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Local Stabilization for Multiple Input-Delay Systems subject
to Saturating Actuators: The Continuous-time Case

Yonggang Chen, Zidong Wang, Bo Shen, and Qing-Long Han

Abstract—In this paper, the local stabilization problem is dealt with
for a class of continuous-time multiple input-delay systems subject to
saturating actuators. Using the generalized sector conditions and the
piecewise Lyapunov-Krasovskii functional, and carrying out rigorous
mathematical deduction, a sufficient condition is established under which
the closed-loop dynamics is exponentially stable for admissible initial
conditions. Subsequently, the explicit characterization of controller gains
is obtained in terms of the solvability of linear matrix inequalities. The
special cases concerning the constant and single delays are also discussed.
Moreover, optimization problems are proposed to maximize the estimate
of the domain of attraction. Finally, two simulation examples are given
to show the effectiveness and advantages of the obtained results.

Index Terms—Continuous-time systems, local stabilization, control
systems, multiple input delays, saturating actuators.

I. I NTRODUCTION

In the past several decades, time-delay systems have gained con-
siderable research attention from both communities of dynamical
system and control engineering. In general, the motivation for the
ever-increasing research interest is twofold: 1) many control systems
intrinsically contain time delays in the state, the input or the output
[3], [5], [7], [17], [18], [23], [25]; and 2) some strategies and
phenomena can be modeled as time delays with examples including
sampling control and packet dropouts [5], [26], [28]. For the stability
analysis of time-delay systems, it has been acknowledged that the
Lyapunov-Krasovskii (L-K) approach plays a vitally important role
that enables the use of the linear matrix inequalities (LMIs), thereby
facilitating the control design. Some important results under the L-K
approach can be found in [5], [9], [16], [19], [21], [29]–[31].

The saturation phenomenon is frequently encountered in feedback
control systems owing to the magnitude/rate constraints of physical
actuators. Over the past two decades, the analysis/synthesis issue
for control systems subject to saturating actuators has become an
active topic of research in the control community [4], [8], [10]–[12],
[22], [32]. In general, the existing results concerning the saturated
control systems can be classified into two categories, i.e., the semi-
global/global case [12], [32] and the local case [4], [8], [10], [11],
[22]. For the semi-global/global design, the main approaches include
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the pole placement, the parametric Riccati/Lyapunov equation and
the gain scheduling techniques [12], [32]. For the local analysis and
synthesis, the polytopic models and the generalized sector conditions
are the most popular techniques in dealing with saturations [8], [22].

In practical feedback control systems, it is often the case that
actuator saturations and time delays coexist. Therefore, much effort
has been devoted to the control synthesis for time-delay systems
subject to actuator saturations in the past decade or so, see e.g. [1],
[2], [6], [13]–[15], [27]. For example, in [1], [2], delay-dependent
polytopic models have been explored to address the local stabilization
problem for state delay systems with actuator saturations. Taking
the first-delay interval into account, the local stabilization problem
has been studied in [14] for input delay systems under actuator
saturations. It should be pointed out that most existing literature
has mainly focused on the case of asingle delay. Considering that
large-scale systems/networks might have multiple input delays, the
semi-global stabilization problem has been sufficiently investigated
in [33], [34] for linear systems with actuator saturations and multiple
input delays. Nevertheless, it is worth mentioning that the semi-global
stabilization scheme developed in [33], [34] cannot be directly applied
to the case when the open-loop system is exponentially unstable.

Inspired by the above discussions, this paper takes one substantial
step further by looking into the local stabilization problem for
multiple input-delay systems with actuator saturations where the
open-loop systems are allowed to be exponentially unstable. As in
[3], [14], we redefine the initial conditions and estimate the solution
bounds within initial time-intervals via the delay-dependent L-K
approach. However, the main results of this paper are by no means
a simple generalization of the existing ones (involving a single input
delay) such as [14]. In fact, for feedback systems with multiple
input delays, there exist multiple time-intervals within which the
closed-loop dynamics are different. Therefore, the analysis approach
proposed in [14] is unfortunately inapplicable.The main contributions
of the paper are summarized as follows. 1) A piecewise L-K functional
is constructed under which the exponential stability analysis of the
closed-loop systems can be performed with certain flexibility. 2)
By further incorporating the modified sector conditions, the local
exponential stabilization conditions are established for a class of
saturated control systems with multiple input delays.

Notation: The superscript“T” stands for the transpose of a matrix.
P > 0 (≥ 0) denotes thatP is a real, symmetric, and positive definite
(positive semi-definite) matrix.Rn is the n-dimensional Euclidean
space.u(l) is the l-th element of the vectoru, andG(l) denotes the
l-th row of the matrixG. ⊗ is the Kronecker product. The symmetric
terms in a symmetric matrix are denoted by∗. xt , x(t + θ), θ ∈
[−h, 0]. He(A) , A+ A

T . I [a, b] , {a, a+ 1, . . . , b}.

II. PROBLEM FORMULATION

Let us address the following nonlinear system subject to multiple
time-varying input delays and saturating actuators:

ẋ(t) =Ax(t) + f(x(t)) +
r

∑

i=1

Bisat(ui(t− τi(t))), (1)
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x(θ) =x0, θ ∈ [−h, 0], h = max
1≤i≤r

{hi

}

(2)

wherex(t) ∈ R
n denotes the system state;ui(t) ∈ R

m (i ∈ I [1, r])
are control inputs withui(t) = 0 for t < 0; A ∈ R

n×n and
Bi ∈ R

n×m (i ∈ I [1, r]) are known constant matrices;τi(t) ∈ [0, hi]
(i ∈ I [1, r]) denote the time-varying input delays with known upper-
boundshi > 0; sat(ui) = [sat(ui(1)) sat(ui(2)) · · · sat(ui(m))]

T

(i ∈ I [1, r]) are standard saturation functions withsat(ui(l)) =
sgn(ui(l))min{|ui(l)|, ūi(l)} (ūi(l) > 0, l ∈ I [1,m]); x0 ∈ R

n is the
initial condition; f(x) ∈ R

n is a continuous vector-valued function
that satisfiesf(0) = 0 and the following sector-bounded condition:

fT (x))[f(x)− Fx] ≤ 0 (3)

whereF ∈ R
n×n is a known real constant matrix.

Remark 1:As in literature [3], [14], we assume thatui(t) = 0 (i ∈
I [1, r]) for t < 0. It is worth mentioning that this control setting is
often encountered in many control systems subject to actuator delays
and transmission delays. Note that the solutions of the system (1) are
independent on the values ofx(t) for t < 0. Therefore, as with [3],
[14], we define the initial condition asx(t) = x0 within the interval
[−h, 0] for analyzing the stability by means of the L-K approach.

In this paper, we employ the following state feedback controllers:

ui(t) = Kix(t), i ∈ I [1, r], t ≥ 0 (4)

whereKi ∈ R
m×n (i ∈ I [1, r]) are the controller gains.

