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to Saturating Actuators: The Continuous-time Case
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Abstract—In this paper, the local stabilization problem is dealt with the pole placement, the parametric Riccati/Lyapunov equation and
for a class of continuous-time multiple input-delay systems subject to the gain scheduling techniques [12], [32]. For the local analysis and

saturating actuators. Using the generalized sector conditions and the o ihegis, the polytopic models and the generalized sector conditions
piecewise Lyapunov-Krasovskii functional, and carrying out rigorous

mathematical deduction, a sufficient condition is established under which are the most popular techniques in dealing_wi_th saturations (8], [22].
the closed-loop dynamics is exponentially stable for admissible initial ~ In practical feedback control systems, it is often the case that
conditions. Subsequently, the explicit characterization of controller gains actuator saturations and time delays coexist. Therefore, much effort

is obtained in terms of the solvability of linear matrix inequalities. The has been devoted to the control synthesis for time-delay systems
special cases concerning the constant and single delays are also discussed.

Moreover, optimization problems are proposed to maximize the estimate Subject to actuator saturations in the past decade or so, see e.g. [1],
of the domain of attraction. Finally, two simulation examples are given [2], [6], [13]-[15], [27]. For example, in [1], [2], delay-dependent

to show the effectiveness and advantages of the obtained results. polytopic models have been explored to address the local stabilization
Index Terms—Continuous-time systems, local stabilization, control Problem for state delay systems with actuator saturations. Taking
systems, multiple input delays, saturating actuators. the first-delay interval into account, the local stabilization problem

has been studied in [14] for input delay systems under actuator
saturations. It should be pointed out that most existing literature
has mainly focused on the case obiagle delay. Considering that

In the past several decades, time-delay systems have gained ¢@fye-scale systems/networks might have multiple input delays, the
siderable research attention from both communities of dynamicgdmi-global stabilization problem has been sufficiently investigated
system and control engineering. In general, the motivation for the[33] [34] for linear systems with actuator saturations and multiple
ever-increasing research interest is twofold: 1) many control systefRgt delays. Nevertheless, it is worth mentioning that the semi-global
intrinsically contain time delays in the state, the input or the outpdispilization scheme developed in [33], [34] cannot be directly applied
(381, (31, [7], [17], [18], [23], [25]; and 2) some strategies andig the case when the open-loop system is exponentially unstable.
phenomena can be modeled as time delays with examples including,gpired by the above discussions, this paper takes one substantial
sampling control and packet dropouts [5], [26], [28]. For the stabilityiey further by looking into the local stabilization problem for
analysis of time-delay systems, it has been acknowledged that Hgitiple input-delay systems with actuator saturations where the
Lyapunov-Krasovskii (L-K) approach plays a vitally important rolgnen-joop systems are allowed to be exponentially unstable. As in
that enables the use of the linear matrix inequalities (LMIs), there , [14], we redefine the initial conditions and estimate the solution
facilitating the control design. Some important results under the L4{;unds within initial time-intervals via the delay-dependent L-K
approach can be found in [5], [9], [16], [19], [21], [29]-[31]. approach. However, the main results of this paper are by no means

The saturation phenomenon is frequently encountered in feedbaCkimple generalization of the existing ones (involving a single input
control systems owing to the magnitude/rate constraints of physiq@ay) such as [14]. In fact, for feedback systems with multiple
actuators. Over the past two decades, the analysis/synthesis i§sHgt delays, there exist multiple time-intervals within which the

for control systems subject to saturating actuators has becomeffted-loop dynamics are different. Therefore, the analysis approach
active topic of research in the control community [4], [8], [10]-{12]proposed in [14] is unfortunately inapplicablene main contributions
[22], [32]. In general, the existing results concerning the saturatgflihe paper are summarized as follows. 1) A piecewise L-K functional
control systems can be classified into two categories, i.e., the sefizonstructed under which the exponential stability analysis of the
global/global case [12], [32] and the local case [4], [8], [10], [11]¢|psed-loop systems can be performed with certain flexibility. 2)

[22]. For the semi-global/global design, the main approaches inclugg fyrther incorporating the modified sector conditions, the local
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|. INTRODUCTION

. PROBLEM FORMULATION
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z(0) =xo, 0 € [—h,0], h= Jmax {hi} (2) are true, then for any positive diagonal matridés; € R™*™ (i €
IST

== I[1,7], § € 1]1,4]), it follows from (8) that
wherez(t) € R"™ denotes the system state;(t) € R™ (i € I[1,7])

T
are control inputs withu;(t) = 0 for t < 0; A € R"*" and =297 (u;(t = 75(t))) Hij
B; € R™™™ (¢ € I[1,r]) are known constant matrices(t) € [0, hi] X [(u;(t — 75(1))) — K;z(t — 75(t)) + Giza(t)] >0,
(¢ € I[1, r]) denote the time-varying input delays with known upper- teti i), iel[l,r], jelli] (10)
boundsh; > 0; sat(u;) = [sat(u;1)) sat(uiz)) - sat(wimy)]”
(i € I[1,7]) are standard saturation functions witht(u;;)) = Remark 3:To deal with the delayed dead-zone functiou(t —

sgn () )min{|w; |, @iy } (@) > 0,1 € 1[1,m]); zo € R™ isthe  7(t))), the delay-dependent sector condition has been employed in [5]
initial condition; f(x) € R™ is a continuous vector-valued function(pp. 239). Compared with the sector condition used in [5], the sector
that satisfiesf(0) = 0 and the following sector-bounded condition: conditions (10) depend on both the delayed states and the current
T state. Using the sector conditions (10), not only the relationships
F@)lf(z) = Fa] <0 () betweeny(u;(t — (1)) and z(t — 7;(t)) (j € I[L,4]) but also
the relationships between(u;(t — 7;(¢))) andz(t) (j € 1[1,4]) are
Remark 1:As in literature [3], [14], we assume that(t) = 0 (i € considereq, which would bg helpful i.n reduciqg the conservatism.
I[1,7]) for ¢ < 0. It is worth mentioning that this control setting is 1N& main purpose of this paper is to design the state feedback
often encountered in many control systems subject to actuator del§§8trollers (4) such that the closed-loop system (6)-(7) is locally
and transmission delays. Note that the solutions of the system (1) §¥@onentially stable and, meanwhile, the estimate of the domain of
independent on the values oft) for ¢ < 0. Therefore, as with [3], attraction (DQA) is m.a}de as large as possible. Thrgughout this paper,
[14], we define the initial condition as(t) = o within the interval the exponentla}l staplllty means that the exponeqtlal convergence of
[—h, 0] for analyzing the stability by means of the L-K approach. the system trajectories are guaranteed from the ingfant
In this paper, we employ the following state feedback controllers:

where ' € R™*" is a known real constant matrix.

