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Abstract. A rational cubic spline curve is described which has tension
control parameters for manipulating the shape of the curve. The spline is
presented in both interpolatory and rational B-spline forms, and the
behaviour of the resulting representations is analysed with respect to

variation of the control parameters.
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1. Introduction

This paper presents a description and analysis of a rational cubic
tension spline for use in CAGD (Computer Aided Geometric Design). We
propose to use the spline for the representation of parametric curves in
both interpolatory and B-spline form, where the rational description
provides tension parameters which can be used to influence the shape of the
curves. The rational spline provides a computationally simpler alternative
to the exponential spline-under-tension [Schweikert '66, Cline '74,
Preuss '76]. It also provides an alternative to the cubic v-spline of

Nielson [Neilson ‘75] and the PB-spline representation of such cubics by

Barsky and Beatty [Barsky and Beatty '83]. In this paper we propose to
maintain the C? parametric continuity of the curve, rather than the more
general geometric G C? arc length continuity achieved by the v-spline and

B-spline. Our approach is thus different from that of Bohm [Bohm '87] or

Nielson [Nielson '84] in their development of rational geometric splines.

One similarity with the paper [Bohm '87], is that the rational spline
is not restricted to the 'homogeneous coordinate' form of having a cubic
spline numerator and denominator. Thus, in general, it is not a projection
from a cubic spline in R* intoR’ as, for example, in the case of non-
uniform rational B-splines. This, we believe, gives more freedom to
develop shape control parameters for the curve, which behave in a well
defined and well controlled way. For simplicity, we will describe and
analyse a rational spline which has one 'tension' control parameter
associated with each interval, although more parameters could be introduced
into the rational form. Since the spline is defined on a non-uniform knot
partition, the partition itself provides additional degrees of freedom on
the curve. However, we would normally expect the parameterization to be

defined either on a uniform knot partition or by cummulative chord length.

A rational spline alternative to the exponential spline-under-tension

was first considered in [Spdth '74] and was discussed later within a



general setting in [Preuss '79]. The rational spline of this paper can
also be considered within the setting of Preuss, but we find it more

convenient to develop the properties of the rational spline per se.

The rational spline is based on earlier work, [Delbourgo and Gregory
'85], in the use of a rational cubic Hermite interpolant. This interpolant
is used in the development of the interpolatory rational spline presented
here, see also [Gregory '86]. Particular, data dependent, choices of the
tension parameters can be shown to lead to special rational forms which can
be used in the construction of shape preserving scalar curve interpolants,
as in [Delbourgo and Gregory '83] and [Schaback '73]. More recently,
Goodman [Goodman '88] has considered GC? shape preserving, parameteric,
rational cubic spline interpolants. Here, however, we will view the
tension parameters as an interactive design tool for manipulating the shape

of a parametric curve.

The rational cubic Hermite interpolant is introduced in Section 2
together with some preliminary analysis. Section 3 describes the
interpolatory rational spline and analyses its behaviour with respect
to the tension parameters. Finally, in Section 4, a B-spline type represent-

ation of the rational spline is developed and studied.

2. C! piecewise rational cubic Hermite interpolant

Let FieRN,i:O,....,n, be values given at knots t; , i = 0,...,n,
where tog < t; < ... < t,, and let D; € RN, i = 0,...,n, denote first
derivative values defined at the knots. Then a piecewise rational cubic
Hermite parametric function p € Cl[to, tn] is defined for te (ti, tit1),

i =0, n-1, by
P(t) = P; (t; 1)

_ (1_9)3Fi + 9(1_9)2 (ri Fi+hiDi) + 0’ (1_9)(1} Fi+1_hiDi+1) + 0’ Fi+1 2.1)
- 1+ (r;-3)6 (1-0) '




where

0(t)=(t—t,)h,;, h,=t, —t andr, > 1. (2.2)

1

Here, pe C' [to. t,] means that each component function of p : [to, t,] >R"

is continuously differentiable on [to,t,]. We will also use |||| to denote

the uniform norm, either on [to,t,] or [ti,ti+1], this being the maximum of

the uniform norm of the components of our parametric function.
The function p(t) has the Hermite interpolation properties that
pt) = F; and pP(t)=D;, i=0,.,n. (2.3)

