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Abstract—This paper presents a vision-based toddler 
tracking system for detecting risk factors of a toddler’s fall 
within the home environment. The risk factors have 
environmental and behavioral aspects and the research in 
this paper focuses on the behavioral aspects. Apart from 
common image processing tasks such as background 
subtraction, the vision-based toddler tracking involves 
human classification, acquisition of motion and position 
information, and handling of regional merges and splits. 
The human classification is based on dynamic motion 
vectors of the human body. The center of mass of each 
contour is detected and connected with the closest center of 
mass in the next frame to obtain position, speed, and 
directional information. This tracking system is further 
enhanced by dealing with regional merges and splits due to 
multiple object occlusions. In order to identify the merges 
and splits, two directional detections of closest region 
centers are conducted between every two successive frames. 
Merges and splits of a single object due to errors in the 
background subtraction are also handled. The tracking 
algorithms have been developed, implemented and tested. 

Keywords—computer vision, tracking, home environment, 
human motion, regional merge and split. 

I. INTRODUCTION 
According to the UK Child Accident Prevention Trust 

(CAPT), over two million children every year are taken to 
hospital due to accidental injuries, and around half of 
these accidents are domestic [1].  Falls account for over 
40% of all home accidental injuries of children, and young 
children aged under five are most vulnerable to injuries in 
the home environment, where they spend most of their 
time [2].  

As young children are not able to assess risks for 
themselves, the best way to prevent their fall injuries 
would be continuous supervision and instruction from 
their parents. However, this is not always practical. A 
smart vision system is proposed in this paper to assist the 
parents’ supervision for preventing fall injuries.  

Many applications have been developed to detect falls 
of the elderly [3-10] by utilizing acceleration sensors worn 
by users or cameras. Although some of them collect fall 
data from the sensors to evaluate the user’s personal fall 
risks for later prevention, there is no prevention against 
falls during the data collection and also against irregular 
falls afterwards. Some wearable devices provide prompt 
protection such as an airbag or an overhead tether when 
sensing a fall, but require the user to wear them all the 
time.  

 The system proposed here uses only one fixed web-
camera to detect risk factors of a toddler’s fall within an 
indoor home environment so that a caregiver can be 
alerted to eliminate the factors.  

  Fall risk factors of elderly people generally contain 
intrinsic aspects, such as chronic diseases, cognitive 
impairment, and sensory deficits. Extrinsic factors include 
environmental hazards (such as slippery surfaces) and 
perilous activities (such as inattentive walking) [11]. As 
intrinsic factors are associated with health problems, a 
normal toddler’s fall would be based on the extrinsic 
factors that include their environments and activities.  

The identification of the risk factors of a toddler’s fall 
was based on 4377 fall stories of toddlers at home, 
collected by the Royal Society for the Prevention of 
Accidents (RoSPA) [12], and the CAPT’s suggestions to 
prevent the falls of babies from birth to toddling [13]. The 
stories from RoSPA revealed that many toddlers fell down 
just whilst going up or down stairs alone and could easily 
trip while moving around. Also their resulting impact with 
furniture or the edges of a room may have caused severe 
injuries. The CAPT’s suggestions indicate similar points: 

• Keep floors clear of toys and other clutter. 
• Make sure there are no sharp edges that could 

cause injuries when they fall. 
• Ensure that there is no furniture around available 

for them to climb on. 
Based on the above studies, the fall risk factors that our 

system would recognize by our system were identified as 
follows: 

• Check if clutter has appeared on the floor. 
• Check if a toddler moves too close to any 

structure in their environment. 
• Check if a toddler climbs any furniture. 
The first factor relates to environments of toddlers and 

the remaining relate to their behaviors. This paper focuses 
on the behavior-related fall risk factors with the 
assumption that the system operates when toddlers are 
presented in the scene with toys. In order to recognize the 
behavior-related factors, vision-based methods of 
identifying toddlers and tracking their motions and 
positions have been studied, developed, and tested. 

