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Abstract—This paper develops a novel two-stage coordinated 

volt-pressure optimization (VPO) for integrated energy systems 

(IES) networked with energy hubs considering renewable energy 

sources. The promising power-to-gas (P2G) facilities are used for 

improving the interdependency of the IES. The proposed VPO 

contains the traditional volt-VAR optimization functionality to 

mitigate the voltage deviation while ensuring a satisfying gas quality 

due to the hydrogen mixture. In addition to the conventional voltage 

regulating devices, i.e., on-load tap changers and capacitor banks, 

P2G converter and gas storage are used to address the voltage 

fluctuation problem caused by renewable penetration. Moreover, an 

effective two-stage distributionally robust optimization (DRO) 

based on Wasserstein metric is utilized to capture the renewable 

uncertainty with tractable robust counterpart reformulations. The 

Wasserstein-metric based ambiguity set enables to provide 

additional flexibility hedging against renewable uncertainty. 

Extensive case studies are conducted in a modified IEEE 33-bus 

system connected with a 20-node gas system. The proposed VPO 

provides a voltage-regulated economic operation scheme with gas 

quality ensured that contributes to high-quality but low-cost multi-

energy supply to customers. 
 

Index Terms—Distributionally robust optimization, energy hub, 

gas quality management, integrated energy system, two-stage 

framework. 

I. INTRODUCTION 

NTEGRATED energy systems (IES) are attracting increasing 
research attention due to the flexibility to coordinate and 

contemplate multi-energy infrastructures among each sub-
system with promising storage technologies [1-3]. The 
interdependencies of IES are strengthened by conversion 
technologies, e.g., power-to-gas (P2G) and gas turbines. 

Although the strong couplings in IES improve the economic 
performance, it raises some challenges such as: i) the 
intermittency of renewable energy sources (RES) leads to 
voltage issues; ii) the uncertainty of RES affects the economic 
performance of IES and iii) the hydrogen injection via P2G 
should be ensured with high gas quality.  Motivated by the three 
aforementioned problems, this paper aims to provide a 
mitigation scheme incorporating voltage regulation, uncertainty 
modelling and gas quality management.  
    Volt-VAR optimization (VVO) is the fundamental function 

for efficiently managing and optimizing the voltage profile 

within an acceptable range considering system operational 

constraints. Previous VVO research aims to determine the 

optimal set of operating voltage regulating devices, e.g., 

capacitor banks, on-load tap changers (OLTC) and voltage 

regulators. Paper [4] proposes a voltage regulation algorithm 

based on flexible alternating current transmission system 

(FACTS) devices. A multi-objective particle swarm 

optimization (MOPSO) is applied for reducing the power 

system costs and ensuring system security. In [5], a MOPSO is 

applied for optimal power management and design of a hybrid 

energy system. A coordination algorithm for overcurrent relays 

and operation strategy is designed in [6] for interconnected 

power systems. The Pareto-optimal solution is obtained based 

on MOPSO. Paper [7] develops a novel hybrid multi-objective 

optimization model for the sizing and placement of renewable 

energy generations. A non-dominated sorting genetic algorithm 

is implemented for a two/three-dimensional Pareto optimal set. 

The high penetration of renewable generation introduces the 

uncertain renewable fluctuation and technical challenge like 

voltage variation. Paper [8] applies robust optimization (RO) to 

a contingency constrained unit commitment model considering 

uncertain fault outages. The outage probabilities of transmission 

lines and units are incorporated into the robust uncertainty set. 

In [9], a multi-band uncertainty set, considering the temporal 

correlation of renewable generation uncertainty, is developed 

for a unit commitment model. Paper [10] proposes a robust 

load-flow in radial and meshed power systems. The nonlinear 

equation set of load flow is solved via radial basis function 

artificial neural networks. A novel robust power-flow analysis 

is presented for balanced and unbalanced microgrids [11]. This 

model avoids calculating partial derivatives and inverse 

Jacobian matrix, which is computationally efficient compared 

with the traditional methods.   Existing literature has mainly 

handled the renewable uncertainty for VVO problems to offset 

and mitigate the adverse impacts via RO and stochastic 
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optimization (SO). 

In [12], a multi-timescale VVO is proposed to counteract the 

voltage fluctuation with separated control on slow and fast 

voltage regulating devices. The renewable and load 

uncertainties are handled via SO approach. A distributed multi-

objective optimization is proposed in [13] to coordinate fast and 

slow voltage regulating devices, aiming to mitigate both voltage 

magnitude and power losses.  The PV uncertainty is represented 

by a scenario-based SO approach. A modified alternating 

direction method of multipliers is applied to handle the non-

convex optimization model.  

Much effort has been focused on the optimization of IES, 

mainly achieving economic and environmental targets [14, 15]. 

A RO model is proposed for an integrated power-gas-heat 

system in smart districts [16]. This model is demonstrated on a 

real multi-energy district and real-world physical limitations of 

energy infrastructures are examined. Paper [17] designs an 

optimal operation model for a regional IES considering energy 

price variations. Both system cost and environmental pollutions 

can be reduced through this optimization model. In [18], an 

energy sharing framework for multiple interconnected 

microgrids in an integrated power and heat system is proposed. 

This model comprehensively optimizes energy generation cost, 

the trading cost with the utility grid and other microgrids, and 

discomfort cost. Paper [19] presents a decentralized 

optimization framework for an integrated power and gas system 

with networked energy hubs. A distributed algorithm based on 

Bender’s decomposition is used to solve this mixed-integer 

second-order cone programming problem. In [20], a 

consumption-based carbon pricing method is combined with an 

optimization model for IES. Accordingly, energy customers are 

given proper incentives to use low-carbon energy.  Nevertheless, 

voltage regulation has not been studied in the existing IES 

operation models to mitigate the system voltage issues. 

    As an emerging conversion technology, P2G provides an 

alternative for promoting RES penetration and provide 

additional flexibility. The P2G process is achieved via feeding 

the surplus renewable generation to electrolysis and produce 

hydrogen, which can be either transported or stored in gas 

systems. In [21], a maximum production point tracking strategy 

to improve the efficiency of P2G facilities under different 

operation scenarios. A stochastic operation for a low-carbon 

micro IES is proposed in [22]. The P2G connected with the 

wind turbine enables the power-to-hydrogen transformation. 

Meanwhile, the carbon dioxide-capture-based P2G technology 

is applied for the eco-friendly IES design. Paper [23] presents a 

scenario-based optimal strategy for P2G conversion facilities 

and natural gas generating units. The coordinated operation 

scheme can provide a high market payoff.  

Hydrogen and synthetic natural gas are generated via P2G 
electrolyzer, sourced from electric energy. The produced gas 
mixture can be utilized in gas systems directly or stored via gas 
storage. Nevertheless, the original gas composition will be 
inevitably changed due to the additional gas injection. 
Accordingly, both the security and working performance of gas 
equipment will be affected [24]. To measure the 
interchangeability characteristics of different gas components 

with the comparison of their combustion energy output, Wobbe 
index (WI) is extensively used. Paper [25]  studies the effects 
under different hydrogen injection levels on natural gas pipeline 
infrastructures based on WI. It is found that the determinant gas 
compositions affect the overall hydrogen concentration. The 
realization of a small-scale renewable hydro methane generator 
is discussed in [26]. The hydrogen enrichment causes a WI 
reduction of fuel, which needs to be strictly controlled for safety 
issues.  

The performance of power system operation problems is very 
sensitive to the renewable uncertainty caused by increasing 
renewable penetration. The uncertain renewable generation 
affects i) voltage profile, ii) the optimal operation of P2G 
facilities and iii) secure and economic system operation. Most 
of the existing works account for the uncertainties via RO and 
SO. However, the ignorance of probabilistic information with 
RO causes over-conservative solutions with the worst-case 
orientation. And SO generally assumes the explicit uncertainty 
distribution based on a large number of scenario representations, 
which is computationally challenging. As an alternative of RO 
and SO, the novel distributionally robust optimization (DRO) 
can address the aforementioned problems based on the 
ambiguity-averse models considering partial distributional 
information [27-30].  

The effective voltage management through VVO has been 
extensively studied in the existing research [1-3, 11-13]. The 
IES integrates a variety of energy vectors to achieve operational 
effectiveness and the improvement of energy efficiency. 
However, VVO is ignored in the traditional economic operation 
of IES, which only focuses on economic performance, which 
inevitably leads to voltage fluctuation. Overall, in the context of 
VVO, the existing problems are: i) as a fundamental function in 
distribution systems, VVO has never been investigated in IES; 
ii) the emerging P2G with gas storage has never been utilized 
as voltage regulating devices in the current VVO research and 
iii) the current IES operation models have never considered the 
gas quality management schemes. Hence, this paper aims at 
addressing the above three problems. This paper designs a volt-
pressure optimization (VPO) including VVO and gas quality 
management with a two-stage DRO framework in an IES 
networked with energy hubs. The proposed VPO regulates the 
voltage magnitude via the traditional voltage regulating devices, 
i.e., OLTCs, capacitor banks and PV inverters, and P2G with 
gas storage. To ensure the acceptable gas quality at each gas 
node, a gas quality management scheme is designed involves 
adding liquid petroleum gas (LPG) and nitrogen to increase or 
decrease associated gas quality indices. Renewable uncertainty 
is handled by the two-stage Wasserstein metric-based DRO. A 
linear decision rule (LDR)-based solution procedure is 
developed for solving the two-stage volt-pressure optimization 
(TS-VPO). The main contributions of this paper are briefly 
summarized as follows: 
▪ Existing research on IES operation mainly focuses on 

economic efficiency whilst fails to consider the security and 

quality of gas. A novel gas quality management in IES is 

developed to ensure secure and reliable gas system operation.  

▪ IES greatly improves energy efficiency through the 

coordination and tight couplings among multi-energy 

infrastructures and converters. However, frequent multi-
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energy interaction also affects the voltage profile of the 

system. Compared with the existing work purely 

investigating the voltage management in power systems, this 

paper develops a VPO model to incorporate the classic VVO 

problem in IES. P2G facilities and gas storage are used as 

voltage regulating devices for VVO for the first time. 

▪ When VVO is applied in IES models, it is significantly 

required to consider gas quality issues. This paper first 

attempts to investigate the VVO problem and developed gas 

quality management simultaneously. 

▪ This paper provides a low-carbon and efficient IES 

networked with energy hubs. The abundant energy 

conversion technologies in IES networked with energy hubs 

enable to improve the overall energy efficiency and 

strengthen the interdependencies among each sub-system.  

▪ Compared with the moment-based DRO approach for 

handling the data-driven uncertainties with mild robustness, 

the novel two-stage Wasserstein metric-based DRO 

approach is proposed. This method further addresses the 

over-conservative and computational challenging 

characteristics of RO and SO, respectively. 

The remainder of the paper is as follows. The system 
modelling with technical constraints and objective function of 
VPO are given in section Ⅱ. Section Ⅲ presents the two-stage 
DRO model with its tractable reformulations. Case studies are 
given in section Ⅳ. And the conclusion is given in Ⅴ. 