The ri, 1 = 0,...,n-1, will be used as "tension" parameters to control the
shape of the curve. The case ri = 3, i = 0,...,n-1, is that of cubic
Hermite interpolation and the restriction r; > -1 ensures a positive
(non-zero) denominator in (2.1).
Forr; #0, (2.1) can be written in the form
Pi(t;ri) = Ro(0;r)F; + Ry (0:1)Vi+ Ry (0;1)W;+ R3(0;1) Fiyy (2.4)
where

Vi=F;+hDi/r; , W;=Fis1 —hiDjs1 /11, (25)

and the Ri(0;r;) are appropriately defined rational functions with
3
;Rj(ﬂ;ri)ZI (2.6)
p

Moreover, these functions are rational Bernstein-Bezier weight functions
which are non-negative for r; > 0, since the denominator in (2.1) can be
written as

(1-0)’ +1.0(1-0)* +10°(1-0)+6°. (2.7)
Thus in IRN,N> 1 and forr; > 0:

(i) (Convex hull property) The curve segment P; lies in the convex hull of
the control points {F; Vi Wi Fi.;} .

(11) (Variation diminishing property) The curve segment P; crosses any
(hyper) plane of dimension N-1 no more times than it crosses the
"control polygon" joining Fi Vi Wi Fi+i, (See [Goodman '§9].)



5

Remark 2.1 In the scalar case N=I, properties (i) and (ii) apply to the

curve segment (t,P(t;r))eR’ te (t,t.,),, with control points

{(ti,E),(ti+hi/ri,Vi),(t —h/r Wi)a(tmaFiH)}

i+1 i’

This is a consequence of the identity

t=R,O;r)t; + R (0;r) (t; +h,/r)) + R,(0;1) (t,,, —h/r;) + R;(0;1) ¢,
(2.8)

In fact, (t,p(t)) can be considered as an application of the interpolation

scheme in R? to the values (t;, F;) € R* and derivatives (I,D;) € R?,

Figure 2.1. The rational cubic segment in R?

The rational cubic (2.1) can be written in the form

pi(Gr) =L (O +e; (5. (2.9)
where
£;()=(1-0)F +0F,,, (2.10)
R v L e
A, =(E, —E)/h;. (2.12)

This immediately leads to:



Proposition 2.2 (Tension property) The rational cubic Hermite inter-
polant (2.1) coverges uniformly to the linear interpolant (2.10) on

[ti, ti+1] as >, , 1i.€.

lim|e;[=lim R, —¢;]=0. (2.13)

[ ded

Moreover, the component functions of e; tend to zero monotonically, both

uniformly and pointwise on [ti,ti+1].

Remark 2.3. The tension property can also be observed from the behaviour of
the control points V;, W; defined by (2.6), and hence of the Bernstein- Bézier

convex hull, as 1, »>oo.

In the following section, a C? rational spline interpolant will be
constructed. This requires knowledge of the 2'nd derivative of (2.1)

which, after some simplification, is given by

2{,0° +B0°(1-0)+71,0(1-6)* +5,(1-0)"} |

PP (t:r)= 2.13
o) h, {1+(5, ~3)0 (1-0)}° 213

Where

o, =1,(D;,, —A)-D;, +D;,

- =3(D.,,—-A),

B =3(D;,; —4)) 2.14)

Y;=3(A; —Dy),

0,=r,(A;—D;)-D;, +D;
3. C? rational cubic spline interpolant

We now follow the familiar procedure of allowing the derivative
parameters Di, i = 0,...,n, to be degrees of freedom which are constrained

by the imposition of the C? continuity conditions

PP (tis) = PP(t;) , i=1....,n-1. (3.1)
These C? conditions give, from (2.13) and (2.14), the linear system of
"consistency equations"

h,D, +{h;(r,, -1 +h,_ (r; -D}D;+h,_ D, =hr

iti-1

Ai—l + hi_lriAi;i = 1,...., n— 1,
(3.2)



where the A,, 1 = 0,.nl, are defined by (2.12). For simplicity of

presentation, assume that D, and D, are given as end conditions (clearly
other end conditions are also appropriate). Assume also that

i>r>2, 1=0,...,n-. (3.3)

