equivalent statements given in Table 2. It should be pointed out, however, that in 
general, a number of conjunctive or disjunctive normal forms are possible, 
leading to more than one representation for a particular compound proposition. 
Using the method described above, the most computationally efficient 
representation of a logical form is not necessarily achieved. The authors therefore 

∧
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aim to provide a systematic reformulation procedure with computer support, 
whereby alternative (discrete) mathematical programming formulations can be 
constructed for a given logic form. 

TABLE 2: Transformation of Logical Statements 
 into Equivalent Forms 

 
No Statement Equivalent Forms  
 1 ~~P P  
2 P Q .∨ (~P∧Q)∨(P∧~Q) Exclusion 
3 ~(P∨Q) ~P∧~Q De Morgan’s Laws 
4 ~(P∧Q) ~P∨~P  
5 P Q → ~P∨Q Implication 
6 P Q or ↔

(P Q) ≡

(P Q)∧(Q→P) →

(~PVQ)∧(~QVP) 
        . 

7 P Q∧R → (P Q)∧(P→R) →         . 
8 P Q∨R → (P Q)∨(P→R) →         . 
9 P∧Q R → (P R)∨(Q R) → →         . 
10 P∨ R → (P R)∧(Q R) → →         . 
11 P∧(Q∨R) (P∧Q)∨(P∧R) Distributive Laws 
12 P∨ (Q∧R) (P∨Q)∧(P∨R)  

 
2.2    Logic Forms Represented by 0-1 Variables 

The main task of reformulation is to transform a compound proposition into a 
system of linear constraints so that the logical equivalence of the transformed 
expressions is maintained. The resulting system of constraints clearly must have 
the same truth table as the original statement, that is, the truth or falsity of the 
statement is represented by the satisfaction or otherwise of the corresponding set of 
linear equations and inequalities. 

In order to explain the transformation process and the underlying principles more 
clearly, two cases are distinguished, namely, connecting logical variables and 
logically relating linear form constraints. The former is considered in this sub- 
section and the latter is explained in subsection 2.3. 
 
Let Pj denote the jth logical variable which takes values T or F and represents an 
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atomic proposition describing an action, option or decision. Associate an integer 
variable with each type of action (or option). This variable, known as the binary 
decision variable, is denoted by "δj" and can take only the values 0 and 1 (binary). 
The connection of these variables to the propositions are defined by the following 
relations: 

δj  = 1 iff proposition Pj is TRUE 
δj = 0 iff proposition Pj is FALSE 

Imposition of logical conditions linking the different actions in a model is achieved 
by expressing these conditions in the form of linear constraints connecting the 
associated decision variables. 

Using the propositional connectives given in Table 1, and the equivalent statements, 
given in Table 2, a list of standard form "variable transformations" Tl.l ... T1.23 
are defined. These transformations are applied to compound propositions involving 
one or more atomic propositions Pj, whereby the compound propositions are 
restated in linear algebraic forms involving decision variables. The two expressions 
are logically equivalent. 
TABLE 3: VARIABLE TRANSFORMATIONS 
Statement                               Constraint                              Transformation 
~P1 δ1 = 0 T l .l 
P1∨ P2 δ1 + δ2 ≥ 1 T 1.2 
P1

.∨  P2 δ1 + δ2 = 1 T 1.3 
P1∧ P2 δ1  = 1, δ2 = 1 T 1.4 
~( P1∨ P2)  δ1  = 0, δ2 = 0 T 1.5 
~( P1∨ P2) δ1 + δ2 ≤ 1 T 1.6 
P1 → ~P2 δ1 + δ2 ≤ 1 T 1.7 
P1 → P2  δ1 - δ2 ≤ 0 T 1.8 
P1↔P2 δ1 - δ2 = 0 T 1.9 
P1 → P2 ∧P3  δ1 ≤ δ2, δ1 ≤ δ3 T 1.10 
P1 → P2 ∨P3 δ1 ≤ δ2 + δ3 T l.11 
P1 ∧ P2 → P3 δ1 + δ2 - δ3≤ 1 T 1.12 
P1 ∨ P2 → P3 δ1 ≤ δ3, δ2 ≤ δ3 T 1.13 
P1 ∧ (P2 ∨ P3) δ1 = 1 δ2 + δ3 ≥ 1 T 1.14 
P1 ∨ (P2 ∧ P3) δ1 + δ2 ≥ 1, δ1 + δ3 ≥ 1 T 1.15 
Some general forms of transformations are stated below: 
P1 ∨ P2∨... Pn  δ1 + δ2 … + δn ≥ 1 T 1.16 
P1

