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Abstract—This work is concerned with the moving horizon [16], [26], [28], [33], Kalman filtering [11], [23] and moving
(MH) estimation issue for a type of networked nonlinear sys- horizon (MH) estimation [10], [30]). The primary idea of the

tems (NNSs) with the so-called random access (RA) protocol MH estimation is to compute the “best” state estimates by
scheduling effects. To handle the signal transmissions between

sensor nodes and the MH estimator, a constrained communication solvmg 6_‘ glve_n least s_qugres problem (LSP), Wh'Ch is defined
channel is employed whose channel constraints implies that, at On a sliding window with fixed length (i.e. the horizon length).
each time instant, only one sensor node is permitted to accessSince the pioneering works presented in [18], the MH estima-
the communication channel and then send its measurement data. tion prob|ems have gained a persistent research interest for

The RA protocol, whose scheduling behavior is characterized by ; : ;
a discrete-time Markov chain (DTMC), is utilized to orchestrate various systems. Some representative results are discussed as

the access sequence of sensor nodes. By extending the robuJPIIOWS' In [_20]’ the MH estimation |ssue_h_as been gqn5|dered
MH estimation method, a novel nonlinear MH estimation scheme fOr constrained linear systems and sufficient conditions have
and the corresponding approximate MH estimation scheme are been achieved to ensure the stability of the estimation error
developed to cope with the state estimation task. Subsequently,(EE). A robust MH estimator has been developed in [1] to cope

some sufficient conditions are established to guarantee that the \yiih the SE issue for a type of uncertain discrete-time (DT)
estimation error is exponentially ultimately bounded in mean

square. Based on that, the main results are further specialized linear Systems, Wherg _th(_—:‘ st.ate estimates have been derlved
to linear systems with the RA protocol scheduling. Finally, two through solving the minimization problem (MP) of a quadratic
numerical examples and the corresponding figures are provided cost function (QCF) in worst-case scenario. In [8], several
to verify the effectiveness/correctness of the developed MH partition-based MH (PBMH) estimation algorithms have been
estimation scheme and approximate MH estimation scheme.  yrasented for DT partitioned large-scale systems. The stability

Index Terms—Moving horizon estimation, Random access properties of MH estimation have been studied in [20], [21],
protocol, Networked systems, Nonlinear systems, Recursive es-[24] for linear and nonlinear systems.

timator. On another research hotspot, in response to the prompt
development of network communication technique, network-
. INTRODUCTION based signal transmission scheme becomes a mainstream

As a hot vet important topic in sianal processing and contrc mmunication method for numerous industrial applications.
yetimp picin signai p ng mpared with the conventional point-to-point (PtP) commu-

communities, the state estimation (SE) problem has attracted_.. S
. . . ation technology, network-based communication has supe-
considerable research interest in the past several decades.nl1

S . ; '©S-riotfties in the cost, installation, maintenance and reliability.
main idea of SE is to generate satisfactory state estima Stworked systems (NSs) are dynamical systems where the
of a given system via the available measured outputs whig

. . nal transmission among system components (e.g. Sensors,
are probably corrupted by noises. By now, a rich body 1" g sy P (e.g

SE strategies have appeared in the literature (fg, SE stimator) is implemented over the shared communication
9 PP 9 networks. So far, NSs have been successfully applied in the
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losses and transmission delays. Then, the BA issue of the EE is studied for the approximate
Among most of the existing results of the SE problemH estimation scheme. Furthermore, two numerical examples
for NSs, an underlying assumption is that all the networkexde provided in Section IV to examine the effective of the
nodes are capable of simultaneously accessing the commain results. Finally, the conclusion of this work is presented
nication channel and transmitting signals. Unfortunately, in Section V.
numerous practical NSs, it is almost impossible to implementNotations: The notations utilized in this work are given as
such a communication scheme since simultaneous multifddlows, which are standard except where otherwise stated.
accessing the communication network would inevitably resdit”*™ andR™ stand for, respectively, the set of all x n real
in data collisions. An effective method of “protecting” signamatrices andn dimensional Euclidean spacB:* represents
transmissions from data collisions is to orchestrate the ddlee set of positive real scalars. The sets of nonnegative integers,
transmissions subject to some predefined “agreements”, basedative integers and integers are representedhyN— and
on which the network access opportunity would be assigngd respectively. Lettingb 4 and &5 be two real symmetric
to one node at each transmission instant. These agreememgrices, the notatio® s < & (P4 < ®p) denote that the
are known as communication protocols (CPs). There are threatrix ® 4 — &5 is negative definite (negative semi-definite).
widely adopted protocols in NSs, namely the random accdsar any real matrix\/, the transpose o/ is represented by
(RA) protocol (or stochastic CP) [25], [34]-[36], the Try-M” and the Moore-Penrose pseudo inverselbfis denoted
Once-Discard (TOD) protocol [37] and the Round-Robin (RR)y M. For any matrixP € R"*", 5{P} (c{P}) is the largest
protocol [38]. (smallest) eigenvalue aP, andtr{ P} means the trace aP.
Among the aforementioned CPs, the RA protocol is Burthermore||P| = /a(PTP) is the spectral norm of.
preferred one in practical engineering. One of the repr&he zero matrix with compatible dimensions is represented by
sentative RA protocol is the carrier-sense multiple acce8sl y stands for anV dimensional row vector with all ones.
(CSMA) protocols [25]. Generally speaking, the schedulinig the identity matrix with compatible dimensioi&{«|v} and
behaviors of RA protocol could be described by two kindB{«} denote, respectively, the expectationuofonditional on
of stochastic models, namely the discrete-time Markov chairand the expectation ef. The shorthandiag{- - - } denotes a
(DTMC) [7] and the sequence of independent and identicalijock-diagonal matrix. For any vectare R™, ||u| means the
distributed (i.i.d) variables [25]. For the control and filtering=uclidean norm ofi. Furthermore, for any matri® satisfying
problems of NSs, the employment of the RA protocol woul@® € R"*™ and P > 0, |lu|/p stands for the weighted norm
generate certain specific protocol-induced effects, which, @fi the vectoru (i.e. |[ul[p = VuT Pu). 6(s) denotes the
turn, (_:omplicate the a_nalysis and synthes?s issue_s of the N§E0necker delta function (i.e3(s) — 1, if s= 1 )
To this end, a seemingly valuable and interesting researc 0, otherwise
topic is to consider the MH estimation problem for NNSs witt is assumed that matrices have compatible dimensions if they
certain CP. However, as far as the authors’ knowledge go@&€ not explicitly specified.
such a problem has not received adequate research attention
yet and this leads to the primary motivation of our study.
In response to the above discussion, this work is concerndd The system model