Then (3.2) defines a diagonally dominant, tri-diagonal linear system in the
unknowns D;, i = L...n-l. Hence there exists a wunique solution which can
be easily calculated by use of the tri-diagonal LU decomposition algorithm.
Thus a rational cubic spline interpolant can be constructed with tension
parameters 1, 1 = 0,..,n-l, where the special case r, = 3, 1 = 0,..,n],
is that of cubic spline interpolation. We now examine the behaviour of the
rational spline interpolant with respect to the tension parameters r1; in
the following three propositions:

Proposition 3.1.  (Global tension property) Let /ec’[t,,t,] denote the

piecewise linear interpolant defined for te(t,t,,) by /£() = /. (1), see
(2.10). Suppose that r, > r > 2, i = 0,.,n], as in (3.3). Then the
rational spline interpolant converges uniformly to /¢ as r—o, ie. on
[t 0, t n]
lim|p — ¢ =0. (3.4)
Proof. Suppose 1 = r, i = 0,.,n-l. Then from (3.2) it follows that
limD,=(h, A, +h,_A)/(h,+h, ), i=1...,n—-1. (3.5)

r—0

More generally, for rj satisfying (3.3), it can be shown that

 max_ |Di||w Smax{||A||mr/(r—2), Dyl D, w}, (3.6)

where
Al = max A, (3.7)
Hence the solution D;j, i = 1,..,n-l, of the consistency equations (2.3) is

bounded with respect to r. Now, from (2.11), the tension property (2.13)
of Proposition 2.2 can clearly be extended to the case of bounded D;. Thus
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applying(2.13)oneachinterval givesthedesiredresult(3.4).o

Proposition 3.2, (Local tension property) Consider an interval [ty ti:1]
for a fixed ke{0,.,n—1}and let the tension parameters 1, 1 # k, be
considered as functions of 1, where 1 = 15 (rx ) > r > 2. Then, on
[t, tei], the national spline interpolant converges uniformly to the line
segment /, asr, — o, i.e.

lim
ro=[P = £,]=0. (3.8)

Proof. The boundedness property (3.6) holds as in Proposition 3.1 (where
we can assume the additional constraint 1y, > r > 2 to the hypotheses
currently being imposed). Thus (2.13) applies for the case 1 = k O
Remark 3.3. In the case of fixed r, 1 # k, an analysis of the linear
system (3.2) shows that

lim lim

ro=[D, = A, =r-=[D,, —A ], =0. (3.9)
This property reinforces the rate of convergence to zero of e = pv - £, 1In
(3.8), as can be seen from (2.11) with i = k. The following proposition

shows that the influence of 1y in this case has an exponential decay away
from the interval [ty, tx+1] .

Proposition  3.4.  (Exponential decay property) Let D; , i = L..n-l,
denote the solution of the consistency equations with tension parameters
rp > r > 2,1 = 0,.,nl, and let ﬁi, 1 = 1..,n-1, denote the solution

with parameters t, >r>2,1=0,...,n-1, wheref, =r,, fori#k. Then

HDi _f)iH Sw ||A||00 fori=k—m andi=k+1+m,ie(0,...,n—1),
* -7
(3.10)
where ||A||w is the constant defined in (3.7) and
y =lUrD<1. (3.11)

( Thus, for example, if r = 3 then y = 1/2.)

The proof of this result is based on an analysis of the consistency



equations expressed in the matrix forms
(+F)D=band (I+F)D=b.

Here F and F are tri-diagonal matrices with zero diagonals which agree in
rows i, 1 # k,k+1 as do also the right hand sides b and b. Now

D-D=[1+F)"'=(1+F)"'b+1+F)"(b-b).

