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Abstract—Electric vehicles (EVs) play a key role in 
transport electrification and decarbonizing the society. EVs 
are becoming popular due to the advancement of drivetrain 
and battery technologies, with the support from plummeting 
costs. However, many countries are facing with challenges to 
accommodate large-scale adoption of electric vehicles due to 
the great amount of electricity required from the grid for 
charging. Current research focuses on developing incentives 
and tariff structure to encourage EV drivers to charge and 
discharge at appropriate times. However, relying on driver’s 
behavior can be a risky decision for network operators. A 
regional high electricity demand at a short instance can cause 
severe technical challenges for the distribution network, 
including thermal and voltage limit violations. This paper 
presents and compares the EV development for the UK and 
China. A research agenda is proposed to consider how large-
scale energy storage would benefit the distribution network 
for rapid charging of electric vehicles. 

Keywords—Large-scale energy storage, electric vehicle, 
distribution network, electric vehicle charging station 

I. INTRODUCTION

To reduce global carbon emissions, there is a growing 
need of electric vehicles (EVs) powered by renewables 
including solar, wind, and other forms of low-carbon energy 
sources. Several research projects were conducted to 
integrate EVs into the society. Ref. [1] proposed an 
intelligent charging technology for EVs and used fuzzy 
logic controller to control and manage EV charging. The 
controller adjusts and controls EV charging according to the 
electricity price signal provided by the power company and 
EV battery charging state. This would allow electric car 
users to charge their cars at low cost, while keeping the 
distribution network running. In Ref. [2], agent-based 
modeling method was proposed to predict the charging 
demands of different types of electric vehicles. The function 
of the system is not determined by design, but by the agents 
in the environment. Ref. [3] presented an optimal 
coordinated unit combination model for wind power 
generation and EV charging loads. The results suggest that 
the energy thrown away by wind power could also reduce 
the cost of charging EVs. However, the model works by 
scheduling the EV's charging and discharging behavior, 

which relies heavily on the cooperation of the EV owner. 
This will bring risks to the operation of the power system. 
Ref. [4] presented the use of photovoltaic (PV) system and 
energy storage system to minimize the charging cost of EVs 
and reduce the impact of PV uncertainty on the power grid. 
But this strategy of using EVs to coordinate with grid 
dispatching can be inconvenient for EV users. Ref. [5] 
proposed to use grid-to-vehicle (G2V) and vehicle-to-grid 
(V2G) scheduling strategies to solve grid congestion caused 
by large-scale EV charging. Charging costs can be 
minimized from technical and financial considerations. 

The global sales of EVs are increasing annually as 
shown in Fig. 1 [6]. 

Fig. 1 Global EV sales from 2010 to 2020 

 With abundant data becoming readily available, data-
driven techniques can be used to optimize the power flows 
in a distribution network. This paper aims to describe the 
operational challenges to accommodate high penetration of 
EVs and examine a data-driven framework to address the 
operational challenges. In particular, this paper examines 
the EV development in China and the UK, where there are 
significant differences including geographical area and 
electricity infrastructure. The rest of this paper is organized 
as follows: Section II presents the governmental policies for 
electric vehicles in China and the UK. Measures taken by 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0

0.5

1

1.5

2

2.5
x 106

Year

Nu
m

be
r(c

ar
)

This article has been accepted for publication in a future issue of this conference proceeidngs, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI10.1109/CPE-POWERENG50821.2021.9501197, 2021 IEEE 15th International Conference on 
Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



the two countries to manage the EV charging problem are 
described. Section III describes the relevant projects in EV 
studies. Section IV presents a data-driven framework for 
managing the charging demand for EVs with large-scale 
battery. The conclusion is provided in Section V. 

II. EVS CHARGING IN THE TWO COUNTRIES

This section presents an overview of EV development in 
China and the UK. 