II. MATHEMATICAL FORMULATION OF VPO 

The mathematical formulation of the proposed VPO model is 
given in this section. The four gas quality indices are firstly 
described in section A,  including WI, specific gravity (SG) and 
gross calorific value (GCV). The modelling of P2G and gas 
storage is given in sections B and C. Sections D-G present the 
technical constraints of IES. Section H illustrates the objective 
function of the two-stage VPO.  

Existing papers coordinate voltage regulating devices under 
different timescales [12, 13, 31], where slow voltage regulating 
devices (OLTCs and capacitor banks) are dispatched hourly and 
distributed energy resources (DERs) are dispatched in minute 
scale. The above multi-timescale models avoid the wearing of 
mechanical devices caused by frequent adjustment operations 
and effectively manage the fast variations of DER devices. 
However, the minute timescale model will increase the decision 
variables with a larger dimension, thus exponentially increasing 
the computational burden. Thus this paper utilizes a single-
timescale model with hour-timescale. 

A. Gas Quality Indices 

In real practice, all gas-fired facilities are designed and 
equipped according to specific requirements, which include a 
range of gas quality indices. If the required gas quality standards 
are not met, a set of issues will arise, such as combustion with 
poor quality. Gas interchangeability is the main measure to test 
if the combustion characteristics of one gas resemble other 
mixture of gases. Two gases are interchangeable when they are 
substituted with each other without materially changing 
efficiency, performance and operational safety.  The proposed 
gas quality indices are the explicit expressions of gas 
interchangeability, which are given in (1)-(3).  

In (1), SG is defined as the ratio of the considered gas density 
to the air density at the same standard temperature and pressure 
[24, 32]. This paper regards SG to limit hydrocarbon content, 
where the density of hydrogen, mixed gas and air are denoted 
as 𝜌ℎ𝑦   𝜌𝑔  and 𝜌𝑎𝑖𝑟 . 𝜑ℎ𝑦  is the hydrogen volume. If 
hydrocarbon is at a high level  a series of problems will be 
caused such as engine knock and spontaneous ignition problems.   𝑆𝐺 = 𝜌𝑔 + (𝜌ℎ𝑦 − 𝜌𝑔)𝜑ℎ𝑦𝜌𝑎𝑖𝑟  

(1) 

When all the considered gas compositions are within the 
combustion process and meanwhile the gas temperature in the 
end is equal to the initial gas temperature before the combustion 
process, the associated gas amount is defined as GCV. GCV is 
practical for calculating calorific value considering 
condensation of gas components [33, 34]. Equation (2) is the 
expression of GCV of mixed gas, where 𝛺ℎ𝑦  and 𝛺𝑔  are the 

GCV of hydrogen and original gas, and 𝜑ℎ𝑦 is the volume of 

hydrogen.  𝛺 = 𝛺𝑔 + (𝛺ℎ𝑦 − 𝛺𝑔)𝜑ℎ𝑦 (2) 

WI is a crucial index for measuring gas interchangeability. It 
is mainly used to compare the combustion output of different 
gas components [35, 36]. The mixture among gas components 
is achievable provided that they have similar WI value. 
Nevertheless, a mild fluctuation of WI is allowable (5-10% 
away from the original setpoint). A series of adverse effects will 
be caused when WI exceeds the acceptable limit, e.g., 
emergency shutdowns of gas equipment, high emission of 
greenhouse gas and instability of gas turbines. Equation (3) 
presents WI expression.  𝑊𝐼 = 𝛺√𝑆𝐺 

(3) 

B. Modelling of P2G 

P2G enables to transform abundant renewable generation to 
hydrogen and methane through electrolyser. To begin with, the 
water is split into hydrogen and oxygen, followed by the 
injection of carbon dioxide in the methanation process. 
Meanwhile, another part of the produced hydrogen is injected 

into the gas pipelines directly. The P2G output 𝐺𝑛,𝑡ℎ𝑦  is given in 

(4), where 𝜂𝑒  is the efficiency and 𝑃𝑛,𝑡𝑃2𝐺  and 𝛺ℎ𝑦  is the P2G 

power injection. Equation (5) shows that the total hydrogen 
production includes hydrogen used for methanation (𝐺𝑛,𝑡ℎ𝑦_𝑚𝑒) and 

direct hydrogen injection (𝐺𝑛,𝑡ℎ𝑦_𝑑) to the gas system. The amount 

of required carbon dioxide and methane production are 
described in equations (6) and (7), where 𝜂ℎ𝑦−𝑐𝑎 and 𝜂ℎ𝑦−𝑚𝑒 are 

conversion efficiencies.   𝐺𝑛,𝑡ℎ𝑦 = 𝜂𝑒 𝑃𝑛,𝑡𝑃2𝐺𝛺ℎ𝑦   
(4) 𝐺𝑛,𝑡ℎ𝑦_𝑚𝑒 + 𝐺𝑛,𝑡ℎ𝑦_𝑑 = 𝐺𝑛,𝑡ℎ𝑦 (5) 𝐺𝑛,𝑡𝑐𝑎 = 𝜂ℎ𝑦−𝑐𝑎𝐺𝑛,𝑡ℎ𝑦_𝑚𝑒  (6) 𝐺𝑛,𝑡𝑚𝑒 = 𝜂ℎ𝑦−𝑚𝑒𝐺𝑛,𝑡ℎ𝑦_𝑚𝑒  (7) 

C. Gas Storage System 

The proposed gas storage system (GSS) contains distributed 
gas storage (DGS) and line pack that provides additional 
flexibility to the gas system. This paper considers both the 
original gas and produced gas from P2G can be stored in GSS. 
DGS enables to store the compressed or liquefied natural gas in 
tanks. The charging and discharging gas (𝐺𝑔𝑠,𝑡𝑐  and 𝐺𝑔𝑠,𝑡𝑑 ) are 
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restricted in (8). Constraints (9) and (10) limit the remaining gas 
in the DGS, where 𝐸𝑔𝑠,𝑡  is the remaining gas capacity. Equations 

(11)-(13) depict the line pack 𝜗𝑙𝑔,𝑡 with approximated dynamic 

characteristics. 𝑓𝑙𝑔,𝑡 𝑖𝑛𝑖 , 𝑓𝑙𝑔,𝑡 , 𝑃𝑟𝑙𝑔,𝑡𝑖𝑛𝑖   and 𝑃𝑟𝑙𝑔,𝑡𝑡𝑒𝑟  are the gas flow and 

pressure at the initial and terminal nodes. The relationship 
between the pressure and line pack is given in (11), followed by 
the gas flow equality constraint defined by line pack in (12). 
Equation (13) represents the average line flow via the gas flow 
at the initial and terminal nodes. 0 ≤ 𝐺𝑔𝑠,𝑡{∙} ≤ 𝐺𝑔𝑠,𝑚𝑎𝑥{∙} , {∙} = 𝑐, 𝑑  (8) 𝐸𝑔𝑠,𝑡 = 𝐸𝑔𝑠,𝑡−1 + 𝐺𝑔𝑠,𝑡𝑐 𝜂𝑔𝑠𝑐 − 𝐺𝑔𝑠,𝑡𝑑 /𝜂𝑔𝑠𝑑  (9) 𝐸𝑔𝑠,𝑚𝑖𝑛 ≤ 𝐸𝑔𝑠,𝑡 ≤ 𝐸𝑔𝑠,𝑚𝑎𝑥  (10) 𝜗𝑙𝑔,𝑡 = 𝛩𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡𝑖𝑛𝑖  + 𝑃𝑟𝑙𝑔,𝑡𝑡𝑒𝑟  ) (11) 𝑓𝑙𝑔,𝑡 𝑖𝑛𝑖 − 𝑓𝑙𝑔,𝑡 𝑡𝑒𝑟 = 𝜗𝑙𝑔,𝑡 − 𝜗𝑙𝑔,𝑡−1 (12) 𝑓𝑙𝑔,𝑡 = (𝑓𝑙𝑔,𝑡 𝑖𝑛𝑖 + 𝑓𝑙𝑔,𝑡 𝑡𝑒𝑟) /2 (13) 

D. Power System Constraints 

The power system constraints are presented in (14)-(28). At 
the substation, the power purchase limit is given in (14) for 𝑃𝑠𝑢𝑏,𝑡𝑠 . The reserve capacity of traditional DGs and gas turbines 

(𝑟𝑖𝑒,𝑡+/−and 𝑟𝑔𝑡,𝑡+/−) are constrained in (15) and (16). The generation 

output of traditional DGs and gas turbines (𝑃𝑖𝑒,𝑡𝑠 and 𝑃𝑔𝑡,𝑡𝑠 ) is 

limited in (17) and (18). Constraint (19) limits the voltage 
magnitudes for all buses, which is denoted as 𝑉𝑏,𝑡𝑠 . The 

expression of voltage at the substation is shown in (20) with 
respect to unit step size of OLTC and tap position, where 𝑉𝑠𝑢𝑏,𝑡𝑠 , 𝑉𝑠𝑢𝑏𝑟𝑒𝑓 , 𝛿𝑂𝐿𝑇𝐶  and 𝑇𝑃𝑡𝑠,𝑂𝐿𝑇𝐶  represent the voltage at substation, 
nominal voltage, size of change for each step in OLTC tap 
position and tap position of OLTC at time t, respectively. 
Constraint (21) is adopted to avoid the fast wearing process of 
the transformer with excessive tap operations by the maximum 
allowing operation times 𝑛𝑇𝑃𝑚𝑎𝑥𝑂𝐿𝑇𝐶. Constraints (22) and (23) are 
defined for the reactive power output of PV systems 𝜔𝑗,𝑡𝑄,𝑠 with 

regards to the power factor 𝑃𝐹𝑝𝑣,𝑚𝑖𝑛 and active power output 𝜔𝑗,𝑡𝑃,𝑠. 
The reactive power output of capacitor banks 𝑄𝑐𝑏,𝑡𝑠  is constrained 

in (24), where 𝑢𝑐𝑏,𝑡𝑠  and 𝑄𝑐𝑏𝑐𝑎𝑝  are switch status and capacity of 

capacitor banks. Constraints (25) and (26) are the DistFlow 
equation with linearization for distribution networks. This 
equation is obtained based on the assumption that i) losses are 
negligible, ii) the voltage at each bus is close to 1.0 p.u. and iii) 
the voltage at the reference bus is 1.0 p.u. [37-39]. Note that 𝑟𝑙𝑒 
and 𝑥𝑙𝑒 are resistance and reactance of power line 𝑙𝑒. The active 

and reactive power flow are represented by 𝑓𝑙𝑒,𝑡𝑎,𝑠 and 𝑓𝑙𝑒,𝑡𝑟,𝑠. And the 

balancing conditions are given in (27) and (28) for active and 
reactive power, respectively. 𝑃𝑘𝑒,𝑡  and 𝑄𝑘𝑒,𝑡  are the active and 

reactive power demand.  0 ≤ 𝑃𝑠𝑢𝑏,𝑡𝑠 ≤ 𝑃𝑠𝑢𝑏,𝑚𝑎𝑥 (14) 0 ≤ 𝑟{∙},𝑡+ ≤ 𝑅{∙}+ , {∙} = 𝑖𝑒 , 𝑔𝑡 (15) 0 ≤ 𝑟{∙},𝑡− ≤ 𝑅{∙}− , {∙} = 𝑖𝑒 , 𝑔𝑡 (16) 𝑃{∙},𝑡𝑠 + 𝑟{∙},𝑡+ ≤ 𝑃{∙},𝑚𝑎𝑥, {∙} = 𝑖𝑒 , 𝑔𝑡 (17) 𝑃{∙},𝑚𝑖𝑛 ≤ 𝑃{∙},𝑡𝑠 − 𝑟{∙},𝑡− , {∙} = 𝑖𝑒 , 𝑔𝑡 (18) 𝑉𝑏,𝑚𝑖𝑛 ≤ 𝑉𝑏,𝑡𝑠 ≤ 𝑉𝑏,𝑚𝑎𝑥  (19) 𝑉𝑠𝑢𝑏,𝑡𝑠 = 𝑉𝑠𝑢𝑏𝑟𝑒𝑓 + 𝛿𝑂𝐿𝑇𝐶𝑇𝑃𝑡𝑠,𝑂𝐿𝑇𝐶 (20) ∑|𝑇𝑃𝑡𝑠,𝑂𝐿𝑇𝐶 − 𝑇𝑃𝑡−1,𝑠,𝑂𝐿𝑇𝐶|𝑡∈𝑇 ≤ 𝑛𝑇𝑃𝑚𝑎𝑥𝑂𝐿𝑇𝐶 (21) 