An appropriate perturbation analysis of the first term of the right hand
side, together ~with an analysis of (I+lﬂ3)_1 which  follows that of
[Demko '77] {see his Proposition 2.1), then gives the desired result. The
details of the proof are Ilengthy and hence, for brevity, are omitted here.
Examples 3.4. The tension behaviour of rational cubic spline interpolants
is illustrated by the following simple examples for a data set in R
Figures 3.1 show the effect of a progressive increase in global tension
from r = 3 (the cubic spline case) to r = 50. The effect of the high
tension  parameter is clearly seen in  that the resulting interpolant
approaches piecewise linear form.

r=3 r=5 r=150

Figures 3.1 Rational spline interpolants with global tension r; = r
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ry=3 ry,=5 r,=50

Figures 3.2 Rational spline interpolants with tension r4 varying

The Figures 3.2 illustrate the effect of progressively increasing the value
of a tension parameter in one interval, whilst elsewhere the tension
parameters are fixed. A progressive 'local' flattening of the curve can be
seen.

4. Rational cubic B-spline representation

In this section we propose the construction of a local support rational
cubic B-spline basis. A method for evaluating the rational cubic B-spline
representation of a curve will be suggested by a transformation to
piecewise defined rational Bernstein-Bezier form. This form will also
expedite a proof of the wvariation diminishing property for the rational
B-spline representation.

For the purposes of the analysis, let additional knots be introduced

outside the interval [to,t,], defined by ts < to < t; < to and
t, <t <t,, <t .. Let
rpr>r>2,1=-3,...,nt2, (4.1)

be tension parameters defined on this extended partition. Rational cubic
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spline  functions Vi j=—-L..,n+3, can be constructed, see Figure 4.1,
such that

Ofort<t,,,

\Vj(t): (42)
\Vj(tj)th—tj fortth_

L 3

Figure 4.1 The rational spline v,

On the two intervals  [titis)), 1=j-2,j-1, y;will  have  the rational
cubic form

Y, (=R, (e;ri)‘lfj (t) + R, (0;1) (‘Vj(ti) + h, \Vﬁl) (t) /1)
+ Rz(e;ri)(\Vj(tm) - hi\Vj'l)(tm)/ri) + R3(9§ri)\|’j (t) - (4.3)

The requirement thaty,ec’(-0,0) (in particular at tj,, tj.; and t;)

uniquely determines v, , since it can then be shown that

Wj(tj—z) = \V?)(tj—z) =0
vt ) =d, hj—z/rj—z,W§l)(tj-1) =d;, (4.1)
\Vj(tj) = dj—l (hj—]/rj—l+ hj—z/rj—z) + hj—l(l _l/rj_1)a\|/§1)(tj) =1,

Where
dj = hj.1(1j-2)/(hj(1j-1-2)+h (15-2)). 4.5)

It should be noted that y; is a member of our class of rational spline
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functions, since the «class of rational cubic functions contains all
polynomials of degree 1 (see identities (2.8) and (2.9)). Hence the linear
extension in (4.2) for t > t; is allowable.

The local support rational cubic B-spline basis is now defined by the
difference functions

B;(t) = ¢,(H) — ¢, (1), j=-1,....n+l (4.6)
where

?; 1= (\Vj(t) Vi (t))/cj, j=-L..nt+2 (4.7)
and

C;= \Vj(tj+1) ~ Via (tj+l)
= dj—l (hj—l/rj—l +hj—2/rj—z) + (l_dj) (hj/rj +hj_l/r.

-1

+ h (1-2/r).
(4.8)
It should be observed that y; has been constructed such that

0 for t< t,.

@;(t) = (4.9)
1 for t>t,,.

Thus, there immediately follows:
Proposition 4.1. (Rational B-spline) The rational spline functions

Bi(t), j = -1,...,n+l, are such that

(Local support) B;(t)=0 for t (t; ,t;,,)- (4.10)

n+l

(Partition of unity) jEIBJ(t)Zl for telt,,t,].. (4.11)

Figure 4.2 The rational spline ¢,(t)
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Figure 4.3 The rational B-spline B;j (t)

An explicit representation of the rational cubic B-spline B; on any
interval [tj,ti+1)can be calucalted from (4.2)-(4.8) as

B,(t) = R,(6;1,)B,(t;) + R, (8;t,)(B,(t;) + h,BY (¢, )/r,)