1. M AIN RESULTS

ui(t) = Kiz(t), i€ ll,r], t >0 (4)
] For the exponential stability analysis of the system (6)-(7), we
where K; € R™*" (i € I[1,r]) are the controller gains. propose a piecewise L-K functional described as
Assumption 1For everyr;(t) (i € I[1,7]), there exists a unique
scalart; < h; such thatt — 7;(t) < 0 for ¢t < ¢; andt — 7;(t) > 0 V() = Vie(t), t € [th,thi1), k€ 1[0,r —1], (11)
for ¢ > t; [14]. Moreover, the scalarg (i € I[1,r]) satisfy O\ Ve(t), tett,4o0)

0285 <t] <t3<--- <ty <hy. (5)  where

Denotew(u) £ u — sat(u) andti,,; = +oo. Then, by applying
(1) and (4), one has the following closed-loop system:

&(t) =Ax(t) + f(2(1)), t € [to, 1), (6)

Vi (t) =2 (t) Pe(t) + Z UHV e 2T (5)Q 52 (s)ds

, + h: /O /t e“k<f*3>¢T(s)Z,€@(s)dsde],
. ‘ S Jere !
() =Ax(t) + f((t)) + Y Bi[Kjz(t —74(t)) ’

r t
=t Vi (t) =z" (t) Pra(t) + { / e 2T ()Q, s x(s)ds
—Qp(uj(t_Tj(t)))L te [t;,t:+1), (RS |[17T] (7) jz:; t—hs !
Remark 2:In Assumption 1, the existence and uniqueness of the +he /O /t ear(sft)x«,T(S)Z x;‘c(s)dsd@}
scalarst; (i € 1[1,7]) can be ensured if;(t) (z € I[1,r]) are slowly- J —n; Jivo "

varying with 7;(¢) < 1. The existence and uniquenesstpfare also . .
guaranteed in networked control systems, where the modeled del@§ P; > 0, Q;; >0, Z;; >0, o; > 0,3 € 1{0,7], 5 € I[L,7].
are piecewise-continuous and do not grow at the sampling instant§or convenience of subsequent presentation, we denote
[3], [14]. In addition, it is worth pointing out that, a somewhat strong

A T T T
requirement (5) is imposed for convenience of subsequent analysis. &o(t) = [‘T () @ (t=h1) @ (t = h2)
Next, a lemma is introduced to deal with the dead-zone nonlinear- e (t—hy) fT(xt) &" (t)}T,
ities ¥ (u;) (¢ € 1[1,7]) induced in the closed-loop system (7). &i(t) é[xT(t) 2Tt —7t) - 2T (t—7(t))
Lemma 1: [22] Let the vectorsu € R™ andv € R™ be given. T T T
If lugy — vyl < Gy (I € 1[1,m]), then for any positive diagonal v (t=h) v (t=hr) 7 (un(t = 7))
matrix H € R™*™, the following inequality holds: ce T (it —Ti(t)

O (W) H[ih(u) —v] < 0.

Denotew = u—w. Itis obvious from Lemma 1 that, jfv )| < @, _

(1 € 1[1,m]), then the following sector condition is ensured: si = 4sjr L
M'r* é 7arthr"7 Ms' é Ms' Mr" é —arh; M’r

T (w) Hp(w) — u+w] <0. (8) S e

Bs Letoli—to)taa (Gt bas (01 =13) )y Ly

Let us introduce the vectors;; = Gy € R™ (i € I[1,7r] s . S
i " e S Br-1, 11, r —1], 11 I[1,7].

J € 1[1,4]) whereG;; € R™*". If the constraint conditions Br Zprbr—y, s €lflr =1, j€lLd], 5 €lft,r]

_ .k Theorem 1:Let the scalarsy; > 0 and ; > 0 be given. Assume

q ()] = 1G] < G, t € [t . .t

i (B = 1Gie®] < @i, t €[t ti), that there exist x n matricesP; > 0, Q;; > 0, Z;; > 0, R;, S;,

i€ll,r], jella, Lel[l,m] 9) M;;, m x n matricesK;, Gi;, m x m diagonal matricedZ;; > 0,
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and scalars:; > 0,1 € 1[0,7], 4,7 € I[1,7], j € I[1,4], such that for +araz’ () Pra(t) — anVi(t), t € [th, +00).  (18)

Vi) € I[1,7],V j €I[1,4], the following matrix inequalities holds: ) ) ) ) )
Using the Jensen’s integral inequality [14], it follows that

[Zi; M

£ Aij >0, (12) L ) 5
MY Zi J h;/ &7 (8) Zo;d(s)ds > (15 (8) Zo;Cy5(t), 5 € 1[L,7],  (19)
oh 9, ol o o
* Q39 0 0 A h-/ VA ds > hj Y7o (t
N P Qo <0, (13) j o, @ (s)Zij2(s)ds ot )CQJ( ) ZijC2;(t)
* * * Q9
- i i i i . i i + 7(??;‘(75)&]’(31‘(75)7 (XS |[177']7 JjE€ |[1:i]7 (20)
iy 12 13 4 Qs 16 hj —7;(t)
" I I % 0 % +
N i S h [T Zds 2 (02 0)
* * 53 Q! 0 0y £ <0, (14) o
r o s e —oed szG i€lL,r], jelfi+1,r] (21)
L * * * * * 66 where ¢,s(t) £ w(t) — x(t — h;), Co5(t) £ a(t) — =(t — 75(t)),
P < piPi_y, e(“S*aS*l)hiQsj < 1sQoy 5 Cs(t) £ a(t —75(t)) = x(t — hy) andC; (1) £ z(t) — x(t — hy).
O g N e ettt S5 (S <l e
a s old, the inequalities can be modified as
Q,; < urQ,.,l,j, 7, < urZ,.,l,g, a "
2 8 G ‘ C2;5(t) G2 (1)
Uj /Bi Gm(l) hv/ x'TsZiv:'csds>[2J ] Ai{zj ],
|: Gﬁ“) j2) >0, VIell,m] (16) J iy (8)Zij#(s)ds > Ca5(t) I Cas(t)
where ielll,r], je€ll,i]. (22)
Q9 2He(RoA) — aoPo + E]f' 1(Q03 _ 03_) For any matricesk; € R"*" and S; € R"*", = 10, 7], it can

L, 50700 Zos - Zon] % 2 Ryt b be seen from the system equations (6) and (7) that [14]

0% Adiag{—e*" Qo1 — Zoi, ..., —e™" Qor — Zov ), 2[Ax(t) + f(2(t) — ()] [Ro =(t) + So (1)) =0, (23)