0 ≤ 𝜔𝑗,𝑡𝑄,𝑠 ≤ 𝑢𝑃𝑉 𝜔𝑗,𝑡𝑃,𝑠 (22) 

𝑢𝑃𝑉 = √1 − 𝑃𝐹𝑃𝑉,𝑚𝑖𝑛2𝑃𝐹𝑃𝑉,𝑚𝑖𝑛2  

 

(23) 𝑄𝑐𝑏,𝑡𝑠 = 𝑢𝑐𝑏,𝑡𝑠 𝑄𝑐𝑏𝑐𝑎𝑝 (24) 𝑉𝑏,𝑡𝑠,𝑖𝑛𝑖 − 𝑉𝑏,𝑡𝑠,𝑡𝑒𝑟 = (𝑓𝑙𝑒,𝑡𝑎,𝑠𝑟𝑙𝑒 + 𝑓𝑙𝑒,𝑡𝑟,𝑠𝑥𝑙𝑒)/𝑉0 (25) 0 ≤ 𝑓𝑙𝑒,𝑡{∙},𝑠 ≤ 𝑓𝑙𝑒,𝑚𝑎𝑥{∙},𝑠 , {∙} = 𝑎, 𝑟 (26) ∑ 𝑃𝑖𝑒,𝑡𝑠 +𝑖𝑒∈𝐼𝑒 ∑𝜔𝑗,𝑡𝑃,𝑠 + ∑ 𝑓𝑙𝑒,𝑡𝑎,𝑠,𝑖𝑛𝑖 −𝑙𝑒∈𝐿𝑒𝑗∈𝐽 ∑ 𝑓𝑙𝑒,𝑡𝑎,𝑠,𝑡𝑒𝑟 + ∑ 𝑃𝑔𝑡,𝑡 𝑠𝑔𝑡∈𝐺𝑇𝑙𝑒∈𝐿𝑒= ∑ 𝑃𝑘𝑒,𝑡𝑘𝑒∈𝐾𝑒 +∑𝑃𝑛,𝑡𝑠,𝑃2𝐺𝑛∈𝑁  

(27) 

∑ 𝑄𝑖𝑒,𝑡𝑠 +𝑖𝑒∈𝐼𝑒 ∑𝜔𝑗,𝑡𝑄,𝑠 + ∑ 𝑄𝑐𝑏,𝑡𝑠𝑐𝑏∈𝐶𝐵 + ∑ 𝑓𝑙𝑒,𝑡𝑟,𝑠,𝑖𝑛𝑖𝑙𝑒∈𝐿𝑒𝑗∈𝐽 − ∑ 𝑓𝑙𝑒,𝑡𝑟,𝑠,𝑡𝑒𝑟𝑙𝑒∈𝐿𝑒 = ∑ 𝑄𝑘𝑒,𝑡𝑘𝑒∈𝐾𝑒  (28) 

 

E. Gas System Constraints  

Equations (29)-(43) are technical constraints of the gas 
system. The gas source output 𝐺𝑖𝑔,𝑡𝑠  is limited in (29). Equations 

(30) and (31) regulate the gas pressure 𝑃𝑟𝑙𝑔,𝑡𝑠 , where constraint 

(31) indicates that the inlet gas pressure 𝑃𝑟𝑙𝑔,𝑡𝑠,𝑖𝑛𝑖 is always larger 

than the outlet gas pressure 𝑃𝑟𝑙𝑔,𝑡𝑠,𝑡𝑒𝑟. To define the gas flow 𝑓𝑙𝑔,𝑡 𝑠  , 
constraints (32) and (33) are utilized as the Weymouth gas flow 
equation, where 𝛾𝑙𝑔is the Weymouth equation constant. The gas 

turbine output 𝑃𝑔𝑡,𝑡 𝑠  is restricted in (34). The proposed gas quality 

constraints under real conditions are presented in (35)-(37), 
including GCV, SG and WI. For the sake of gas quality and 
security, the limitation of gas quality indices is given in (38). In 
(39), the gas volume deviation is limited between the adjacent 
time periods under standard temperature and pressure. 
Constraints (40)-(42) limit the overall gas volume 𝜑𝑛,𝑡𝑚𝑖𝑥 at each 
gas node according to [40], where 𝛩 is the constant in Boyle’s 
law. And the gas balance constraint is presented in (43).  𝐺𝑖𝑔,𝑚𝑖𝑛 ≤ 𝐺𝑖𝑔,𝑡𝑠 ≤ 𝐺𝑖𝑔,𝑚𝑎𝑥 (29) 𝑃𝑟𝑙𝑔,𝑚𝑖𝑛2   ≤ 𝑃𝑟𝑙𝑔,𝑡𝑠2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥 2  (30) 𝑃𝑟𝑙𝑔,𝑡𝑠,𝑖𝑛𝑖 ≥ 𝑃𝑟𝑙𝑔,𝑡𝑠,𝑡𝑒𝑟   (31) 𝑓𝑙𝑔,𝑡 𝑠 2 = 𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡𝑠,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡𝑠,𝑡𝑒𝑟2 ) (32) 0 ≤ 𝑓𝑙𝑔,𝑡 𝑠 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥   (33) 𝑃𝑔𝑡,𝑡 𝑠 = 𝑐𝑔𝑡𝑓𝑙𝑔,𝑔𝑡 𝑠  (34) 𝛺𝑛,𝑡𝑚𝑖𝑥 = 𝛺ℎ𝑦(𝜑𝑛,𝑡ℎ𝑦,𝑚𝑒 + 𝜑𝑛,𝑡ℎ𝑦,𝑑) + 𝛺𝐿𝑃𝐺𝜑𝑛,𝑡𝐿𝑃𝐺 + 𝛺𝑛𝑖𝜑𝑛,𝑡𝑛𝑖 + 𝛺𝑚𝑒𝜑𝑛,𝑡𝑚𝑒 (35) 𝑆𝐺𝑛,𝑡𝑚𝑖𝑥 = [𝜌ℎ𝑦(𝜑𝑛,𝑡ℎ𝑦_𝑚𝑒 + 𝜑𝑛,𝑡ℎ𝑦_𝑑) + 𝜌𝐿𝑃𝐺𝜑𝑛,𝑡𝐿𝑃𝐺 + 𝜌𝑛𝑖𝜑𝑛,𝑡𝑛𝑖 + 𝜌𝑚𝑒𝜑𝑛,𝑡𝑚𝑒](𝜑𝑛,𝑡ℎ𝑦,𝑚𝑒+ 𝜑𝑛,𝑡ℎ𝑦,𝑑 + 𝜑𝑛,𝑡𝐿𝑃𝐺 + 𝜑𝑛,𝑡𝑛𝑖 + 𝜑𝑛,𝑡𝑚𝑒) (36) 

𝑊𝐼𝑛,𝑡𝑚𝑖𝑥 = 𝛺𝑛,𝑡𝑚𝑖𝑥/√𝑆𝐺𝑛,𝑡𝑚𝑖𝑥 
(37) {∙}𝑚𝑖𝑛 ≤ {∙} ≤ {∙}𝑚𝑎𝑥 , {∙} = 𝛺𝑛,𝑡𝑚𝑖𝑥 , 𝑆𝐺𝑛,𝑡𝑚𝑖𝑥,𝑊𝐼𝑛,𝑡𝑚𝑖𝑥 

(38) 

−∆𝜑𝑛,𝑚𝑎𝑥{∙} ≤ 𝜑𝑛,𝑡{∙} − 𝜑𝑛,𝑡−1{∙} ≤ ∆𝜑𝑛,𝑚𝑎𝑥{∙}
 {∙} = ℎ𝑦_𝑚𝑒, ℎ𝑦_𝑑, 𝐿𝑃𝐺, 𝑛𝑖,𝑚𝑒 

(39) 

𝜑𝑛,𝑡ℎ𝑦,𝑚𝑒 + 𝜑𝑛,𝑡ℎ𝑦,𝑑 + 𝜑𝑛,𝑡𝐿𝑃𝐺 + 𝜑𝑛,𝑡𝑛𝑖 + 𝜑𝑛,𝑡𝑚𝑒 = 𝜑𝑛,𝑡𝑚𝑖𝑥 (40) 𝜑𝑛,𝑚𝑖𝑛𝑚𝑖𝑥 ≤ 𝜑𝑛,𝑡𝑚𝑖𝑥 ≤ 𝜑𝑛,𝑚𝑎𝑥𝑚𝑖𝑥  (41) 𝜑𝑛,𝑡𝑚𝑖𝑥 = 𝛩𝑃𝑟𝑛,𝑡   
(42) 

∑ 𝐺𝑖𝑔,𝑡𝑠𝑖𝑔∈𝐼𝑔 +∑ 𝐺𝑛,𝑡𝑠,ℎ𝑦𝑛∈𝑁 + ∑ 𝑓𝑙𝑔,𝑡𝑠,𝑖𝑛𝑖 −𝑙𝑔∈𝐿𝑔 ∑ 𝑓𝑙𝑔,𝑡𝑠,𝑡𝑒𝑟  𝑙𝑔∈𝐿𝑔= ∑ 𝐺𝑘𝑔,𝑡𝑘𝑔∈𝐾𝑔 +∑ 𝑓𝑙𝑔,𝑔𝑡,𝑡𝑠𝑙𝑔∈𝐿𝑔  

(43) 

F. Energy Hub Constraints  

    The energy hub considered in this paper is equipped with 
combined heat and power (CHP), gas furnace (GF), ground 
source heat pump (GSHP) for energy conversion and an energy 
storage system for storing the excessive energy. The detailed 
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energy hub structure is given in Fig. 1. The energy storage 
system contains a battery storage and a heat storage. Constraint 
(44) presents the expression of the energy conversion of GSHP 
and GF, i.e., 𝑃𝐶𝑂𝑃,𝑡𝑠,𝑜  and 𝑃𝐺𝐹,𝑡𝑠,𝑜 . Equations (45) and (46) show the 

power and heat output of CHP (𝑃𝑐𝑝𝑒,𝑡𝑠,𝑜  and 𝑃𝑐𝑝ℎ,𝑡𝑠,𝑜 ). Constraint (47) 

limits the input of CHP, GF and GSHP (𝑃𝑐𝑝,𝑡𝑖 , 𝑃𝐶𝑂𝑃,𝑡𝑖  and 𝑃𝐺𝐹,𝑡𝑖 ). 