+ R2(e;ri )Bj(ti+1 )_hile)(ti+1 )/ri + R3(e;ri )Bj(tm) (4.12)
where
B(t)=B"(t)=0 fori=j-1jj+l (4.13)
and
Bj(tj—l) =Ui, BEU (tj—l) =HUis
Bi(t)=1-4;—n,; Bgl)(tj):kj_ﬁ= (4.14)
Bi(ty.) =2, B (t,,)) =—Aju ,
with

Mj:dj/cjw szhj—l nj/rj—l 5 (4.15)
K:(l—dj)/cj, Xj :thj/rj .
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Careful examination of the Bernstein-Bezier vertices of Bj(t) in(4.12)
show these to be non-negative for r; satisfying (4.1) and we thus have:
Proposition 4.2 The rational B-spline functions are such that

(Positivity) Bj(t) >0 for all t. (4.16)

To apply the rational cubic B-spline as a practical method for curve
design, a convenient method for computing the curve representation

n+l

p(t):ZBj(t)pj’ teft,,t,], (4.17)

is required, where p; € RY define the control points of the representation.

Now, by the local support property,

i+2
p(t) =Y B,()p,, telt,t,), i=0,..,n-1 (4.18)

j=i-1

Substitution of (4+.12) then gives the piecewise defined rational Bernstein-
Bézier representation

p(t)= R (0;r)F, + R (0;r)V, + R,(0;r))W,; + R;(0;r)F,, , telt;,t,)

(4.19)
where
E=AP_ +(1-A,—-pP +upP,, ,
Vi=(-0;)P +a,P, (420
W, =B,P,+(1-B, P, .
With
o; =y, +h, ﬁi/ri :ﬁi(hi—l /t+hi/r)
(4.21)

Bi:}\’i+1+h7\’ /ri:Xi+1(hi/ri+hi+l/ri+1)

i7vi+l

This transformation to rational Bernstein-Bézier form is very convenient
for computational purposes and also leads to:

Proposition 4.3 (Variation diminishing property) The rational B-spline
curve p(t), te[t,,t,], defined by (4.17), crosses any (hyper) plane of

dimension N-1 no more times than it crosses the '"control polygon" p joining
n+l

the control points {pj}j:_l.
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Proof. Examination of the coefficients a,, 8; in (4.17) shows that
o, 20, B, 20, and o, +B; < 1.

Thus Vi and W; lie on the line segment joining P;, Py, where Vi is
"before' W;. Also, we can write

E ={-v) W, + 7,V (4.22)

Where v,=(h,,/r)/(h,,/r,+h/r;) and hence 0 < vy, < 1 . Thus the
control polygon of the piecewise defined Bernstein-Bézier representation is
obtained by 'corner cutting' of the B-spline control polygon, see Figure
44. Since th e piecewise defined Bernstein-Bézier  representation  is
variation  diminishing, it follows that the B-spline representation is also
variation diminishing. O

i+2

Figure 4.4 Corner cutting to obtain Bernstein-Bézier vertices

The tension properties of the rational B-spline representation are
examined in the following two propositions:
Proposition 4.3 (Linear B-spline tension property) Let r > r > 2,
i=j-2,....,j+1. Then
lim|B; - ¢, =0 (4.23)

r—00

where
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(t—t,)/h, , t,<t<t,,

o;(t) = q(t,, —O/h; ot <t<ty,, (4.24)

0 , otherwise,

is the linear polynomial B-spline (see Figure 4.5)

Figure 4.5 The linear polynomial B-spline

Proof. The rational B-spline defined by (4.12) can be expressed for
te[tiﬂtiﬂ] as

B;(t)=(1-0)B,(t;)+6B,(t;,)+e; (1), (4.25)
where
- _RM _ _Rro
o (1) 00— ONA ~BY()O D+ (4, - BY'(1,))0}, @26
1+(xr, -3)8(1 - 0)
A= (Bj(ti+l)_ Bj(ti))/hi e (4.27)

(cf. (2.9)-(2.11)). Here the Bj(t)) and B;'’(t;) values are defined by
(4.13)-(4.15), where for i = j-1, j, j+1 they are dependent on rj, i = j-2,

