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Abstract. A novel intelligent approach into 3D freeform surface reconstruction 
from planar sketches is proposed. A multilayer perceptron (MLP) neural 
network is employed to induce 3D freeform surfaces from planar freehand 
curves. Planar curves were used to represent the boundaries of a freeform 
surface patch. The curves were varied iteratively and sampled to produce 
training data to train and test the neural network. The obtained results 
demonstrate that the network successfully learned the inverse-projection map 
and correctly inferred the respective surfaces from fresh curves. 
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1   Introduction 

The preliminary stages of the conceptual product design process are characterised by 
a high degree of creative activity. Designers strive to convert new ideas into graphical 
form as soon as possible. It can be argued that sketching is an essential activity for 
creative design. The reasons are manifold. It permits the rapid exploration and 
evaluation of concepts [1]. It also assists the designer’s short-term memory and 
facilitates communication with other people. When designers sketch shapes on a sheet 
of paper, they start with a vague concept, which they progressively refine into a final 
product. While numerous iterations are usually undertaken, the salient properties of 
the original idea are often maintained. Recently, the desire to automate the early phase 
of the conceptual product design have given impetus to the development intelligent 
tools to simulated the way of sketching is performed by designers [2-4]. However, 
most existing approaches are restricted to fairly simple objects such as planar and 
polygonal shapes. Consideration of complex free-form surfaces is a challenging 
process. The problem has surprisingly received little attention in the literature. 

The problem of reconstructing a three dimensional (3D) shape from a planar 
drawing is fundamental problem in computer vision and computer aided geometric 
design. Clowes [5], developed a classification method based on labelling drawings 
and sorting their edges to recognise polyhedral shapes. Though, their method was 
extended to other line drawings [6-8], their work mainly involved determination of 
the depth from a 2D drawing consisting of flat surfaces with straight line edges. With 
regard to freeform surfaces some of the foundation work was developed by Igarashi et 
al. [3] who reproduced rough freeform models from freehand sketch input. Since then 
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only moderate progress has been achieved in recovering freeform surfaces from on-
line sketches. Michalik et al. [9] proposed a constraint-based system that 
reconstructed a B-spline surface from a sketch into 3D. These papers employ 
techniques based on rules or constraints to extract the correlation between the 2D 
drawings and their respective 3D shapes. In the same vein, the work of Lipson and 
Shpitalni [6] is also based on the notion of correlation. 

Work in recognition of shape features from 2D input was reported by Nezis and 
Volniakos [10].  The topology of the input drawing was exploited to categorize the 
shape features. Peng and Shamsuddin [11] claimed that a neural network was able to 
estimate the pose of a 3D object from a 2D image from any arbitrary viewpoint. 
Reconstruction of 3D shapes by estimating their depth was done by Yuan and 
Niemann [12]. They represented objects using a triangular mesh from reverse 
engineered data and demonstrated that a neural network could reconstruct 3D 
geometry from 2D input.  

Early work pertaining to reconstruction of freeform surfaces was covered by Gu 
and Yan [13]. A non-uniform b-spline (NURB) surface was fitted over scattered data 
from a reverse engineering source using an unsupervised neural network. Hoffman 
and Varady [14] and Barhak and Fischer [15] extended this line of research. However, 
their methods required that all three dimensions be available for reconstruction 
purposes.  

The present paper proposes and develops a methodology for 3D freeform surface 
inference from freehand planar sketches. The methodology is based on neural 
networks. Specifically, an MLP neural network, trained with a momentum-augmented 
backpropagation learning algorithm, is employed to induce 3D freeform surfaces from 
2D sketches. The reconstruction procedure consists of two steps: first a neural 
network is trained on pairs of normalised 3D surfaces and their corresponding 
projection curves, then the trained neural network is used to reconstruct unknown 2D 
sketches. The methodology is tested with a range of data and produced satisfactory 
results.  

The remainder of this paper is organised as follows. In section 2 3D freeform 
surface reconstruction is formulated as an inverse problem. In section 3, neural 
networks together with their learning algorithms are discussed. The data generation 
procedure is discussed in section 4. The computational results are presented in section 5. 
Finally section 6 treats conclusions and future work. 