Assumption 1:For everyτi(t) (i ∈ I [1, r]), there exists a unique
scalart∗i ≤ hi such thatt− τi(t) < 0 for t < t∗i and t − τi(t) ≥ 0
for t ≥ t∗i [14]. Moreover, the scalarst∗i (i ∈ I [1, r]) satisfy

0 , t∗0 < t∗1 < t∗2 < · · · < t∗r < hr. (5)

Denoteψ(u) , u − sat(u) and t∗r+1 , +∞. Then, by applying
(1) and (4), one has the following closed-loop system:

ẋ(t) =Ax(t) + f(x(t)), t ∈ [t∗0, t
∗
1), (6)

ẋ(t) =Ax(t) + f(x(t)) +

i
∑

j=1

Bj

[

Kjx(t− τj(t))

− ψ(uj(t− τj(t)))
]

, t ∈ [t∗i , t
∗
i+1), i ∈ I [1, r]. (7)

Remark 2:In Assumption 1, the existence and uniqueness of the
scalarst∗i (i ∈ I [1, r]) can be ensured ifτi(t) (i ∈ I [1, r]) are slowly-
varying with τ̇i(t) < 1. The existence and uniqueness oft∗i are also
guaranteed in networked control systems, where the modeled delays
are piecewise-continuous and do not grow at the sampling instants
[3], [14]. In addition, it is worth pointing out that, a somewhat strong
requirement (5) is imposed for convenience of subsequent analysis.

Next, a lemma is introduced to deal with the dead-zone nonlinear-
ities ψ(ui) (i ∈ I [1, r]) induced in the closed-loop system (7).

Lemma 1: [22] Let the vectorsu ∈ R
m and v ∈ R

m be given.
If |u(l) − v(l)| ≤ ū(l) (l ∈ I [1, m]), then for any positive diagonal
matrixH ∈ R

m×m, the following inequality holds:

ψT (u)H [ψ(u)− v] ≤ 0.

Denotew , u−v. It is obvious from Lemma 1 that, if|w(l)| ≤ ū(l)

(l ∈ I [1, m]), then the following sector condition is ensured:

ψT (u)H [ψ(u)− u+ w] ≤ 0. (8)

Let us introduce the vectorswij = Gijx ∈ R
m (i ∈ I [1, r],

j ∈ I [1, i]) whereGij ∈ R
m×n. If the constraint conditions

|wij(l)(t)| = |Gij(l)x(t)| ≤ ūj(l), t ∈ [t∗i , t
∗
i+1),

i ∈ I [1, r], j ∈ I [1, i], l ∈ I [1, m] (9)

are true, then for any positive diagonal matricesHij ∈ R
m×m (i ∈

I [1, r], j ∈ I [1, i]), it follows from (8) that

− 2ψT (uj(t− τj(t)))Hij

×
[

ψ(uj(t− τj(t)))−Kjx(t− τj(t)) +Gijx(t)
]

≥ 0,

t ∈ [t∗i , t
∗
i+1), i ∈ I [1, r], j ∈ I [1, i]. (10)

Remark 3:To deal with the delayed dead-zone functionψ(u(t−
τ (t))), the delay-dependent sector condition has been employed in [5]
(pp. 239). Compared with the sector condition used in [5], the sector
conditions (10) depend on both the delayed states and the current
state. Using the sector conditions (10), not only the relationships
betweenψ(uj(t − τj(t))) and x(t − τj(t)) (j ∈ I [1, i]) but also
the relationships betweenψ(uj(t− τj(t))) andx(t) (j ∈ I [1, i]) are
considered, which would be helpful in reducing the conservatism.

The main purpose of this paper is to design the state feedback
controllers (4) such that the closed-loop system (6)-(7) is locally
exponentially stable and, meanwhile, the estimate of the domain of
attraction (DOA) is made as large as possible. Throughout this paper,
the exponential stability means that the exponential convergence of
the system trajectories are guaranteed from the instantt∗r.

III. M AIN RESULTS

For the exponential stability analysis of the system (6)-(7), we
propose a piecewise L-K functional described as

V (t) =

{

Vk(t), t ∈ [t∗k, t
∗
k+1), k ∈ I [0, r − 1],

Vr(t), t ∈ [t∗r ,+∞)
(11)

where

Vk(t) =x
T (t)Pkx(t) +

r
∑

ĵ=1

[
∫ t

t−h
ĵ

eαk(t−s)xT (s)Qkĵx(s)ds

+ hĵ

∫ 0

−h
ĵ

∫ t

t+θ

eαk(t−s)ẋT (s)Zkĵ ẋ(s)dsdθ

]

,

Vr(t) =x
T (t)Prx(t) +

r
∑

ĵ=1

[
∫ t

t−h
ĵ

eαr(s−t)xT (s)Qrĵx(s)ds

+ hĵ

∫ 0

−h
ĵ

∫ t

t+θ

eαr(s−t)ẋT (s)Zrĵ ẋ(s)dsdθ

]

with Pî > 0, Qîĵ > 0, Zîĵ > 0, αî > 0, î ∈ I [0, r], ĵ ∈ I [1, r].
For convenience of subsequent presentation, we denote

ξ0(t) ,
[

xT (t) xT (t− h1) xT (t− h2) · · ·

xT (t− hr) fT (x(t)) ẋT (t)
]T
,

ξi(t) ,
[

xT (t) xT (t− τ1(t)) · · · xT (t− τi(t))

xT (t− h1) · · · xT (t− hr) ψT (u1(t− τ1(t)))

· · · ψT (ui(t− τi(t))) fT (x(t)) ẋT (t)
]T
,

Q̂sĵ ,e
αshĵQsĵ , Q̂rĵ , e

−αrhĵQrĵ , Q̌sĵ , e
αshĵ Q̄sĵ

Q̌rĵ ,e
−αrhĵ Q̄rĵ , Ẑsĵ , Zsĵ , Ẑrĵ , e

−αrhĵZrĵ ,

Žsĵ ,Z̄sĵ , Žrĵ , e−αrhĵ Z̄rĵ , M̂sj ,Msj ,

M̂rj ,e−αrhĵMrj , M̌sj , M̄sj , M̌rj , e−αrhĵM̄rj ,

βs ,eα0(t
∗

1−t∗0)+α1(t
∗

2−t∗1)+···+αs(t
∗

s+1−t∗s )µ1 · · ·µs,

βr ,µrβr−1, s ∈ I [1, r − 1], j ∈ I [1, i], ĵ ∈ I [1, r].