II. RELATED WORK 

A. Human Classification 
The proposed vision system may watch toddlers while 

they play with toys within an indoor home environment. 
Hence the biggest problem in the segmentation of a 
toddler for tracking is to distinguish between human and 
nonhuman artifacts after background subtraction. This 
section gives a brief overview of existing studies that 
differentiate between human beings and clutter and track 
them individually based on various cues. 

Lipton et al. [14] detected moving targets by using the 
pixel wise difference between consecutive image frames. 
They then classified them into human, vehicle, and 
background clutter, based on the target size and shape 
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dispersedness as humans are smaller than vehicles and 
have more complex shapes. This method was relatively 
simple and sufficient for real-time motion analysis but 
performed adequate enough only to distinguish humans 
from big vehicles and the tiny motion of trees. 

VIGOUR of Sherrah and Gong [15] tracked a head and 
two hands of one person by seeking skin color clusters 
and by utilizing a Support Vector Machine face detector 
and human body structural information between the head 
and two hands. VIGOUR required that the subjects had to 
be initially facing the camera and the faces could not be 
occluded. 

The single view tracking by Cai and Aggarwal [16] was 
composed of background subtraction, human 
segmentation, and the human feature correspondence 
between adjacent frames. After background subtraction, 
human and nonhuman moving regions were distinguished 
using moment invariants based on Principal Component 
Analysis (PCA). Location, intensity, and geometric 
information of people were extracted for the tracking. The 
use of the three features to track a human body achieved 
much better tracking results than the use of any individual 
feature. However occlusion was a remained major 
obstacle. 

After background subtraction, Schleicher et al. [17] 
used a Particle Filter (PF) algorithm to identify and 
individually track any moving objects. They applied PCA 
to each object in order to classify it into a person or a 
nonperson category by using geometrical constraints of 
several body parts.  This system was relatively reliable at 
overcoming occlusion but long-term occlusions and lateral 
views of people still caused some problems. 

Micilotta [18] also used PF to track each human body 
after fitting a torso primitive to human foreground regions 
and segmenting skin tone regions for the face and hands. 
Meanwhile, he presented a more robust method of 
tracking a human. Body part detectors trained by 
AdaBoost, detected several body parts by using skin color 
cues to reduce false detections, and RANSAC assembled 
the parts into body configurations. 

The more cues that are used to detect and track human 
beings, the more accurate the results would become. 
However, the use of many cues or complex methods 
would require expensive computation and may be too 
time-consuming for real-time applications. The above 
studies used diverse cues to differentiate between a human 
and a nonhuman object, but all of the cues were related to 
human appearance and were therefore not very reliable at 
occlusions. In this research, we use motion cues to classify 
a human body. 

B. Handling of Merges and Splits 
In practice, self-occlusion and occlusions between 

different moving objects or between moving objects and 
the background are inevitable [19]. Multiple camera 
systems offer promising methods to reduce ambiguities 
due to occlusion. Multiple cameras have been used to 
choose the best view regarding occlusion or to estimate 
the 3D information of each object for coping with 
occlusion [20-24]. However, using multiple cameras 
required complex computation to match identical objects 
from different cameras or to calibrate the cameras for 3D 
information.  

There were also several studies [25-28] that proposed 
ideas to tackle the occlusion problems using a single 
camera by handling regional merges. They dealt with 
another similar problem that a single object can be split 
into multiple blobs that yield separate measurements due 
to errors in background subtraction. 

Medioni et al. [25] developed an algorithm that coped 
with splits by measuring the gray-level similarity between 
a moving region at one frame and a set of regions at the 
next frame in its neighborhood, but it did not handle 
merges of multiple objects. 