0% 2Py — Ro + ATST, Q%4 2 £ h2Z,; — He(Sn), 2[Az(t) + f((t) +ni(t) — 2(t)]"

Q1 2He(RoA) — awPo + 55 (Qy; — Z,), s € 11,7 — 1], % [RT2(t) + STa(t)] = 0, i € I[1,7] (24)
11 £He(R,A) + ar P + X5 (Q,5 — Z,5), wheren;(t) £ 35_1 B;[Kja(t — () — ¥(u;(t — 75(t)))]. Also,
iy 2[RiBIK1 + 2t — M - RiBiKi + 2 — Vi, for any scalarg; > 0 (z € 10, r]), one has from (3) that
is A[Mg -+ My Zsss1 -+ Zor, s €117 —1], — 2e0f7 (2(1)))[f((t)) — Fa(t)] > 0, (25)
G A[-R:B) — GRHY - — R,B, — GLHE), —2eif" (@) [f(z(t) = Fx(t)] >0, i € 1[L,7].  (26)
15 2R+ & F", Qg2 —Ri+ ATS] + P, Adding the left-hand sides of (23) and (25) ta(¢) denoted in

Qb 2diag{He(M;1) — 2Zi1, ..., He(My;) — 22}, (17), and using the inequalities (19), it follows that

Qbs 2[diag{Zi1 — M1, ..., Zis — Mii} Oinx(r—iyn]» Vo(t) <Vo(t) + 2[Ax(t) + f(=(t)) — (1)

Oy 2diag{K{ Hyj,..., K] Hy}, Qis & [Mey -+ M), x [REx(t) + STa(t)] — 220 f T (x(1)))[f (x(t)) — Fa(t)]

Qo 2Bi1KL -+ BiKi]'S{, Qg = —[Bi--- B ST, <ed (1)Q0€0(1) + aoVo(1), t € [t3, 7). (27)

0Ly Ldiag{— Qll Zily ey —Qir - ZZT}

i A e o Adding the left-hand sides of (10), (24) and (26)Wd(t) in (17),
Oy 2 —2diag{H1, ..., Hu}, Qe & Y5 h5Z;; — He(S:). and using (22) forj € I[1,4] and (21) forj € I[¢ + 1, r], we have

Then, for all initial conditionsz, satisfyingV5(0) < 1, the closed- V;-(t) <Vi( ) — 221 (uj (t— 7 () Hyj

loop system (6)-(7) is exponentially stable. n

Proof: Noting V;(t) (e 1[0, r]) denoted in (11), we have x W(uj (=7 (t))) Kyt = () + G”z(t)]
+ 2[Az(t) + f(x(t) + mi(t) — @()]"
Vi (t) <227 (t) Pri:(t Z { (t)Q(t) — e < [Ri@(t) + ST &(t)] — 2 /" (@(t)))[f (x(t) — Fa(t)]
<& OQ&E) + ouVi(t), t € [t t541), i €1[L,r —1].
a(t— 3)Qk3 ( — h;) + B2aT (1) Zy;(t) (28)

Similarly, it follows from (10), (18), (22), (24) and (26) that
Vo(t) <6 (& () — arVe(t), L€ [tr,+00).  (29)

' r ForV i e l[l,7],V j € I[1,4], if the matrix inequalities (12)-(14)
Vio(t) <227 (t) Pric(t) + Z {xT(t)Qﬁx(t) —e are feasible, then one obtains from (27)-(29) that

. /t ihﬁ jsT(s)ijcb(s)ds] — e (1) Pea(t)

—|—OLka(t), te [t27t2+1)7 k S |[0,7” - 1]7 (17)

T, - 2T Vo(t) < eV (15), ¢ € [t5, 1), (30)
T (t hj)erm(t h) h ()erx(t) V(t) S eal(t t )V( ) e [t:,t;+1), i e |[1,7’—1], (31)

—e hfh;/t & (s)ngir(s)ds} Vi) < e VL), t e [t +00). (32)
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Also, it is seen from the matrix inequalities (15) that also choose a common Lyapunov functional. Note that the dynamics
of the system (6)-(7) has different representations within different

Vilt) < pmiViea (8), i € 1[L, 7). (33) ystem (6)-(7) P

time-intervals[t, ¢7, ) (2 € 1[0, r]). Hence, our proposed functional
Using the inequalities (30), (31) and (33), it can be inferred thaf11) is more flexible in analyzing the exponential stability of (6)-(7).
o1 (—t3) s (om o (—t%) . On the other hand, in the proof of Theorem 1, we have assumed that
Vi(t) <e UVa(ty) <e VpaVo(t1) the system trajectories might diverge with the increasing exponentials
< eIt Fer =t | 1o (0) < B Vo(0), ¢ € [ti,t5) (34) o Within the time-intervalgt;, t; ) (k € 1[0, — 1]) and become
) ) ~_ convergent with the decreasing exponentialfrom the instant. In
where the scalaf; is denoted above Theorem 1. Using the S'm'laéddition, it is worth mentioning that the scalars (k € 1[0, — 1))

arguments, we can eventually obtain from (30)-(33) that in Theorem 1 are required to satishy > a1 > --- > ay_1.
Vi(t) <B:iVo(0), t € [ti,tit1), @ € [1,r — 1], (35) To convert_ the matrix inequalities (12)-(16) in Theorem 1 into
o (t—t%) . LMIs or quasi-LMls, we se?; = R, S; = ;R (4; # 0) and denote
V’r(t) SB"“S " " %(0)7 te [tr7+OO) (36)
“1s . XT 2 p. ~XT 20
On the other hand, it follows from (11) that B = f’AX_PiX PNTXAQQX 1QA1]’
T XZ%]A»X 22%37 XM;; X+ = My, E{ =g, (42)
Vi(t) > a” (t)Pix(t), i € I[1,7], x¢ # 0. (37) KXT 2, GyXT 2 Gy, HG' 2 0.
Forv i cl[l,r], vV j l[l,d, if the matrix inequalities (16) are  performing some congruence transformations to (12)-(16) in The-
satisfied, using Schur complement, it is seen that orem 1 [2], and using (42), the following local stabilization condition
P> (/Bi/ﬂ?(l))Gz;(l)Gij(l)’ can be readily obtained in terms of LMIs and quasi-LMIs.