A. China
In 2016, China imported 380 million tons of oil, making

it the world's largest oil importer [7], EVs are important for 
reducing oil demand and pollution emissions. China has put 
forward many policies to promote the development of EVs 
including research support for the "863" major project on 
EVs, promotion of the "1,000 vehicles in 10 cities" 
demonstration project, and subsidies for the purchase of 
new energy vehicles [8]. In 2020, China Southern Grid 
Electric Vehicle Service Co., Ltd. and Tsinghua University's 
Sichuan Energy Internet Research Institute signed a 
cooperation agreement in Chengdu's Tianfu New Area [9]. 
The two sides had in-depth exchanges on distributed 
resource intelligent regulation and convergent trading, 
dynamic intelligent planning of charging and changing 
power network. Fig. 2 shows that the EV sales are also 
growing in China [6], contributed by the government 
support [10]. It is noticed that the sales in 2019 is less than 
2018, this may be contributed by the COVID pandemic, 
where vehicle demand is reduced due to travel restrictions 
or the source of data for the year is incomplete. 

Fig. 2 China's electric vehicle sales from 2010 to 2019 

As the number of EVs grows rapidly, how to charge 
them becomes a problem. In China, the government has 
promoted the development of EVs by not only subsidizing 
buyers of EVs [9], but also waiving capacity charges for 
charging piles [9]. China aims to build a unified charging 
network across the country. By the end of 2017, the State 
Grid Corporation of China (State Grid) had built a high-
speed intercity fast charging network with nine vertical and 
nine horizontal rings, with an average distance of less than 
50 km between stations. Connecting urban stations through 
highway charging stations; The Beijing-Hong Kong-Macao 
Expressway is interconnected with China Southern Power 
Grid, initially forming a "national network" [11]. State Grid 
is also actively installing public charging piles and has 
installed 95,883 charging piles in 2020 [12]. In 2019, China 

has 301,238 public slow charging piles and 214,670 public 
fast charging piles [13-14].  

B. The UK
The UK government's policies [15] have spurred an

increase in sales of EVs. For EVs bought in the UK that has 
a range of 70+ miles and sell for less than £50,000, 
consumers can receive a government subsidy of up to 
£3,000 [16]. Fig. 3 depicts the EV sales in the UK [17]. 
Plug-in Hybrid Electric Vehicle. (PHEV) is a vehicle driven 
by both an internal combustion engine and an electric motor. 
Battery Electric Vehicle (BEV) is a vehicle powered 
entirely by batteries and electric motor. Both vehicles are 
experiencing a growth in sales and BEV may surpass PHEV 
in demand. 

Fig. 3 UK’s PHEV and BEV sales from 2012 to 2020 

The UK has put forward a series of funding schemes for 
charging EVs. The government set up the Plugged-In Places 
(PIPS) scheme in 2010 to match local businesses and public 
sector consortia to build their own charging points [18]. In 
2013, the Office for Low Emission Vehicles (OLEV) 
launched a £13.5 million grant scheme to subsidize 
householders installing equipment at home. In recent years, 
OLEV has launched three support schemes to install 
charging facilities at home, workplaces and streets [19]. In 
UK, EV users can choose their supply operator based the 
energy price, the charging price of EVs in the UK is shown 
in Table I [20]. Different electricity suppliers have different 
electricity prices. Prices are also different for the same 
provider, depending on the time of day. EV drivers will 
generally prefer to charge their cars during periods when 
electricity prices are low. This pricing method allows EVs 
to be charged in an orderly manner, which can improve the 
safety of power supply from the distribution network. 
Encouraged by government policy, there are now 9,447 
quick charging piles and 37,429 public charging connectors 
in the UK [17]. 

In summary, it is worth comparing the two countries due 
to the significant differences in electricity markets and 
power system structure. UK has a mature electricity market 
with many electricity supplier companies. Users can choose 
the appropriate electricity supplier according to their own 
needs. EV users can find the right electricity supplier 
according to their needs to reduce charging costs. In contrast 
to China, State Grid dispatches the distribution network in 
the form of unified dispatching to fully exploit the peak 
regulation capacity of thermal power and make full use of 
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pumped storage power stations [21]. This unified 
scheduling method can better control the power flows and 
cope with the additional electricity demand brought by 
large-scale EV charging. 