The hourly charging and discharging power and heat for battery 
and water tank are given in (48) for 𝑃𝐵𝑆,𝑡𝑠,𝑐ℎ, 𝑃𝐵𝑆,𝑡𝑠,𝑑𝑐ℎ, 𝑃𝐻𝑆,𝑡𝑠,𝑐ℎ and 𝑃𝐻𝑆,𝑡𝑠,𝑑𝑐ℎ. 

The remaining power and heat energy (𝐸𝐵𝑆,𝑡𝑠  and 𝐸𝐻𝑆,𝑡𝑠 ) is limited 
in (49) and (50). Equation (51) is the coupling constraint for 
energy hub for maintaining the balancing condition.  𝑃{∙},𝑡𝑠,𝑜 = 𝜂{∙}𝑃{∙},𝑡𝑠,𝑖 , {∙} = 𝐶𝑂𝑃, 𝐺𝐹 (44) 𝑃𝑐𝑝𝑒,𝑡𝑠,𝑜 = 𝜂𝑐𝑝𝑒𝑃𝑐𝑝 ,𝑡𝑠,𝑖  (45) 𝑃𝑐𝑝ℎ,𝑡𝑠,𝑜 = 𝜂𝑐𝑝ℎ𝑃𝑐𝑝 ,𝑡𝑠,𝑖  (46) 𝑃{∙},𝑚𝑖𝑛𝑖 ≤ 𝑃{∙},𝑡𝑖 ≤ 𝑃{∙},𝑚𝑎𝑥𝑖 , {∙} = 𝑐𝑝 , 𝐶𝑂𝑃, 𝐺𝐹 (47) 𝑃{∙},𝑚𝑖𝑛𝑠,𝑐ℎ/𝑑𝑐ℎ ≤ 𝑃{∙},𝑡𝑠,𝑐ℎ/𝑑𝑐ℎ ≤ 𝑃{∙},𝑚𝑎𝑥𝑠,𝑐ℎ/𝑑𝑐ℎ , {∙} = 𝐵𝑆,𝐻𝑆  (48) 𝐸{∙},𝑡𝑠 = 𝐸{∙},𝑡−1𝑠 +∑ 𝑃{∙},𝑡𝑠,𝑐ℎ𝜂{∙}𝑐ℎ −𝑡1 𝑃{∙},𝑡𝑠,𝑑𝑐ℎ/𝜂{∙}𝑑𝑐ℎ, {∙} = 𝐵𝑆,𝐻𝑆  (49) 𝐸{∙},𝑚𝑖𝑛 ≤ 𝐸{∙},𝑡𝑠 ≤ 𝐸{∙},𝑚𝑎𝑥 , {∙} = 𝐵𝑆,𝐻𝑆  (50) [𝐿𝑒,𝑡 + 𝑃𝐵𝑆,𝑡𝑠𝐿ℎ,𝑡 + 𝑃𝐻𝑆,𝑡𝑠 ] = 

[1 − 𝑣𝑒,𝑡𝑠 𝑣𝑔,𝑡𝑠 𝜂𝐶𝐻𝑃𝑒(1 − 𝑣𝑒,𝑡𝑠 )𝑣𝑒,𝑡𝑠 𝜂𝐶𝑂𝑃 𝑣𝑔,𝑡𝑠 (𝜂𝐶𝐻𝑃ℎ + 𝜂𝐶𝐻𝑃𝑒𝑣𝑒,𝑡𝑠 𝜂𝐶𝑂𝑃 + 𝜂𝐺𝐹 − 𝑣𝑔,𝑡𝑠 𝜂𝐺𝐹)] × [𝑓𝑙𝑒,𝑡 𝑠,𝑖𝑛𝑗𝑓𝑙𝑔,𝑡 𝑠,𝑖𝑛𝑗] (51) 

G. Real-Time System Constraints  

The endogenous renewable uncertainty and variability are 
realized after the first-stage decision making. And the real-time 
corrective VPO can be implemented for adjustment on voltage 
regulation, gas quality control and redispatch of generators. 
Moreover, load shedding is scheduled for ensuring the security 
of the overall system. The real-time regulation of operation 
schemes of traditional DGs and gas turbines are given in (52). 
Constraint (53) presents the load shedding limits for power and 
gas systems (𝑃𝑘𝑒,𝑡𝑙𝑠 and 𝑃𝑘𝑔,𝑡𝑙𝑠 ). Finally, the real-time balancing 

conditions of power and gas systems are shown in (54)-(56). 
Noted that the rest of the second-stage constraints are not given, 
but are the same as the first-stage constraints presented in 
section Ⅱ-C  D and E when superscript ‘s’ is replaced by ‘re’.   𝑃{∙},𝑡𝑟𝑒 − 𝑟{∙},𝑡− ≤ 𝑃{∙},𝑡𝑟𝑒 ≤ 𝑃{∙},𝑡𝑟𝑒 + 𝑟{∙},𝑡+ , {∙} = 𝑖𝑒 , 𝑔𝑡 (52) 0 ≤ 𝑃{∙},𝑡𝑙𝑠 ≤ 𝑃{∙},𝑚𝑎𝑥𝑙𝑠 , {∙} = 𝑘𝑒 , 𝑘𝑔 (53) ∑ 𝑃𝑖𝑒,𝑡𝑟𝑒 +𝑖𝑒∈𝐼𝑒 ∑𝜉𝑗,𝑡 + ∑ 𝑃𝑔𝑡,𝑡 𝑠𝑔𝑡∈𝐺𝑇 + ∑ 𝑓𝑙𝑒,𝑡𝑎,𝑠,𝑖𝑛𝑖 −𝑙𝑒∈𝐿𝑒 ∑ 𝑓𝑙𝑒,𝑡𝑎,𝑠,𝑡𝑒𝑟𝑙𝑒∈𝐿𝑒 =𝑗∈𝐽 ∑ 𝑃𝑘𝑒,𝑡 − 𝑃𝑘𝑒,𝑡𝑙𝑠 

𝑘𝑒∈𝐾𝑒+∑𝑃𝑛,𝑡𝑟𝑒,𝑃2𝐺𝑛∈𝑁  

 

(54) 

∑𝑄𝑖𝑒,𝑡𝑠 +𝑖𝑒∈𝐼𝑒 ∑𝜔𝑗,𝑡𝑄,𝑠 + ∑ 𝑄𝑐𝑏,𝑡𝑠𝑐𝑏∈𝐶𝐵 + ∑ 𝑓𝑙𝑒,𝑡𝑟,𝑠,𝑖𝑛𝑖 −𝑙𝑒∈𝐿𝑒 ∑ 𝑓𝑙𝑒,𝑡𝑟,𝑠,𝑡𝑒𝑟𝑙𝑒∈𝐿𝑒 =𝑗∈𝐽 ∑ 𝑄𝑘𝑒,𝑡𝑘𝑒∈𝐾𝑒− 𝑄𝑘𝑒,𝑡𝑙𝑠  

(55) 

 

∑ 𝐺𝑖𝑔,𝑡𝑟𝑒𝑖𝑔∈𝐼𝑔 + ∑ 𝑓𝑙𝑔,𝑡𝑟𝑒,𝑖𝑛𝑖 −𝑙𝑔∈𝐿𝑔 ∑ 𝑓𝑙𝑔,𝑡𝑟𝑒,𝑡𝑒𝑟  𝑙𝑔∈𝐿𝑔 = ∑ 𝐺𝑘𝑔,𝑡𝑘𝑔∈𝐾𝑔 − 𝐺𝑘𝑔,𝑡𝑙𝑠 + ∑ 𝑓𝑙𝑔,𝑔𝑡,𝑡𝑟𝑒𝑙𝑔∈𝐿𝑔  (56) 

H. Objective Function 

The objective function of the first and second stages are 
presented in (57) and (58), respectively. In (57), the 
minimization of voltage deviation and system operation cost is 
proposed. The cost coefficient of voltage regulation, gas quality 
management, gas storage depreciation, substation power 
purchase, power generation, natural gas source generation and 
reserve capacity are denoted by 𝜋𝑣 , 𝜆𝑁 , 𝜆𝐿𝑃𝐺 , 𝜆𝑠𝑢𝑏, 𝜆𝑔𝑠 , 𝜆𝑖𝑒𝑎 , 𝜆𝑖𝑒𝑏 , 𝜆𝑖𝑒𝑐 , 𝜆𝑖𝑔, 𝜆𝑖𝑒+  and 𝜆𝑖𝑒− . The first term transforms the voltage deviation to 

monetary loss. The second and third terms depict the purchase 
and injection cost of nitrogen and LPG for maintaining satisfied 
gas quality indices. The power purchase from the upper-level 
market is given in the fourth term. The fifth term represents the 
depreciation cost of DGS. And the rest of (57) shows the 
generation and reserve cost of traditional DGs and gas turbines. 
Equation (58) presents the second-stage objective function 
including the voltage deviation cost (𝜋𝑣|𝑉𝑏,𝑡𝑟𝑒 − 𝑉𝑏𝑟𝑒𝑓|), the regulation 
cost for re-dispatching generators ( 𝜆𝑁𝜑𝑛,𝑡𝑟𝑒,𝑛𝑖 + 𝜆𝐿𝑃𝐺𝜑𝑛,𝑡𝑟𝑒,𝐿𝑃𝐺 +𝜆𝑠𝑢𝑏 𝑃𝑠𝑢𝑏,𝑡𝑟𝑒 +𝜆𝑗𝑟𝑒|𝜔𝑗,𝑡𝑠 − 𝜉𝑗,𝑡| + 𝜆𝑖𝑒𝑟𝑒|𝑃𝑖𝑒,𝑡𝑠 − 𝑃𝑖𝑒,𝑡𝑟𝑒 | + 𝜆𝑖𝑔𝑟𝑒 |𝑃𝑖𝑔,𝑡𝑠 − 𝑃𝑖𝑔,𝑡𝑟𝑒 | ) and load 

shedding (𝜆𝑘𝑒𝑙𝑠 𝑃𝑘𝑒,𝑡𝑙𝑠 + 𝜆𝑘𝑔𝑙𝑠 𝑃𝑘𝑔,𝑡𝑙𝑠 ). 𝛤1 = min ∑ 𝜋𝑣|𝑉𝑏,𝑡𝑠 − 𝑉𝑏𝑟𝑒𝑓| + 𝜆𝑁𝜑𝑛,𝑡𝑠,𝑛𝑖 + 𝜆𝐿𝑃𝐺𝜑𝑛,𝑡𝑠,𝐿𝑃𝐺𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇 + 𝜆𝑠𝑢𝑏 𝑃𝑠𝑢𝑏,𝑡𝑠 + 𝜆𝑔𝑠(𝐺𝑔𝑠,𝑡𝑐 + 𝐺𝑔𝑠,𝑡𝑑 ) + 𝜆𝑖𝑒𝑎 𝑃𝑖𝑒,𝑡𝑠 2+ 𝜆𝑖𝑒𝑏 𝑃𝑖𝑒,𝑡𝑠 + 𝜆𝑖𝑒𝑐 + 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡𝑠 + 𝜆𝑖𝑒+ 𝑟𝑖𝑒,𝑡+ + 𝜆𝑖𝑒− 𝑟𝑖𝑒,𝑡−  