Theorem 2:Let the scalarsy; > 0, u; > 0 andéd; # 0 be given.

celllr], jelld, Lelfl,m], (38) Assume that there existx n matricesX, P, >0, Qi} >0, _Z;; >0,
Moreover, it follows from (37) and (38) that Mij, m x n matricesY;, Gi;, m x m diagonal matriced?;; > 0,
5 T T 5 and the scalars; > 0, ¢ € 1{0,7], 4,5 € I[1,7], j € I[1,4], such that
lwijy (W) = 27 (OG0 G e(t) < (a30)/B:)Vi(t), forV i,7 € 1[1,r],V j € 1[1,i], the following LMIs hold:
te[trvt;ﬁrl)v iel[l,?”], Jel[LZL lel[lvm] (39) —Z M
iJ iJ
Finally, we will show that, for all initial conditionszo satisfying nr oz, (43)

V6(0) < 1, the modified sector conditions (10) can be guaranteed 0, 09, QY% 09,
and the relations (35) and (36) are valid. Moreover, one can conclude « 09 0 0
from (36) that the system (6)-(7) is locally exponentially stable. * « =280 ool <0, (44)

ForV z( satisfyingV,(0) < 1, from (30), (33) and (39), we have " " N a9,
lwiaq (¢1)] <[(ﬂi(l)/61)/1'16&0()5;7%)‘/0(0)]1/2 Q4 :112 :33 Qizx Qis :16
<iyqy, e 1[1,m]. (40) oy Qo Q0 26
. . . * * 53 0 0 U (45)
Noting that w4, (¢)| (I € I[1,m]) are continuous with respect to * " Qi 0 Qs )
t, from (40), there exists a time interv@di,¢1) C [t7,t5) such * * * w =251 851
that [wiyy (t)] < gy, t € [t1,£1), 1 € 1[1,m]. Then, within e " " " " Qi
[t1,t1), the sector condition (10) is satisfied for= j; = 1 and _ _ as—ag 1)hs A -
the relationV;(¢) < B;Vu(0) is true fori = 1. Moreover, we have P(iaéii‘ipi;hlj _e( _1) 1Qu; = 1aQu 5
Vi(t1) < B1Vo(0), and then one obtains from (39) that, () (f1)| < e VN Z G < psZy 5, Vs el r —1], (46)
(), | € 1[1,m]. Again, noting thatjw, ) (¢)| (I € I[1,m]) are Qi S Q155 Zyy <y 5,
continuous, there exists the timg intervial, t2) C [t1,¢5) such ﬂ?(z /B Gijwm
that |wy1()(t)| < @1y, t € [ti,t2), I € I[1,m]. Then, within { Jéij(l) j2) ] >0, VIell,m] 47)

[f1,%2), the sector condition (10) is ensured £ j = 1) and the
relation V;(t) < B;Vo(0) holds ¢ = 1). Furthermore, we have Where
Vi(t2) < B1Vo(0), and then from (39), we havev ) (2)| < 1), 0 a 5 coA o
I € I[1,m]. Repeating the above process, one can conclude thatg}(l)1 :er(A)f ) aO}DO +?g:1A(Q°J' ZOJ')T’F
the sector condition (10) is satisfied £ j = 1) and the relation N2 2[Zo1 Zoz -+ Zor], Q3 =&l + XF",
V;h(t)l g BiVO(|0) d[enote)d,:An (35)hi_'T‘ guarar;te;d({:)l) vgit‘rjrzot)he 0% 2diag{—e™" Qo1 — Zon, ..., —e" Qor — Zor},
whole intervalt € [t7,t3). Meanwhile, one ha¥}(t5) < 51Vo(0). 50 A5 T T &0 Ayr 325
From (33) and (39), it can be seen that {214 :PO XT + 60Xi4 » Slas __ijlhjz‘)j doHe(X),
71 2He(AX" ) —asP. + X5 (Qg — Z,3),
Y <[(2 Vo (0)]M/2 71.1 i i= s "8
[wajy (t2)] [_(uy(l)/.ﬂ2)li251 0(0)] r éHe(AXT) +a,. P, +Et’—1(Qr7 — 7.,
<u;uy, j €1[1,2], L €l[l,m]. (41) . 5 5 = RN
. . 12 E[B1Y1 4+ Zin — Mix -+ BiYi+ Zis — My,
Using the similar arguments as above, one can prove that the sectors s ANy oo My 7 e 2]
condition (10) is satisfied foi = 2, j € I[1,2] and the relation 7;3 R st - sistl 10t Lerls .
(35) holds fori = 2 within the interval[ts, ¢;). Repeating the above 14 =[-BiHin — Giy -+ — Billu — G,
procedure, it is seen that the sector conditions (10) are ensured and)i; 25,7 + XFT, Qi 2 — X7 + 6, X A" + P,
the relations (35) and (36) are true. The prgof is now comple.le. al, 2diag{He( i) — 2741, ..., He(My) — 27},
Remark 41n the proof of Theorem 1, the piecewise L-K functional ~ _." , . . . .
(112) is utilized to characterize the state evolution of the closed-loop Q?S :[dlag{zil = Miy, ..., Z“ — Mii} OinX(r*i)n]v
system (6)-(7). Of course, for the asymptotic stability analysis, we can Q5, 2diag{Yy",...,Y;" }, Qb £ 6:[B1Y1 -+ B;Yi]",
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Qég édiag{—Qil —Zi, ., —Qir — ZW}7

Q4 & — 2diag{H;1, ..., Hii}, Qi3 & [My1 --- M,.],
Qe 2 — 5'[B1Elil - BiHy",

Qs éET h2 —0;He(X), sel[l,r—1].

Then, for allzo satlsfylngvo( ) < 1, the system (1) is exponentially
stabilized by the controllers (4) with; = Y; X7, i € I[1,7].

For the constant-delay case, i.e;(t) = h; (i € 1[1,7], t > 0),
the scalarg; (i € I[1,r]) should be substituted with;. Then, one
can obtain the following simplified stabilization condition.

Corollary 1: Let the scalarsy; > 0, p; > 0 andd; # 0 be given.
The conclusion of Theorem 2 is ensured if there exist matries
P;>0,Q;; >0, Z;; >0,Y;, Gij, diagonal matricedd;; > 0, and
scalarsz; > 0,1 € I[O ), 4,5 € 1[1,7], j € I[1,4], such that for
Vi, jel[l,r],Vjel[l,i], the LMIs (44), (46), (47) and

b O Ol Qi
Q55 (253 0 on

*

* * * —2&,1 §; 5 il
* * * * i

55

are feasible, where

Of1 2He(AXT) — as Py + £5_,(Q; — Z5),
011 2He(AXT) + o P + 25, (Q,5 — Z,3),
ViQ é[Blwyvl‘FZsl BSYS+ZSS Zs,s+1 ZST]y

“'{2 é[-Blifl + Z’rl et BT'YT' + ZT'T']y

Qi3 £[-Bi1Hi -Gh - _Bigii_éz?;L
0ty 250+ XFT 935 2P - XT45,XA7,
932 _dlag{ Qll L17 ) _Q’i’f“ - Z’i’f}7