An approach to handle both merges and splits was to 
associate prediction based on previous measurements. The 
method used in [26] for the association was based on 
virtual measurements that superseded and extended a set 
of measurements and the set was chosen to optimally fit 
the set of predicted measurements at each time step. 
Kumar et al. [27] used Kalman filter based trackers, which 
predicted and estimated states of objects, so that the 
predicted shape and position of the objects gave rise to a 
new synthesized blob when the predicted objects merged. 
Then, a geometric shape matching algorithm was used to 
match the predicted blob with the real segmented blob. 
These association methods worked well as long as the 
position and motion of target objects were predictable. 

McKenna et al. [28] only dealt with regions which 
belonged to, corresponded to, or included a human being. 
In order to form a person, multiple regions had to be in 
close proximity, their projections onto the x-axis had to 
overlap, and they had to have a total area larger than a 
threshold. If regions in a group that indicated one or more 
people grouped together, had not met any of the above 
conditions, the group would have been split up. 

The proposed system does not need to recognize minute 
postures of toddlers and to identify each toddler and each 
piece of clutter. It just needs to discriminate any toddler 
from clutter in an indoor home environment. The clutter 
may be smaller than a toddler’s body and the environment 
is fairly restricted. Therefore, this research seeks another 
method to handle visual merges and splits in images from 
one fixed camera using simple cues rather than associating 
with prediction. 

III. SYSTEM OVERVIEW 
The toddler tracking involves background subtraction, 

human classification, obtaining motion and position 
information, and handling of merges and splits. The whole 
workflow is presented in Fig. 1. 

Due to the usage of a fixed camera, a simple 
background subtraction is used to segment both moving 
and stationary objects. The background image used for the 
subtraction needs to be constantly refreshed due to 
extraneous changes such as the swaying branches of trees 
and illumination variance. As this system targets indoor 
home environments, only domestic lighting changes are 
dealt with.  

Once all foreground regions are segmented, toddlers 
need to be separated from clutter which may be toys that 
they play with. This classification uses different moving 
characteristics of human and nonhuman objects. As this 
system starts with capturing a background image that only 
includes an environment, the system’s supervision begins 
when toddlers and clutter move in the scene. Therefore a 
toddler’s movement to be detected at first is supposed to 
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have irregular internal motion vectors due to the different 
motions of body parts when the whole body is mobile. 
Conversely, clutter within an indoor home environment 
may have relatively constant motion vectors. Hence, 
toddlers are detected by calculating the similarity of the 
motion vectors in each region that is subtracted from the 
background image. 

Meanwhile, each foreground region is tracked simply 
by connecting the closest region centers between 
consecutive frames, and its speed and direction are 
calculated with the relation of the connected centers for its 
motion information.  

 

Fig. 1. System work flow 

The necessary position information is if a toddler is 
moving near or climbing furniture or the room structure. 
Hence, the floor region is manually selected during 
installation of the system and used to determine if any 
toddler region is near the boundary of the floor area or off 
the area with the assumption that the no floor area is filled 
with furniture and the room structure. 

As this is only a single camera system, regional merges 
and splits are inevitable. In order to connect identical 
objects over frames in spite of the merges and splits, 
closest region centers are detected in two directions 
between every two consecutive frames. Furthermore, each 
region’s size and its history of merges and splits are used 
to distinguish between multiple objects and a single object 
in merges and splits. 

IV. IMPLEMENTATION 
A single Logitech Quickcam Pro 5000 was used to 

capture real-time images at the rate of 30 frames per 
second. The image size is 640x480 pixels and the 
developed software written in C++ has dialog-based 
interfaces for users to set up and control the system.  

A. Installation (Floor Selection) 
A mask image is required to indicate the floor to 

estimate each toddler’s relative position to the floor. As a 
fixed camera is used, the floor detection is required only 
once, when the camera is set up. The software lets the user 
select the floor region in the initial background image 
using the FloodFill method.  