 

(57) 

𝛤2 = min ∑ 𝜋𝑣|𝑉𝑏,𝑡𝑟𝑒 − 𝑉𝑏𝑟𝑒𝑓| + 𝜆𝑁𝜑𝑛,𝑡𝑟𝑒,𝑛𝑖𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑘𝑒∈𝐾𝑒,𝑘𝑔∈𝐾𝑔+ 𝜆𝐿𝑃𝐺𝜑𝑛,𝑡𝑟𝑒,𝐿𝑃𝐺 + 𝜆𝑠𝑢𝑏 𝑃𝑠𝑢𝑏,𝑡𝑟𝑒 + 𝜆𝑗𝑟𝑒|𝜔𝑗,𝑡𝑠 − 𝜉𝑗,𝑡|+ 𝜆𝑖𝑒𝑟𝑒|𝑃𝑖𝑒,𝑡𝑠 − 𝑃𝑖𝑒,𝑡𝑟𝑒 | +𝜆𝑖𝑔𝑟𝑒 |𝑃𝑖𝑔,𝑡𝑠 − 𝑃𝑖𝑔,𝑡𝑟𝑒 | + 𝜆𝑘𝑒𝑙𝑠 𝑃𝑘𝑒,𝑡𝑙𝑠+ 𝜆𝑘𝑔𝑙𝑠 𝑃𝑘𝑔,𝑡𝑙𝑠  

 

(58) 

III. METHODOLOGY 

The solution approach of the two-stage DRO is given in this 

section. In Fig. 2, the method illustration is presented including 

the description of the following four subsections. 

A. Compact Matrix Formulation 

For the clear presentation and notation brevity, the original 
problem is given as a compact matrix formulation. The first-
stage problem is given in (59) and (60), where the first-stage 
variables are represented by vector x. Objective (59) represents 
(57)-(58) and constraint (60) represents (4)-(51) in the first 
stage. The second-stage objective 𝑄(𝑥, 𝜉) is the wait-and-see 
adaptive objective given the here-and-now decision x. min𝑥∈𝑋 𝑐𝑇𝑥 + supℙ∈Ω  𝐸ℙ[𝑄(𝑥, 𝜉)] (59) 

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝ𝑉1 , 𝑏 ∈ ℝ𝐶1  , 𝐴 ∈ ℝ𝐶1×𝑉1 (60) 

The second-stage problem is shown in (61) and (62), and y 

denotes the second-stage variables. Constraints (4)-(51) with 

superscript ‘re’ and (52)-(56) are summarized as (62). In (63), 

vector ℎ(𝜉)  is composed of the constant vector ℎ0  and 

uncertain vector ℎ𝑖𝜉. 𝑄(𝑥, 𝜉) = min𝑦 𝑓′𝑦 , 𝑦 ∈ ℝ𝑉2 (61) 

s.t. 𝐵𝑥 + 𝐶𝑦 ≤ ℎ(𝜉), 𝑦 ∈ ℝ𝑉2 , ℎ ∈ ℝ𝐶2  , 𝐵 ∈ ℝ𝐶2×𝑉1 ,  𝐶 ∈ ℝ𝐶2×𝑉2 , 𝐷 ∈ ℝ𝐶2×𝑖 (62) 

ℎ(𝜉) = ℎ0 + ℎ𝑖𝜉𝜉𝑖 (63) 

 

Fig. 1.  The proposed energy hub model.  
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B. Wasserstein Distance-Based Ambiguity Set 

According to the data-driven setting with the empirical 

distribution ℙ̂ = 1/𝑆 ∑ 𝛿�̂�𝑠∈𝑆 , the Wasserstein metric between 

the candidate and empirical distributions is given in (64) [41]. 
In Fig. 3, the figure presentation shows that Wasserstein metirc 
is used to measure the similarity of two distributions. The 
random variables in the candidate and empirical distributions 

are denoted as 𝜉  and 𝜉† , respectively. The distance metric is 

represented by 𝜌(𝜉, 𝜉†). 𝑑(ℙ, ℙ̂) = inf 𝐸ℚ[𝜌(𝜉, 𝜉†)] , 𝜉~ℙ, 𝜉†~ℙ̂ (64) 

The ambiguity set considering the Wasserstein distance is 
presented in (65), where is the radius of the ball set. The set of 
all the possible distributions is denoted as 𝑷.  

S = {ℙ ∈ 𝑷(ℝ𝑖  )| 𝜉~ℙ𝑑(ℙ, ℙ̂) ≤ 𝜂} 
 

(65) 

The explicit conditional Wasserstein-based ambiguity set is 
given in (66), where the scenarios are distinguished by �̃� , 
representing the support of 𝜉  is different based on different 
scenarios. The ambiguity set in (66) ensures i) the uncertain 
variables 𝜉 , 𝜑  and �̃� are within the distribution; ii) the 
expectation of uncertain variable 𝜉  is 𝜇𝑠 ; iii) the auxiliary 
variable 𝜑 is used to ensure limited the distribution distance and 
iv) 𝜉 and 𝜑 are limited within the lifted support set Ξ.  

 Ω =
{   
   ℙ ∈ 𝑷(ℝ𝑖  × ℝ𝑗  )|

| ((𝜉, 𝜑), �̃�)~ℙ𝐸ℙ[𝜉|�̃� ∈ 𝑺] = 𝜇𝑠𝐸ℙ[𝜑|�̃� ∈ 𝑺] ≤ 𝜂𝑠Ξ = {(𝜉, 𝜑) ∈ ℝ𝑖 × ℝ𝑗 ∶  𝐺𝑥 + 𝐻𝑦 ≤ 𝑟 }ℙ[(𝜉, 𝜑)|�̃� ∈ 𝑺] = 1ℙ[�̃� ∈ 𝑺] = 1 }   
   

 

 

(66) 

 

 

C. Approximation via Linear Decision Rule 

    Equation (67) is obtained as is equivalent to 𝑄(𝑥, 𝜉), where 𝑦(𝜉)  is the adaptive recourse function as shown in (68). 
Determining the worst-case expectation is generally intractable 
since all the possible realizations pertaining to the uncertainties 
are involved [42]. Employing the LDR in (69) can address the 
problem [43], which approximates 𝑦(𝜉)  by linear affine 
functions of 𝜉 and 𝜑.   𝑄(𝑥, 𝜉) = supℙ∈Ω  𝐸ℙ[𝑄(𝑥, 𝜉)] = supℙ∈Ω  𝐸ℙ[𝑓′𝑦(𝜉)] (67) 

 𝑦(𝜉) ∈ arg min{𝑓′𝑦:  𝐵𝑥 + 𝐶𝑦 ≤ ℎ(𝜉)}, 𝑦 ∈ ℝ𝑉2 , ℎ ∈ℝ𝐶2  , 𝐵 ∈ ℝ𝐶2×𝑉1 , 𝐶 ∈ ℝ𝐶2×𝑉2 , 𝐷 ∈ ℝ𝐶2×𝑖 (68) 

 𝑦𝑛(𝜉, 𝜑) = 𝑦𝑛0 + ∑ 𝑦𝑛𝜉𝜉∈�̃� 𝜉 + ∑ 𝑦𝑛𝜑𝜑∈�̃� 𝜑 (69) 

    The approximation of function 𝑄(𝑥, 𝜉) can be obtained when 
the recourse decision 𝑦(𝜉) is replaced by the LDR expression 
in (70), which is denoted as 𝑄𝐿𝐷𝑅(𝑥, 𝜉).  𝑄𝐿𝐷𝑅(𝑥, 𝜉, 𝜑, �̃�) = min supℙ∈Ω  𝐸ℙ[𝑓′𝑦(𝜉, 𝜑, �̃�)] (70) 

s.t. 𝐵𝑥 + 𝐶𝑦(𝜉, 𝜑, �̃�) ≤ ℎ(𝜉), ∀(𝜉, 𝜑) ∈ Ξ (71) 

D. Dual Reformulation and Robust Counterpart 

To convert the original ‘min sup’ framework of the second 
stage into ‘min’ and thus mixed with the first-stage objective, a 
dual reformulation is made [44] in (72)-(75), where 𝜓 and 𝜆 are 
dual variables.  𝑄𝐿𝐷𝑅 = min 𝜏 + 𝜓𝜂𝑠 + 𝜆𝜇𝑠 (72) 

s.t.    𝜏 + 𝜉′𝜆 + 𝜑′𝜓 ≥ 𝑓′𝑦(𝜉, 𝜑, �̃�), ∀(𝜉, 𝜑) ∈ Ξ (73) 𝐵𝑥 + 𝐶𝑦(𝜉, 𝜑, �̃�) ≤ ℎ(𝜉), ∀(𝜉, 𝜑) ∈ Ξ (74) 

𝜓 ≥ 0,𝜓 ∈ ℝ𝑗 , 𝜏 ∈ ℝ , 𝜆 ∈ ℝ𝑖 (75) 

The reformulated (72)-(75) is a robust linear program, which 
can be written as the robust counterpart in (77)-(84).  𝑄𝐿𝐷𝑅 = min 𝜏 + 𝜓𝜂𝑠 + 𝜆𝜇𝑠 (76) 

s.t.    𝜏 − 𝑓′𝑦0𝑠 + 𝜒0′𝑟 ≥ 0 (77) 𝜒0𝑠′ 𝐺𝑠𝑖 =∑𝑞𝑛𝑦𝑛𝑖𝜉𝑠 − 𝜆𝑖𝑛 , ∀𝑖 ∈ 𝐼, ∀𝑠 ∈ 𝑆 (78) 𝜒0𝑠′ 𝐻𝑠𝑗 =∑𝑞𝑛𝑦𝑛𝑗𝜑𝑠 − 𝜓𝑗 , ∀𝑗 ∈ 𝐽𝑛 , ∀𝑠 ∈ 𝑆 (79) 𝜒𝑚𝑠′ 𝐺𝑠𝑖 =∑𝐶𝑚𝑛𝑦𝑛𝑖𝜉𝑠 −𝑛 ℎ𝑚𝑖𝜉 , ∀𝑖 ∈ 𝐼, ∀𝑠 ∈ 𝑆 (80) 

𝜒𝑚𝑠′ 𝐻𝑠𝑗 =∑𝐶𝑚𝑛𝑦𝑛𝑗𝜑𝑠𝑛 , ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 
(81) 𝐵𝑚′ 𝑥 + 𝐶𝑚′ 𝑦0𝑠 − ℎ𝑚0 + 𝑟′𝜒𝑚𝑠  , ∀𝑠 ∈ 𝑆 (82) 𝜓 ≥ 0, 𝜒0 ≥ 0, 𝜒𝑚 ≥ 0, 𝜏 ∈ ℝ , 𝜆 ∈ ℝ𝑖 , 𝜓 ∈ ℝ𝑗 (83) 

The new dual variables are represented as 𝜒0  and 𝜒𝑚 , 
respectively. Accordingly, the tractable approximation of the 
original TS-VPO is derived in (76)-(83).  