Theorem 1:Let the scalarsαî > 0 andµi > 0 be given. Assume
that there existn × n matricesPî > 0, Qîĵ > 0, Zîĵ > 0, Rî, Sî,
Mij , m × n matricesKi, Gij , m×m diagonal matricesHij > 0,
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and scalarsεî > 0, î ∈ I [0, r], i, ĵ ∈ I [1, r], j ∈ I [1, i], such that for
∀ i, ĵ ∈ I [1, r], ∀ j ∈ I [1, i], the following matrix inequalities holds:

[

Zij Mij

MT
ij Zij

]

, Λij > 0, (12)








Ω0
11 Ω0

12 Ω0
13 Ω0

14

∗ Ω0
22 0 0

∗ ∗ −2ε0I ST
0

∗ ∗ ∗ Ω0
44









, Ω0 < 0, (13)

















Ωi
11 Ωi

12 Ωi
13 Ωi

14 Ωi
15 Ωi

16

∗ Ωi
22 Ωi

23 Ωi
24 0 Ωi

26

∗ ∗ Ωi
33 0 0 0

∗ ∗ ∗ Ωi
44 0 Ωi

46

∗ ∗ ∗ ∗ −2εiI ST
i

∗ ∗ ∗ ∗ ∗ Ωi
66

















, Ωi < 0, (14)











Pi ≤ µiPi−1, e
(αs−αs−1)hĵQsĵ ≤ µsQs−1,ĵ ,

e(αs−αs−1)hĵZsĵ ≤ µsZs−1,ĵ , ∀ s ∈ I [1, r − 1],

Qrĵ ≤ µrQr−1,ĵ , Zrĵ ≤ µrZr−1,ĵ ,

(15)

[

ū2
j(l)/βi Gij(l)

GT
ij(l) Pi

]

≥ 0, ∀ l ∈ I [1, m] (16)

where

Ω0
11 ,He(R0A)− α0P0 + Σr

ĵ=1(Q0ĵ − Z0ĵ),

Ω0
12 ,[Z01 Z02 · · · Z0r], Ω0

13 , R0 + ε0F
T ,

Ω0
22 ,diag{−eα0h1Q01 − Z01, . . . ,−e

α0hrQ0r − Z0r},

Ω0
14 ,P0 −R0 + ATST

0 , Ω0
44 , Σr

ĵ=1h
2
ĵZ0ĵ − He(S0),

Ωs
11 ,He(RsA)− αsPs + Σr

ĵ=1(Qsĵ − Ẑsĵ), s ∈ I [1, r − 1],

Ωr
11 ,He(RrA) + αrPr + Σr

ĵ=1(Qrĵ − Ẑrĵ),

Ωi
12 ,[RiB1K1 + Ẑi1 − M̂i1 · · · RiBiKi + Ẑii − M̂ii],

Ωs
13 ,[M̂s1 · · · M̂ss Ẑs,s+1 · · · Ẑsr], s ∈ I [1, r − 1],

Ωi
14 ,[−RiB1 −GT

i1H
T
i1 · · · −RiBi −GT

iiH
T
ii ],

Ωi
15 ,Ri + εiF

T , Ωi
16 , −Ri + ATST

i + Pi,

Ωi
22 ,diag{He(M̂i1)− 2Ẑi1, . . . ,He(M̂ii)− 2Ẑii},

Ωi
23 ,

[

diag{Ẑi1 − M̂i1, . . . , Ẑii − M̂ii} 0in×(r−i)n

]

,

Ωi
24 ,diag{KT

1 H
T
i1, . . . ,K

T
i H

T
ii}, Ωr

13 , [M̂r1 · · · M̂rr],

Ωi
26 ,[B1K1 · · · BiKi]

TST
i , Ωi

46 , −[B1 · · ·Bi]
TST

i ,

Ωi
33 ,diag{−Q̂i1 − Ẑi1, . . . ,−Q̂ir − Ẑir},

Ωi
44 ,− 2diag{Hi1, . . . ,Hii}, Ωi

66 , Σr
ĵ=1h

2
ĵZiĵ − He(Si).

Then, for all initial conditionsx0 satisfyingV0(0) ≤ 1, the closed-
loop system (6)-(7) is exponentially stable.

Proof: Noting Vî(t) (̂i ∈ I [0, r]) denoted in (11), we have

V̇k(t) ≤2xT (t)Pkẋ(t) +
r

∑

ĵ=1

[

xT (t)Qkĵx(t)− eαkhĵ

× xT (t− hĵ)Qkĵx(t− hĵ) + h2
ĵ ẋ

T (t)Zkĵ ẋ(t)

− hĵ

∫ t

t−h
ĵ

ẋT (s)Zkĵ ẋ(s)ds

]

− αkx
T (t)Pkx(t)

+ αkVk(t), t ∈ [t∗k, t
∗
k+1), k ∈ I [0, r − 1], (17)

V̇r(t) ≤2xT (t)Prẋ(t) +
r

∑

ĵ=1

[

xT (t)Qrĵx(t)− e
−αrhĵ

× xT (t− hĵ)Qrĵx(t− hĵ) + h2
ĵ ẋ

T (t)Zrĵ ẋ(t)

− e
−αrhĵhĵ

∫ t

t−h
ĵ

ẋT (s)Zrĵ ẋ(s)ds

]

+ αrx
T (t)Prx(t)− αrVr(t), t ∈ [t∗r ,+∞). (18)

Using the Jensen’s integral inequality [14], it follows that

hĵ

∫ t

t−h
ĵ

ẋT (s)Z0ĵ ẋ(s)ds ≥ ζT1ĵ(t)Z0ĵζ1ĵ(t), ĵ ∈ I [1, r], (19)

hj

∫ t

t−hj

ẋT (s)Zij ẋ(s)ds ≥
hj

τj(t)
ζT2j(t)Zijζ2j(t)

+
hj

hj − τj(t)
ζT3j(t)Zijζ3j(t), i ∈ I [1, r], j ∈ I [1, i], (20)

hj

∫ t

t−hj

ẋT (s)Zij ẋ(s)ds ≥ ζT4j(t)Zijζ4j(t),

i ∈ I [1, r], j ∈ I [i+ 1, r] (21)

where ζ1ĵ(t) , x(t) − x(t − hĵ), ζ2j(t) , x(t) − x(t − τj(t)),
ζ3j(t) , x(t− τj(t))− x(t− hj) andζ4j(t) , x(t)− x(t− hj).

If there exist matricesMij ∈ R
n×n (i ∈ I [1, r], j ∈ I [1, i]) such

that LMIs (12) hold, the inequalities (20) can be modified as [19]

hj

∫ t

t−hj

ẋT (s)Zij ẋ(s)ds ≥

[

ζ2j(t)
ζ3j(t)

]T

Λij

[

ζ2j(t)
ζ3j(t)

]

,

i ∈ I [1, r], j ∈ I [1, i]. (22)

For any matricesRî ∈ R
n×n andSî ∈ R

n×n, î ∈ I [0, r], it can
be seen from the system equations (6) and (7) that [14]

2[Ax(t) + f(x(t))− ẋ(t)]T [RT
0 x(t) + ST

0 ẋ(t)] = 0, (23)

2[Ax(t) + f(x(t)) + ηi(t)− ẋ(t)]T

× [RT
i x(t) + ST

i ẋ(t)] = 0, i ∈ I [1, r] (24)

whereηi(t) , Σi
j=1Bj [Kjx(t − τj(t)) − ψ(uj(t − τj(t)))]. Also,

for any scalarsεî > 0 (̂i ∈ I [0, r]), one has from (3) that

− 2ε0f
T (x(t)))[f(x(t))− Fx(t)] ≥ 0, (25)

− 2εif
T (x(t)))[f(x(t))− Fx(t)] ≥ 0, i ∈ I [1, r]. (26)

Adding the left-hand sides of (23) and (25) tȯV0(t) denoted in
(17), and using the inequalities (19), it follows that