The FloodFill method fills neighboring pixels whose 
values are close to the pixel clicked by the user. The pixel 

will belong to the repainted domain if its value ν meets the 
following condition:  

 up0lw0     - δννδν +≤≤ , (1) 

where ν0 is the value of one of the pixels in the repainted 
domain that begins with the selected pixels [29]. δlw, the 
maximal lower difference and δup, the maximal upper 
difference between the pixels, can be defined by the user 
with the sliding bar controls in Fig. 2a. In this way the 
user can select the floor area with several clicks. As the 
selected area contains lots of tiny chinks (Fig. 2a), when 
the user submits the floor-selected image, a mask image is 
returned with filled contours of the selected area on it 
(Fig. 2b).  

  

               (a)               (b)  
Fig. 2. (a) Selection of the floor area and (b) floor-masked image 

B. Background Subtraction 
Background subtraction finds the difference between 

the current image and the background image. Firstly, a 
simple background model is built up when the floor area 
is clear by accumulating several frames(N) and calculating 
the mean value of each summed pixel (bgSum(x y)) to get 
their mean brightness. 

 
)Cur - abs(bgMean  diff

/NbgSum  bgMean
y)(x,y)(x,y)(x,

y)(x,y)(x,

=
=  (2) 

The absolute difference (diff(x,y)) between the 
background model and the current image (Cur(x,y)) is then 
calculated after the nonfloor region is masked in both 
images, using the floor mask image built previously. 

To eliminate noise, differences smaller than a threshold 
value are set to 0, and a binary image is created by setting 
the others to 255. Whenever this binary image becomes 
null, the background model is updated to cope with slight 
changes of sunlight that are ignored by thresholding. For 
dramatic lighting changes such as turning on/off a lamp, 
the background model is also updated when the 
differences before the thresholding are similar all over the 
image. 

C. Human Classification 
The classification of a human against objects is based 

upon the irregular motions inside a human region due to 
the different motions of body parts. In order to capture the 
different internal motions, some features that are good to 
track, are detected within each Region of Interest (ROI), 
which is a bounding box of each noticeable background-
subtracted region. Such features are actually the corner 
points that have relatively big eigenvalues in the pixels 
and have a satisfied distance from one another [29].  
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The detected features are tracked by calculating the 
optical flow between every two successive frames for 
each feature using the iterative Lucas-Kanade method 
[19]. If any features detected by the optical flow 
calculation get out of any ROIs found on the same frame, 
the features are discarded to focus on the ROIs. Also, 
whenever there are less than five features left within a 
ROI, the feature detection is executed anew in the ROI to 
avoid capturing very few motions in one region.    

As a result, the relation from one feature’s coordinate to 
its new position detected on the next frame is presented as 
an arrow indicating a motion vector and one ROI gets 
multiple motion vectors like in Fig. 5a. Therefore, using 
the dot product of any two vectors, 

θcosabbababa yyxx =×+×=• , the similarity of the 
motion vectors in one ROI is calculated over two adjacent 
frames.  
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When all the vectors in one ROI are defined 
naaa ,...,, 10 , the average of cosθ can be calculated in (3). 

As the vectors are parallel when θ is 0, the closer to 1 the 
average of cosθ is, the closer the similarity of the vectors. 
The threshold value to classify human and clutter is 
defined after tests. 

D. Motion and  Position Information 
At first, the regions that are background-subtracted 

from each current image are focused individually to detect 
each region’s contour and center of mass (xc, yc), as 
calculated in (4). 
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I(x,y) is the pixel intensity value in the position (x,y) in 
the image where each contour is drawn [29]. This center 
of mass coordinate of each region’s contour from one 
frame is saved to be connected to the center of mass of its 
corresponding region’s contour on the next frame. The 
distances between a center of mass from a frame and all 
the centers from the previous frame are calculated, and the 
center is connected to the closest one from the previous 
frame. This connection is separately conducted on every 
contour’s center detected on each frame. The speed and 
direction of each contour is calculated for motion 
information using the coordinates of two connected 
centers over two consecutive frames. 