with the MH estimation issue for NNSs with the RA prOtOCOl The SE prob|em considered in this work is shown in F|g 1,
scheduling effects, which is non-trivial due to the followingn which the communication between the state estimator and

three technical challenges: 1) how to generate the estimadgpsors is executed via a communication network with certain
of states based on the MH estimation strategy for NNSs wigp.

certain CP scheduling effects? 2) how to handle the bounded-

ness analysis (BA) problem of the EE for NNSs? 3) how t asurbance oupat (vetorel communication! oupt (her

understand the effects of the RA protocol scheduling on tI * m""“m : "e[l;rvg[okc‘g’}’h :”mmd)wm“mmc
estimation performance? It is, therefore, the primary objective . ' '
of our study to provide satisfactory answers to the above three Fig. 1: State estimation issue for a networked system

qguestions.The essential contributions of our work are listed ] o
as follows. 1) The MH estimation problem is, for the first N€xt, we shall consider the plant, communication network

time, considered for NNSs with the RA protocol scheduling?d the state estimator in a mathematical way. The underlying
2) A novel robust MH estimation strategy is employed fJant is a DT nonlinear system of the following form:
deal with the nonlinearity of the NSs and the RA protocol w(k+1) = f(k,2(k) + w(k)
scheduling behaviors. 3) Sufficient conditions are obtained for y(k) = Ca(k) + v(k)
approximate MH estimation to ensure the exponential ultimate
boundedness of the EE in mean square. in which z(k) € R"= denotes the state vectoy(k) € R™v

The remainder of our work is organized as follows. Imepresents the measurement output before transmit{éd;e
Section 1I, the NNS with the RA protocol scheduling ist £ {¢[(T¢ < \/wmax; ¢ € R™} andv(k) € Y = {¢|(T¢ <
introduced and the corresponding MH estimation problefiy..; ¢ € R™} denote the system noise and the measure-
is formulated. In Section Ill, a novel robust MH estimatiooment noise, respectively,,.x and vy, are known positive
approach and an approximate MH estimation scheme amnstantsC' is constant matrix of proper dimensiofi-, -) is
proposed to solve the aforementioned MH estimation problethe vector-valued time-varying (TV) nonlinear function.

Il. PROBLEM FORMULATION AND PRELIMINARIES

1)
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Assumption 1:f(-,-) is a sector-bounded nonlinearity sats € {1,2,---, M}) with the RA protocol scheduling effects
isfying the following condition: is characterized by
(F(ka 1) — F(B,02) — Fy (91 — 02)) " (F (ks 01) — F(k02) 7i(k) = { gi(k), i~ o(k) )
— Fy(9h — 2)) <0, f(k,0) = 0,1, 95 € R™, Vk € NT ’ orheTIse.
(2) According to (5), we have
in which Fy, I, are real constant matrices satisfyifg > F. g(k) = F(o(k))y(k) (6)
in which

B. Description of the communication protocol

Let us now discuss the effects of the protocol scheduling,F(Q(k)) = dlag{‘sl,g(k)fn;,52,Q(k)1n§, . ,5M,g(k)1"é”}
In the underlying NS, the measurement data is transmittggq 5. o) 2 8(o(k) — i) € {0,1} (i = 1,2,---, M) is the
through a shared and constrained communication network sybanecker delta function.
ject to the so-calledandom access (RA) protocstheduling.
Without loss of generality, it is assumed that the sensors of the ) ) )
plant are grouped intd/ (M > 1) sensor nodes accordingC- Moving horizon state estimator
to their spatial distribution. For technical analysis, we rewrite |n this work, we shall employ the ME estimation strategy

the output vectoy (k) as follows: to design an estimator for the NNS (1) with the RA protocol
- . . T scheduling effects described by (6). Specifically, for each time
y(k) = [yi (k) w3 (k) - yis(k)] ®) instantk > N (N > 0), we aim to find the estimates

wherey; (k) (i € {1,2,---, M}) represents the measuremenflor system statesi(k —¢) (N > ¢ > 0) according to the

output before transmitted of thieth sensor node. past measurement daf§i(¢)}x—n<i<i and a prior prediction

o 7(k— N) of the state vectar(k— N), whereN +1 represents
In network-based communication schemes, the CPs : . : ,
developed to assign the network access opportunity for s%ﬁlﬁf window length or horizon. Lek(ilk) (k = i > k — N) be

sor nodes. In the underlying NNS, we suppose that dnlyr © S;?:S;S“mates ofii) (k > i = k — N) at time instant,
sensor node is physically selected to access the channel 8%% MHy' timat bl idered in thi K
transmission for the sake of avoiding data collisions. Let the N estimation problem considered in this work 1s

integer variablel < p(k) < M denote the chosen sensoPreseEIEd ai.fcéllowtsﬁ ved t outout dat
node assigned with the opportunity accessing the channel a roblem L. For the _receN? measurement oufput data
)}e>i>k—n, the estimatesi*(k — NJk) is derived by

transmission instant. As described in [7], under the effects'?\" = the followi CE at h time instant
of the RA protocol schedulingg(k) can be characterized bysuppressmg e following QCF at each time ins

a DTMC, whose occurrence probability @ft + 1) = j Iu(2(k — N|k)) =2k — N|k) — z(k —N)||2Q
(M > j > 1) conditioned ong(k) = ¢ (Vi € {1,2,--- ,M})