TABLE I.    UK’S EV ENERGY TARIFFS [20] 

Supply 
operator 

Charge standard (p/kWh) 
Standard Off-peak Peak 

Good energy 16.27 12.2 16.34 
EDF 14.34 4.5 17.81 

OVO energy 15.89 10.33 17.78 
Scottish 
Power 

17.81 4.74 N/A 

Ecotricity 16.54 10.31 N/A 
E.On 19.8 10.44 17.19 

Shell Energy 15.5 N/A N/A 
British Gas 19.53 5.99 N/A 

Octopus 
Energy 

N/A 5 13.33 

III. THE RELATED WORK
The penetration of EVs in the distribution network is 

growing as relevant national policies are developed. 
Simultaneously, the number of clean energy power 
generation sources in the distribution network is also 
increasing. Research projects were conducted to study how 
PV and EV penetrations would affect the electricity prices 
for UK distribution networks [22]. Ref. [22] calculated the 
annual electricity consumption of EVs by analyzing the total 
mileage travelled, as provided in Equations (1-3). The 
comparison was made by changing the permeability of PV 
and EV. It is determined that the electricity prices are low 
when the penetrations of EV and PV are high and low, 
respectively. The addition of PV leads to the reduction of 
the net electricity purchased by users. In order to achieve the 
target revenue, electricity suppliers raise the electricity price 
to achieve the target. Home charging is charged on a two-
part tariff. This two-part tariff can be an issue for people 
who do not have PV installed. To address the 
aforementioned issue, the three-part tariff is presented 
which composed of a fixed component, a capacity 
component (kW) and an energy component (kWh). If the 
house is not installed with PV, there is no need to pay the 
cost generated by the energy component. Houses that do not 
have PV installed will not receive a revenue from the grid 
by generating electricity.  

𝑇𝑅 = 	𝐹 ∗ 365 + 𝑉 ∗ 𝑀 (1) 

𝑉 =	
𝑅𝐹𝑈𝑅
𝐴𝐸𝐶 (£ kWh⁄ ) (2) 

𝐹 =	
𝑅𝐹𝐹𝐶

𝑁𝑂𝐶 ∗ 365
(£) (3) 

TR (£ ) is the sum of revenues from unit rates and 
revenues from fixed charges. RFUR (£) is the revenues from 
unit rates. RFFC	 (£) is revenues from fixed charges. AEC 
(kWh) is annual energy consumption. NOC (pcs) is number 
of customers. F is the fixed portion of the electricity bill and 
daily cost per customer. V is the price in the electricity bill 
that is charged according to the amount of electricity used. 
M(kWh) is the amount of electricity used. 

Large-scale EV charging and distributed energy bring 
great influence on the distribution network. Ref. [23] put 

forward the method of orderly charging and time-of-use 
price to guide EV charging. In this way, the influence of EV 
charging on distribution network is reduced. Ref. [24] 
indicated that energy storage is a good solution to this 
problem. It presented a typical operation model of 
distributed energy storage in distribution network. The 
economic dispatching mode of distributed energy storage is 
established, and the economic dispatching strategy of 
postponing substation expansion is put forward. But its 
predictions for distributed energy and electric vehicle 
charging are less accurate. The Smarter Network Storage 
(SNS) project features a 6MW/10MWh storage solution 
comprising approximately 50,000 lithium-ion batteries. 
This project provides a guarantee for the safety of the 
distribution network [25]. The project presented a report 
[25] on energy storage for security of supply and suggested
where storage would be most beneficial. Where upgrading
the distribution network is particularly expensive, complex
and time-consuming, storage is a good place to install it. It
is also suitable to install energy storage facilities where there
is little time to use capacity after the distribution network
has increased. The installation of energy storage equipment
will ensure that the distribution network does not need to be
upgraded for at least 5 years. The report [25] found that
when power shortages did not exceed 30 percent,
distribution networks with large-scale storage batteries
would still be able to provide safe supplies. Energy storage
system needs to predict the maximum power of the next day,
energy storage systems can provide power reserves.
Because the power grid cannot supply enough power at the
peak of electricity consumption, part of the demand cannot
be met and the security of power supply cannot be
guaranteed. Energy storage system needs to be able to
supply power demand and ensure adequate stored energy for
backup purposes. Therefore, the energy storage system also
needs to predict how much energy it will need to supply next
day. The report points out that if there is no error in the
forecast and energy storage system are able to reserve
enough power and energy, there will be no shortage of
power. Suppose the energy storage system predicted exactly
how much energy needed to be stored but the energy storage
system only stored 50% of the electricity. This can result in
the storage of energy not being able to sustain the power
supply when it is needed. Similarly, if the power reserve of
the energy storage system does not meet the predicted
requirements, and the power supply is insufficient when the
power supply is needed, then part of the load cannot be
supplied. Generally speaking, there will be errors in the
prediction, and partial power shortage will happen when the
power error and the energy storage error occur. Therefore,
energy storage systems are required to reserve 110% of the
predicted demand, which can well cope with the impact of
forecasting errors. The report presented a calculation
method for Equivalent Firm Capacity (EFC) which can be
obtained by calculating Expected Energy Not Supplied
(EENS) (4)-(6). The EENS that arises in a system equipped
with an ‘always available’ network connection of size w
(MW) can be defined as 𝐸𝐸𝑁𝑆w . The 𝐸𝐹𝐶∗  value
corresponding to a particular target 𝐸𝐸𝑁𝑆∗ can be defined
as the size of an ‘always available’ circuit of size ω that
gives rise to the same risk level.