Whereas the center of mass of a background-subtracted 
region is used to obtain the motion information, the 
vertically lowest point of a toddler’s region contour 
becomes the focus here. As a toddler cannot jump, the 
vertically lowest point of the contour is considered as 
where the toddler stands on the floor. As this vision 
system needs to check if a toddler moves near furniture or 
climbs it, the lowest point is checked for every frame to 
see if it is close to the boundary of the floor area detected 
during the system installation or if it gets out of the floor 

area considering that the no floor area is filled with 
furniture or the room structure.  

E. Handling of Merges and  Splits 

 

Fig. 3. Contour indexing 

Every foreground region on each frame is indexed by 
the smallest x-coordinate of its contour. Fig. 3 shows an 
example of the indexing. All the information obtained 
from a region, such as the coordinates of its center and 
bounding box, is also tagged with the region’s index and 
kept over every two successive frames to be used in 
comparing the two frames.  

 
(a)  

 
(b) 

Fig. 4. (a) Detections of closest centers from the previous frame and  
(b) from the current frame  

As this indexing is conducted anew on every frame, an 
object can get a different index on the next frame due to 
regional merges and splits as well as due to simple 
position changes. In order to connect correct regions for 
an identical object over two consecutive frames, the 
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closest center detection is carried out from the previous 
frame to the current frame and vice versa.  

For instance, when regions merge, split, and move in 
and out at the same time as shown in Fig. 4, the closest 
center of each contour center on the frame t is detected on 
the frame t+1 (Fig. 4a), and the reverse detection is 
conducted (Fig. 4b). In order to prevent any wrong 
connection due to an appearance or a disappearance that 
does not have any identical region to be connected on the 
previous frame or the current frame, the detection of the 
closest centers over two frames is limited within the 
regions. This is because the moving speed of a toddler and 
a toy is assumed to be slow enough to catch up within the 
limitation at the rate of 30 frames per second. 

These two different connections are compared to check 
where a merge, a split, an appearance, a disappearance, or 
a one-to-one connection happens. The one-to-one 
connection, which means tracking of a region without any 
merge or split, is confirmed when the two connections are 
both singular. For example, when all the regions in the 
frame t are indexed with pC0, pC1, …, pCn and the 
regions in the frame t+1 are indexed with cC0, cC1, …, 
cCn, only pC0 is connected to cC1 in Fig. 4a and only 
cC1 is connected to pC0 in Fig. 4b. In this case, all the 
past speeds and averaged cosθ values tagged with 0 
become indexed with 1. The speed and the cosθ value of a 
region at every frame is the information that should be 
kept and tagged to correct regions of an identical object 
during the whole observation to classify and focus on 
toddlers. 

When a region in the current frame has a multiple 
connection in the closest center detection from the 
previous frame like cC2, it is considered as a merge, and a 
region in the other way around like pC2 in Fig. 4 is 
considered as a split. These merge and split need to be 
further examined in case that they result from occlusion of 
multiple objects or from separated blobs of one object due 
to errors in background subtraction. The differentiation is 
based on a history of merges and splits for each region as 
a split should happen at first for a merge to happen in a 
single object and a merge should come before a split in 
multiple objects. 

When a split happens to a single object, all the split 
regions inherit the past information tagged to the region 
before the split. When they merge afterwards, the 
information of any region before the merge is transferred 
to the merged region.  

When a merge of multiple objects happens, all the past 
information of each region before the merge is saved 
individually with the region’s size, and the merged region 
starts with null information unless the multiple objects 
include a toddler. If a toddler is included, the toddler’s 
region information is kept on the merged region because 
for instance, a toddler carrying toys needs to be classified 
as a toddler and focused upon. Then, when any of the 
objects becomes separated from the merge, among the 
pieces of information saved before the merge, a correct 
piece is returned to the split object by comparing its 
regional size with the saved regional sizes. The region size 
allows a ten percent error margin. 