Q;J :[dlag{ifh ey )/z} Oimx(r'fi)n]Tv
Obs 2[0:B1Y1 -+ 8:BiYi Oipsc(r_ivn]

933 édiag{—Qﬁih ey —Qﬁii},
Qs 2[-0;B1Hn -+ —6:;BiHu",
Vis 255 13 7,5 — 6;He(X), s € l[l,r—1].

change prior to final publication. Citation information: DOI10.1109/TAC.2021.3092556, IEEE Transactions on Automatic

O 2e0l + XF, Q) 2 - X" + 60X A" + P,

09 2 — 6a0h1Q01 — Zo1, 0% 2 h2Z — doHe(X),
Q%l éHG(AXT) +oa P4+ Qi — 670[1}11211,

Qs 2B1Y1 + 67a1h1(211 — M), Qis 2 e MMy,
Q14 2 - BiHi — Gy, Qs 2 a1+ XFT,

Qe 2 - X"+ 0 XA + P, Qb 26V B,

Q3o e M [He(Mi1) — 2211, Qg 2 —61HL By,
ng —67a1h1(211 - M11)7 Q:l),s £ —67&1,1(@11 + Zu),
966 £ — 51 He(X) + hiZi, B £ ea‘)(tfft";)p,l.

Remark 5:1n [14], the local stabilization problem has been studied
for linear systems with a single input delay under actuator saturations.
Unlike [14], the piecewise L-K functional and the modified sector
condition are utilized in this paper to reduce the conservatism. Using
the piecewise L-K functional (11) (the case= 1), one can perform
the more flexible analysis within the first time-intery&j, t1), since
we utilize the functionally(t) instead ofV; (¢) within the interval
[t5,t1) [14]. Using the modified sector condition (10) (the case
1), the design variable§';; andY; can be introduced in two different
positions of LMI (50), which makes that it is more flexible to select
the variables5;; andY; to ensure the feasibility of LMI (50).

Remark 6:For the case thaf (: € 1[1,r]) are not exactly known,
using the factt; < h;, the scalars3; (i € I[1,7 — 1]) in Theorem
1-2 can be revised g8 = oMttt raihivy Ly or B =
e®ohit1 .. ;. Meanwhile, in Corollary 253 can be set ag =
e®oh1 1 | If the relation (5) in Assumption 1 is removed, we have to
consider all possibilities concerning the scaldysty, t5, - - -, ty. For
example, for the case = 2, the relationt; < ¢5 < ¢t7 < hy should
be additionally addressed and some conditions should be added.

Remark 7:The main objective of this paper is to establish the
local stabilization conditions for multiple input-delay systems under
actuator saturations by developing some more effective techniques.
Our proposed results are based on the simple state feedback con-
trollers (4). Here, it is worth mentioning that it is not difficult to
establish the corresponding results by using dynamic output feedback
controllers. Moreover, by incorporating the time delay information
into the feedback controllers [5], [29], [35], we can also address the

If the system (1) contains only a single time-varying input delagredictor-based control design problem, which is our further work.

71(t) € [0, h1], then Theorem 2 can be simplified as follows.
Corollary 2: Let the scalarsy; > 0, 1 > 0 andé; # 0 be given.

Next, we will be concerned with the estimate of the DOA. As in
[14], [22], we will determine an ellipsoid that is contained in the

The conclusion of Theorem 2 is guaranteed if there exist matrice®A. Here, we assume that the ellipsoid has the following form:

X, PA > 0, Q > 0, Z, > 0, M, Y1, G11, diagonal matrices
Hy; >0, and scalar%z > 0,7 = 0,1, such that the LMIs

Q9 Zoo Q% QY
09 0 0
* * —260[ 5060[ < 07 (49)
B * * Q
[, 5?%2 Qm Ol A%s Q16
* Q%z Q23 YlT 0 Q26
* w  Qh 0 0 0
_ . <0, 50
* * * —2H1, 0 Qg (50)
* * * * —2&811 61511
| * * * * * Ols
P <Py, Qu < u1Qor, Zi1 < p1Zox, (51)
[ Z11 M aj /B Gu(z)]
- - >0,| = p >0,Vielll,m 52
_Mlqi le:| |: Ggiri(l) Pl - [ ] ( )

are satisfied, where

Q(l)l £ _ aop() + He(AXT) + Q(n — Z()l,

& &{xo eR" : z CPxo <1, P >0} (53)

Noting thatz(s) = xo, s € [—h, 0], it follows from (11) and (42)
that the admissible initial conditions, satisfy

Vo(0) =20 X '"PX Tao 2 2 Pao < 1 (54)

where P é P+ Z§:1(6a0h5 - 1)/a0)on. .
Let us introduce the following matrix inequality:
X 'px T <prI (55)
wherep > 0 is a scalar. Similar to the arguments in [14], [20], the
matrix inequality (55) can be guaranteed by the following LMI:

pl 1

I x+x7-p| =" (56)
Then, the optimization problems about the initial condition £dh
Theorem 2 and Corollaries 1-2 can be, respectively, formulated as

Prob.1. - - min P,
X,P%>O,Q%3>O,Z%3>O,qujj7Yi7Giij7',j>075Tfi>Ovp>O
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s.t., LMIs (43)— (47) and (56) hold,
Prob.2.

- - ~ min_
X,P;>0,Q;5>0,7;:>0,Y;,Gy 5, Hij>0,8;>0,p>0

LMIs (44), (46)— (48) and (56) hold,
Prob.3.

, s.t.,

o , min D,
X,P;>0,Q;,>0,Z;,>0,M11,Y1,G11,H11>0,6;>0,p>0

s.t., LMIs (49) — (52) and (56) (r = 1) hold.

IV. NUMERICAL EXAMPLES

with ap = 0.67, a1 = 0.61, a2 = 0.31, ez = 0.1, 5() = 57, = Wi

or =0.1, pp = 0.2, pp = 0.3, ti,1 —t}, <0.5.