𝐸𝐸𝑁𝑆 =	F𝑈",$
"",$

(4)
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𝑈",$ =	𝐷",$ − 𝑃",$ (5) 

	𝐸𝐹𝐶∗ = 𝑎𝑟𝑔𝑚𝑖𝑛{(𝐸𝐸𝑁𝑆w − 𝐸𝐸𝑁𝑆∗)%} (6) 

𝐷",$  (MW) is the residual group demand above the 
network capacity limit at hour t of day d. 𝑃",$ is the power 
discharged by energy storage (MW). 

IV. A DATA-DRIVEN FRAMEWORK FOR 
MANAGING EV CHARGING DEMAND WITH 

LARGE-SCALE BATTERY 
In this section we will discuss how to use large-scale 

batteries to deal with EV charging. Large-scale EV charging 
will lead to problems such as voltage reduction at 
distribution network nodes, line congestion, line loss 
increase and transformer overload. 

A. The Framework

Fig. 4 A data-driven framework for optimal distribution network operation 
with rapid charging infrastructure and large-scale battery storage  

Fig. 4 presents the basic components of the distribution 
network with EV charging stations, renewable power 
generation including wind and solar, and large-scale 
batteries energy system. The framework employs the 
following methodology: consider the distribution network 
operator to be large-scale batteries system owner, the dual 
objective for the multi-agent energy management system 
includes 1) minimizing the voltage deviation of the 
distribution network due to rapid charging and intermittent 
renewable generation; 2) minimizing the operation cost of 
distribution network. The distribution network can charge 
the large-scale batteries during off-peak hours and provide 
electricity to charging stations during high and rapid 
charging demand. Local renewable power generation can be 
used to meet the local charging demand, to be stored in 
battery storage, or to export to the grid.  

Bi-directional power flows will occur as the state of the 
system changes. Four agents are identified in the system to 
simulate the actions and interactions of autonomous agents, 
based on the perceived information. Distribution network 
operators distribute electricity produced by electricity 
supplier to EV charging stations. Electricity suppliers 
provide time-of-use tariffs to distribution network 
operators. Renewable energy generation feeds electricity 
into the distribution network and provides the distribution 

network operator with the predicted generation power for 
the next moment. EV charging stations take electricity from 
the distribution network and provide a predicted load. 
Large-scale batteries provide the state of charge (SOC) 
information to the distribution network. With this 
information, distribution network operators schedule large-
scale batteries. Economic dispatch is carried out under the 
condition of satisfying the safe power supply of distribution 
network and the demand of EV charging station. 