2   Problem Formulation 

Volumetric concepts originate in the mind of a designer as 3D entities. They are then 
transformed, via an isometric projection onto an arbitrary view plane, into planar 
sketches.  Such a task is considered as the direct problem. The 3D freeform surface 
inference problem consists of extracting the 3D geometry from the 3D, i.e., to recover 
the depth information that was lost during the projection process. This process can be 
regarded as the inverse process of the original projection. The direct problem is, in 
general, a well-posed problem and can be solved analytically using concepts from 
projective geometry.  
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In contrast, the inverse problem is, in general, ill-posed. The solution may not be 
unique, may lack continuity could be highly influenced by the amount of noise 
present in the data. Therefore, 3D surface reconstruction is indeterminate in that an 
infinite number of possible 3D surfaces can correspond to the same 2D curve. To 
obtain a unique and physically meaningful solution requires additional information in 
terms of general assumptions, constraints and clues from experience. In the context of 
this paper, the planar curves are constrained to lie in the x-z or the y-z planes and their 
control points are restricted to vary only along the z-direction. Such constraint ensures 
the maintenance of the planar property of the inferred 3D surfaces and leads to a 
single one to one mapping from the input 2D curves to the expected 3D surfaces. This 
renders the inverse problem tractable.  

Given a set of p ordered pairs {(xi, yi), i = 1,…, p} with xi ∈ R2 and yi ∈ R3, the 
surface reconstruction problem is to find a mapping F : R2 → R3 such that F(xi) = yi, i 
= 1,…, p. In practice, the function F is unknown and must be determined from the 
given data {(xi, yi), i = 1,…, p}. A neural network solution of this problem is a two-
step process: training, where the neural network learns the function from the training 
data {xi, yi}, and generalisation, where the neural network predicts the output for a 
test input. We demonstrate how an MLP neural network trained with a momentum-
augmented backpropagation algorithm on a collection of 2D-3D dependencies, can 
approximate the inverse map in a computationally efficient form. 

3   Neural Networks 

Neural networks are connectionist computational models motivated by the need to 
understand how the human brain might function. A neural network consists of a large 
number of simple processing elements called neurons. Feedforward neural networks 
have established universal approximation capability [16] and have proven to be potent 
tool in the solution of approximation, regression, classification and inverse problems.  

For this reason, a MLP neural network is selected for the solution of the 
reconstruction problem. The MLP neural network is composed of three layers: the 
input layer, the hidden layer and the output layer. The neurons of the input layer feed 
data to the hidden layer where it performs the following nonlinear transformation: 

( )∑=
k kjkj xwfs  .         (1) 

where xk are the neurons inputs signals, sj are neural outputs and wjk the synapses and 
f is an activation function. For MLP neural network, the sigmoid function is used as 
the activation function. The output layer of the neurons takes the linear 
transformation:  

( )∑=
k kjkj swfy  . (2) 

where yj are the output layer neuron outputs, and wij are synapses.  Neural network 
training can be formulated as a nonlinear unconstrained optimisation problem. So the 
training process can be realised by minimising the error function E defined by: 
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where yjk is the actual output value at the j-th neuron of output layer for the k-th 
pattern and tjk is the target output value. The training process can be thought of as a 
search for the optimal set of synaptic weights in a manner that the errors of the output 
is minimised.  

3.1   Backpropagation Algorithm 

Most learning algorithms are based on the gradient descent strategy. The 
backpropagation algorithm (BP) [17] is no exception. The BP algorithm uses the 
steepest descent search direction with a fixed step size α to minimise the error 
function. The iterative form of this algorithm can be expressed as: 

kkk gww α−=+1  . (4) 

where w denotes the vector of synaptic weights and  g = ∇ E(w) is the gradient of the 
error function E with respect to the weight vector w. 

In the BP learning algorithm the weight changes are proportional to the gradient of 
the error. The larger the learning rate, the larger weight changes on each iteration, and 
the quicker the network learns. However, the size of the learning rate can also 
influence the network’s ability to achieve a stable solution. In a neighbourhood of the 
error surface where the gradient retains the same sign, a larger value of the learning 
rate α results in a rapid reduction of the energy function faster. On the other hand, in 
an area where the gradient rapidly changes sign, a smaller value of α maintains the 
descent direct along the error surface. 