.∨  P2
.∨  … P1  δ1 + δ2 … + δn = 1 T 1.17 
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P1 ∧ … Pk → Pk+1 ∨ … Pn    (1- δ1) …+ δk+1    + … + δn ≥ 1  T 1.18 
"at least k out of n are TRUE"    δ1 + δ2 ... + δn   ≥  k  T l .19 
"exactly k out of n are TRUE"  δ1 + δ2 ... + δn  =  k                         T l .20 
"at most k out of n are TRUE"  δ1 + δ2 ... + δn  <  k                         T l .21 
Pn                 δ≡ k21 p...pp ∨∨ 1 + δ2 ... + δk    >  δn ,           T 1.22 

  (- δj + δn >  0,  j = 1 , …, k)  
Pn           - δ≡ k21 p...pp ∧∧ 1 - δ2 ... - δk   + δn , > 1-k,            T 1.23 

  (δj - δn >  0,  j = 1 , …, k)  
 
2.3 Bound Analysis/Logically Relating Linear Form Constraints 
 
In order to reformulate "logical constraints in the general form", it is well known 
that finite upper or lower bounds on the linear form must be used, [SIMNRD66], 
[BRMTWL75], [WILLMS89]. 
 
Consider the linear form restriction 

      ∑
=

n

1j
kjkjk b}{xa:LF ρ

where ρ  defines the type of mathematical relation, },{ =≥≤∈ρ  . Let Lk, Uk, 
denote the lower and upper bounds, respectively, on the corresponding linear form, 
that is 

     ∑
=

≤−≤
n

1j
kkjkjk .UbxaL  

Finite bounds Lk and Uk are used in the reformulation procedure. These bounds 
may be given or, alternatively, can be computed for finite ranges of xj 

[BRMTWL75].  For example, if jjj ux <<l (j = l,...,n) then 

 
.b

N
a+

N P
ua=Uandbua+

P k
kkj

k�¸j

j : a

a=L k
k�¸j

jkj
�¸j k�¸j

jkjkjjkjk ‡”‡” ‡”‡” ll  

 
where Pk = {  0} and Nkj > k  a = {j :

Const  Imp ion F

      If antecedent then consequent 

kj < 0}. 
 
A "Logical raint in the licat orm" (LCIF) is a logical combination of 
simple constraints and is defined as 

where the antecedent is a logical variable and the consequent is a linear form 
constraint. 
 
A "logical constraint in the general form" can be always reduced to an LCIF using 
standard transformations. To model the LCIF, a 0-1 indicator variable is linked to 
the antecedent. Whether the linear form constraint LFk applies or otherwise is 
indicated by a 0-1 variable δ'k’ 
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δ'k = 1        i f f  the  k th  l inea r  r es t r i c t ion  app l i es  
    = 0         i f f  the  k th  l inea r  r es t r i c t ion  does  no t  app ly  
 
A set of constraint transformations T2 are defined below which illustrate how this 
binary variable, namely the indicator variable of the antecedent, using the bound 
value relates to the linear form restriction, that is the consequent. 
 

TABLE 4:  CONSTRAINT TRANSFORMATIONS 
 
     Statement                               Constraint                                   Transform 

        kkk Lx1 ≥→=δ′                             kkk 'Lx δ≥ T2.1 

    0x0 kk ≤→=δ′                     
k'kk Ux δ≤                                   T2.2 

      ∑ ≤→=δ′
j

kjkjk bxa1            ∑ δ−≤−
j

kkjkj )k'1(Ubxa                   T2.3 

    ∑ ≥→=δ′
j

kjkjk bxa1            ∑ δ−≥−
j

kkjkj )k'1(Lbxa            T2.4 

    ∑ =→=δ′
j

kjkjk bxa1         ∑ ≤→=δ
j

kjkjk )bxa1'(3.2T            T2.5                                  

            ∑ ≥→=δ
j

kjkjk )bxa1'(4.2T             

2.4    Polish Notation and Expression Trees 
 
Using the normal precedence operators and the conventional evaluation of 
expressions the following logical form 
 

    SR~QP ∧∨∨  
would be written as 
 

     ))S)R((~)QP(( ∧∨∨  
 

Not using brackets as above but simply placing the operator symbols at the nodes, 
one can build up a tree representation which was discovered by Lukasiewicz 
[LUKSWZ63] and is well known as the Polish notation. Choice of the directions in 
which the variables and symbols are scanned leads to two well known variations, 
namely, forward (right to left scan) or reverse (left to right scan) Polish notation. 
The Polish notation for an expression is not unique and within forward Polish, for 
instance, early-operator form or late-operator form lead to two different notations 
and corresponds to inserting Church's brackets [CHURCH44] from the left or from 
the right respectively. The given expression can be written as 
 

   ))SR((~)QP(( ∧∨∨  
      or 

   )))SR((~)QP( ∧∨∨  
 

The tree representation for the first of these expression is shown in Diagram 1. 
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))SR(~)QP(( ∧∨∨  

 
 
 

Diagram 1 
 
For the purposes of this paper, this is referred to as an "expression tree". Here the 
Propositional calculus is limited to only unary and binary logical operators. The 
extended logical operators which involve n-tuples and n-place predicates (see next 
section where connectives such as "exactly k out of n", "at most k out of n" are 
introduced and can be used to construct "extended expression trees"). Illustrations 
of extended expression trees are provided in the example discussed in section 3. 
 