V̇0(t) ≤V̇0(t) + 2[Ax(t) + f(x(t))− ẋ(t)]T

× [RT
0 x(t) + ST

0 ẋ(t)]− 2ε0f
T (x(t)))[f(x(t))− Fx(t)]

≤ξT0 (t)Ω0ξ0(t) + α0V0(t), t ∈ [t∗0, t
∗
1). (27)

Adding the left-hand sides of (10), (24) and (26) toV̇i(t) in (17),
and using (22) forj ∈ I [1, i] and (21) forj ∈ I [i+ 1, r], we have

V̇i(t) ≤V̇i(t)− 2Σi
j=1ψ

T (uj(t− τj(t)))Hij

×
[

ψ(uj(t− τj(t)))−Kjx(t− τj(t)) +Gijx(t)
]

+ 2[Ax(t) + f(x(t)) + ηi(t)− ẋ(t)]T

× [RT
i x(t) + ST

i ẋ(t)]− 2εif
T (x(t)))[f(x(t))− Fx(t)]

≤ξTi (t)Ωiξi(t) + αiVi(t), t ∈ [t∗i , t
∗
i+1), i ∈ I [1, r − 1].

(28)

Similarly, it follows from (10), (18), (22), (24) and (26) that

V̇r(t) ≤ξ
T
r (t)Ωrξr(t)− αrVr(t), t ∈ [t∗r ,+∞). (29)

For ∀ i ∈ I [1, r], ∀ j ∈ I [1, i], if the matrix inequalities (12)-(14)
are feasible, then one obtains from (27)-(29) that

V0(t) ≤ eα0(t−t∗0)V0(t
∗
0), t ∈ [t∗0, t

∗
1), (30)

Vi(t) ≤ eαi(t−t∗i )Vi(t
∗
i ), t ∈ [t∗i , t

∗
i+1), i ∈ I [1, r − 1], (31)

Vr(t) ≤ e−αr(t−t∗r)Vr(t
∗
r), t ∈ [t∗r ,+∞). (32)
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Also, it is seen from the matrix inequalities (15) that

Vi(t) ≤ µiVi−1(t), i ∈ I [1, r]. (33)

Using the inequalities (30), (31) and (33), it can be inferred that

V1(t) ≤ eα1(t−t∗1)V1(t
∗
1) ≤ eα1(t−t∗1)µ1V0(t

∗
1)

≤ eα0(t
∗

1−t∗0)+α1(t−t∗1)µ1V0(0) ≤ β1V0(0), t ∈ [t∗1, t
∗
2) (34)

where the scalarβ1 is denoted above Theorem 1. Using the similar
arguments, we can eventually obtain from (30)-(33) that

Vi(t) ≤βiV0(0), t ∈ [t∗i , t
∗
i+1), i ∈ I [1, r − 1], (35)

Vr(t) ≤βre
−αr(t−t∗r)V0(0), t ∈ [t∗r ,+∞). (36)

On the other hand, it follows from (11) that

Vi(t) > xT (t)Pix(t), i ∈ I [1, r], xt 6= 0. (37)

For ∀ i ∈ I [1, r], ∀ j ∈ I [1, i], if the matrix inequalities (16) are
satisfied, using Schur complement, it is seen that

Pi ≥ (βi/ū
2
j(l))G

T
ij(l)Gij(l),

i ∈ I [1, r], j ∈ I [1, i], l ∈ I [1, m]. (38)

Moreover, it follows from (37) and (38) that

|wij(l)(t)|
2 = xT (t)GT

ij(l)Gij(l)x(t) < (ū2
j(l)/βi)Vi(t),

t ∈ [t∗i , t
∗
i+1), i ∈ I [1, r], j ∈ I [1, i], l ∈ I [1, m]. (39)

Finally, we will show that, for all initial conditionsx0 satisfying
V0(0) ≤ 1, the modified sector conditions (10) can be guaranteed
and the relations (35) and (36) are valid. Moreover, one can conclude
from (36) that the system (6)-(7) is locally exponentially stable.

For ∀ x0 satisfyingV0(0) ≤ 1, from (30), (33) and (39), we have

|w11(l)(t
∗
1)| <[(ū2

1(l)/β1)µ1e
α0(t

∗

1−t∗0)V0(0)]
1/2

≤ū1(l), l ∈ I [1, m]. (40)

Noting that |w11(l)(t)| (l ∈ I [1, m]) are continuous with respect to
t, from (40), there exists a time interval[t∗1, t̂1) ⊂ [t∗1, t

∗
2) such

that |w11(l)(t)| ≤ ū1(l), t ∈ [t∗1, t̂1), l ∈ I [1, m]. Then, within
[t∗1, t̂1), the sector condition (10) is satisfied fori = j = 1 and
the relationVi(t) ≤ βiV0(0) is true for i = 1. Moreover, we have
V1(t̂1) ≤ β1V0(0), and then one obtains from (39) that|w11(l)(t̂1)| <
ū1(l), l ∈ I [1, m]. Again, noting that|w11(l)(t)| (l ∈ I [1, m]) are
continuous, there exists the time interval[t̂1, t̂2) ⊂ [t∗1, t

∗
2) such

that |w11(l)(t)| ≤ ū1(l), t ∈ [t̂1, t̂2), l ∈ I [1,m]. Then, within
[t̂1, t̂2), the sector condition (10) is ensured (i = j = 1) and the
relation Vi(t) ≤ βiV0(0) holds (i = 1). Furthermore, we have
V1(t̂2) ≤ β1V0(0), and then from (39), we have|w11(l)(t̂2)| < ū1(l),
l ∈ I [1, m]. Repeating the above process, one can conclude that
the sector condition (10) is satisfied (i = j = 1) and the relation
Vi(t) ≤ βiV0(0) denoted in (35) is guaranteed (i = 1) within the
whole intervalt ∈ [t∗1, t

∗
2). Meanwhile, one hasV1(t

∗
2) ≤ β1V0(0).

From (33) and (39), it can be seen that

|w2j(l)(t
∗
2)| <[(ū

2
j(l)/β2)µ2β1V0(0)]

1/2

≤ūj(l), j ∈ I [1, 2], l ∈ I [1, m]. (41)

Using the similar arguments as above, one can prove that the sector
condition (10) is satisfied fori = 2, j ∈ I [1, 2] and the relation
(35) holds fori = 2 within the interval[t∗2, t

∗
3). Repeating the above

procedure, it is seen that the sector conditions (10) are ensured and
the relations (35) and (36) are true. The proof is now complete.

Remark 4:In the proof of Theorem 1, the piecewise L-K functional
(11) is utilized to characterize the state evolution of the closed-loop
system (6)-(7). Of course, for the asymptotic stability analysis, we can

also choose a common Lyapunov functional. Note that the dynamics
of the system (6)-(7) has different representations within different
time-intervals[t∗

î
, t∗

î+1
) (̂i ∈ I [0, r]). Hence, our proposed functional

(11) is more flexible in analyzing the exponential stability of (6)-(7).
On the other hand, in the proof of Theorem 1, we have assumed that
the system trajectories might diverge with the increasing exponentials
αk within the time-intervals[t∗k, t

∗
k+1) (k ∈ I [0, r − 1]) and become

convergent with the decreasing exponentialαr from the instantt∗r . In
addition, it is worth mentioning that the scalarsαk (k ∈ I [0, r − 1])
in Theorem 1 are required to satisfyα0 ≥ α1 ≥ · · · ≥ αr−1.