It is seen thatr;(¢) (i = 1,2, 3) satisfy Assumption 1 witht}

0.1, t5 = 0.2, t§~: 0.3, h1 = 0.6, ho = 0.7 and h3z = 0.8. Also, it
is obvious thatf(z) satisfies (58) with

—-0.5 0.2 —0.3 0.2
Fl_[o 0.2]’F2_{0 0.3}‘
Replacingy; in (45) withe; ® Y; (V; € R**?) and solving Prob.1

Example 1: [24] Consider the synchronization control for the; 509 x — diag{ X1, X2, X5} (X1, X2, X5 € R2*2), we have

following dynamical network subject to actuator saturations:

i(t) = f(i(t) + X0, ci Ty () + sat (us(t)),
mL(O) = Ti0, 0 € [—h,OL 1€ |[17N]

where z;(t) € R", u;(t) € R", z;0 € R", are, respectively, the
state vector, the control input and the initial condition of thth
node; I" is the inner-coupling matrix, and’ = (c;j)nxn is the
symmetric outer-coupling matrix witk;; > 0 (i # j) andc;; =

(57)

— 300 s cii (i € I[L,N]); sat(u;) has the same meaning as in

(1); f(x) is continuous withf(0) = 0 and satisfies

[f(@) = f(y) = Fi(x —y)"

x [f(z) = f(y) = Fa(z —y)] <O. (58)
The unforced isolate node is given as follows:
8(t) = f(s(1)), s(0) = s0, 0 € [=h,0]. (59)

Let us denote in this section thag(t) £ z;(t) — s(t) and
e(t) 2lei () ez (t) -~ en ()",

flea(®)) £ (@i(t) = f(s(t) — Frei(t),

Fle®) 2 () fM(ea®) -+ fen®)],
€i0 éﬂ?io — S0, €0 = [6% €2To 6%0]T7

AE2INyN QL1 +C T, Bi £ € @ Inxn

_[—0.1411 —-0.1849 _[—0.5458 —0.2032
= |-0.0187 —0.5429|® 2T |—0.0097 —0.8636|"’
_ [-0.5537  —0.1824 _ L3
- [—0.0020 —0.8550] » p= 310402, P =10
0.3294  0.0015 —0.0003 —0.0000 —0.0003 —0.0001
0.0015 0.8630  0.0000 —0.0000 —0.0000 —0.0000
—0.0003  0.0000  0.3293  —0.0001 —0.0002  0.0000
X1 -0.0000 —0.0000 —0.0001 0.8630 —0.000L —0.0000 | "
—0.0003 —0.0000 —0.0002 —0.0001  0.3177  0.0030
—0.0001 —0.0000 0.0000 —0.0000 0.0030  0.8516
In the simulation, the initial conditions are chosen &g =
15 23], 20 = [12 20], @30 = [5 10] andsp = [1 0] such

thateo = [14 23 11 20 4 10] satisfiesed Pey < 1. It is seen
from Figs. 1-2 that the synchronization can be successfully achieved.
From Fig. 3, it is seen that the signals;(t) (i € 1[1,3],j €
I1,4],1 € 1]1,2]) satisfies the constrain conditions (9).

In [24], the following sampled-data controllers are employed:

ui(t):Kei(t—tkL tr <t <tlpy, iGl[LN] (64)

wheret, (to =0,k =0,1,2,...) are sampling instants. In this case,
the closed-loop error dynamics has the following form:

e(t) = Ae(t) + f(e(t)) + sat(R’e(t —7(1))),
e(t) =eo, 0 € [—T,0]

(65)

wheree; € R is a row vector whosé-th element is 1 and others where K 2 Tnxy ® K and 7(t) Lt —t (te <t <tpsr).

are zero. Then, we have the following error dynamics:

{é(t) = Ae(t) + fle(t)) + XN, Bisat(ui(t)),

e(t) =eo, 0 € [—1,0]
where f(e) satisfies (3) WithF £ Inyxn ® (Fo — ).
Itis assumed that the error state§t) (i € I[1, N]) can be sampled
at the instant) = s5 < s1 < -+ < s, < ---. Here, we are
interested in designing the following sampled-data controllers:

ui(t) = Kiei(ty, — pi.) (ti = sk + pk),
ty <t <thyr, k=0,1,2,..., i €I[1,N]

(60)

(61)
wherep}, (i € I[1, N]) denote the transmission delays withe pf, <
pi. Let us introduce the following notation:
Ti(t) Bt — b+ pioy th ST <tipa. (62)
Then, the sampled-data controllers (61) can be rewritten as
ui (t) = € ® Kie(t — 1:(t)), i € 1[1, N] (63)

where0 < 7;(t) < th —th +pi <hi (k=0,1,2,...).
For this example, we se¥ = 3, I" = 0.1 and
f(m(t)) . —0.5$i1(t) + tanh(0.2:ci1(t)) + 0.2x50 (t)
¢ 0.3x42 (t) — tanh(O.l:ciz (t)) ’
u;y =10, 1 =1,2,3, [=1,2, c12 =0,

€11 =C22 = —C13 = —C23 = —1, €33 = —2,

Assume that the sampling is variable and satisfies the relation
[tk,tk+1) C [0.3 0.5). By using the optimization problem in [24]
(Case I) witha = 0 and x = 6, one obtains that

0.7802 0
0 0.9026 ]

By solving the optimization problem Prob.3 of this paper with=
pi=1,01 =t; =0, =0.35 andd, = 0.47, we haveP = 103

P=1IH:;®107° {

0.1439 —0.0000 —-0.0036 —0.0001 —0.0014 —0.0000
—0.0000 0.4547 —0.0001  —0.0000 —0.0001 0.0000
—0.0036 —0.0001 0.1439 —0.0000 —0.0014 —0.0000
—0.0001  —0.0000 —0.0000 0.4547 —0.0001 0.0000
—0.0014 —0.0001 —0.0014 —0.0001 0.1380 0.0003
—0.0000 0.0000 —0.0000 0.0000 0.0003 0.4547

Noting that? — P > 0, it is obvious that our result can provide
a large estimate of the DOA than that in [24]. The possible reason
for conservatism of the results in [24] is that the matrix variables
are set as diagonal to apply the proposed decoupling technique. By
utilizing the time-dependent Lyapunov functionals [5], [24], we can
obtain more effective results under the sampled-data control scheme.