. N
'S + > gtk —ilk) =gk —d)|*>  (7)
Prob{o(k +1) = jlo(k) = i} = py @ =
subject to

wherep;; > 0 represents the transition probability (TP) from - .

node: to node; at transmission instarit and Zf\ij pij =1 2(k—=N) = f(k=1-N,2"(k =1- N[k —1))

(i €{1,2,--- , M}). i(ilk) = £, 3G~ 1K), k>i>1+k—N  (8)
Remark 1:It is worth noting that, in this work, the plant g(ilk) = F (0(i))Ca(ilk), k>i>k—N

(1) and the scheduling effects (4) share the same time scale _ ) _ i

(i.e. the k-th scheduling behavior is triggered at theth where the weight matrix) > 0 is the estimator parameter.

time instant of the plant for anys € N7). In fact, the Roughly speaking,_it is quite diffi(_:ult to minimize thg QCF
nonlinear system (1) could be regarded as the discretizatin(Z(k — N|k)) subject to a nonlinearity. The solution of
of a continuous-time nonlinear plant subject to the operatiGich @ MP is always achieved by solving certain nonlinear
period (or sampling period) of the network. In other words, tHe"0gramming problem on-line and such a task will result in
plant and communication channel share the same the sampli§gVy calculations. Next, let us introduce an alternative MH
period in this paper. The results of this paper could be easfijtimation problem by extending the “robust MH estimation”
extended to the case that the operation of the communicatffProach studied in [1]. Firstly, lef = f}gk,i(k)) -
network is faster than the sampling of the plant by applyiné(k’x(k)) — F(&(k) — x(k)) where F = S35, Then, it
the method in our previous work [35]. ollows from Assumption 1 that

In what follows, we are going to consider the signal 2 s T/ 7 | £a
received by the state estimator. Let the measurement signal (i = F(@(k) = 2(k))" (fi + F(@(k) — 2(k))) <0
after transmitted over the communication networkiftg) = \where * — BB | which implies that|| f |2 < ||F(2(k) —
gl (k) w3 (k) --- ﬂﬂ(/ﬁ)]T € R™ whereg;(k) € R"™  z(k))||2. Similar to [5], it can be concluded that there exists
with Zf\il ni = n,. The updating rule ofj;(k) (k € N*, at least a function9,, satisfying fr = On(@(k) — x(k))
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and ©70, < FTF. Letting AF(k) = ©,F~', we have  Based on the above analysis and manipulations, the follow-

AFT(K)AF(k) < I. Then, it can be derived that ing alternative robust MH estimation problem is employed in
. A AN . this work:
fk, & (k) = (AF(k)F + F) (@(k) — (k) + f(k, 2 (k)), Problem 2:Based on the received measurement output data
Vz(k),2(k) € R™, Vk € N* (9 {4(i)}x>i>r_n, the estimatesi(k — N|k) is acquired by

with the uncertainty AF (k) satisfying the constrain-

solving the following optimization problem (OP):

t |AF(k)| < 1. Therefore, by denoting(k — N|k) =  4*(k— N|k) —arg min  max  Fu(@p_n, AF(K))
Z(k— N)—a(k— N|k), forall k > i >k — N, we have Tr-n [|AF(K)||<1 13)

g(@) = §(ilk) N subject to the constraint (8).
o _ NAE This paper aims to develop a MH estimator by solving
=3+ F(e®)C _7161_[_ (AF(k = J)F + F)z(k = NI), Problem 2at each time step. Moreover, we shall handle the

Ikt BA issue on the EE.
where
s(i) = g(i) — F(g(i))Cf(i*’”N) (z(k — N)) IIl. M AIN RESULTS

, N ] . B A. Moving-horizon estimator

with fO(z(k — N)) = f(j —1+k— N, f0=D(z(k — N))),

FO(a(k — N)) = z(k — N) and[]}_ v, (-) = L. Therefore,
the QCF.7;(z(k — N|k)) can be reformulated as follows:

To state the following results, we shall introduce the fol-
lowing lemma.

Lemma 1: [22] Consider the following robust OP:
I (2(k — N1k))

min max {23+ (B +AB)z — (D+AD)[3} ()

where AB = HSE,, AD = HSE,;. H, E, and E,; are

k

=[lz(k = NIB)[o+ D ||s() + F(eli))C

N e ) known matrices,S is an arbitrary contraction. As such, the
% H (F+ AF(k —j)F)z(k ~ Nk unigue global minimum:* of the OP (14) is described by
j=h—it1 2*=(Q+B"RB)"'(B"RD + \"E]E;)  (15)
—k _ k N N
= HkaN(Qk)(Af(k) + Fi_w)2(k = Nlk) whereQ) = Q+ \*ETE,, R = R+RH(\I-HTRH)HTR.
_ 2 2 The value of\* is calculated b
+5hon| a6 = NI, (10) y 2 2
where \* = arg )\Z”IE’IFDRHH {)\HEbz()\) - Eq||” + Hz()\)HQ
_ T 2
$on=[Th-N) sT(h-N+1) - sTk)]", + (B2 = D3 } (16)
~ . T
FF = {CT (CE-n)" - (CIIY, Fk_j)T} where
-1
[ (o(k—N 0 0 _ (A T 1 T 1 T
o o) O 20 = (QW) + BTRNB)  (BTRO)D +\E] Ea),
Finiay) = : ST Q) = Q + AEy Ey,
N L0 0 e Fle®) R(\) = R+ RH\\ — HTRH)'HTR.
F,=AF(i)F + F, ) . . .
" - _ 1T By virtue of Lemma 1, the following theorem is derived.
Fr-n = [C (CF)" - (CFT) } J Theorem 1Consider the received measurement output data
or = [QT(k_ N) o"(k—N+1) --- QT(k)]T, {9(?) }k>i>k—n~n and the MH estimation constraint (8). The

andAF(k) = ZF \ — FF_y. For the sake of briefness, we
shall write F¥_ instead of ¥ (gx). Then, as shown in  &(k — N|k) =z(k — N) + (Q()\*) + (Fi_nTFr_n)
[1], there exist a matriX” > 0 such that