The optimal operation of large-scale batteries is 
achieved with reinforcement-learning (RL). Different from 
conventional optimization methods, RL presents excellent 
decision-making capability in the absence of initial 
environment information. The deployment of RL in 
decision-makings has considerable merits. Firstly, RL seeks 
the optimal actions by interacting with the environment so 
it has no requirement for initial knowledge, which may be 
difficult to acquire in practice. All agents act according to 
their own state. The environment changes in response to the 
actions of each agent, which is reflected in the states 
observed by the agent. At the same time, the environment 
will give rewards to the actions of each agent, which reflects 
the good or bad of the actions to the environment. The 
actions, states, and rewards are stored for the next training 
session. Secondly, RL can be flexibly employed to different 
application by off-line training and on-line implementation, 
considering relative uncertainties autonomously. The 
training process is to update each agent's table with the 
information saved in the previous step. Each agent uses this 
chart to observe the current state and determine the next 
action. Thirdly, RL is easier to implement in real-life 
scenarios as compared with conventional optimization 
methods. RL can obtain the optimal results with a look-up 
table and gives high computational efficiency. RL has been 
successfully applied to tackle complex energy management 
systems in the residential sector [26].  

B. EV Charging Features

EV charging has the challenge with spatial and temporal
uncertainties. The uncertainty is mainly contributed by the 
charging behavior of EV drivers [27]. The charging point 
charges the battery at different rates. There are two main 
charging methods, AC charging and DC charging. As 
described in [28], the power capacity for different charging 
options are as follows: AC charging has AC slow charging 
with rated power to be less than 11 kW. AC fast charging is 
between 11 kW and 22 kW. AC rapid charging is between 
22 kW and 43 kW. DC fast charging is 50 kW. DC rapid 
charging is 150 kW. DC ultra-fast charging is 350 kW.  

The amount of power and energy used for charging EV 
is generally uncertain. The paper [29] proposed a method to 
predict the load curve of EVs. The annual mileage data were 
obtained from the government or other data agencies. Travel 
data and driving cycles can be used to predict EV charging, 
considering that the use of EVs will not change significantly 
from fossil-fuel based vehicles [30]. To manage the power 
balance in the distribution network, demand side 
management can be used to incentivize drivers to provide 
additional management options [31]. Ref. [32] proposed 
that the distribution network can accommodate more EVs 
charging by using three-phase equilibrium. The equilibrium 
by matching grid dispatch with the demand side can delay 
the time for grid expansion. Ref. [33] proposed a dynamic 
pricing strategy for demand-side management. The results 
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show that it has economic and technical benefits to the 
power grid and users. Ref. [34] proposed an intelligent 
dispatch method for distribution network EV charging. 
Intelligent charging can reduce the adverse impact of 
disordered charging of EVs on power grid. All of the above 
approaches manage EV charging from the demand side, but 
this approach relies heavily on EV users. Because of the 
dependence on consumers, the safe operation of the 
distribution network will be at risk. Next, a method of using 
large-scale batteries to ensure the safe and	stable operation 
of distribution network is introduced. This approach relies 
less on driver’s participation to achieve a safe and economic 
power system. 

C. Energy Arbitrage for Large-scale Batteries

Distribution networks may increase the power capacity
of the generators, distribution lines and feeders to meet the 
large power demand variations and magnitudes. As battery 
technology advances and prices fall, it is possible to use 
large-scale energy-storage batteries to solve this problem 
[35]. As large-scale battery can provide extra power and 
energy capacity to the network, the installation will 
effectively delay and can possibly prevent the time of 
distribution network equipment upgrade. The challenge is 
with the scheduling of large-scale batteries, which also 
requires load prediction. The prediction accuracy of load 
patterns is higher when no EV is connected to the grid. 
Using the above method to predict the EV charging load, 
plus the conventional load, the total load can be obtained. 
When the predicted load exceeds the power rating of the 
distribution network, the excess will be provided by large-
scale batteries. The energy reserve in energy storage system 
needs to be determined. The amount is the predicted 
maximum power minus the available power from 
distribution network. Both the amount of maximum power 
and energy to be reserved for energy storage system needs 
to be determined. Calculating the required energy storage 
capacity is also relatively simple. As long as the area that 
the predicted load curve is larger than the power that the 
distribution network can provide is calculated, the energy 
that needs to be reserved can be obtained. When the energy 
storage system reserves enough power and electric energy, 
this ensures the safe operation of the power grid. The 
remaining part of the energy storage capacity can obtain 
maximum benefits under the guidance of the time-of-use 
price. Each charge and discharge of a battery will affect the 
storage capacity of the battery. The cost of battery 
degradation is taken into account in calculating the 
maximum benefit that energy storage can get from buying 
power at a low price and selling it at a high price. The 
addition of large-scale batteries in the distribution network 
can also reduce the distribution loss of the network. 𝐹&'(( is 
the income of the energy loss reduced after energy storage 
is added to the grid. It can be calculated with (10). 𝐹&'(() is 
the cost of the loss of power grid without adding energy 
storage, and 𝐹&'((% is the cost of the loss of power grid after 
adding energy storage. Arbitrage income 𝐹* can be 
calculated by the following equations: 