IV. CASE STUDIES 

This section presents the case studies to verify the 
effectiveness of the proposed TS-VPO on a 33-bus-20-node IES 
networked with energy hubs. The test system contains two gas 
turbines and P2G facilities for the power-gas interconnection 
[45]. Two DGSs are connected with P2G facilities for storing 
excessive gas. Two energy hubs are connected with buses 8 and 
21, where the explicit structure of energy hubs are shown in Fig. 
1. The power system contains 4 PV systems, 3 traditional DGs 
as well as 7 capacitor banks. The rated capacity of each 
capacitor bank and PV system are set as 400kVar and 360kVA. 
TABLE Ⅰ describes the 6 cases for testing the performance of 
TS-VPO. The radius of the Wasserstein ball is 1% of the upper 
bound of random variables.  

A. Studies on Voltage Management  

In Fig. 4, the voltage profiles of cases 1-4 are given. The blue 
solid curve represents the voltage at all buses for 24 hours and 
the red dotted curve represents the mean voltage value. In Fig. 

 

 
Fig. 2.  Figure illustration of the overall methodology.  

 
Fig. 3.  Wassertein metric between two probability distributions.  
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4 (a), the voltage magnitude ranges from 0.96 p.u. to 1.05 p.u. 
The voltage at bus 1 is the highest, followed by the decrease 
across the main branch till bus 18. The lowest voltage at the 
main branch reaches 0.97 p.u. at bus 18. Another decreasing 
trend occurs at buses 19-33. At bus 33, the voltage reaches 0.96 
p.u.. In Fig. 4 (b), compared with case 1, the voltage profile of 
case 2 ranges between 0.97 p.u. and 1.03 p.u.. The gas-to-power 
(G2P) is removed from the modelling and thus results in less 
voltage fluctuation. Case 3 only considers G2P and the voltage 
magnitude is generally larger than both cases 1 and 2 since the 
power conversion and hydrogen production are not considered. 
In particular, the voltage decreasing rate from bus 6 to 18 is 
slower than that of case 1. When the interconnection between 
power and gas systems is not considered, the voltage profile 
shows a similar voltage scheduling to case 1.  

The reactive power output scheduling for PV systems of 
cases 1 and 5 are shown in Figs. 5 and 6. The overall reactive 
power output in case 1 shows a smooth scheduling curve 
compared with case 5, which ranges between 0 and 0.3 MVar. 
The PV reactive power output remains the same at buses 3 and 
6 over the entire time horizon, i.e., 0. 13MVar and -0.13MVar, 
respectively. At bus 26, the reactive power output is sensitive to 
load demand variation, which changes frequently to absorb and 
compensate the reactive power. The PV reactive power shows 
a dramatic drop and rise between 2:00 and 7:00 in case 5, 
particularly at bus 6. On the contrary, buses 3, 11 and 25 yield 
similar reactive power output at each hour.  

The remaining capacity of DGS at nodes 10, 12 and 14 are 
presented in Fig. 7. The DGS at nodes 10 and 12 have more 
frequent usage than node 14. At node 10, the DGS is charging 
before 4:00, followed by a standby status between 4:00 and 8:00. 
Then it is generally discharging until 21:00. The last serval 
hours witness another charging process to meet the remaining 
capacity equal to the initial level. The voltage at bus 11, 
however, generally shows a flat trend compared with the DGS 
scheduling at node 10. The voltage is adjusted to remain around 
1.00 p.u. when DGS is extensively utilized in the charging 
process to store the excessive power injection and vice versa. 
On the contrary, since bus 3 is vital for distributing power on 
the main and sub-branches, the voltage fluctuation at bus 3 is 
distinct and cannot be effectively mitigated by the DGS, which 
results in the slight usage of DGS at node 14.  

B. Studies on Economic Performance 

    TABLE Ⅱ shows the results of the operation cost of two 
stages. The operation cost case 2 is the highest among all cases, 
i.e., $166766. In contrast, case 6 results in the lowest operation 
cost ($139072). The benchmark case 1 yields $126244 and 
$30458 at the first and second stages, respectively. The $10064 
higher operation cost of case 2 is due to the disconnection of 
G2P supply. Compared with case 2, the operation cost of case 3 
decreases, implying the advantage of GSP over P2G on the 
minimization of system operation cost. In case 4, there are no 
interconnections for power and gas systems. And the operation 
cost is 0.3% higher than that of case 1. When the twice of PV 
capacity is applied in case 5, the operation cost is greatly 
reduced, i.e., $148978. The operation cost of both the first and 
second stages are lower among cases 1-5 when gas quality 
management is incorporated. In case 6, the lowest economic 
result is yielded without the gas quality ensured, the purchase 

and injection cost of LPG and nitrogen is avoided, which results 
in $115896 and $23176 in the first and second stages, 
respectively.  
    Fig. 8 depicts the scheduling of energy hub connected with 
bus 8 and node 13. It can be seen that the usage of GF is the 
lowest. The reason is the conversion efficiency of GF is the 
lowest, which is considered as the backup conversion plan for 
replacing GSHP. GSHP is extensively used during the time 
period of 5:00-11:00, 12:00-16:00 and 18:00-24:00. In the 
morning, GSHP is injected by 1086kWh heat and peaks at 
261kW, producing 3258kWh heat. This large amount of heat 

 
TABLE Ⅰ 

 CASE ILLUSTRATION 
 

Case 
No. 

PV system 
capacity 
(kVA) 

Gas system 
connection 

Gas quality 
management 

1 400 Yes Yes 
2 400 P2G Yes 
3 400 G2P Yes 
4 400 No Yes 
5 800 Yes Yes 
6 400 Yes No 

 
 

 
(a). Voltage profile of case 1.                (b). Voltage profile of case 2. 

 
(c). Voltage profile of case 3.                (d). Voltage profile of case 4. 
 

Fig. 4. Expected real-time voltage profiles. 
 

 
Fig. 5.  Reactive power output of PV systems for case 1. 

 
Fig. 6.  Reactive power output of PV systems for case 5. 
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energy can be consumed by heating load directly or stored by 
the heat storage system. During the period of 12:00-16:00, 
677kWh is converted through GSHP. The last intensive 
conversion of GSHP is scheduled between 18:00 and 24:00, 
which results in 980kWh conversion from electricity to heat. 
Compared with GSHP, CHP yields 210% more energy 
conversion, particularly between 11:00 and 23:00. The gas-
power conversion peaks at 198kW and gas-heat peaks at 
342kW. It is found that the gas-heat conversion is 82% higher 
than the gas-power conversion. The CHP converts gas to 
power/heat based on their corresponding efficiency and the gas-
heat conversion is higher than G2P.  

C. Studies on Gas Quality Management 

This subsection illustrates another main function of VPO, i.e., 
gas quality management. In Fig. 9, WI and SG are analysed for 
cases 1 and 6. Case 1 considers gas quality management while 
case 6 does not. Generally, case 1 shows higher WI than case 6 
but it remains within the allowable range (30-45). Without the 
gas quality constraints, case 6 violates the range, i.e., between 
2:00 and 7:00, the WI of case 6 is below 30. Case 1 has a higher 
WI. And both the two indices are controlled at the permitted 
level.  

The scheduling information of gas pressure under cases 1-3 
for all the gas nodes is given in Fig. 10. Case 2 shows the highest 
gas pressure for all the nodes. The highest pressure is 28 Psig at 
node 8. The reason is that the additional power support from 
P2G facilities increases the gas flow and influences on the node 
pressure. Case 3 shows the minimum gas pressure which ranges 

between 17 and 23 Psig.  Since G2P provides excessive gas to 
the power system with the decrease of gas node pressure. Along 
the main branches in the gas system, i.e., nodes 1-7 and nodes 
8-16, the gas pressure peaks at nodes 1, 8 and 17. 8Since the 
pressure decreases with the reduction of gas flow. 

D. Scalability Analysis 

In this section, a scalability analysis is implemented on an 
IES with a larger scale, consisting of a modified IEEE 69-bus 
power system, two 20-node gas systems and 4 energy hubs. This 
system contains 6 PV systems, which are located at buses 9, 23, 
26, 34, 44 and 58, respectively. The capacity of each PV system 
is 800kVA. There are 12 capacitor banks for reactive power 
compensation and each capacity is 360kVA. The two gas 
systems contain 4 P2G facilities and 4 DGSs. The following 
cases are considered to investigate the voltage-pressure joint 
management problem. 

Case 1: Benchmark case. 
Case 2: Applying twice the capacity of PV systems. 
Case 3: Applying twice the capacity of capacitor banks.  
Case 4: Applying twice the unit price of natural gas sources. 
TABLE Ⅲ shows the economic performance of all the cases. 

It can be seen that case 3 shows the lowest operation cost whilst 
case 4 shows the highest. In case 1, the first and second stage 
operation costs are $270288 and $76571, respectively. 
Compared with case 1, case 2 applied the twice capacity of PV 
systems, which yields $22260 less operation cost. In case 3, the 
doubled capacity of capacitor banks provides additional 
reactive power support, which is more effective in regulating 
the voltage magnitude. Therefore, less voltage deviation 
contributes to less operation cost. In case 4, the operation cost 
in the two stages is $379240 and $75645, respectively. The total 
operation cost is 31% higher than that of the benchmark case 
since twice the natural gas sources generation cost is considered.   

In Figs 11-13, the voltage profile of cases 1, 3 and 4 are given. 
In Fig. 11, the voltage magnitude ranges from 0.97 p.u. to 1.04 
p.u.. When twice the capacity of capacitor banks is considered, 
the doubled reactive power support is effective on reducing the 
voltage fluctuation and magnitude. It can be seen that the 

 

 
Fig. 7.  Remaining capacity of DGS. 

TABLE Ⅱ 
ECONOMIC PERFORMANCE FOR CASES 1-6 

 

Economic 
result 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

First-stage 
cost ($) 

126244 134194 124298 124714 123232 115896 

Expected 
Second-stage 
cost ($) 

30458 32572 31608 32528 25746 23176 

Total cost ($) 156702 166766 155906 157242 148978 139072 

 

 
Fig. 8.  Energy hub scheduling result.  
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Fig. 9.  Gas quality indices for cases 1 and 6.  
 

 
Fig. 10.  Gas pressure for cases 1-3. 
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voltage level of case 3 is between 0.95 p.u. and 1.02 p.u.. 
Moreover, the voltage fluctuation is greatly mitigated with 
respect to different solar generation at each hour. When twice 
the gas source unit cost is applied, the voltage profile shows the 
result between 0.97 and 1.03 p.u.. Since more power is injected 
into the gas system to ensure the overall economic performance 
of the system. The gas pressure profile is given in Fig. 14, which 
is between 17 and 28Psig. Compared with Fig. 10, Fig. 14 
shows a similar gas pressure curve and magnitude. In Fig. 15, 
the energy hub scheduling is shown for the 69-bus test system. 
Compared with Fig. 8, CHP still dominates the energy 
conversion whilst GF results in higher power-heat conversion.   