Reverse Polish notation found natural application in algebraic expression evaluation 
in compilers for automatic computers. It is no coincidence therefore that the 
following reformulation (translation) procedure is based upon this fundamental 
representation, that is the "extended expression tree". 
 
2.5    The Algorithm 
 
Having represented in the previous sections, compound propositions as 
(in)equalities, the next step is to model more complicated logical statements by 
further inequalities. As a result of the many, but equivalent, forms any logical 
statement can take, there are often different ways of generating the same or 
equivalent mathematical reformulations. 
 
One possible way would be to convert the desired expression into a normal form 
such as the conjunction of disjunctive terms, the clauses. Each clause is then 
transformed into a linear constraint (applying transformation T1.16) so that the 
resulting CNF can be represented by a system of constraints, derived in this 
manner, which have to be satisfied invoking the logical "and" operation. 
 
In the absence of a systematic approach, the above process appears to be unduly 
complicated.  This has motivated us to propose a systematic procedure to 
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formulate a logical condition imposed on a model into a set of integer linear 
constraints. Our approach, in essence, involves identifying a precise compound 
statement of the problem and then processing this statement. This compound 
statement (S) is represented as an extended expression tree by the Polish notation 
(see section 2.4) and two working stack mechanisms, namely VSTACK for variables 
and CSTACK for constraints are created. The expression tree is traversed, that is, 
the expression is analysed and constraints are created (using variable and constraint 
transformations of section 2) in CSTACK using variables which are introduced in 
VSTACK. The steps of the procedure which fully processes and resolves the tree 
are set out below. 
STEP 1     Write explicitly the required condition in words, in the form of a logical 

compound statement, using known logical operators.  Let S be this 
statement. 

STEP 2        Identify simple (atomic) propositions Pj which can be used to state S. 
Express S in terms of the (extended) set of logical connectives - "not", 
"and", or", "implies" (see Table 1), "at least k out of n", "exactly k out of 
n", "at most k out of n" (see Table 4 for these extensions), and the 
atomic propositions Pj. Use Church's brackets to indicate precedence of 
sub-expressions. If necessary, apply transformations from Table 3 to 
obtain an equivalent statement of S. 

STEP 3        Construct the expression tree for S based on the forward/backward  
Polish notation whereby each logical connective in S is used as a       
predicate, that is, connective - name (list of arguments). 
Construct this tree using the (extended) set of connectives as 
intermediate nodes and the simple propositions Pj or their negations as 
terminal nodes. Any subtree represents a compound proposition. 
Define 0-1 decision variables d: to represent the truth or falsity of each 
one of the simple propositions Pj, that is 

  δj = 1/0                 iff Pj is true/false 
                     Introduce the variables δj into VSTACK. 
STEP 4        Traverse the tree from the bottom, that is, use the terminal node index k 

to identify the corresponding compound proposition Qk. (subtree) and the 
related 0-1 indicator variable δ'k Introduce δ'k into the VSTACK. 
Convert the first-order compound propositions at the lowest levels of the   
tree into associated linear restrictions using Table 3 of variable trans-
formations. Introduce these into CSTACK. 
Apply the constraint transformations of Table 4 to convert the resulting LCIF 

kk Q→= 1'δ  into an integer linear restriction for this node. Pop-up 
the most recently placed constraint in CSTACK and then insert this new 
restriction into CSTACK. All terminal nodes are processed in 
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        this way and the resulting integer linear constraints are inserted in the  
       'constraint' stack. 
 

STEP 5      Continue traversal of the tree upwards by processing all nodes of the  
                 tree in the following way. 

 
                   Introduce an indicator variable δk for any node k at intermediate to top  
                  levels in the tree, and update VSTACK. 
 
                    Produce  an LCIF for this node involving s: and the compound 
               Propositions Qk1.....Qkn or their associated indicator variables δ’k1.....δ’kn, 
               corresponding to the n branches of node k. 
 
                    Apply the variable and constraint transformations of Tables 3 and 4, 
                 respectively, to convert the resulting LCIF into an integer linear 

restriction and add it to CSTACK. 
 
                     If at any node in the two highest levels of the tree, a standard tree     
                Representation from Table 3 is identified and all associated nodes are                       

processed, do not introduce a new indicator variable for this node, but  
simply add the corresponding integer constraint, as obtained from Table 
3, directly to CSTACK. The node is then considered processed. 
 