= 1 . . . . *) k *7T _ 'k Tk *
where AF(k) 2 AF(k)I'%. A typical choice is to define the WheTeR(A™) = I + Fion VT = Fp_n) FRon, Q) =
matrix I' asT" £ 2] with v = maxa g [|AF(K)|. Then,

solution toProblem 2is given by
T

- - T e
IAFG) < 1. ay  <ROOFENFLN) (PR AN TRODSEy ()

Q + XTI, and the value of\* is derived as follows:

we can conclude from (10) and (11) that A* — argmin{sz—N(/\)Hé n )\||F%Zk—1v(/\)H2
A>1

Ii(#(k — N|k)) = Fi(&(k — NIk), AF(k))

+ Fk_ ]_—k_ B )\ +,]g_ 2 18
otk ~ MBI + [P + (FhnFE D S AR S S D

with

Zr-N(A) = — ((FZ—N}—IQZN)T

2
— L = % _ _
+ Fi_NAF(R)T2)2(k le)H : (12) ROFE_NFE N
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TR()\)g’lng_ The approximate MH Estimation algorithm associating with

(20) can be easily accessible from the MH estimation algorith-
Proof: The proof of Theorem 1 can be directly obtainedn. Hence, we omit the details of the approximate MH estima-
from Lemma 1, which is omitted here for conciseness.m tion algorithm here for conciseness. Obviously, by eliminating
Remark 2:The moving-horizon estimator proposed in Thethe computation of the scalar parametér the computational
orem 1 could be regarded as an extension of the robust Miffort of the approximate MH estimation algorithm could be
estimation approach developed in [1]. It can be seen frdargely reduced compared with the MH estimation algorithm.
the estimator (17) that both the information of the nonlinear Next, let us study the boundedness of the EE according to
function f(-) and RA protocol scheduling behaviors has bedhe obtained approximate MH estimation scheme (20).
reflected in the expression df(k — N|k). The uncertainty
AF(k), which is generated in 9, could be seen as a kirBl Boundedness analysis issue of the estimation error

of “linearization error” of the nonlinear function. Such an |, \what follows. we shall investigate the boundedness
uncertainty has also been reselected in the Q). _properties for the EE. Let us first consider the dynamics of

By means of the above Theorem, the correspondifge EE. For the sake of clarity of exposition, by defining
Moving-Horizon Estimation algorithm is summarized as fol-

lows: Va (k) é(l"'é) (Q+(1+a)r+ (1+é)

o) (FhxFy)

Moving-Horizon Estimation algorithm: T’ -1 -
Step 1 Let the window lengthV + 1 and the MH estimator parameter x (FF 0k Tk Fk ik

Q@ > 0 be given. Sekt = N andz(0) = 0. ( k*N) Fe-nTh-n ( k*N) Frn
Step 2 Calculate the value dff asI" = 21 where the scalay is

determined byy = maxa g (k) [|AF (k)| it follows from (20) that
Step 3 Compute the scalar parametet by solving the one-dimensional . _ Nk
OP (18). I(k - N|k) - 17(/4 - N) = ‘I/a(Qk)Ska- (21)

Step 4 Generate the matrif?‘lij and the vecto@’,:fN based on . A . .
{F (o)} k2 v @00 {5()}izizen- Then,a(k — Nk ON the other hand, by definingi — N) = 2(i — N) - 2(i -

can be obtained by (17). N|i), it can be derived from the definition of(:) and the
Step 5 Setk = k + 1 and compute the value af(k — N) by (8) and expression Ofi(k _ N) that
go to Step 3

stk = N) = F (o(k = N)) (CFi-n-1e(k = N = 1)

As to the optimization issue in (18), if the boundary point +v(k—N)+Cuw(k — N — 1))
A = 1 is excluded, as shown in [22], the pseudoinversg
operation ofR(\*) is solved as follows:

* J N+l
RAN) =1+ 55— Fk-x stk —i) =rF (o(k — 1)) (0 I Beje(k—N-1)
j=i+1
ard hence, the estimation of (17) is rewritten as follows JNH -1
) \* * . +v(k—i)+C Z H Fk—tw(k_j))v
&(k — Nlk) = Y _1 (ﬁ (Fin) FlionFron =it t=it 1
1 . (N—-1>i>0)
+Q+ )\*F) (Fi-n) FhonSion +2(k =N)  (19) Hence, we have
=k —k k n
In view of the expressions (18) and (19), it can be found Si-n =F k-nFp-nFr-n-1e(k = N —1)
that the presented MH estimator is a TY and nonlinear one due + ¥ NGk —1)+FF No(k) (22)
mainly to the derivation of the parametgft, which is obtained
. . . . . .\{vhere
by solving an OP via certain on-line algorithm. However, i )
is sometimes difficult to solve such a problem in the required 1% 0 e 0
computational time (i.e. the interval between sampling time CFy-nN C 0
instants). For the purpose of real-time implementation, we 7% — : -
can choose a reasonable approximation to the expression (17) N = } No1 = . '
by setting the scalah* as A* = « + 1 where the scalaw LCTLor By Clmy Fhes ¢

can be properly adjusted off-line based on certain numerical [ v(k—N) w(k—N—1)

simulations, and this gives rise to the approximate solution of = v(k—N+1) 11— w(k—N)
Problem 2with the following form: v(k) = : ; wk—-1)= : )
ik = NIk = (a7 +1) (Q+ (1 + @)l + (@™ +1) L vR) w(k—1)
C = diagn,1{C}.
7+ \Tpk ok -1 Fk T
< (Fe-n) Fron k—N) (Fk-n) By taking (21) and (22) into account, we have

X Fi-nSin +@(k = N). (20) e(k—N)
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= (Fk—N—l - \I’a(@k)ff,NFk—N—l)e(k -N-1)
+ (f - \Ifa(@k)%)a)(k —1) = U, (or)v(k)

0.