A region with no connection in the closest center 
detection from the previous frame like pC5 is regarded as 
an object’s disappearance and that region’s information is 
removed. A region with no connection in the opposite way 

like cC0 is regarded as an appearance and begins a new 
data collection. 

V. RESULTS 

A. Installation (Floor Selection) 
The floor selection works well even when there is more 

than one separate region corresponding to the floor in the 
background image. This is because the contour of each 
region is detected and filled respectively. As the floor is 
detected only once at the beginning, if any structure in the 
room moves in the middle of the toddler tracking, the 
floor mask image should be updated manually. Any tiny 
motion of any structure in the environment, however, is 
ignored by thresholding. 

B. Background Subtraction 
The simple method of background subtraction works 

fine with 640x480 images from the QuickCam Pro 5000. 
Logitech’s other web cameras of lower or higher 
performances such as the QuickCam Pro 4000 or the Ultra 
Vision are more prone to noise due to low resolution or 
visible compression artifacts. However, the method 
occasionally has the problem of splitting one object into 
multiple blobs mainly for toddlers due to their dynamic 
posture changes. So as mentioned previously, this split of 
one object is handled with a split of multiple occluded 
objects.  

As the background image is only updated when a 
significant lighting change is introduced to the scene, we 
assumed that there is no spot light, but a ceiling fixture 
that lights the whole room. 

C. Human Classification 
The calculation of the similarity of all the vectors 

within a human motion works adequately because any 
features that are tracked in the next frame but do not 
belong to the next ROI are discarded. In case of multiple 
ROIs in one frame, discarding is conducted in each ROI 
and new features are detected in any ROI with less than 
five features.  

 
(a) 

(b) 

(c) 

Fig. 5.  (a) A walking human region with internal motion vectors (b) its 
graph showing the average of cos  between every two vectors from each 
frame during the human walk and (c) graph presenting the average of all 

the past frames’ cos  values. 
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(a) 

(b) 

(c) 

Fig. 6. (a) A rolling ball region and (b) its graph of each frame’s cos , 
and (c) graph of the averages of past frames’ cos  values  

 
(a) 

(b) 

(c) 

Fig. 7.  (a) A region of a radio controlled model car and (b) its graph of 
each frame’s cos  while the car is moving forwards and backwards and 

(c) graph of the averages of past frame’s cos  values 

Several tests have been carried out to detect the 
threshold value to classify a human with an adult, a ball, 
and a radio controlled model car that represent human, 
rolling, and straight motions respectively. As it was 
revealed from Hamleys [30], one of the largest toy shops 
in the world, that other toys that move more dynamically 
are for children over three years old who are no longer 
toddlers anymore, they were not used to these tests. 

The averaged value of cosθ between every two vectors 
within one moving region in each frame was fairly 
dynamic for a walking human (Fig. 5b) and was mostly 
close to 1 for a rolling ball (Fig. 6b) and a radio controlled 
model car (Fig. 7b). As sometimes the cosθ value gets 
considerably close to 1 for human motion and somewhat 
lower than 1 for object motion, the average of the cosθ 
values from the past frames is also calculated at every 
frame. Based on several tests, we found that the average 
cosθ value of every past frame stays under 0.75 for a 
walking human (Fig. 5c) and over 0.9 for a rolling ball 
(Fig. 6c) and a moving model car (Fig. 7c). Therefore the 
threshold to classify human and nonhuman is defined as 
0.8. Fig. 8 shows a person region bounded by a red box 
that means it is classified as a human based on its motion 
vectors. 

D. Motion and Position Information 
 The connection of corresponding regions’ centers of 

masses over two successive frames works well, but 
incorrect speed and direction information is generated 
when a regional merge or split occurs. Therefore, the 
motion information of a region is ignored when it splits or 
merges with other region. 