Example 2: [14] Consider the system (1) with a single delay
71(t) € [0, h1], where other parameters are given as follows:

a=los ) =l m=1];

@11y =5, ¢1 < hi (¢] is unknown).
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For this example, let us first consider the cdse = 0.73. By

16
solving the optimization problem in [14] wite = 0.001, o = 0, S0 ol
B =1.0,e=2.0andd = 1.85, it follows thato = 0.7102 and g 2k Efi ]
K = [~1.7432 0.5375] (hy = 0.73), St
1.8106  —0.5583 LT
P= [—0.5583 0.1722} (ha = 0.73). RS
Letting ap = 2.8, a1 = 0, 6o = 1.3, §; = 1.83 and p; = 1.23, and s 2
solving Prob.3 of this paper, we hawye= 1.0520 and & ol TR
K; = [~1.8525 0.5712] (hy = 0.73), o 2 éTime(t)é 5 10
108252 —0.2545 B — ) ) .
P= —0.2545 0.0785 (h1 = 0.73). Fig. 1. State evolutions of dynamical network and isolate node.
Similarly, for the caseh; = 0.365, by solving the optimization
problem in [14] withoc = 0.001, « = 0, 8 = 1.0, ¢ = 0.8 and 25
= 1.28, one obtainy = 1.9767, K = [—1.5149 0.4671] and = )
_ _ = 20 Y} EOIE.
0.2337  —0.0721 il O\ (1)
P= |—0.0721  0.0222 | (1 = 0.365). Gasp N\
Il '\‘ ‘\
By using Prob.3 of this paper withy = 2.17, a1 = 0,60 = 61 = 0.4 Z ol AN
andpy = 1, we havep = 2.3514, K; = [—2.4227 0.7471] and g Y
- - £ s AN
0.1652  —0.0509 g
P = 00509 00157 | (1 =0365). O .
Note that the constraintd<;z(¢)| < @; (i =1,2,---n,) are im- 0 2 * Time(t) * 8 *

posed and the saturations are avoided in [14]. In [5], the generalized

sector condition is employed to address the same problem. HoweVdg; 2. State evolutions of dynamical network and isolate node.
for this example, it is declared in [5] that the further application of
generalized sector condition cannot enlarge the estimate of the DOA.

Remark 8:In this paper, some scalars are introduced in our main
results. In solving Prob.1, the scalats, ;; andd; (i € 1[1,7],7 €
10, 7]) can be determined according to the following steps.

Step 1. For a giver, £ 63, selectingao such that LMI (44)
is feasible and reducing, iteratively until LMI (44) is infeasible,
we have a smallet, such that LMI (44) is feasible. Performing the
similar search at each iteratidj ™' = §5 +d (d is a scalar), one can
obtain §o within the neighbourhood oY such thata is minimum
and (44) is feasible. Similarly, for eache I[1, r — 1], searchj; such
thata; is minimum and LMIs (43) and (45) are feasible. Also, select 0 1 2 B 4 5
a, andé, such that LMIs (43) and (45) are feasible fioe= r. Time ()

Step 2. Usingj; (: € 1[0, 7]) obtained in Step 1 and setting = 1 Fig. 3. The evolutions ofiw;(;)(t) (i € 11,3, € I[1,4],1 € I[1,2]).
(¢ € I1[1,7]), increase the scalats, (k € 1[0, —1]) obtained in Step
1 iteratively such that Prob.1 is feasible and the scalarmaximum.

Step 3. Usingx; (i € 1[0,7]) obtained in Step 2 and setting =
1 (i € I[1,7]), determinesd; (i € 1{0,7]) along the similar search
procedure as in Step 1 such tipais maximum and Prob.1 is feasible.

Step 4. Usingy; andd; (i € 1[0, 7]) updated in Steps 2-3, search
ui (i € 1[1,7]) such thatp is maximum and Prob.1 is feasible.

If Step 2 fails, one can reduce the scatgr. To further reduce

—wiy1)(t) |
= = wiyz)(t)
—wu ()|
= = waz) ()
——waz(1)(t) | 4
— o wan) (L)
wz1(1)(t) | 4
= = w2 (t)
——wgz1)(t) | 4
— = Wz (t)
—— w3 () |
— o wsz)(t)

wy (t) (i €T[1,3), j € I[L,d], 1 €1[1,2))
\

The optimization problems have been formulated to maximize the
estimate of the DOA. Finally, two simulation examples have been
presented to illustrate the effectiveness and values of our results.
The main results in this paper are based on the slowly-varying
delays under which Assumption 1 can be satisfied. In reality, the
tiB1§ delays may be fast varying. In this case, there may exist multiple

the conservatism, we can repeat Steps 2-4. The parameters in P;a}/namics within every intervaltf, ¢..,) (k € 1[0, — 1]). Hence,

and Prob.3 can be determined by using the similar procedure. The . ; . .
- . . ouf, main results cannot be directly applicable. The further analysis
procedure proposed above can be used to find feasible solutions aﬁld . .
N . - . should be performed and some additional conditions should be added.
to solve the actual optimization problem in a more efficient way wnﬁ : U ;
) . . For control systems with multiple inputs, the polytopic models may
less conservatism. However, it should be pointed out that the seaﬁch o . . .
of these parameters can be extremelv complexii 1o larae € more effective in handling the saturations. Under the constraints
P y P ge- (9), using the polytopic model approach [8], [22], the saturated inputs
sat(u;(t — 7:(t))) (@ € I[1,7]) can be written as the combinations
V. CONCLUSIONS of the delayed states and the current state. By further incorporating
Based on the modified sector conditions, the piecewise L-K funtke analysis approach in this paper, the local stabilization conditions
tional and the rigorous mathematical deduction, an LMI-based lodadsed on the polytopic models can be readily established. However,
stabilization condition has been established for a class of multipteshould be pointed out that more LMIs will be introduced in the
input-delay systems with actuator saturations. Two special cases wititained results, which will complicate the computation greatly.

either constant delays or a single delay have also been consideredin addition, it is worth pointing out that the technique handling the
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time delays in this paper is based on the traditional Jensen intedeal] Y. Wang, J. Xiong and D. W. C. Ho, “Globally optimal state-feedback
inequality. Therefore, our proposed results are conservative to some LQG control for large-scale systems with communication delays and
extent. As the further research, we would like to establish the less

conservative stabilization conditions by incorporating the augmenth

L-K functionals and the new developed inequalities [16], [21], [31].

(1]

(2]

(31

(4]

(5]
(6]

(7]

(8]

El

[10]

[11]

[12]
[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[25]