(23)

where.# =[I 0 0

Similar to the same technique in [1], we first rewrite the E

dynamics (23) as follows:

e(k — N) = (AA(@k) + A(@k))e(k “N-1)

+ (AB(aw) + Blaw) (k) (24)
where
B(gr) = [ — Valor)Gr  —Valor)],
Alor) = F — Wo(ar) Fi_nF,
AA(gr) = AF(k — 1~ N)F — Wo(ar)
X (FE_NFooion — FE_NF),
AB(ok) = [~Val(ok) (% — Gk) 0],
c 0 0

Gr. = C.F C O » (k) = [w(g(;)l)} :

CFN (CpN-t C

with the matrix inequalitiesAAT (ox)AA(or) < Ta(ok)
and ABT(or)AB(gx) < Tg(ox) in which T'4(g;) and

I'z(or) represent two known positive definite matrices. Triv-

ial yet conservative choices fof 4(g;) and I'p(gx) can
be given byT'a(er) = vi(ex)! and I'p(ex) = vp(2x)!
whereya(ok) = maxqar(i}, v 18A@R)] 75(2k)
maX{AF(i)}k—NSigk HAB(@C)H

So far, we have obtained the dynamics of the EE. Next, |
us reformulating the EE system (24) by mapping the sequencee(k — N)

o(k—1i) (:=0,1,---,N) to one stochastic process.

Proposition 1: Map the RA protocol scheduling behavior

governed by{o(k — 7)}o<i<n to the new variableX(k) €

IL:he TP matrixP(k) £

The proof is complete. [ |
Obviously,X(k) is a random variable and the corresponding

characteristics are given in the following proposition.
Proposition 2: The sequencé®(k)}x>o is @ DTMC with

[Dis] ypn o agv Given as follows:

i)
0, #(i,j) > M

Do (i)o(4) otherwise

Dij = Prob(N(k +1)=jIN(k) =

|

in which 7 (i, j) = j— M i—l—MN(ng(i)—l)) andp;; (")
has been defined in (4).

Proof: According to Proposition 1, we can obtain that

Pij =Prob(R(k + 1) = j|N(k) = 4)
=Prob(0r1 = dr+1(4) |0k = i(i))

wheredy (i) = [¢ (i) ok (i) - ¢F()]". Let 6,(i)
be thet-th element of the vectopy(i). Note that¢} (i)
)11 (5), which implies that

(27)

= o(f) = M(i—1—M(¢n (i) - 1)).
As such, it can be concluded that, = 0 if 7(,5) > M.
Moreover, if ther (i, j) < M, we have
Pij = Prob(or+1 = drg1(j)| 0k = dw(i))
= Prob(o(k + 1) = ¢o(j)le(k) = ¢o(i))
= Poo(i)¢o(5)"
The proof is complete. [ |

According to Propositions 1 and 2, the EE dynamical system
%%4) is reformulated as follows

= (Angr) + AAgy)e(k = N = 1) + (Bx)
+ ABuy )@ (k) (28)
with Az = A(0k), AAxw) = AA(0k), Briry = B(ok),

Ok
= AB(or), Tapwy = Ta(ox) and pypy =
Remark 3:Due to the RA protocol scheduling and the
sector-bounded nonlinearity, the EE system (24) is described

by a dynamical system with a DTM®(k) and the norm-
bounded uncertainties. Due to the TV nature of the scalar
parameten\*, it is difficult to analyze the dynamical behaviors
of the EE. Moreover, the value of* is computed by solving

an one-dimensional OP and thereby increasing the on-line

computational effort of the MH estimation approach. In what

02 {1,2,---, MN*1} according to the following mapping AByx)
function: I'p(0k)-
N(k) ZMZ k—i)—1)+1. (25)
Then, for the given value oR(k), the values ofp(k — i)
(0 < i < N) can be calculated by the functiop (RX(%))
(N >1>0):
ok — i) = ¢ (R(K)) 2 mon%J,M> +1. (26)

Proof: Firstly, it is easy to see that the value ®fk)
obtained by (25) satisfig$(k) € Q. Next, we shall prove that
o(k — 1) derived in (26) is correct. For any givet(k) € Q,
we have

6i(R(k)) = moqu(@

M)

N

— mod<ZMj—i(g(k—j) - 1),M) +1

i=i

follows, we shall focus our attention on the EE dynamics
resulting from the approximate MH estimation approach based
on the stochastic analysis technique.