A toddler’s position information, if the toddler moves 
near or climbs furniture is easily identified by calculating 
the shortest distance between the vertically lowest point of 
the toddler’s region contour and the contour of the floor 
area defined during installation. The number underneath 
the person’s bounding box in Fig. 8 indicates the shortest 
distance from the floor’s contour that is drawn in blue.  

 
(a) 

 
(b) 

 
(c) 

Fig. 8. A split and a merge of a single object: (a) a region of a walking 
person, (b) its split regions both bounded by red boxes due to 
information inheritance, and (c) a merge of the split regions 

 

380



E. Handling of Merges and Splits 
Capturing regional merges and splits works well by 

detecting the closest contour center in the current frame 
for each contour center in the previous frame and again in 
the inverse way. Fig. 8 and Fig. 9 present successful cases 
to recognize a merge and a split of a human and multiple 
objects respectively. 

In Fig. 8, a walking person is classified as a human by 
the dynamic internal motion vectors and bounded by a red 
box. The person’s region splits (Fig. 8b) and the two split 
regions (one inside the other) both are bounded by a red 
box because the person region’s data is inherited. The split 
regions merge immediately (Fig. 8c) and the two green 
arrows heading the merged region’s center represents the 
merge. 

In Fig. 9, a person is passing by a ball and their region’s 
past information, which is averaged cosθ values and 
speeds, is recorded in graphs in red and green respectively 
(Fig. 9a). When the regions merge, only the person’s 
region data are kept (Fig. 9b), and when they split, the 
ball’s region data are returned in the graphs (Fig. 9c). 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. A merge and a split of multiple objects: (a) regions of a person 
and a ball and their averaged cos  and speed graphs in red and green 

respectively, (b) a merge of the regions and graphs only keeping data of 
the person’s region, and (c) a split of the regions and graphs restoring 

the ball region’s past data  

However, the system occasionally has problems with 
differentiating merges and splits of a single object from 
the ones of multiple objects based on each region’s size 
and history of merges and splits. A person’s region splits, 
for instance, while the person occludes a ball, and the size 
of the split region from the person is fairly similar to the 
ball region size. This split would be regarded as the one of 
multiple objects due to the person’s merge history, and the 
past information of the ball is transferred to the split 
region.  

VI. CONCLUSION 
This research focuses on toddler tracking in an indoor 

home environment in order to detect risk factors of a 
toddler’s fall. This is different from the studies conducted 
previously that focused on detecting the actual falls and 
was specifically tailored towards elderly people. The risk 
factors are determined as behavioral ones that are dynamic 
and would require a caregiver’s constant supervision. The 
vision-based tracking methods for real-time detection of 
the risk factors involve background subtraction, human 
classification, acquisition of motion and position 
information, and handling of regional merges and splits. 

A single commercial camera is used without having any 
sensors or markers to be attached on a toddler’s body for 
practical use. The background subtraction works well with 
a Quickcam Pro 5000 but occasionally produces an error 
on a human region by splitting it, invoking problems with 
regional merges and splits.  

The human classification has a novel concept by using 
irregular motions of different body parts. Based on several 
tests, the threshold of the average cosθ value is identified 
as 0.8 to differentiate humans from nonhuman objects. In 
order to reinforce this discrimination to work even against 
adults or pets, other cues related to toddlers will be used, 
such as sizes, body ratios, and motion history. 

Correct motion and position information can be 
obtained separately from each foreground object in 
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general, but when the object region merges or splits, so it 
is ignored at that time. Detection of regional merges and 
splits works well by connecting closest region centers 
twice from the previous frame to the current frame and 
vice versa. Distinguishing between a single object and 
multiple objects in merges and splits has problems 
occasionally, only based on each region’s size and history 
of merges and splits. In the future, other cues regarding a 
toddler’s key postures will be used to tackle these 
problems. 
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