STEP 6      If  all  nodes of the tree are resolved then stop. At the end of the 
                 procedure, CSTA K contains all integer linear constraints and the  C
                VSTACK contains the decision and indicator variables used by these 
                constraints. 
 
3.      OUTLINE OF A PROTOTYPE SYSTEM 
 
3.1    An Illustrative Example 
 
Consider the following problem. 
 
In order to satisfy a country's energy demands, it is possible to import coal, gas and 
nuclear fuel from three neighbouring countries. There are three grades of coal and 
gas (low, medium and high) and one grade of nuclear fuel which may be imported. 
 
The import costs for each fuel (in £s per gigajoule of energy obtained) are provided 
together with upper and lower limits on the fuel supplied by each country. The 
problem is to decide what quantities of each fuel should be imported from each 
country so that the total import cost is minimized and the country's energy 
requirements are met. 
 
In addition, there are the following logical conditions which must also be satisfied: 
(i)     Each country can supply either up to three non-nuclear, low or medium grade 
         fuels or nuclear fuel and one high grade fuel. 
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(ii) Environmental regulations require that nuclear fuel can be used only if 
      edium and low grades of gas and coal are excluded.   m

(iii) If gas is imported then either the amount of gas energy imported must lie 
 

between 40 - 50% and the amount of coal energy must be between 20 - 30% 
of the total energy imported or the quantity of gas energy must lie between 
50 - 60% and coal is not imported. 
 

This problem, without the logical restrictions, may be expressed as follows: 
 
Sets, Indices 

         I = {low, medium, high}                fuel grades 
                     J = {coal, gas}                                (non-nuclear) fuel type 
                     K = {1, 2, 3}                                  countries 
 
Variables 
 

)Kk,Jj,Ii(0x ijk ∈∈∈≥   quantity of grade i, (non-nuclear) fuel energy j 
 imported from country k (in gigajoules) 
 

)Kk(0yk ∈≥                        quantity of nuclear energy imported from 
 country k (in gigajoules) 

Coefficients 
ijkc      unit cost of importing grade i, (non-nuclear) energy j (in gigajoules),   

           from country k (in £s). 
n
kc       unit cost of importing nuclear energy (in gigajoules) from country k 

   (in £s). 
e         energy import requirement. 

ijkl      lower limit on quantity of grade i, (non-nuclear) energy j, supp l ied  by  
country k. 

ijku      upper limit on quantity of grade i, (non-nuclear) energy j, supplied by 
country k 

n
kl        lower limit on nuclear energy supplied by country k. 
n
ku       upper limit on nuclear energy supply by country k. 

 
Linear Constraints 
 

        Minimize cost =  k
n
k

Kk
ijkijk

KiJiIi
YCxc ∑∑∑∑

∈∈∈∈
+

subject to: 
 
(energy import requirement) ∑ ∑∑∑

∈ ∈∈∈
=+

Ki Kk
kijk

JiIi
.eYx  
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The supply limits for each country may be modelled by introducing two binary 
variables δijk and  such that n

kδ

         
⎪⎩

⎪
⎨
⎧

=

>
=δ

0xiff0

0xiff1

ijk

ijk
ijk

 

                   
⎩
⎨
⎧

=
>

=δ
0Yiff0
0Yiff1

k

kn
k

 
The supply limits may be thus stated as: 

(non-nuclear) Kk,Jj,Iiux ijkijkijkijkijk ∈∈∈∀δ≤≤δl  
           (3.1.0) 

(nuclear)          .KkuY n
k

n
kk

n
k

n
k ∈∀δ≤≤δl

 
As these are logical restrictions, it is also possible to deduce these conditions using 
the reformulation procedure. 
 
The reformulation procedure is now used to illustrate the modelling of the three 
logical conditions set out in the example. 
 
(i)      Each country can supply either up to three (non-nuclear) low or medium 
          grade fuels or nuclear fuel and one high grade fuel. 
 
STEP 1 
 
Let S1 be the following statement: 
 
         "Each country can supply either at most three of {low coal, medium coal, low     
         gas, medium gas} or (nuclear fuel and exactly one of {high coal, high gas})" 
 
STEP 2 
 
Define the simple (atomic) propositions 

        Pijk = "grade i, fuel j is imported from country k" 
        Nk =  "nuclear fuel is imported from country k" 
 

S1 may be rewritten ass 
"Either at most 3 of Pijk are TRUE (where i∈  I, i ≠  high; j∈  J) or Nk and    
 exactly one of Pijk is TRUE (where i ∈  I, i = high; j ∈  J)" 
 for all k ∈  K. 
 