Before deriving further results, we firstly give the definition
about the exponential ultimate boundedness in mean square.
Definition 1: Consider the EE dynamics (24). Assume that
there exist3 constantg:; > 0, pe > 0 and s > 0 satisfying

the following constraint

E{lle(k)?le(0)} < pipz + pa

wherep; € [0, 1). Then, the dynamics of(k) is said to be
exponentially ultimately bounded (EUB) in mean square. The

(29)
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paametersu; and p; are denoted as the asymptotic upper AL PA; = P; A{Pi Al P,B; A;{Pi

bound (AUB) and the decay rate Bf ||e(k)||?}, respectively. Q, = * B fﬁ?l fTDi_

Theorem 2:Consider the NNS (1) under the RA protocol * * By PBi B P
scheduling effects. Let the TP matrix of the DTM(Ck) and * * * by
the updating rule (5) be given. It is gupposed that there eXiStAdding the following zero term
2M N +1 positive definite matrice®;, P; (i = 1,2--- , M),
Y = diag{ri 1,21, - ,ron421}, 2M positive scalars; (i = 0 =ptl (k) +0;e”(k—1— N)AAT AAe(k — 1 — N)
1,2---, M) ande; satisfying —0:eT(k —1— N)AATAAe(k — 1 — N)

o g;z g;i g;i + e@T (B)ABTABio (k) — e (k) ABT AB:co (k)
_ * - - :
L=, I g gu| <0 (30) + 0T (B)Ya(k) — podt (k) —&T (k) Yo(k) (34)
* * « Qff to the right-hand side of (33), we have
where
N E{A. (k)|RX(k) =i}
P=Y pyP O = ATPA — P+ P+0Ta,,  =E{p () + =" () (k) + 07 (k — 1~ N)AAT
j=1 x Adje(k — N — 1) + 0T (k) ABT AB;& (k)

02 = AP, QF = ATPB;, QO = AT P, Q7' = P, — ptl (k) — 0:e" (k — N — 1)AAT Adze(k — 1 — N)

QF =P -0, OF =PB, Q=P el — T (B)ABT ABis(k) + &7 (k) Ya (k)

0P =Bl PB +elp: =Y, Q' =BlP. — &7 (k)Y (k) [R(k) = i}
Then, the EE dynamics (28) is EUB in mean square Witth{gi@T(k)l—‘B7i®(k)+wT(k)in(k)

e _ a®) _
the MmO where p = Zipy amd e = + 0" (k— N — 1)L ase(k—1—N)
(Nt TiVimax T 20int TiWmax)- . + ol (k) — 0:e"(k — 1 — N)AAT Adje(k — N — 1)
Proof: For the purpose of studying the ultimately bound- + o7 (k

~ ~T T o~
edness issue of the Ek), choose the Lyapunov-like function Tf(k) — ei” (R)AB; ABiw (k)
as follows: — & (k)Yw(k) — pat (K)|R(k) = i}

(k) =eT(k— N —1V)Pyetk - N —1).  31) SE{&" R)Qwk)[R(k) =i} — pE{LA () N(k) = i}

~T ~
The difference of 7 (k) (i.e. A(k) 2 . (k+1) — 4 (k)) o (k)Yek)
along the trajectory of the EE dynamics (28) is computed as~ ~ PELA (R)R(K) = i} + ¢ (35)

follows:
wheree = SN2 r2 + S w2, Then, for any

max-*

A (k) =el' (k- N)Py(ps1ye(k — N) positive constant > 0, it can be derived that
—e"(k— N —1)Pyge(k — N —1)

E{HF.a (1 + k) |[N(k) = i} — E{F.a (k) |X(k) = i}
= (Asg + AAwa)elk = N = 1)+ (Bygy = R (ELA(1+ R)R(E) = i} — B (k)R (k) = i})
T k .
+AB o)) P A +AA + (¢ = E{ A (Kk)|X(k) =i}
R (k)@ ( )) R(k+1) (( R(k) R <" (s — ps — VE{A (k)N(k) = i} + " (36)
X )elk = N = 1) + (AByqey + Buqwy (k) _ | |
T Letting ¢ = ¢ = %p and summing up both sides of (36)
—e (k= N-1Rmelk —N-1) (32)  fromotot— 1 with respect tok, we have
Then, take the conditional mathematical expectation on the (1= )
equation (32) and we have —E{#(0)} + E{cLa(t)|r(t —1) =i} < *1_7§*a
E{ A (K)|R(K) = i} @)
:E{ ((-Az + AA)e(k—1—N)+ (B + Agi)@(k))Tpi which implies that
% ((Ai+ A ek — 1= N) + (B + AB)a(k) E{.# (k)[X(k) = i}
—eT(k—1—N)Pe(k—1— N)} <t ( - ;i i E{///(O)}) -1 f“g*e
=E{w” (k)Qw(k)|X(k) =i} (33) - p)k<— € +E{//Z(O)}> e (38)
where P P
e(k—1—N) Furthermore, it is easy to see that
_ |AAe(k—1—N) _
=W= w | Eflle(k — 1 - N)[2} < SAWRE) 20

AB&(k) miny<;<p{a(Fi)}
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Hence, it is finally concluded from Definition 1 that thewhere
EE dynamics (28) is EUB in mean square with the AUB _, . . . T
T eaTa(py- The proof is complete now. ] Sk*{\’ - Esilr(k B N)' STE]?__]C Jyv:i_ DEEEEE S QR

The 'inequality (30) is a typical linear matrix inequality ~ $(i) = §(9) — F (e(d))CF' """V z(k — N).
(LMI). The fea3|b|I|ty of LMI_S IS a_P (i.e. polynqmlal) Proof: Consider the linear system (39), the corresponding
problem, which could be easily confirmed by certain WerCF is given by
known algorithms such as interior-point methods. In this paper,
we shall solve the LMIs by using the LMI toolbox in Matlab. .7 (z(k — N|k)) = ||&(k — N|k) — z(k — N) |3 +