E. Result Discussion  

    This section is used to summarize the findings of the case 
studies. For the test in 33-bus-20-node IES, 6 cases are 
considered to testify the impact of gas system connection, PV 
system capacity and gas quality management on the results of 
voltage profile, economic performance and gas pressure profile. 
The results demonstrate that without gas quality management, 
the operation cost is the lowest. However, this operation scheme 
sacrifices the gas quality, which will inevitably lead to quality 

issues of gas distribution and customer usage. When the G2P is 
disconnected, the operation cost is 6% higher than that of the 
benchmark case. Meanwhile, the voltage fluctuation is 
relatively moderate compared with other cases. In case 4, 
without the gas connection, the voltage profile shows a similar 
result compared with the benchmark case, which indicates that 
the bidirectional gas interconnection has a minor impact on the 
voltage profile. The gas pressure result shows the unidirectional 
energy flow, i.e., P2G, leads to a relatively higher gas pressure 
profile. In addition, the gas quality results imply the necessity 
of incorporating a gas quality management scheme in the IES 
operation. The scalability analysis is conducted on a 69-bus 
power system connected with two 20-node gas system and 4 
energy hubs. The capacity supplement on capacitor banks 
results in higher economic efficiency than that on PV systems. 
The voltage profile results demonstrate that effective voltage 
regulation when applying twice the capacity of capacitor banks. 
In addition, the higher generation cost of gas sources also 
contributes to voltage regulation. Gas pressure profile shows a 
similar result compared with the small-scale 33-bus IES.    

Future work aims to i) investigate a multi timescale voltage 
management framework to differentiate slow-response and fast-
response voltage regulating devices for more accurate voltage 
regulation and ii) consider time delay in the model for better 
practicability. 

V. CONCLUSION 

In this paper, a two-stage VPO model is developed to 
successfully regulate voltage deviation, manage gas quality and 
minimize system operation cost for IESs. P2G facilities and 
GSS are innovatively utilized as voltage regulating devices for 
converting and storing surplus renewable power generation. A 
gas quality management mechanism is developed to handle the 
hydrogen injection for ensuring the secure and economic 
operation of the gas system. The TS-VPO model provides a 
day-ahead preparation and real-time adaptive operation scheme. 
The ambiguity set employs the Wasserstein metric to capture all 
the possible candidate distributions. LDR is applied for 
approximating the recourse decisions. From the extensive case 
studies, the proposed VPO successfully facilitates the efficiency 
and economy of IES operation in regards to the voltage 
magnitude regulation and gas pressure control with minimized 
operation cost. Furthermore, it contributes to a reliable and 
sustainable energy supply to end customers and the society 
under the era of multi-energy with high renewable penetration. 

REFERENCES 

[1] S. Li, H. He, C. Su, and P. Zhao, "Data driven battery modeling and 
management method with aging phenomenon considered," Applied Energy, vol. 
275, p. 115340, 2020/10/01/ 2020, doi: 
https://doi.org/10.1016/j.apenergy.2020.115340. 
[2] S. Li, H. He, and J. Li, "Big data driven lithium-ion battery modeling method 
based on SDAE-ELM algorithm and data pre-processing technology," Applied 

Energy, vol. 242, pp. 1259-1273, 2019/05/15/ 2019, doi: 
https://doi.org/10.1016/j.apenergy.2019.03.154. 
[3] X. Xu, Y. Jia, Y. Xu, Z. Xu, S. Chai, and C. S. Lai, "A Multi-agent 
Reinforcement Learning based Data-driven Method for Home Energy 
Management," IEEE Transactions on Smart Grid, pp. 1-1, 2020, doi: 
10.1109/TSG.2020.2971427. 
[4] H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and A. K. Kaviani, 
"Security/cost-based optimal allocation of multi-type FACTS devices using 

TABLE Ⅲ 
ECONOMIC PERFORMANCE 

 

Economic 
result 

Case 1 Case 2 Case 3 Case 4 

First-stage 
cost ($) 

270288 262114 260578 379240 

Expected 
Second-stage 
cost ($) 

76571 62485 57930 75645 

Total cost ($) 346859 324599 318508 454885 

 

  
Fig. 11. Voltage profile of case 1.      Fig. 12. Voltage profile of case 3. 

  
Fig. 13. Voltage profile of case 4.       Fig. 14. Gas pressure profile. 

 
Fig. 15.  Converter scheduling result of case 1. 
 

0.95

0.97

0.99

1.01

1.03

1.05

1 5 9 131721252933374145495357616569

V
o
lta

ge
 
(p

.u
.)

Bus No.

0.95

0.97

0.99

1.01

1.03

1.05

1 5 9 131721252933374145495357616569

V
o
lta

ge
 
(p

.u
.)

Bus No.

0.95

0.97

0.99

1.01

1.03

1.05

1 5 9 131721252933374145495357616569

V
o

lta
ge

 
(p

.u
.)

Bus No.

14

16

18

20

22

24

26

28

30

1 3 5 7 9 11 13 15 17 19

G
ap

 p
re

ss
ur

e 
(P

si
g)

Node No.

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16 18 20 22 24

P
o
w

er
/h

ea
t 

(k
W

)

Time (h)

CHP power output
CHP heat output
GSHP power injection
GF heat output

https://doi.org/10.1016/j.apenergy.2020.115340
https://doi.org/10.1016/j.apenergy.2019.03.154


10 

multi-objective particle swarm optimization," SIMULATION, vol. 88, no. 8, pp. 
999-1010, 2012/08/01 2012, doi: 10.1177/0037549712438715. 
[5] H. Baghaee, M. Mirsalim, and G. B. Gharehpetian, "Multi-objective optimal 
power management and sizing of a reliable wind/PV microgrid with hydrogen 
energy storage using MOPSO," Journal of Intelligent & Fuzzy Systems, vol. 32, 
pp. 1753-1773, 02/24 2017, doi: 10.3233/JIFS-152372. 
[6] H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi, 
"MOPSO/FDMT-based Pareto-optimal solution for coordination of overcurrent 
relays in interconnected networks and multi-DER microgrids," IET Generation, 

Transmission & Distribution, vol. 12, no. 12, pp. 2871-2886, 2018, doi: 
10.1049/iet-gtd.2018.0079. 
[7] A. Parizad and K. Hatziadoniu, "Security/stability-based Pareto optimal 
solution for distribution networks planning implementing NSGAII/FDMT," 
Energy, vol. 192, p. 116644, 2020/02/01/ 2020, doi: 
https://doi.org/10.1016/j.energy.2019.116644. 
[8] Y. Chen et al., "Robust N–k CCUC model considering the fault outage 
probability of units and transmission lines," IET Generation, Transmission & 

Distribution, vol. 13, no. 17, pp. 3782-3791, 2019, doi: 10.1049/iet-
gtd.2019.0780. 
[9] Y. Chen, Z. Zhang, H. Chen, and H. Zheng, "Robust UC model based on 
multi-band uncertainty set considering the temporal correlation of wind/load 
prediction errors," IET Generation, Transmission & Distribution, vol. 14, no. 2, 
pp. 180-190, 2020, doi: 10.1049/iet-gtd.2019.1439. 
[10] H. Baghaee, M. Mirsalim, G. B. Gharehpetian, and A. Talebi, 
"Generalized three phase robust load-flow for radial and meshed power systems 
with and without uncertainty in energy resources using dynamic radial basis 
functions neural networks," Journal of Cleaner Production, vol. 174, pp. 96-
113, 02/10 2018, doi: 10.1016/j.jclepro.2017.10.316. 
[11] H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi, 
"Three-phase AC/DC power-flow for balanced/unbalanced microgrids 
including wind/solar, droop-controlled and electronically-coupled distributed 
energy resources using radial basis function neural networks," IET Power 

Electronics, vol. 10, no. 3, pp. 313-328, 2017, doi: 10.1049/iet-pel.2016.0010. 
[12] Y. Xu, Z. Y. Dong, R. Zhang, and D. J. Hill, "Multi-Timescale 
Coordinated Voltage/Var Control of High Renewable-Penetrated Distribution 
Systems," IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4398-4408, 
2017, doi: 10.1109/TPWRS.2017.2669343. 
[13] Q. Zhang, K. Dehghanpour, and Z. Wang, "Distributed CVR in 
Unbalanced Distribution Systems With PV Penetration," IEEE Transactions on 

Smart Grid, vol. 10, no. 5, pp. 5308-5319, 2019, doi: 
10.1109/TSG.2018.2880419. 
[14] P. Zhao, C. Gu, D. Huo, Y. Shen, and I. Hernando-Gil, "Two-Stage 
Distributionally Robust Optimization for Energy Hub Systems," IEEE 

Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3460-3469, 2020, doi: 
10.1109/TII.2019.2938444. 
[15] P. Zhao, C. Gu, Y. Xiang, X. Zhang, Y. Shen, and S. Li, "Reactive Power 
Optimization in Integrated Electricity and Gas Systems," IEEE Systems 

Journal, pp. 1-11, 2020, doi: 10.1109/JSYST.2020.2992583. 
[16] E. A. M. Ceseña and P. Mancarella, "Energy Systems Integration in 
Smart Districts: Robust Optimisation of Multi-Energy Flows in Integrated 
Electricity, Heat and Gas Networks," IEEE Transactions on Smart Grid, vol. 
10, no. 1, pp. 1122-1131, 2019, doi: 10.1109/TSG.2018.2828146. 
[17] Y. Wang et al., "Optimal Scheduling of the Regional Integrated Energy 
System Considering Economy and Environment," IEEE Transactions on 

Sustainable Energy, vol. 10, no. 4, pp. 1939-1949, 2019, doi: 
10.1109/TSTE.2018.2876498. 
[18] N. Liu, J. Wang, and L. Wang, "Hybrid Energy Sharing for Multiple 
Microgrids in an Integrated Heat–Electricity Energy System," IEEE 

Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1139-1151, 2019, doi: 
10.1109/TSTE.2018.2861986. 
[19] Y. Li, Z. Li, F. Wen, and M. Shahidehpour, "Privacy-Preserving Optimal 
Dispatch for an Integrated Power Distribution and Natural Gas System in 
Networked Energy Hubs," IEEE Transactions on Sustainable Energy, vol. 10, 
no. 4, pp. 2028-2038, 2019, doi: 10.1109/TSTE.2018.2877586. 
[20] Y. Cheng, N. Zhang, B. Zhang, C. Kang, W. Xi, and M. Feng, "Low-
Carbon Operation of Multiple Energy Systems Based on Energy-Carbon 
Integrated Prices," IEEE Transactions on Smart Grid, pp. 1-1, 2019, doi: 
10.1109/TSG.2019.2935736. 
[21] X. Xing, J. Lin, Y. Song, and Q. Hu, "Maximum Production Point 
Tracking of a High-Temperature Power-to-Gas System: A Dynamic-Model-
Based Study," IEEE Transactions on Sustainable Energy, vol. 11, no. 1, pp. 
361-370, 2020, doi: 10.1109/TSTE.2019.2891296. 
[22] Y. Li et al., "Optimal Stochastic Operation of Integrated Low-Carbon 
Electric Power, Natural Gas, and Heat Delivery System," IEEE Transactions on 

Sustainable Energy, vol. 9, no. 1, pp. 273-283, 2018, doi: 
10.1109/TSTE.2017.2728098. 
[23] Y. Li, W. Liu, M. Shahidehpour, F. Wen, K. Wang, and Y. Huang, 
"Optimal Operation Strategy for Integrated Natural Gas Generating Unit and 
Power-to-Gas Conversion Facilities," IEEE Transactions on Sustainable 