STEP 3 
The tree representation of S1 is shown below. Define decision variables (i ijkδ ∈  I,  
j ∈  J, k ∈  K) and kδ  (k ∈  K) such that ijkδ  = 1/0 iff Pijk is true/false and  = 1/0 
iff N

kδ

k is true/false for given k ∈K. 
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STEP 4 
 
Consider the terminal nodes 2 and 4. Let Q2 and Q4 label the following compound 
propositions (subtrees): 
 

Q2 : "at most 3 of Pijk         i ≠  high, i ∈  I, j ∈  J are TRUE"  for a given k ∈  K 
Q4 :  "exactly one of Pijk.      i = high, j∈  J is TRUE"              for a given k ∈  K. 

 
Assign a binary indicator variable for each node; 

 
 i.e.    δ’2  =1/0    iff   Q2 is true/false 
and   δ’4 = 1/0    iff    Q4 is true/false. 

 
Apply variable transformations (Table 3) to Q2 and Q4 to convert them into linear 
constraints 
 

Q2                   using (Tl .21)      for a given k ∈  K 
highi
Ii Jj

ijk 3

≠
∈ ∈
∑ ∑ ≤δ

 
Q4            1

Jj
ijk =δ∑

∈
 (i = high)   using (T1.17)      for a given k ∈  K 

The terminal nodes of the tree can be resolved by imposing the logical constraints 
(LCIF's) 
 

Node 2 :   
highi

Ii Jj
ijk1 31'

≠
∈ ∈
∑ ∑ ≤δ→=δ

                  for a given k ∈  K 

Node 4 :       ∑
∈

=δ→=δ
Jj

highjk4 11'                         for a given k ∈K 
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Apply constraint transformations (Table 4) to convert the resulting LCIF's into 
integer linear constraints. 
 

Node 2 :  ∑ ∑
≠
∈ ∈

≤δ+δ

highi
Ii Jj

22 4''    using (T2.3)        for a given k ∈K (3.1.1) 

 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

δ≥δ

≤δ+δ

∑

∑

∈

∈

Jj
4highjk

Jj
4highjk

'

2'

        

: 4 Node

 using (T2.5)         for a given k ∈K     (3.1 2) 

All terminal nodes are now resolved. 
 
STEP 5 
 
Consider the intermediate node 3. Associate the indicator variable  and produce 
the following LCIF. 

3'δ

 
                                                for a given k ∈K 4k3 QN1' ∧→=δ
        1',11' 4k3 =δ=δ→=δ        using (T1.4)       for a given k ∈ K . 

 
Applying constraint transformation (T2.5) gives: 
 

       1k ≤δ        (3.1.3) 
 
       3k 'δ≥δ        (3.1.4) 
 
       1'4 ≤δ        (3.1.5) 
 
       34 'δ≤δ        (3.1.6) 

Consider node 1. The tree representation corresponding to variable transformation 
(T1.3) can be identified. Since nodes 2, 3 and 4 are resolved, the root node 1 is 
resolved by simply adding the following integer linear constraint 
 

         .1'' 32 =δ+δ                                                      (3.1.7) 
 

STEP 6 
 
All nodes are resolved. The complete IP representation is given by constraints 
(3.1.1) - (3.1.7) and ).Kk,Jj,Ii(}1,0{',',',, 432kijk ∈∈∈∈δδδδδ  
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(ii)     Environmental   regulations  require  that   nuclear  fuel   can  be   used   only  if 
            medium and low grades of gas and coal are excluded. 
 
STEP 1 
 
Let S2 be the following statement 
 
       "If nuclear fuel is imported then none of the medium and low grades of gas 
       and coal are imported" 
 
STEP 2 
 
Define the simple (atomic) propositions 
       Nk  = "nuclear fuel is imported from country k" 
        Pijk = "grade i, (non-nuclear) fuel j is imported from country k" 

 
S2  may be rewritten as. 
 
       "If at least one of Nk   (k ∈  K) is TRUE then none of Pijk (i ≠  high, i ∈  I, j ∈  J,         
       k∈  K) is TRUE.                                                          
 
STEP 3 
 
The tree representation of S4 is shown below.  Define 0-1 decision variables 

k (k ∈  K) such that δk = 1/0  iff  Nk is true/false  and (i) δ
(ii) δijk (i ∈ I, j ∈ J, k ∈ K) such that δijk = 1/0  iff Pijk is true/false. 
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(3.1.8) - (3.1.10) and ).Kk,Jj;Ii(}1,0{',',, 32kijk ∈∈∈∈δδδδ {0,1} (i ∈  I; j∈  J, k∈  K). 

 
(iii) If gas is imported then either the amount of gas energy imported must lie 
between 40 - 50% and the amount of coal energy must be between 20 - 30% of the 
total energy imported or the quantity of gas energy must lie between 50 - 60% and 
coal is not imported. 
 
STEP 1 
 
Let S3 be the following statement: 
           "If gas is imported then either the total imported energy consists of between   
           40 – 50% gas and between 20 - 30% coal or it consists of 50 - 60% gas and   
           coal is not imported". 
 