Remark 4:In the above theorem, the BA issue of the EE 9
for the nonlinear system (1) with RA protocol scheduling + FZ,N(E;C)J-“,’j,N(:f(k —N)—z(k - N|k))H (41)
based on the approximate MH estimation scheme (20) is L
considered. It is worth mentioning that, the results obtained©" the minimization of the QCF (41), we have
in Theorems 1 and 2 contain all the information reflecting  9.%,(z(k — N|k))
the system complexities (e.g. the sector-bounded nonlinearity, di(k — N|k)
RA protocol scheduling constraints, bounds of noises and the i Nk T 1 _ Nk
length of the moving estimation window). The scheduling —2(Fin (@) Fin)” (i + kv (20) Py
behavior of the RA protocol does have an impact on the X (Z(k—N)—i(k— NJk))) =0 (42)
calculation of the estimates and the boundedness analysiic is equivalent to
of the estimation error. More specifically, we have defined
the QCF (4) according to the protocol scheduling behavior ((FE_N}‘,’j_N)TFE_N.F,’j_N —i—Q)(—fc(k —N)
by using the scheduling matrik (o(i)). The state estimate . ek Tk
is derived by applying Theorem 1 based on the scheduling +2(k _N|k)) = (kaN(Qk)]:ka) Sk—N- (43)
matrix /(). Then, the boundedness of the estimatiofipen it is easy to see that the solution to (43) is (40). The
error is analyzed based on the occurrence probabilities abBHSof is completed. -
the scheduling behavior. Compared with the existing researctgased on the estimator (40), we have the following EE
works, this work possesses the followirdg distinguishing system:
features: 1) this work is one of the first attempts to address B B
the MH estimation problem for a class of NNSs under certain ~ ¢(k — N) = Ayye(k — N — 1) + Bray@(k) (44)
CP scheduling; 2) a novel robust MH estimation strategy \iﬁhere
employed to deal with the nonlinearity of the systems and
the RA protocol scheduling behaviors; and 3) some suﬁicienﬂN(k) =F— \TJN(,C).F,QZNF,
conditions are obtained for handling the BA issue of the EE ingx(k) = [F = UG —Vnp]
mean square under the approximate MH estimation approach. . 1 .
Uy = (Q + (Fé_w) Fﬁfzv]'—zlffzv) (Fh-n) Fi-n-

C. The linear case Theorem 3:For the linear NS (39) with the RA protocol
I§chedu|ing governed by the DTM@k) associating with (4)
lﬂpd the updating rule (6), it is supposed that there exist’ +
1 positive definite matrice®;, P; (i = 1,2---, M") and
Y = diag{#1 I, 71, -- ,Fan4ol} satisfying

re A S

Uk (k) = Pah) 0= [ABATRER S RS <0 e
In this case, the corresponding MH estimator is designed fere
the following proposition. N
Proposition 3:The solution to the MH estimation problem p— Zﬁ' P

for the following linear system ! R

<k
Sk—N

= 2Q(&(k — N|k) — 2(k — N))

In this subsection, we are going to cope with the M
estimation issue for linear systems with RA protocol sched
ing, which means that the TV nonlinear functigif-,-) is
specialized to the following form:

j=1
v(k+1) = Fo(k) + w(k) (39) Then, the EE dynamicgle(k)| is EUB in mean square
y(k):Cx(k)—i—y(k) W|th the AUB m Where p = % a.rd

ith the RA protocol scheduli iating with (4) is givef = (2oret Fitax + YioN 1o Fil/ias)
Wi e rotocol scheduling associating wi is give i=1 Ti%nax T 2iZN T2 TiVinax) - |
P ’ ’ “isg Proof: The proof is similar to that of Theorem 2 and is

b . .
4 therefore omitted for the conciseness. [ ]
#(k—N)=F&#(k— N — 1|k —1) Remark 5:In Proposition 3 and Theorem 3, the MH
N ik NG L estimator has been proposed for the linear system with the
(k= Nlk) = ((F’“—N]:’C—N) Fr-nFi-n (40) RA protocol scheduling, and sufficient conditions have been

obtained to ensure the ultimately boundedness of the EE in
mean square. Obviously, the MH estimator (40) is a special

T .k

—1
+ Q) (F’;LNFIQZN) S_n +Z(k—N)
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case of (17). By settingQ(\*) = @ and R(A*) = I in In this example, assume that there are three sensor nodes
(17), the MH estimator (17) for nonlinear systems could baf the system and the TP matrix of the RA protocol is
degraded to the MH estimator (40) for linear systems.

0.3 03 04
Remark 6:It is easy to see that the MH estimation scheme P— 103 04 03
obtained in this work could be easily extended to the MH 02 03 05

estimation issue for NSs under tfiRR protocol scheduling _ o
effects. More specifically, with the MH estimator given bylhe weight matrix() is set to beQQ = I. We choose the

Theorem 1 (or (40)), the results in Theorem 2 (or TheoreWindow length as\V + 1 = 6. Then, by applying Theorem
3) still hold true by setting?; = P,_; (or P, = P,_;) for 1, we can obtain the corresponding moving-horizon estimator

i=2,3,-,MN and P, = Py~ (or P, = Pyn). of the form (17). For the purpose of dealing with the one-
Remark 7:The results obtained in Theorems 2 and 3 adimensional OP (18), we adopt a Particle Swarm optimization
achieved based on linear matrix inequalities (LMIs), and tHES0) @lgorithm to search the best solutionXorat each step.
corresponding algorithm dealing with LMIs has a polynomi©n the other hand, by choosing a reasonable approximation of
al time complexity. Specifically, the numbe¥ (c) of flops A*as\* = 1.5, we can obtain an approximate moving-horizon

needed to compute as-accurate solution is bounded byestimator of the form (20). .
O(MA?log(V/e)), whereM is the total row size of the LM Set the state initial value be(0) = 12 __1} - Based
system,\ is the total number of scalar decision variabléss ©ON the abgve pbtamed e.st|mators,.the tracking performance
a data-dependent scaling factor, ani$ relative accuracy set iS_shown in F|Qgs. 2-4. Fig. 5 depicts the response of the
for algorithm. As such, the computational complexities of th€E (i-e. [[e(k)[|%). Fig. 6 plots the sensor node obtaining

established results in Theorems 2 and 3 could be represer66€Ss t0 the communication network. The simulation result
as O((3ny + (N + 1)(na + ny)) (MY (n2 + ng) + 2N + has verified that both the MH estimation approach and the