To convert the matrix inequalities (12)-(16) in Theorem 1 into
LMIs or quasi-LMIs, we setRî = R, Sî = δîR (δî 6= 0) and denote











R−1 , X, XPîX
T , P̄î, XQîĵX

T , Q̄îĵ ,

XZîĵX
T , Z̄îĵ , XMijX

T , M̄ij , ε
−1

î
, ε̄î,

KiX
T , Ȳi, GijX

T , Ḡij , H
−1
ij , H̄ij .

(42)

Performing some congruence transformations to (12)-(16) in The-
orem 1 [2], and using (42), the following local stabilization condition
can be readily obtained in terms of LMIs and quasi-LMIs.

Theorem 2:Let the scalarsαî > 0, µi > 0 and δî 6= 0 be given.
Assume that there existn×n matricesX, P̄î > 0, Q̄îĵ > 0, Z̄îĵ > 0,
M̄ij , m × n matricesYi, Ḡij , m ×m diagonal matrices̄Hij > 0,
and the scalars̄εî > 0, î ∈ I [0, r], i, ĵ ∈ I [1, r], j ∈ I [1, i], such that
for ∀ i, ĵ ∈ I [1, r], ∀ j ∈ I [1, i], the following LMIs hold:

[

Z̄ij M̄ij

M̄T
ij Z̄ij

]

> 0, (43)








Ω̄0
11 Ω̄0

12 Ω̄0
13 Ω̄0

14

∗ Ω̄0
22 0 0

∗ ∗ −2ε̄0I δ0ε̄0I
∗ ∗ ∗ Ω̄0

44









< 0, (44)

















Ω̄i
11 Ω̄i

12 Ω̄i
13 Ω̄i

14 Ω̄i
15 Ω̄i

16

∗ Ω̄i
22 Ω̄i

23 Ω̄i
24 0 Ω̄i

26

∗ ∗ Ω̄i
33 0 0 0

∗ ∗ ∗ Ω̄i
44 0 Ω̄i

46

∗ ∗ ∗ ∗ −2ε̄iI δiε̄iI
∗ ∗ ∗ ∗ ∗ Ω̄i

66

















< 0, (45)











P̄i ≤ µiP̄i−1, e
(αs−αs−1)hĵ Q̄sĵ ≤ µsQ̄s−1,ĵ ,

e
(αs−αs−1)hĵ Z̄sĵ ≤ µsZ̄s−1,ĵ , ∀ s ∈ I [1, r − 1],

Q̄rĵ ≤ µrQ̄r−1,ĵ , Z̄rĵ ≤ µrZ̄r−1,ĵ ,

(46)

[

ū2
j(l)/βi Ḡij(l)

ḠT
ij(l) P̄i

]

≥ 0, ∀ l ∈ I [1, m] (47)

where

Ω̄0
11 ,He(AXT )− α0P̄0 + Σr

ĵ=1(Q̄0ĵ − Z̄0ĵ),

Ω̄0
12 ,[Z̄01 Z̄02 · · · Z̄0r ], Ω̄0

13 , ε̄0I +XF T ,

Ω̄0
22 ,diag{−eα0h1Q̄01 − Z̄01, . . . ,−e

α0hr Q̄0r − Z̄0r},

Ω̄0
14 ,P̄0 −XT + δ0XA

T , Ω̄0
44 , Σr

ĵ=1h
2
ĵ Z̄0ĵ − δ0He(X),

Ω̄s
11 ,He(AXT )− αsP̄s + Σr

ĵ=1(Q̄sĵ − Žsĵ),

Ω̄r
11 ,He(AXT ) + αrP̄r + Σr

ĵ=1(Q̄rĵ − Žrĵ),

Ω̄i
12 ,[B1Y1 + Ži1 − M̌i1 · · · BiYi + Žii − M̌ii],

Ω̄s
13 ,[M̌s1 · · · M̌ss Žs,s+1 · · · Žsr],

Ω̄i
14 ,[−B1H̄i1 − ḠT

i1 · · · −BiH̄ii − ḠT
ii],

Ω̄i
15 ,ε̄iI +XF T , Ω̄i

16 , −XT + δiXA
T + P̄i,

Ω̄i
22 ,diag{He(M̌i1)− 2Ži1, . . . ,He(M̌ii)− 2Žii},

Ω̄i
23 ,

[

diag{Ži1 − M̌i1, . . . , Žii − M̌ii} 0in×(r−i)n

]

,

Ω̄i
24 ,diag{Y T

1 , . . . , Y
T
i }, Ω̄i

26 , δi[B1Y1 · · · BiYi]
T ,
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Ω̄i
33 ,diag{−Q̌i1 − Ži1, . . . ,−Q̌ir − Žir},

Ω̄i
44 ,− 2diag{H̄i1, . . . , H̄ii}, Ω̄r

13 , [M̌r1 · · · M̌rr],

Ω̄i
46 ,− δi[B1H̄i1 · · · BiH̄ii]

T ,

Ω̄i
66 ,Σr

ĵ=1h
2
ĵ Z̄iĵ − δiHe(X), s ∈ I [1, r − 1].

Then, for allx0 satisfyingV0(0) ≤ 1, the system (1) is exponentially
stabilized by the controllers (4) withKi = YiX

−T , i ∈ I [1, r].
For the constant-delay case, i.e.,τi(t) ≡ hi (i ∈ I [1, r], t ≥ 0),

the scalarst∗i (i ∈ I [1, r]) should be substituted withhi. Then, one
can obtain the following simplified stabilization condition.

Corollary 1: Let the scalarsαî > 0, µi > 0 andδî 6= 0 be given.
The conclusion of Theorem 2 is ensured if there exist matricesX,
P̄î > 0, Q̄îĵ > 0, Z̄îĵ > 0, Yi, Ḡij , diagonal matrices̄Hij > 0, and
scalarsε̄î > 0, î ∈ I [0, r], i, ĵ ∈ I [1, r], j ∈ I [1, i], such that for
∀ i, ĵ ∈ I [1, r], ∀ j ∈ I [1, i], the LMIs (44), (46), (47) and













Ω̌i
11 Ω̌i

12 Ω̌i
13 Ω̌i

14 Ω̌i
15

∗ Ω̌i
22 Ω̌i

23 0 Ω̌i
25

∗ ∗ Ω̌i
33 0 Ω̌i

35

∗ ∗ ∗ −2ε̄iI δiε̄iI
∗ ∗ ∗ ∗ Ω̌i

55













< 0 (48)

are feasible, where

Ω̌s
11 ,He(AXT )− αsP̄s + Σr

ĵ=1(Q̄sĵ − Žsĵ),

Ω̌r
11 ,He(AXT ) + αrP̄i +Σr

ĵ=1(Q̄rĵ − Žrĵ),

Ω̌s
12 ,[B1Y1 + Žs1 · · · BsYs + Žss Žs,s+1 · · · Žsr],

Ω̌r
12 ,[B1Y1 + Žr1 · · · BrYr + Žrr],

Ω̌i
13 ,[−B1H̄i1 − ḠT

i1 · · · −BiH̄ii − ḠT
ii],

Ω̌i
14 ,ε̄iI +XF T , Ω̌i

15 , P̄i −XT + δiXA
T ,

Ω̌i
22 ,diag{−Q̌i1 − Ži1, . . . ,−Q̌ir − Žir},

Ω̌i
23 ,[diag{Y1, . . . , Yi} 0im×(r−i)n]