STEP 2 
 
Define the simple (atomic) propositions 
 
           Pijk.  =  "grade i, fuel j is imported from country k" (i ∈  I, j ∈  J, k ∈  K) 
 
 
         ∑ ∑

∈ ∈
==≤=

Ii Kk
coalgasijkjlowj "2.0,4.0wherexe"Q lll  

 

          ∑ ∑
∈ ∈

==≤=
Ii Kk

coalgasjijkhighj "3.0u,5.0uwhereeux"Q  

 
           ∑ ∑

∈ ∈
≤=

Ii Kk
igasklowgas "xe5.0"R

 
           ∑ ∑

∈ ∈
≤=

Ii Kk
igaskhighgas "e6.0xR

 
S3 may be rewritten as 
 
"If any of Pigask (i ∈  I, k ∈ K) then either (Qlowj and Qhighj) (j ∈  J) or (Rlowgas and 
Rhighgas and (I icoalkp ∈ I,  k∈ K)” 
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STEP 3 
 
Tree representation of S3 : 
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Define 0-1 decision variables  Kk,Jj,Ii,,,, R
highgas

R
lowgas

Qhigh
j

Qlow
j

p
ijk ∈∈∈∀δδδδδ

such that 

                           = 1/0    iff   Pp
ijkδ ijk is true/false 

  = 1/0  iff   QQlow
jδ lowj is true/false 

    = 1/0    iff  QQhigh
jδ highj is true/false 

    =1/0     iff  RR
lowgasδ lowgas istrue/false 

    =1/0    iff   RR
highgasδ highgas true/false 

 
STEP 4 
 
Consider terminal nodes 2, 4 and 6.  Let Q2 Q4 and Q6 be the first order compound 
propositions (subtrees): 

 
            Q2 = "at least one of Pigask (i∈ l, k∈ K)" 
    
          Q4 = "all of Qlowj and Qhighj (j∈ J)" 
     
           Q6 = "none of Picoalk (i, ∈ I, k∈ K)” 
 

Assign corresponding 0-1 indicator variables 

 
i.e.           δ'2 = 1/0    iff   Q2 is true/false 
 

          δ'4 = 1/0    iff   Q4 is true/false 
 
         δ'6 = 1/0    iff    Q6  is true/false 

 
 Apply variable transformations (Table 3) to obtain the following LCIFs: 

 
  Node 2 :     using (T1.16) ‡” ‡”

I�¸i K�¸k

p
igask2 1¡Ý�¨1=' δδ

 
Node 4 :    using (T1.4) J�¸j�Í1=,1=�¨1' Qhigh

j
Qlow
j4 δδδ

 
Node 6 :    using (T1.5) K�¸k,I�¸i�Í0=�¨=' p

icoalk6 δδ
 

Apply constraint transformations (Table 4) to convert these LCIFs into integer 
linear restrictions.  
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Node 2 : 
 
  2

I�¸i K�¸k

p
igask �¡Ý‡” ‡” δδ    using (T2.4)   (3.1.11) 

 
Node 4 : 
 
   J

J

J

J

K

K

�¸j�Í1¡ÜQlow
jδ

   �¸j�Í1¡ÜQhigh
jδ

    using (T2.5)   (3.1.12) �¸j�Í�Œ¡Ý 4
Qlow
j δδ

        (3.1.13) �¸j�Í�Œ¡ÝQhigh
j δδ

 
Node 6 : 
 
   using (T2.5)   (3.1.14) �¸k,I�¸i�Í�Œ_1¡Ü 6

p
icoalk δδ

   �¸k,I�¸i�Í0¡Ýp
icoalkδ

 
STEP 5 
 
Consider intermediate node 5. Associate the indicator variable 3�δ  and produce the 
following LCIF: 
 
  using (T1.4) 1=�Œ,1=,1=�¨1=�Œ 6

R
highgas

R
lowgas5 δδδδ

 
Apply constraint transformations (T2.5) to obtain: 
 
.    5

R
lowgas �¡Ýδδ       (3.1.15) 

    5
R
highgas �¡Ýδδ       (3.1.16) 

    56 �¡Ý�Œδδ       (3.1.17) 
 
Consider intermediate node 3. Associate the indicator variable 3�δ  and produce the 
following LCIF: 
 

1=�Œ+�Œ�¨1=�Œ 543 δδδ  using (T1.3).    
 
Using constraint transformation T2.5 to obtain the integer linear restrictions: 
 
    543 �_�Œ_2¡Ü�Œ δδδ      (3.1.18) 
 
    543 �+�Œ¡Ü�Œ δδδ       (3.1.19) 
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Consider node 1, the tree representation of T1.8 is identified, hence the integer 
linear constraint 
 

0¡Ü~ 32 δ′δ′       (3.1.20)     
 
STEP 6 
 
All nodes are resolved. 
 