2)3log(V/e)) and O((ny + (N + 1)(ng + ny))(MN (n2 + approximate MH estimation method are indeed effective for
ns) + 2N + 2)% log(V/e)), respectively. ObvgiJoust, such two the addressed NNSs under the RA protocol scheduling effects.
computational complexities depend not only on the variabld oM Fig. 5, we can find that the MH estimation approach
dimensions, but also on the number of sensor nodes. This

mainly due to the fact that the number of LMIs is determine e

Ture (z1(k))

by the number of sensor nodes. On the other hand, it is wo e T mate MHE
noting that the computation complexity of the moving horizo 14}

estimation algorithm is independent of the number of sens 1l

nodes. It can be find from Theorem 1 that such a computati o

complexity depends largely on the window length of th %10’

moving horizon estimation algorithm since the estimate 8

determined by the measurement output dat&) }x>i>k— N, 6

whose dimension depends on the window length. al

IV. TWO ILLUSTRATIVE EXAMPLES % 50 100 T_léo(k_) 200 250 300
Fig. 2: Example 1 — States trajectories of (k) and its estimates
In what follows, we would like to provide two numerical

examples to verify the effectiveness and correctness of t-~
developed MH estimation scheme and approximate MH es 30 ‘ ‘
mation scheme. e
Example 1: To make our simulation nontrivial, consider ar s
unstablesystem of the following form:

2(k+1) =0.5(sin(k)(d1 — To)a(k) + (I E
+12)x(k)) + w(k) &
y(k) = Cu(k) + v(k)
in which
086 0.1 0 082 01 0 % 50 100 T'lé—,o(k) 20 250 300
Ii=101 098 0 [,32=[01 092 0|, Fig. 3: Example 1 — States trajéétories ob (k) and its estimates
0 0 1.04 0 0 098
C =1, w(k)=0.6cos(0.4k) [1 1 1]T 7 performs better than the approximate MH estimation approach
) T which is mainly due to the real-time computation)df On the
v(k) = 0.4sin(0.3k) [1 1] other hand, such a computation process would largely increase
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Fig. 4: Example 1 — States trajectories of (k) and its estimates
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10

wherev(k) € R? andw(k) € R? are bounded noise with
the upper bounds,.x = 0.2 and v, = 0.1, respectively.
We suppose that the two sensors belong to different sensor

nodes and the corresponding TP matrix of the RA protocol is
D 0.1 0.9

0.9 0.1]. Choosing the weight matrig) = I and the
window lengthN 4+ 1 = 2, we can obtain the approximate
moving-horizon estimator of the form (40). Simulation results
are presented in Figs. 6-8.

Next, let us consider the AUB of the EE. According to
Proposition 1, we can easily verify that(k) € Q £
{1,2,3,4}. Then, by applying Theorem 3, the positive definite
matrices can be obtained as follows:

po_ [3:2059 1.3849] 5 [1.7855 —0.0476
17113849 4.5197|° "2 7 [—0.0476 1.0032 |’
P _ [10595 0.0473] 5 [3.4585  —1.0390
3710.0473  1.9109|° "%~ [-1.0390 2.2146 |-

Furthermore, based on the derived results in Theorem 3,
we obtain the AUB of thee(k)||: 0.31317. The simulation

results have confirmed the MH estimation performance and
our theoretical analysis on the AUB of the EE.

o
=3)
T

Estimation eror (||e(k)||%)
[

0.6 . . ! !
0.6 - - -MHE N=2
—— Ture (z4(k))
0.4 0.5 a
0.2 0.4
0 : .
0 50 100 150 200 250 300 0.3

Time (k)
Fig. 5: Example 1 — The estimation errde(k)||2

Amplitude

3ts sas omne -

® The node obtaining access to the network

25r

150 200 250
. Time (k)
Fig. 7: Example 2 — States trajectories of (k) and its estimates

50 100 300

Node index

GENES B ¢ LEGROBIED 000 & O 0 WS 00

15¢

0.4
X . 0.31 \ A
1 50 100 . 31%0‘(;-) 200 250 300 0.2r A d
Fig. 6: Example 1 — The sensor node obtaining access to the network 0.1r 3 '
4] 0’
2 oafl
the computational effort. The average CPU time on solving ti § .
MH estimation problem and the approximate MH estimatio 02
problem at each step i6.72 x 1072s and4.82 x 10~%s, -03 f |
respectively, on a standard personal computer (CPU: In -0.4
(R) Core(TM) i7-4720HQ; RAM: 8GB; Operating System: 05 ,
Windows 8.1). s ‘ ‘ ‘ [ Ture (k)
Example 2: Consider the isothermal continuous stirret 0 50 100 150 200 250 300

. . . . Time (k)
tank reactor (CSTR) studied in [2], [12]. A discretized anu Fig. 8: Example 2 — States trajectories ©f (k) and its estimates

linearized model is obtained as follows:

0.6472 0
ak+1) = [0.2135 0.7202] w(k) + w(k)

y(k) = x(k) + v(k)

V. CONCLUSION

In this work, a nonlinear moving-horizon (MH) estimator
has been constructed for a type of NNSs under the so-called
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Fig. 9: Example 2 — The estimation errde(k)||? and the upper bound

[16]

random access (RA) protocol scheduling effects. A DTMC

with known TP matrix has been introduced to model thg7]
scheduling behaviors of the RA protocol. The corresponding
MH estimator and approximate MH estimator have be 0
developed to provide the state estimates by extending the
robust MH estimation scheme. By using the stochastic analysis

technology combined with the mapping approach, some stif?

ficient conditions have been obtained to handle the BA issue
of the EE dynamics in mean square under the approximé&iel
MH estimation scheme. Moreover, the main results have been
further specialized to linear NSs with the RA protocol schedupy;
ing. Finally, two illustrative examples have been provided to

verify the correctness and effectiveness of our derived results.
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