Energy, vol. 9, no. 4, pp. 1870-1879, 2018, doi: 10.1109/TSTE.2018.2818133. 
[24] I. Union, "Petroleum B. guidebook to gas interchangeability and gas 
quality," 2011. 
[25] I. A. Gondal, "Hydrogen integration in power-to-gas networks," 
International Journal of Hydrogen Energy, vol. 44, no. 3, pp. 1803-1815, 
2019/01/15/ 2019, doi: https://doi.org/10.1016/j.ijhydene.2018.11.164. 
[26] L. de Santoli, G. Lo Basso, and D. Bruschi, "A small scale H2NG 
production plant in Italy: Techno-economic feasibility analysis and costs 
associated with carbon avoidance," International Journal of Hydrogen Energy, 

vol. 39, no. 12, pp. 6497-6517, 2014/04/15/ 2014, doi: 
https://doi.org/10.1016/j.ijhydene.2014.02.003. 
[27] P. Zhao, C. Gu, and D. Huo, "Two-Stage Coordinated Risk Mitigation 
Strategy for Integrated Electricity and Gas Systems under Malicious False Data 
Injections," IEEE Transactions on Power Systems, pp. 1-1, 2020, doi: 
10.1109/TPWRS.2020.2986455. 
[28] X. Lu, K. W. Chan, S. Xia, X. Zhang, G. Wang, and F. Li, "A Model to 
Mitigate Forecast Uncertainties in Distribution Systems Using the Temporal 
Flexibility of EVAs," IEEE Transactions on Power Systems, vol. 35, no. 3, pp. 
2212-2221, 2020, doi: 10.1109/TPWRS.2019.2951108. 
[29] P. Zhao, C. Gu, Z. Hu, X. I. E. D, I. Hernando-Gil, and Y. Shen, 
"Distributionally Robust Hydrogen Optimization with Ensured Security and 
Multi-Energy Couplings," IEEE Transactions on Power Systems, pp. 1-1, 2020, 
doi: 10.1109/TPWRS.2020.3005991. 
[30] X. Lu, K. W. Chan, S. Xia, B. Zhou, and X. Luo, "Security-Constrained 
Multiperiod Economic Dispatch With Renewable Energy Utilizing 
Distributionally Robust Optimization," IEEE Transactions on Sustainable 

Energy, vol. 10, no. 2, pp. 768-779, 2019, doi: 10.1109/TSTE.2018.2847419. 
[31] B. Zhang, A. Y. S. Lam, A. D. Domínguez-García, and D. Tse, "An 
Optimal and Distributed Method for Voltage Regulation in Power Distribution 
Systems," IEEE Transactions on Power Systems, vol. 30, no. 4, pp. 1714-1726, 
2015, doi: 10.1109/TPWRS.2014.2347281. 
[32] P. S. Roy, C. Ryu, and C. S. Park, "Predicting Wobbe Index and methane 
number of a renewable natural gas by the measurement of simple physical 
properties," Fuel, vol. 224, pp. 121-127, 2018/07/15/ 2018, doi: 
https://doi.org/10.1016/j.fuel.2018.03.074. 
[33] Z. Hu and X. Zhang, "Study on laminar combustion characteristic of low 
calorific value gas blended with hydrogen in a constant volume combustion 
bomb," International Journal of Hydrogen Energy, vol. 44, no. 1, pp. 487-493, 
2019/01/01/ 2019, doi: https://doi.org/10.1016/j.ijhydene.2018.02.055. 
[34] L. Kong, L. Su, X. Zhou, L. Chen, and Q. Liu, "Accuracy guarantee for 
determining the calorific value for dual gas sources," Flow Measurement and 

Instrumentation, vol. 65, pp. 233-239, 2019/03/01/ 2019, doi: 
https://doi.org/10.1016/j.flowmeasinst.2019.01.003. 
[35] M. Deymi-Dashtebayaz, A. Ebrahimi-Moghadam, S. I. Pishbin, and M. 
Pourramezan, "Investigating the effect of hydrogen injection on natural gas 
thermo-physical properties with various compositions," Energy, vol. 167, pp. 
235-245, 2019/01/15/ 2019, doi: https://doi.org/10.1016/j.energy.2018.10.186. 
[36] L. Xiang, G. Theotokatos, and Y. Ding, "Investigation on gaseous fuels 
interchangeability with an extended zero-dimensional engine model," Energy 

Conversion and Management, vol. 183, pp. 500-514, 2019/03/01/ 2019, doi: 
https://doi.org/10.1016/j.enconman.2019.01.013. 
[37] H. Yeh, D. F. Gayme, and S. H. Low, "Adaptive VAR Control for 
Distribution Circuits With Photovoltaic Generators," IEEE Transactions on 

Power Systems, vol. 27, no. 3, pp. 1656-1663, 2012, doi: 
10.1109/TPWRS.2012.2183151. 
[38] B. Wang, C. Zhang, and Z. Dong, "Interval Optimization Based 
Coordination of Demand Response and Battery Energy Storage System 
Considering SoC Management in A Microgrid," IEEE Transactions on 

Sustainable Energy, pp. 1-1, 2020, doi: 10.1109/TSTE.2020.2982205. 
[39] S. Doan, H. Yeh, and Y. Yang, "Two-Mode Adaptive Schemes for VAR 
Control With Solar Power and Energy Storage," IEEE Systems Journal, vol. 14, 
no. 1, pp. 889-899, 2020, doi: 10.1109/JSYST.2019.2920016. 
[40] J. Qiu, J. Zhao, H. Yang, D. Wang, and Z. Y. Dong, "Planning of solar 
photovoltaics, battery energy storage system and gas micro turbine for coupled 
micro energy grids," Applied Energy, vol. 219, pp. 361-369, 2018/06/01/ 2018, 
doi: https://doi.org/10.1016/j.apenergy.2017.09.066. 
[41] P. M. Esfahani and D. Kuhn, "Data-driven distributionally robust 
optimization using the Wasserstein metric: Performance guarantees and 
tractable reformulations," Mathematical Programming, vol. 171, no. 1-2, pp. 
115-166, 2018. 

https://doi.org/10.1016/j.energy.2019.116644
https://doi.org/10.1016/j.ijhydene.2018.11.164
https://doi.org/10.1016/j.ijhydene.2014.02.003
https://doi.org/10.1016/j.fuel.2018.03.074
https://doi.org/10.1016/j.ijhydene.2018.02.055
https://doi.org/10.1016/j.flowmeasinst.2019.01.003
https://doi.org/10.1016/j.energy.2018.10.186
https://doi.org/10.1016/j.enconman.2019.01.013
https://doi.org/10.1016/j.apenergy.2017.09.066


11 

[42] D. Bertsimas, X. V. Doan, K. Natarajan, and C.-P. Teo, "Models for 
minimax stochastic linear optimization problems with risk aversion," 
Mathematics of Operations Research, vol. 35, no. 3, pp. 580-602, 2010. 
[43] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, "Adjustable 
robust solutions of uncertain linear programs," Mathematical programming, 

vol. 99, no. 2, pp. 351-376, 2004. 
[44] A. Shapiro, "On duality theory of conic linear problems," in Semi-infinite 

programming: Springer, 2001, pp. 135-165. 
[45] I. I. o. T. Electrical and Computer Engineering Department. "Index of 
/data." motor.ece.iit.edu/data/ (accessed. 
  

 
 

Pengfei Zhao (S’18) was born in Beijing  China. 
He received the double B.Eng. degree from the 
University of Bath, U.K., and North China Electric 
Power University, Baoding, China, in 2017. He is 
currently pursuing the Ph.D. degree with the 
Department of Electronic and Electrical 
Engineering, University of Bath, U.K. He was a 
visiting Ph.D. student at Smart Grid Operations 
and Optimization Laboratory (SGOOL), Tsinghua 
University, Beijing, China in 2019. His major 
research interests include the operation and 
planning of integrated energy systems considering 

inherent uncertainties. 
 
 
 

Chenghong Gu (M’14) was born in Anhui 
province  China. He received the Master’s degree 
from the Shanghai Jiao Tong University, Shanghai, 
China, in 2007 in electrical engineering. He 
received the Ph.D. degree from the University of 
Bath, U.K. He is currently a Lecturer and EPSRC 
Fellow with the Department of Electronic and 
Electrical Engineering, University of Bath. His 
major research interest is in multi-vector energy 
system, smart grid, and power economics. 
 
 

 
 
 
 
 
 
 

Zechun Hu (M’09-SM’17) received the B.S. and 
Ph.D. degrees from Department of Electrical 
Engineering  Xi’an Jiao Tong University  Xi’an, 
China, in 2000 and 2006, respectively. He 
worked in Shanghai Jiao Tong University after 
graduation and also worked in University of Bath 
as a research officer from 2009 to 2010. He joined 
the Department of Electrical Engineering at 
Tsinghua University in 2010 where he is now an 
associate professor. He has published more than 
150 peer-reviewed papers and two books. He 
serves as an associate editor of IEEE 
Transactions on Transportation Electrification. 

His major research interests include vehicle to grid techniques, applications of 
energy storage in power systems, optimal planning and operation of power 
systems, and electricity markets. 
 
 

 
Xin Zhang received his B.Eng. degree in 
automation from Shandong University, China, in 
2006; his M.S. and Ph.D. degrees in electrical 
power engineering from The University of 
Manchester, U.K., in 2007 and 2010 respectively. 
He is a senior lecturer in energy systems at 
Cranfield University, U.K. He previously worked 
for electricity national control at the National 
Grid, U.K. His main research interests include 
power system operation, renewable energy 
integration, and low carbon technologies in 
energy systems. 

 

 
Xinlei Chen is currently a postdoctoral research 
associate in Electrical Engineering Department 
at Carnegie Mellon University. He received the 
B.E. and M.S. degrees in Electronic Engineering 
from Tsinghua University, China, in 2009 and 
2012, respectively, and Ph.D degrees in 
Electrical Engineering from Carnegie Mellon 
University, Pittsburgh, PA, USA. His research 
interests lie in mobile computing, crowd 
intelligence, cyber physical system, mobile 
embedded system etc. 
 

 
 
 

Ignacio Hernando-Gil (S’10–M’14) received 
the Ph.D. degree in power systems from the 
University of Edinburgh, U.K., in 2014. He is 
currently Associate Professor at ESTIA Institute 
of Technology, France, and was previously Prize 
Fellow at the University of Bath, U.K., and 
Research Fellow at the University of Edinburgh, 
U.K. He was also in industry with PassivSystems 
Ltd., U.K., and National Grid U.K. He has 
extensive research in risk modelling and analysis 
of active distribution networks and the aggregate 
impact of smart grid technologies on the quality 

of power supply. 
 
 
 

Yucheng Ding was born in China in 1990. He 
received the B.S. degree in electronic and 
information engineering and the M.S. degree in 
control theory and control engineering both from 
Liaoning Technical University, Liaoning, China, 
in 2013 and 2016, respectively. He is currently 
pursuing Ph.D. degree at China Electric Power 
Research Institute. His research interests include 
power system security and stability, AI 
applications in power systems. 

 