The complete IP representation is given by constraints (3.1.11) - (3.1.20) and  

 

,P
ijkδ

.)K�¸k,J�¸j,I�¸i(}1,0{�¸�Œ...�Œ,,,, 62
R
highgas

R
lowgas

Qhigh
j

Qlow
j δδδδδδ

 
3.2 An Extension of the Modelling Language Syntax 
 
The syntax of algebraic modelling languages for formulating LPs is well established 
and understood [ELSMIT82], [FOGAKER87], [GREENB901], [HURLIM90], 
[MAXIMAL91]. In order to reformulate logical statements into 0-1 mixed integer 
programs, the syntax has to be extended such that propositional calculus statements 
can be analysed and corresponding restrictions generated. Then using the following 
metalinguistic notations: 
 
(i) '::=' is the meta language connective meaning 'is syntactically defined as'; 
 
(ii) Optional components of syntax are placed in square brackets [...] while braces 

{...} indicate obligatory components of the syntax; 
 
(iii) Alternatives may appear within braces or within square brackets and are 

written above each other; 
 
a proposition is defined as 
 

=::>npropositio<

>npropositio< >operatormultiway <
>npropositio< >npropositio< >operatorprefix binary <

>npropositio< >operatorbinary < >npropositio<
>npropositio< >operatorunary <

 >npropositio simple<
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The operators available are set out below 
 
 

OPERATOR TYPE DESCRIPTION 

NOT unary Negation 

IMPLIES binary Implication 
IFF binary Equivalence 
OR binary Inclusive disjunction 
XOR binary Exclusive disjunction 
AND binary Conjunction 

NONE binary prefix Joint denial 
NAND binary prefix Non-conjunction 

ATMOST k multiway At most k out of n are TRUE 
ATLEAST k multiway At least k out of n are TRUE 
EXACTLY k multiway Exactly k out of n are TRUE 

OR multiway Inclusive disjunction over k propositions 
XOR multiway Exclusive disjunction over k propositions 
AND         OVER k multiway Conjunction over k propositions 
NONE multiway Denial over k propositions 
NAND multiway Non-conjunction over k propositions 

 
The following example is used to illustrate the syntax. Consider the following 
propositions 
 

m...,,1=i0¡Ýx:P ii  
n...,,1=j1=y:Q jj  

n,...,1=j)mP�É...�ÉP�ÉP(�ÉQ�ßR 1_21jj  
 
Having defined the simple propositions Pi and Qj, the propositions Rj are defined 
as follows: 
 

R(j) : Q(j) OR [OR OVER i :  i < m P(i)] . 
 
3.3 Realization within a Modelling System 
 
The following shows how reformulation support for logical statements is to be 
incorporated into the modelling system, CAMPS, [LUCMIT88]. The modelling 
menu (MODEL), and the information flow diagram of CAMPS is set out in 
Diagrams 2 and 3. The primary revisions to CAMPS concerns the model 
specification, whereby a model is declared as the minimisation or maximisation of a 
function subject to certain propositions. A further utility is planned whereby the 
generated reformulations can be browsed. The DOCUMENT option of the 
UTILITIES menu enables the user to obtain an annotated statement of their model. 
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1. DIMENSIONS  
2. TABLES 
3. VARIABLES 
4. CONSTRAINTS 
5. MODEL STATEMENTS 
6. RETURN 

 
 
 

DIAGRAM 2 
 
 
 

MODEL GENERATE OPTIMIS REPORT UTILITIES

INTERNAL 
EEXTERNAL

MODEL 
PROGRAM 
INTERFACE

PREPARE 
RUN 
SUMMARY
….. 

VARIABLES
ROWS 
….. 

LIST 
RENAME 
DELETE 
PRINT 
DOCUMENT
REFORM- 
ULATION 
DEBUG 

Hierarchical relationship of main options 
and 

Information flow through the five master files 
As effected by the subsystem 

ROGM AR
1A 

UT 

 DIMENSIONS 
TABLES  

V VARIABLES 
CONSTRAINTS
 MODEL- 
 STATEMENTS 

   
 
     IA GM  GM     AR  RO  UT    AR  UT 
 
UT   AR        UT      RO                 UT         AR                                  
 

MODEL 
DOCUMENT

ATION

ANALYSE 
AND 

REPORT

 
 
 

MODEL 
SOLUTION 

MPSX 
DATA 

FORMAT 

MODEL 
DATA 

 
DIAGRAM 3 
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Diagram 4 contains the documentation listing for the example of section 3.1. 
Associated with each variable, bound and constraint is a unique proposition. These 
propositions are logically related in the MODEL STATEMENT section to specify the 
energy problem. 
 