𝐹* =	𝐹(*&+ −	𝐹,-. (7) 

𝐹(*&+ =	F𝑇𝑂𝑈(𝑡)𝑃"/((𝑡)D𝑡
0

$1)

(8) 

𝐹,-. =	F𝑇𝑂𝑈(𝑡)𝑃2(𝑡)D𝑡
0

$1)

(9) 

𝐹&'(( =	𝐹&'(() −	𝐹&'((% (10) 

Where, 𝐹(*&+  is the income received from selling 
electricity stored in the battery to the grid. 𝐹,-. is the cost 
of electricity purchased from the grid to be stored in the 
battery. TOU(t) is the time-of-use price of electricity 
suppliers in Table I. 𝑃"/( and 𝑃2 are discharging power and 
charging power of the large-scale batteries. T		is the time of 
day. 

In order to determine the SOC of a large-scale battery, 
Ref. [36] presented a method for calculating SOC is 
presented. The SOC calculation model of large-scale battery 
is shown in (11)-(12). Considering that the degradation of 
battery will have an impact on the economic scheduling 
strategy. Ref. [37] presented using the rainflow-counting 
algorithm as the basis for an ex-post benchmark method for 
assessing battery cycle life (13). 

𝑄3 =	Y 𝐼"(𝑡)𝑑𝑡
∞

3
(11) 

𝑆𝑂𝐶(𝑡) = 	1 −
∫ 𝐼"(𝑡)𝑑𝑡
$
3
𝑄3

(12) 

𝐿 = 	FF(s/)
4

/1)

(13) 

Where, 𝑄3 is the total charge of the battery that can be 
stored in or maximum capacity of the battery. 𝐼"  is the 
discharging current. ∫ 𝐼"𝑑𝑡

$
3  is the charge delivered from the 

battery. The total life loss L from SOC profile is assumed to 
be the sum of the life loss from all I number of cycles 
identified by the rainflow-counting algorithm. F(s) is the 
cycle depth stress function. s is the cycle of depth.  

V. CONCLUSION
This paper introduces the current state of the EV markets 

in China and the UK. There is a need to better manage the 
power flows in smart grids and the distribution networks to 
ensure EV demands are met. Large-scale energy storage 
including battery is a feasible solution to provide additional 
regional power and energy capacities. This paper describes 
a data-driven framework for managing the charging demand 
for EVs with large-scale battery. In the next step, the authors 
will implement the design of the data-driven framework. 
Methods to forecast the load of EVs and renewable power 
generation will also be developed. Previous historical data 
can be used to train the neural network, and then use the 
trained neural network to obtain the predicted value, for 
example, the charging load prediction of EVs. For the 
historical data of EV charging stations in the past, data 
related to charging load can be found as the input of the 
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neural network and the load as the output for training. 
Battery degradation should be taken into account when 
building a data-driven model for distribution networks. 
Having large-scale batteries not only ensures the safety and 
stability of the system during normal operation, but also 
serves as a backup power source for important equipment 
when necessary. The charging demand of a large number of 
EVs will have a negative impact on the distribution network. 
The traditional way is to upgrade the distribution network 
equipment to increase the power supply capacity. In this 
paper, the problem of insufficient power supply during peak 
demand can be solved by connecting large-scale batteries to 
distribution network. It is foreseeable that a safe, 
marketable, affordable, renewable way of travel for both the 
UK and China is possible in the near future. 
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