Despite its computational simplicity and popularity, the BP training algorithm is 
plagued by such problems as slow convergence, oscillation, divergence and 
“zigzagging” effect. The BP learning algorithm is in essence a gradient descent 
optimisation strategy of a multidimensional error surface in the weight space. Such 
strategy exhibits has inherently slow convergence; especially on large-scale problems. 
This trait becomes more pronounced when the condition number of the Hessian 
matrix is large. The condition number is the ratio of the largest to the smallest 
eigenvalue of the network's Hessian matrix. The Hessian matrix is the matrix of 
second order derivatives of the error function with respect to the weights.  

In many cases the error hypersurface is no longer isotropic but rather exhibits 
substantially different curvatures along different directions, leading to the formation 
of long narrow valleys. For most points on the surface, the gradient does not point 
towards the minimum, and successive steps along the gradient descent oscillates from 
one side to the other. Progress towards the minimum becomes very slow. This 
suggests a method that dynamically adapts the value of the learning rate, α to the 
topography of the error surface.  

3.2   Momentum-Augmented Backpropagation 

One way to circumvent the above problem, the BP propagation in eq. 4 is augmented 
with a momentum term: 
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( )11 −+ −+−= kkkkk wwgww βα  .      (5) 

The momentum term, β has the following effects: 1) it smoothes the oscillations 
across narrow valleys; 2) it amplifies the learning rate when all the weights change in 
the same direction; and 3) enables the algorithm to escape from shallow local minima.  

In essence, the momentum strategy implements a variable learning rate implicitly. 
It introduces a kind of 'inertia' in the dynamics of the weight vector. Once the weight 
vector starts moving in a particular direction in the weight space, it tends to continue 
moving along the same direction. 

If the weight vector acquires sufficient momentum, it bypasses local minima and 
continues moving downhill. This increases the speed along narrow valleys, and 
prevents oscillations across them. This effect can also be regarded as a smoothing of 
the gradient and becomes more pronounced as the momentum term approaches unity. 
However, a conservative choice of the momentum term should be adopted because of 
the adverse effect that might emerge: in a narrow valley bend the weight movement 
might jump over the walls of the valley, if too much momentum has been acquired. 

The learning algorithm requires the a priori selection of the learning rate and the 
momentum coefficient. However, it may not easy to choose judicious values for these 
parameters because a theoretical basis does not seem to exists for the selection of 
optimal values. One possible strategy is to experiment with different values of these 
parameters to determine their influence on the overall performance. The moment 
augmented backpropagation algorithm may be used both in batch and on-line training 
modes. In this paper the batch version is used. 

4   Data Generation 

The neural network used in this paper is trained in a supervised mode via a collection 
of input-output pairs to optimise the network parameters (i.e. synaptic weights and 
biases). Training is accomplished through a learning algorithm that iteratively adjusts 
the network parameters until the mean squared error (MSE) between the predicted 
and the desired outputs reaches a suitable minimum.  

A training set was generated from a family of freeform surfaces whose edges also 
referred to as the boundaries, consisted of four orthogonally arranged planar curves. 
An example of a planar curve is shown in Fig. 1. Each curve was governed by four 
independent control points and represented by a Non Uniform Rational B-Spline 
(NURBS). Two control points determined the ends of the curve whereas the remaining 
ones controlled its general shape. NURBS control points need not intersect the curve 
and can lie anywhere in the 3D space. The curve was uniformly sampled and the 
coordinates of the sample points formed the input features for the neural network.  

The planar curves were placed in the x-z plane or the y-z plane and their control 
points were only altered along the z-direction to maintain their planar property.  Each 
of the four boundary curves were uniformly sampled at 10 positions. Hence a surface, 
whether represented in 2D or 3D, consisted of 40 sample points. A point on the 3D 
surface is represented by the x, y and z coordinates whereas in 2D, it is represented by 
its x and y coordinates. Therefore a 3D surface is represented by 120 independent 
features and its respective 2D curve by 80 features. 
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Fig. 1. Planar 3D NURBS curve. Each control point of the curve lies on the same plane as the 
others. 

The positions of the control points were varied to produce a class of unique 
freeform surfaces. Each surface was projected onto the view plane to produce the 
respective 2D planar projection. The training set is composed of pattern pairs, each 
containing a 3D surface and its corresponding 2D curve.  

The data set was normalised so that the input 3D pattern would fit within a unit 
cube and its respective 2D pattern within the unit square. Normalisation ensures that 
the values lie within the characteristic bounds of the activation functions. 