SPECIFICATION OF THE EXAMPLE ENERGY MODEL 

SETS 

i = {low,med,high /*difference quality grades*/ 
j = {gas,coal}  /*non nuclear energy sources*/ 
k = {gb,fr,ic}  /*countries exporting energy*/ 
 
TABLES 
 
ENRGYCST(i,j,k) /*non nuclear energy cost, cijk*/  
NUCLRCST(k) /*nuclear energy cost, */  n

kc
MINNNTAK(i,J,k) /*minimum export amount of non nuclear, */  ijkl

MAXNNTAK(i,j,k)   /*maximum export amount of non nuclear, uijk*/  
MINNUTAK(k) /*minimum export amount nuclear, */  n

kl

MAXNUTAK(h) /*maximum export amount nuclear, */  n
ku

MINREQE  /*minimum energy take if coal and gas, scalars*/ 
MAXREQE  /*maximum energy take if coal and gas, scalars*/ 
MINALT  /*minimurn gas take if gas energy only, scalars*/ 
MAXALT  /*maximum gas take if gas energy only, scalars*/ 
ENREQ  /*desired energy import amount, e*/ 
 
VARIABLES 
 
/*Proposition name Variable name*/  
IFNONNUC(i,j,k) : AMNTENGY(i,j,k)/*Pi1k and xijk */  
IFNUCLAR(k) :      AMNTNUCLR(k)/*Nk and yk*/ 
 
BOUNDS 
 
/*Proposition name Bound definition*/ 
LWNONNUC(i,j,k) : AMNTENGY(i,j,k) >= MINNNTAK(i,j,k)/*Qijk*/ 
UPNONNUC(i,j,k) : AMNTENGY(i,j,k) <= MAXNNTAK(i,j,k)/*Rijk*/ 
LWNUCLAR(k) : AMNTNUCLR(k) >= MINNUTAK(k)  
UPNUCLAR(k) : AMNTNUCLR(k) <= MAXNUTAK(k) 
 
ROWS 
 
COST : SUM OVER i,j,k ENRGYCST(i,j,k)*AMNTENGY(i,j,k) + 
  SUM OVER k NUCLRCST(k)*AMNTNUCL(k)  
/*definition of the objective function*/  
ENGYBAL :  SUM OVER i,j,k AMNTENGY(i,j,k) + 
  SUM OVER k AMNTNUCL(k) = ENREQ  
/*Energy balance row to meet countries energy requirement*/ 
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MIXLOWl(j) : SUM OVER i,j AMNTENGY(i,j.k) >= MINREQE*ENREQ 
/*lower bound requirements i oth gas and coal imported*/ f b

MIXLOW2 : SUM OVER i,k MNTENGY(i,gas,k) >= MINALT*ENREQ 

MIXHIGHl(j) : SUM OVER i,k AMNTENGY(i,j,k) <= MAXREQE*ENREQ 
/*upper bound requirements if both gas and coal imported*/ 

A

MIXHIGH2 : SUM OVER i,k AMNTENGY(i,gas,k) <= MAXALT*ENREQ 
/*lower bound energy mix requirement if gas and not coal imported*/ 

/*upper bound energy mix requirement if gas and not coal imported*/ 
 
MODEL STATEMENT 
 
NAME   ENERGY 
MINIMISE  COST 
SUBJECT TO 
 
ENGYBAL 
SUPLCOND(k) : [ATMOST 3 OVER i : i ≠ high, j IFNONNUC(i,j,k)] 

XOR 
[IFNUCLAR(k) AND [XOR OVER j IFNONNUC(high,j,k)] 

ENVIRON : [ATLEAST 1 OVER k IFNUCLAR(k)] IMPLIES  
[NONE OVER i : i ≠ high, j, k IFNONNUC(i,j.k)]  

ALTMIX : [ATLEAST 1 OVER i, k IFNONNUC(i,gas,k)] IMPLIES  
[[MIXLOWIO) AND MIXHIGHl(j)] XOR  
[MIXLOW2 AND MIXHIGH2]]  

BNDCOND l (ij,k) : IFNONNUC(i,j,k) IMPLIES [LWNONNUC(i,j,k) AND 
         UPNONNUC(i,j,k)]  
BNDCOND2(k) : IFNUCLAR(k) IMPLIES [LWNUCLAR(k) AND 
         UPNUCLAR(k)] 
 

DIAGRAM 4 

4. CONCLUDING REMARKS 
 
The quantitative formulation of logical conditions set out as propositional calculus 
statements is an important research topic in discrete modelling. In this paper the 
established syntax of representing LP models in an algebraic form is extended to 
incorporate logical restrictions set out as propositional calculus statements. A 
system constructed in this way not only provides discrete modelling support but can 
also be used as a teaching aid to new modellers in MIP reformulation techniques. 
The work reported in this paper also relates to the broader issues of knowledge 
representation within the logic programming and AI modelling paradigm.  
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