T ,

Ω̌i
25 ,[δiB1Y1 · · · δiBiYi 0in×(r−i)n]

T ,

Ω̌i
33 ,diag{−2H̄i1, . . . ,−2H̄ii},

Ω̌i
35 ,[−δiB1H̄i1 · · · − δiBiH̄ii]

T ,

Ω̌i
55 ,Σr

ĵ=1h
2
ĵ Z̄iĵ − δiHe(X), s ∈ I [1, r − 1].

If the system (1) contains only a single time-varying input delay
τ1(t) ∈ [0, h1], then Theorem 2 can be simplified as follows.

Corollary 2: Let the scalarsαî > 0, µ1 > 0 andδî 6= 0 be given.
The conclusion of Theorem 2 is guaranteed if there exist matrices
X, P̄î > 0, Q̄î1 > 0, Z̄î1 > 0, M̄11, Y1, Ḡ11, diagonal matrices
H̄11 > 0, and scalars̄εî > 0, î = 0, 1, such that the LMIs









Ω̂0
11 Z̄01 Ω̂0

13 Ω̂0
14

∗ Ω̂0
22 0 0

∗ ∗ −2ε̄0I δ0ε̄0I

∗ ∗ ∗ Ω̂0
44









< 0, (49)



















Ω̂1
11 Ω̂1

12 Ω̂1
13 Ω̂1

14 Ω̂1
15 Ω̂1

16

∗ Ω̂1
22 Ω̂1

23 Y T
1 0 Ω̂1

26

∗ ∗ Ω̂1
33 0 0 0

∗ ∗ ∗ −2H̄11 0 Ω̂1
46

∗ ∗ ∗ ∗ −2ε̄1I δ1ε̄1I

∗ ∗ ∗ ∗ ∗ Ω̂1
66



















< 0, (50)

P̄1 ≤ µ1P̄0, Q̄11 ≤ µ1Q̄01, Z̄11 ≤ µ1Z̄01, (51)
[

Z̄11 M̄11

M̄T
11 Z̄11

]

> 0,

[

ū2
1(l)/β̂ Ḡ11(l)

ḠT
11(l) P̄1

]

≥ 0, ∀ l ∈ I [1, m] (52)

are satisfied, where

Ω̂0
11 ,− α0P̄0 +He(AXT ) + Q̄01 − Z̄01,

Ω̂0
13 ,ε̄0I +XF T , Ω̂0

14 , −XT + δ0XA
T + P̄0,

Ω̂0
22 ,− eα0h1Q̄01 − Z̄01, Ω̂0

44 , h2
1Z̄01 − δ0He(X),

Ω̂1
11 ,He(AXT ) + α1P̄1 + Q̄11 − e−α1h1 Z̄11,

Ω̂1
12 ,B1Y1 + e−α1h1(Z̄11 − M̄11), Ω̂1

13 , e−α1h1M̄11,

Ω̂1
14 ,−B1H̄11 − ḠT

11, Ω̂1
15 , ε̄1I +XF T ,

Ω̂1
16 ,−XT + δ1XA

T + P̄1, Ω̂1
26 , δ1Y

T
1 B

T
1 ,

Ω̂1
22 ,e−α1h1 [He(M̄11)− 2Z̄11], Ω̂1

46 , −δ1H̄
T
11B

T
1 ,

Ω̂1
23 ,e−α1h1(Z̄11 − M̄11), Ω̂1

33 , −e−α1h(Q̄11 + Z̄11),

Ω̂1
66 ,− δ1He(X) + h2

1Z̄11, β̂ , eα0(t
∗

1−t∗0)µ1.

Remark 5:In [14], the local stabilization problem has been studied
for linear systems with a single input delay under actuator saturations.
Unlike [14], the piecewise L-K functional and the modified sector
condition are utilized in this paper to reduce the conservatism. Using
the piecewise L-K functional (11) (the caser = 1), one can perform
the more flexible analysis within the first time-interval[t∗0, t

∗
1), since

we utilize the functionalV0(t) instead ofV1(t) within the interval
[t∗0, t

∗
1) [14]. Using the modified sector condition (10) (the caser =

1), the design variables̄G11 andY1 can be introduced in two different
positions of LMI (50), which makes that it is more flexible to select
the variablesḠ11 andY1 to ensure the feasibility of LMI (50).

Remark 6:For the case thatt∗i (i ∈ I [1, r]) are not exactly known,
using the factt∗i ≤ hi, the scalarsβi (i ∈ I [1, r − 1]) in Theorem
1-2 can be revised asβi = eα0h1+α1h2+···+αihi+1µ1 · · ·µi or βi =
eα0hi+1µ1 · · ·µi. Meanwhile, in Corollary 2,β̂ can be set aŝβ =
eα0h1µ1. If the relation (5) in Assumption 1 is removed, we have to
consider all possibilities concerning the scalarst∗0, t∗1, t∗2, · · · , t∗r . For
example, for the caser = 2, the relationt∗0 < t∗2 < t∗1 ≤ h1 should
be additionally addressed and some conditions should be added.

Remark 7:The main objective of this paper is to establish the
local stabilization conditions for multiple input-delay systems under
actuator saturations by developing some more effective techniques.
Our proposed results are based on the simple state feedback con-
trollers (4). Here, it is worth mentioning that it is not difficult to
establish the corresponding results by using dynamic output feedback
controllers. Moreover, by incorporating the time delay information
into the feedback controllers [5], [29], [35], we can also address the
predictor-based control design problem, which is our further work.

Next, we will be concerned with the estimate of the DOA. As in
[14], [22], we will determine an ellipsoid that is contained in the
DOA. Here, we assume that the ellipsoid has the following form:

E ,
{

x0 ∈ R
n : xT

0 Px0 ≤ 1, P > 0}. (53)

Noting thatx(s) = x0, s ∈ [−h, 0], it follows from (11) and (42)
that the admissible initial conditionsx0 satisfy

V0(0) =x
T
0X

−1P̌X−Tx0 , xT
0 Px0 ≤ 1 (54)

whereP̌ , P̄0 +Σr
ĵ=1

(e
α0hĵ − 1)/α0)Q̄0ĵ .