Fig. 2 shows two examples of normalised pattern pairs that were used to train the 
neural network. The 2D input patterns are depicted in Fig. 2 (a) whereas their  
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Fig. 2. Examples of 2D input patterns and corresponding 3D output patterns 
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corresponding 3D output patterns are shown in Fig. 2 (b). It can be seen that the 
boundary of the surfaces are described by a series of sample points and fits within a 
unit square for 2D and unit cube for 3D. Notice that the viewpoint of the 3D desired 
pattern coincides with the viewpoint of the 2D input pattern. 

The entire data set was composed of 4096 patterns. The whole set cannot be used 
to train the network because no data would be left to test the network’s ability to 
generalise into fresh inputs. Therefore the data set was randomly split, using three 
subsets that were used for training, validation and testing. Accordingly, the number of 
training, validation and testing patterns pairs were therefore 2867, 819 and 410 
respectively. This corresponds to a 70, 20 and 10 percent split of the data. 

5   Computational Results 

A three-layer MLP network was employed in our research. The input and output layer 
dimensions of the neural network were determined from the features of the training 
set. The input layer consist of 80 nodes and while the output layer consists of 120 
nodes. The number of nodes in the hidden layer is freely adjustable and results in 
different network performance depending on the number of hidden nodes used. The 
parameters used in the network are shown in Table 1. 

Table 1. Network Architecture and Parameters 

 
 
 
 
 
 
 
 

The number of hidden nodes indicates the network complexity and governs how 
accurately it learns the mapping from the input patterns to the outputs. It also affects 
how long the network takes to perform each training cycle. The higher the number of 
hidden nodes, the more computation is required and hence a longer training time is 
needed. Experimentation with different numbers of nodes in the hidden layer was 
conducted. Multiple neural networks were trained with similar parameters such as the 
learning rate, momentum and training sets. In this case the learning rate was 0.7 and 
the momentum was 0.6. Only the number of hidden nodes was changed. It was found 
that a neural network of 50 hidden nodes produced the best reconstruction error over a 
fixed number of epochs. This was found by comparing the average reconstruction 
error of the networks based on a fresh test set containing 410 patterns.  

Finally a new network of 50 hidden units was trained again for 5000 epochs. The 
final training error was 0.06. At the end of the training, the net was saved the test set 
applied to the network. The obtained results show that the neural network was able to 
infer the 3D shape of a freeform surface from its respective 2D input pattern.   

Number of Input Nodes 80 
Number of Output Nodes 120 
Learning Rate (α) 0.7 
Momentum (β) 0.6 
Number of Epochs  5000 
Number of Training Patterns 2867 
Learning Mode Batch  
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(a) (b) 

Fig. 3. Test Input Patterns with Predicted and Desired Outputs 

An example test pattern that was applied to the trained network is shown in Fig. 3 
(a). The predicted and the expected 3D patterns that correspond to the 2D surface are 
shown in Fig. 3 (b). The predicted pattern is depicted in green whereas the desired 
pattern is in blue. It can be noticed from the plots in Fig. 3 (b) that the two surfaces 
per image are almost identical and hence that the neural network has inferred the 
correct shape that was desired. However, small deviations in the predicted patterns 
can be seen when observed closely. They relate to the network’s ability to predict the 
desired surfaces. The distributions of errors are presented in Fig. 4. This shows the 
Euclidean distances between each point from the predicted surface and its 
corresponding point on the desired surface. The RMS error for this pattern was 
0.33%. 

 

Fig. 4. Distribution of Squared Errors Between Predicted Output and Expected Output 

6   Conclusions and Future Work 

In this paper a methodology for the inference of 3D freeform surfaces from 2D 
surface representations using neural networks has been proposed. A representative 
dataset was generated by iteratively adjusting the control points of freeform surface 
boundary curves that were previously uniformly sampled. The dataset was normalised 
and randomly split into three subsets: training, validation and test sets. An MLP was 
optimised using different numbers of hidden nodes. The best network, i.e. the network 
with the lowest training RMSE, was trained with a representative family of 2D and 
3D pattern pairs. The neural network was applied to a set of 2D patterns had not been 
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encountered before. Obtained 3D results demonstrate that the target freeform surfaces 
can be reproduced from 2D input patterns within 2 % accuracy. Future work will 
extend the methodology to more complex shapes and reconstruct the 3D surface that 
corresponds to the inferred surface boundary. 
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