REFERENCES

. . I . [26]
Y. Chen, S. Fei, and Y. Li, “Robust stabilization for uncertain saturated
time-delay systems: a distributed-delay-dependent polytopic approach”,
IEEE Trans. Autom. Contrplol. 62, no. 7, pp. 3455-3460, Jul. 2017. [27
Y. Chen, Z. Wang, S. Fei, and Q.-L. Han, “Regional stabilization
for discrete time-delay systems with actuator saturations via a delay-
dependent polytopic approachlEEE Trans. Autom. Contrplvol. 64, [28]
no. 3, pp. 1257-1264, Mar. 2019.
D. Coutinho, C. E. de Souza, J. M. Gomes da Silva Jr., A. F. Caldeira,
and C. Prieur, “Regional stabilization of input-delayed uncertain nonlij29]
ear polynomial systems1EEE Trans. Autom. Contrplvol. 65, no. 5,
pp. 2300-2307, May 2020. [30]
J. M. Gomes da Silva Jr, and S. Tarbouriech, “Antiwindup design with
guaranteed regions of stability: an LMI-based approatBEE Trans.
Autom. Contral vol. 50, no. 1, pp. 106-111, Jan. 2005.
E. Fridman, Introduction to time-delay systems: Analysis and control
Basel: Birkhauser, 2014.
E. Fridman, A. Pila, and U. Shaked, “Regional stabilization d#d,
control of time-delay systems with saturating actuatorst, J. Robust
Nonlinear Contro) vol. 13, no. 9, pp. 885-907, 2003.
K. Gu, V. L. Kharitonov, and J. CherStability of time-delay systems [33]
Boston: Birkhauser, 2003.
T. Hu, and Z. Lin,Control systems with actuator saturation: analysis
and design Boston: Birkhauser, 2001. [34
Y.-B. Huang, Y. He, J. An, and M. Wu, “Polynomial-type Lyapunov-
Krasovskii functional and Jacobi-Bessel inequality: Further results on
stability analysis of time-delay systemdEEE Trans. Autom. Contrpl [35]
early access, Aug. 04, 2020, doi: 10.1109/TAC.2020.3013930.
Y. Li, and Z. Lin, “Improvements to the linear differential inclusion
approach to stability analysis of linear systems with saturated linear
feedback”,Automatica vol. 49, pp. 821-828, 2013.
Y. Li, and Z. Lin, “Stability and performance analysis of saturated
systems via partitioning of the virtual input spac&ytomatica vol. 53,
pp. 85-93, 2015.
Z. Lin, Low gain feedbackLondon: Springer-Verlag, 1999.
Z. Lin, and H. Fang, “On asymptotic stabilizability of linear systems with
delayed input”,IEEE Trans. Autom. Contrplvol. 52, no. 6, pp. 998—
1013, Jun. 2007.
K. Liu, and E. Fridman, “Delay-dependent methods and the first delay
interval”, Syst. Control Lett.vol. 64, pp. 57-63, 2014.
K. Liu, and E. Fridman, “Discrete-time network-based control under
scheduling and actuator constraintfif. J. Robust Nonlinear Control
vol. 25, no. 12, pp. 1816-1830, 2015.
K. Liu, A. Seuret, “Comparison of bounding methods for stability
analysis of systems with time-varying delays,Frankl. Inst, vol. 354,
no. 7, pp. 2979-2993, 2017.
L. Ma, Z. Wang, Y. Liu, and F. E. Alsaadi, “Distributed filtering for non-
linear time-delay systems over sensor networks subject to multiplicative
link noises and switching topology'int. J. Robust Nonlinear Contrpl
vol. 29, no. 10, pp. 2941-2959, 2019.
L. Ma, X. Fang, Y. Yuan, J. Zhang, and Y. Bo, “Dissipative control
for nonlinear Markovian jump systems with mixed time-delays: The
discrete-time case”|nt. J. Robust Nonlinear Contrplvol. 30, no. 7,
pp. 2871-2888, 2020.
P. Park, J. Ko, and C. Jeong, “Reciprocally convex approach to stability
of systems with time-varying delays’Automatica vol. 47, no. 1,
pp. 235-238, 2011.
A. Seuret, and J. M. Gomes Da Silva Jr, “Taking into account period
variations and actuator saturation in sampled-data syst&yst, Control
Lett, vol. 61, no. 12, pp. 1286-1293, 2012.
A. Seuret, and F. Gouaisbaut, “Wirtinger-based integral inequality:
application to time-delay systemsiutomatica vol. 49, no. 9, pp. 2860—
2866, 2013.
S. Tarbouriech, G. Garcia, J. M. Gomes da Silva Jr, and |. Queinnec,
Stability and stabilization of linear systems with saturating actuators
London: Springer-Verlag, 2011.

[31]

[32]

correlated subsystem process noise€EE Trans. Autom. Contrpl
vol. 64, no. 10, pp. 4196-4201, Oct. 2019.

] Y.-Q. Wu, H. Su, and Z.-G. Wu, “Synchronisation control of dynamical

networks subject to variable sampling and actuators saturati@T,
Control Theory Appl.vol. 9, no. 3, pp. 381-391, Feb. 2015.

X.-J. Xie and M. Jiang, “Dynamic state feedback stabilization of stochas-
tic cascade nonlinear time-delay systems with SISS inverse dynamics”,
IEEE Trans. Autom. Controlol. 64, no. 12, pp. 5132-5139, Dec. 2019.
J. Xu, H. Zhang and L. Xie, “Consensusability of multiagent systems
with delay and packet dropout under predictor-like protocol€EE
Trans. Autom. Contrglvol. 64, no. 8, pp. 3506—-3513, Aug. 2019.

1 S. Xu, G. Feng, Y. Zou, J. Huang, “Robust controller design of uncertain

discrete time-delay systems with input saturation and disturbances”,
IEEE Trans. Autom. Contrplol. 57, no. 10, pp. 2604-2609, Oct. 2012.
R. Yang, P. Shi, G.-P. Liu, and H. Gao, “Network-based feedback
control for systems with mixed delays based on quantization and dropout
compensation” Automatica vol. 47, no. 12, pp. 2805-2809, 2011.

D. Yue, Q.-L. Han, “Delayed feedback control of uncertain systems with
time-varying input delay”Automaticavol. 41, no. 2, pp. 233-240, 2005.
C.-K. Zhang, F. Long, Y. He, et al., “A relaxed quadratic function
negative-determination lemma and its application to time-delay system-
s”, Automatica vol. 113, Art. no. 108764, 2020.

X.-M. Zhang, Q.-L. Han, A. Seuret, F. Gouaisbaut, and Y. He, “Overview
of recent advances in stability of linear systems with time-varying
delays”,IET Control Theory AppJ.vol. 13, no. 1, pp. 1-16, Jan. 2019.
B. Zhou, Z. Lin, and G. Duan, “A parametric Lyapunov equation
approach to the design of low gain feedbackEEE Trans. Autom.
Control, vol. 53, no. 6, pp. 1548-1554, Jun. 2008.

B. Zhou, Z. Lin, and G.-R. Duan, “Global and semi-global stabilization
of linear systems with multiple delays and saturations in the input”,
SIAM J. Control Optim.vol. 48, no. 8, pp. 5294-5332, 2010.

B. Zhou, Z.-Y. Li, and Z. Lin, “Stabilization of discrete-time systems
with multiple actuator delays and saturation$EEE Trans. Circuits
Syst.-) vol. 60, no. 2, pp. 389—-400, Feb. 2013.

S. Y. Yoon, and Z. Lin, “Truncated predictor feedback control for
exponentially unstable linear systems with time-varying input delay”,
Syst. Control Letf.vol. 62, no. 10, pp. 837-844, 2013.