Let us introduce the following matrix inequality:

X−1P̌X−T ≤ pI (55)

wherep > 0 is a scalar. Similar to the arguments in [14], [20], the
matrix inequality (55) can be guaranteed by the following LMI:

[

pI I
I X +XT − P̌

]

≥ 0. (56)

Then, the optimization problems about the initial condition setE in
Theorem 2 and Corollaries 1-2 can be, respectively, formulated as

Prob.1. min
X,P̄

î
>0,Q̄

îĵ
>0,Z̄

îĵ
>0,M̄ij ,Yi,Ḡij ,H̄ij>0,ε̄

î
>0,p>0

p,
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s.t., LMIs (43)− (47) and (56) hold,

P rob.2. min
X,P̄

î
>0,Q̄

îĵ
>0,Z̄

îĵ
>0,Yi,Ḡij ,H̄ij>0,ε̄

î
>0,p>0

p, s.t.,

LMIs (44), (46)− (48) and (56) hold,

P rob.3. min
X,P̄

î
>0,Q̄

î1
>0,Z̄

î1
>0,M̄11,Y1,Ḡ11,H̄11>0,ε̄

î
>0,p>0

p,

s.t., LMIs (49)− (52) and (56) (r = 1) hold.

IV. N UMERICAL EXAMPLES

Example 1: [24] Consider the synchronization control for the
following dynamical network subject to actuator saturations:

{

ẋi(t) = f̃(xi(t)) +
∑N

j=1 cijΓxj(t) + sat(ui(t)),

xi(θ) = xi0, θ ∈ [−h, 0], i ∈ I [1, N ]
(57)

where xi(t) ∈ R
n, ui(t) ∈ R

n, xi0 ∈ R
n, are, respectively, the

state vector, the control input and the initial condition of thei-th
node; Γ is the inner-coupling matrix, andC = (cij)N×N is the
symmetric outer-coupling matrix withcij ≥ 0 (i 6= j) and cii =
−
∑N

j=1,j 6=i cij (i ∈ I [1, N ]); sat(ui) has the same meaning as in
(1); f̃(x) is continuous withf̃(0) = 0 and satisfies

[f̃(x)− f̃(y)− F1(x− y)]T

× [f̃(x)− f̃(y)− F2(x− y)] ≤ 0. (58)

The unforced isolate node is given as follows:

ṡ(t) = f̃(s(t)), s(θ) = s0, θ ∈ [−h, 0]. (59)

Let us denote in this section thatei(t) , xi(t)− s(t) and

e(t) ,[eT1 (t) eT2 (t) · · · eTN(t))]T ,

f(ei(t)) ,f̃(xi(t))− f̃(s(t))− F1ei(t),

f(e(t)) ,[fT (e1(t)) fT (e2(t)) · · · fT (eN (t)))]T ,

ei0 ,xi0 − s0, e0 , [eT10 eT20 · · · eTN0]
T ,

A ,IN×N ⊗ F1 + C ⊗ Γ, Bi , ǫi ⊗ In×n

whereǫi ∈ R
1×N is a row vector whosei-th element is 1 and others

are zero. Then, we have the following error dynamics:
{

ė(t) = Ae(t) + f(e(t)) +
∑N

i=1Bisat(ui(t)),

e(t) = e0, θ ∈ [−τ, 0]
(60)

wheref(e) satisfies (3) withF , IN×N ⊗ (F2 − F1).
It is assumed that the error statesei(t) (i ∈ I [1, N ]) can be sampled

at the instants0 = si0 < si1 < · · · < sik < · · · . Here, we are
interested in designing the following sampled-data controllers:

ui(t) = Kiei(t
i
k − ρik) (t

i
k = sik + ρik),

tik ≤ t < tik+1, k = 0, 1, 2, . . . , i ∈ I [1, N ] (61)

whereρik (i ∈ I [1, N ]) denote the transmission delays with0 ≤ ρik ≤
ρi. Let us introduce the following notation:

τi(t) , t− tik + ρik, t
i
k ≤ t < tik+1. (62)

Then, the sampled-data controllers (61) can be rewritten as

ui(t) = ǫi ⊗Kie(t− τi(t)), i ∈ I [1, N ] (63)

where0 ≤ τi(t) ≤ tik+1 − tik + ρi ≤ hi (k = 0, 1, 2, . . .).
For this example, we setN = 3, Γ = 0.1I and

f̃(xi(t)) =

[

−0.5xi1(t) + tanh(0.2xi1(t)) + 0.2xi2(t)
0.3xi2(t)− tanh(0.1xi2(t))

]

,

ūi(l) =10, i = 1, 2, 3, l = 1, 2, c12 = 0,

c11 =c22 = −c13 = −c23 = −1, c33 = −2,

ρ1k =0.1, ρ2k = 0.2, ρ3k = 0.3, tik+1 − tik ≤ 0.5.

It is seen thatτi(t) (i = 1, 2, 3) satisfy Assumption 1 witht∗1 =
0.1, t∗2 = 0.2, t∗3 = 0.3, h1 = 0.6, h2 = 0.7 andh3 = 0.8. Also, it
is obvious thatf̃(x) satisfies (58) with

F1 =

[

−0.5 0.2
0 0.2

]

, F2 =

[

−0.3 0.2
0 0.3

]

.

ReplacingYi in (45) with ǫi⊗Yi (Yi ∈ R
2×2) and solving Prob.1

with α0 = 0.67, α1 = 0.61, α2 = 0.31, α3 = 0.1, δ0 = δi = µi =
1, andX = diag{X1, X2, X3} (X1, X2, X3 ∈ R

2×2), we have

K1 =

[

−0.1411 −0.1849
−0.0187 −0.5429

]

, K2 =

[

−0.5458 −0.2032
−0.0097 −0.8636

]

,

K3 =

[

−0.5537 −0.1824
−0.0020 −0.8550

]

, p = 34.0402, P = 10−3

×











0.3294 0.0015 −0.0003 −0.0000 −0.0003 −0.0001

0.0015 0.8630 0.0000 −0.0000 −0.0000 −0.0000

−0.0003 0.0000 0.3293 −0.0001 −0.0002 0.0000

−0.0000 −0.0000 −0.0001 0.8630 −0.0001 −0.0000

−0.0003 −0.0000 −0.0002 −0.0001 0.3177 0.0030

−0.0001 −0.0000 0.0000 −0.0000 0.0030 0.8516











.

In the simulation, the initial conditions are chosen asx10 =
[15 23], x20 = [12 20], x30 = [5 10] and s0 = [1 0] such
that e0 = [14 23 11 20 4 10] satisfieseT0 Pe0 ≤ 1. It is seen
from Figs. 1-2 that the synchronization can be successfully achieved.
From Fig. 3, it is seen that the signalswij(l)(t) (i ∈ I [1, 3], j ∈
I [1, i], l ∈ I [1, 2]) satisfies the constrain conditions (9).

In [24], the following sampled-data controllers are employed:

ui(t) = Kei(t− tk), tk ≤ t < tk+1, i ∈ I [1, N ] (64)

wheretk (t0 = 0, k = 0, 1, 2, . . .) are sampling instants. In this case,
the closed-loop error dynamics has the following form:

{

ė(t) = Ae(t) + f(e(t)) + sat(K̂e(t− τ (t))),

e(t) = e0, θ ∈ [−τ, 0]
(65)

whereK̂ , IN×N ⊗K andτ (t) , t− tk (tk ≤ t < tk+1).
Assume that the sampling is variable and satisfies the relation

[tk, tk+1) ⊂ [0.3 0.5). By using the optimization problem in [24]
(Case I) withα = 0 andκ = 6, one obtains that

P̂ = I3×3 ⊗ 10−3

[

0.7802 0
0 0.9026

]

.