...,J] + 1. Examination of the coefficients (4.15) reveals that ﬁj,kj , and
hence the Bj(l) (ti) are bounded and that
rEToij(tj_l) = r.1+ilr_r)1oij (t,)) =0 r_711i,¥n_mBj (t)=1- (4.28)

It is then a simple matter to show that lim||ei||:O and that (4.23) holds.o
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Remark 4.4 From (4.28) there follow the more precise results that

lim “Bj“zo on[ti, ],
£ 10

hm%HBJ _‘I’JHZO on[tj 2, 4],
rjfz,rlji,rlnvrﬁwHBJ ~4|=0 on[ tja, 4],
lim HBJH:O on[tjs,t1].
M

An immediate consequence of Proposition 4.3 (and Remark 4.4) is:
Corollary 45 (Global tension property) Let r, > > 2, i1 = -2,..ntl,
and let P denote the control polygon, defined explicitly on [t, ti1 |,
i=-l,...,n, by

P(t) =(1- )P, + OP,

i+l

0(t)=(t—t,)/h.. (4.29)

Then the rational B-spline representation (4.17) converges uniformly to P
on [t ,t,, Jast —>oo.

Corollary 4.5 could be proved directly by studying the behaviour of the
Bernstein-Bézier  control points in  (4.19) as r—owo. We follow this
approach in the proof of the final proposition.

Proposition 4.6 (Local tension property) Consider an interval [ty, tii] for
a fixed k € {0,..., n—1} and let

Qg = (I —p)P +uP,,,
(4.30)
QK+1 = 7\‘PK +(1- 7\‘)PK

+1°

denote two distinct points on the line segment of the control polygon
joining Pk, Px1 , where

A=h, /t,/(h, /. +h_/r., +h)
(4.31)
pw=h /5 /(b /o +hy, /ng +hy)s

(Note that Qg is  'before' Qs since A+u<l) Then the rational
B-spline representation (4.17) converges uniformly to Q on [t , t x+1] as
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r, — o, where

QM) =(1-0)Q¢ +6Qy,,, O(t)=(t—ty)/hy. (4.32)
Proof. Itis a simple matter to show, in (4.15), that
rliirlokk = rlirﬁlz0 e, =0
rlKiE}O Ly :; and rliE}OKkH =\

Thus, in the Bernstein-Bézier representation (4.19) on [tk , tk+1], we have

limF =Q, and limF_, =Q,,,

Moreover, the Bernstein-Bézier representation can be expressed as
P(t)=P (t;r,) =7, (t;r, ) +e, (t,r,) ,te [t ,t ]
as in (2.9), where it can be shown that

lim ||Q —Zk” < lim ||Q —P||+ lim ||ek|| =0 on [t t.]

g >0 Iy >®© I'g >0

which completes the proof.o

Examples 4.7 Consider the data set in R? identical to that of the
interpolatory examples 3.4, where the data now define the control points of
the rational B-spline representations. Figures 4.6 and 4.7 illustrate the
effect, respectively, of progressive global and local increases in  the
tension parameters. The results confirm the analysis of Corollary 4.5 and
Proposition 4.6

r=5 r=50

Figures 4.6 Rational B-spline curves with global tension r; = r
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) (] -] [-2

1‘4:3 1‘4:5 1‘4:50

-] (-}

Figures 4.7 Rational B-spline curves with tension r4 varying

5. Concluding Remarks

An analysis of a rational cubic tension spline has been developed with
a view to its application in CAGD. We have found it appropriate to
construct a rational form which involves just one tension parameter per
interval, although clearly the rational form defined by (2.1) could be
generalized. One advantage of the wuse of C’ parametric continuity,
compared with that of more general geometric GC® continuity, will become
apparent in the application of such a rational spline method for surfaces.
In this case we would propose to follow the approach of Nielson
[Nielson '86], in the wuse of the spline blended methods of Gordon
[Gordon '71]. Nielson proposes a spline blended surface of GC?> v-splines
but observes that only GC' continuity results from such a spline blend of
GC? curves. However, the use of parametric C® curves in the blend will
alleviate this loss of continuity.
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