By solving the optimization problem Prob.3 of this paper withα0 =
µ1 = 1, α1 = t∗1 = 0, δ0 = 0.35 andδ1 = 0.47, we haveP = 10−3

×











0.1439 −0.0000 −0.0036 −0.0001 −0.0014 −0.0000

−0.0000 0.4547 −0.0001 −0.0000 −0.0001 0.0000

−0.0036 −0.0001 0.1439 −0.0000 −0.0014 −0.0000

−0.0001 −0.0000 −0.0000 0.4547 −0.0001 0.0000

−0.0014 −0.0001 −0.0014 −0.0001 0.1380 0.0003

−0.0000 0.0000 −0.0000 0.0000 0.0003 0.4547











.

Noting thatP̂ − P > 0, it is obvious that our result can provide
a large estimate of the DOA than that in [24]. The possible reason
for conservatism of the results in [24] is that the matrix variables
are set as diagonal to apply the proposed decoupling technique. By
utilizing the time-dependent Lyapunov functionals [5], [24], we can
obtain more effective results under the sampled-data control scheme.

Example 2: [14] Consider the system (1) with a single delay
τ1(t) ∈ [0, h1], where other parameters are given as follows:

A =

[

1.1 −0.6
0.5 −1

]

, f(x) =

[

0
0

]

, B1 =

[

1
1

]

,

ū1(1) = 5, t∗1 ≤ h1 (t∗1 is unknown).
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For this example, let us first consider the caseh1 = 0.73. By
solving the optimization problem in [14] withσ = 0.001, α = 0,
β = 1.0, ε = 2.0 andδ = 1.85, it follows that̺ = 0.7102 and

K = [−1.7432 0.5375] (h1 = 0.73),

P =

[

1.8106 −0.5583
−0.5583 0.1722

]

(h1 = 0.73).

Letting α0 = 2.8, α1 = 0, δ0 = 1.3, δ1 = 1.83 andµ1 = 1.23, and
solving Prob.3 of this paper, we havep = 1.0520 and

K1 = [−1.8525 0.5712] (h1 = 0.73),

P =

[

0.8252 −0.2545
−0.2545 0.0785

]

(h1 = 0.73).

Similarly, for the caseh1 = 0.365, by solving the optimization
problem in [14] withσ = 0.001, α = 0, β = 1.0, ε = 0.8 and
δ = 1.28, one obtains̺ = 1.9767, K = [−1.5149 0.4671] and

P =

[

0.2337 −0.0721
−0.0721 0.0222

]

(h1 = 0.365).

By using Prob.3 of this paper withα0 = 2.17, α1 = 0, δ0 = δ1 = 0.4
andµ1 = 1, we havep = 2.3514, K1 = [−2.4227 0.7471] and

P =

[

0.1652 −0.0509
−0.0509 0.0157

]

(h1 = 0.365).

Note that the constraints|Kix(t)| ≤ ūi (i = 1, 2, · · ·nu) are im-
posed and the saturations are avoided in [14]. In [5], the generalized
sector condition is employed to address the same problem. However,
for this example, it is declared in [5] that the further application of
generalized sector condition cannot enlarge the estimate of the DOA.

Remark 8:In this paper, some scalars are introduced in our main
results. In solving Prob.1, the scalarsαî, µi and δî (i ∈ I [1, r], î ∈
I [0, r]) can be determined according to the following steps.

Step 1. For a givenδ0 , δ00 , selectingα0 such that LMI (44)
is feasible and reducingα0 iteratively until LMI (44) is infeasible,
we have a smallerα0 such that LMI (44) is feasible. Performing the
similar search at each iterationδk+1

0 = δk0 +d (d is a scalar), one can
obtain δ0 within the neighbourhood ofδ00 such thatα0 is minimum
and (44) is feasible. Similarly, for eachi ∈ I [1, r−1], searchδi such
thatαi is minimum and LMIs (43) and (45) are feasible. Also, select
αr andδr such that LMIs (43) and (45) are feasible fori = r.

Step 2. Usingδî (̂i ∈ I [0, r]) obtained in Step 1 and settingµi = 1
(i ∈ I [1, r]), increase the scalarsαk (k ∈ I [0, r−1]) obtained in Step
1 iteratively such that Prob.1 is feasible and the scalarp is maximum.

Step 3. Usingαî (̂i ∈ I [0, r]) obtained in Step 2 and settingµi =
1 (i ∈ I [1, r]), determineδî (̂i ∈ I [0, r]) along the similar search
procedure as in Step 1 such thatp is maximum and Prob.1 is feasible.

Step 4. Usingαî andδî (̂i ∈ I [0, r]) updated in Steps 2-3, search
µi (i ∈ I [1, r]) such thatp is maximum and Prob.1 is feasible.

If Step 2 fails, one can reduce the scalarαr. To further reduce
the conservatism, we can repeat Steps 2-4. The parameters in Prob.2
and Prob.3 can be determined by using the similar procedure. The
procedure proposed above can be used to find feasible solutions and
to solve the actual optimization problem in a more efficient way with
less conservatism. However, it should be pointed out that the search
of these parameters can be extremely complex ifr is too large.

V. CONCLUSIONS

Based on the modified sector conditions, the piecewise L-K func-
tional and the rigorous mathematical deduction, an LMI-based local
stabilization condition has been established for a class of multiple
input-delay systems with actuator saturations. Two special cases with
either constant delays or a single delay have also been considered.
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Fig. 3. The evolutions ofwij(l)(t) (i ∈ I [1, 3], j ∈ I [1, i], l ∈ I [1, 2]).

The optimization problems have been formulated to maximize the
estimate of the DOA. Finally, two simulation examples have been
presented to illustrate the effectiveness and values of our results.

The main results in this paper are based on the slowly-varying
delays under which Assumption 1 can be satisfied. In reality, the
time delays may be fast varying. In this case, there may exist multiple
dynamics within every interval[t∗k, t

∗
k+1) (k ∈ I [0, r − 1]). Hence,

our main results cannot be directly applicable. The further analysis
should be performed and some additional conditions should be added.

For control systems with multiple inputs, the polytopic models may
be more effective in handling the saturations. Under the constraints
(9), using the polytopic model approach [8], [22], the saturated inputs
sat(ui(t − τi(t))) (i ∈ I [1, r]) can be written as the combinations
of the delayed states and the current state. By further incorporating
the analysis approach in this paper, the local stabilization conditions
based on the polytopic models can be readily established. However,
it should be pointed out that more LMIs will be introduced in the
obtained results, which will complicate the computation greatly.

In addition, it is worth pointing out that the technique handling the
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time delays in this paper is based on the traditional Jensen integral
inequality. Therefore, our proposed results are conservative to some
extent. As the further research, we would like to establish the less
conservative stabilization conditions by incorporating the augmented
L-K functionals and the new developed inequalities [16], [21], [31].
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