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Abstract 

Targeted breast cancer treatments are essential for increasing chemotherapy 

effectiveness whilst simultaneously reducing side effects and are the focus of a whole 

generation of drug development in cancer and elsewhere.  

The ACBD3 gene encodes an essential structural tether protein of the same 

name that has an unusually large number of cellular roles, diverse binding partners, 

and few redundancies. Chromosome 1q is frequently amplified in breast cancer and 

the ACBD3 locus (1q42.12) was previously found to be amplified in multiple breast 

cell lines and primary breast tumours. Previous research found that ACBD3 mRNA 

was upregulated in breast tumour tissue matched against adjacent normal tissue and 

that ACBD3 overexpression promoted cancer stem cell renewal and activated the 

Wnt/β-Catenin signalling pathway in breast cancer cell lines. Due to the broad 

functions of ACBD3 and its contextual role in cells it was hypothesised that ACBD3 

expression may have other affects in breast cancer.  

ACBD3 was overexpressed at the mRNA and protein level in breast cancer 

patient tumours compared to normal tissue and mRNA expression over the median 

value was detrimental for breast cancer patient survival, relapse free survival and 

distant metastasis free survival. IHC staining of breast cancer and normal breast 

tissue cores found that ACBD3 was highly expressed in epithelial ductal cells. ACBD3 

mRNA and protein expression was higher in a panel of breast cancer cell lines 

compared to a normal like breast cell line and ER+ cell lines had the highest protein 

expression of ACBD3. ACBD3 mRNA and protein expression was upregulated in a 

previously engineered T47D everolimus chemotherapy resistant cell, the T47D breast 

cancer cell line was transfected with eGFP-ACBD3 but this did not affect everolimus 

resistance. ACBD3 overexpression did increase cell growth and there were also a 

number of expression changes to oncoproteins. A GOLD domain deletion mutant of 

ACBD3 was constructed and this led to more oncoprotein expression changes when 

expressed in the T47D cell line. Transcriptional and translational regulation are 

sensitive to cell density which has implications for all ex vivo study of ACBD3 and 

several compounds have been found that augment ACBD3 expression.  

ACBD3 was hypothesised to be a marker of progression in breast cancer and 

may promote a Luminal B pathology over Luminal A. its overexpression increased 

growth in a Luminal A cell line, increased expression of proteins associated with 

inflammation and secretion and reduced immunogenic protein expression. Luminal B 

patients had the largest reduction in relapse free survival when ACBD3 mRNA 
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expression was high. ACBD3 expression appears to be a biomarker for breast cancer 

patient outcomes and may have some validity in predicting response to therapy and 

was also associated with ER+ and signalling. New mechanisms by which ACBD3 

might cause inflammation were determined in addition to known roles for ACBD3 in 

redox stress and in iron import. ACBD3 also reduced immunogenic proteins when 

overexpressed. 

ACBD3 is certainly associated with worse outcomes and with progression in 

breast cancer and ACBD3 dependent pathways should be considered as a target for 

treatment in the future. The consensus of these results agree that ACBD3 expression 

in breast cancer is associated with characteristics of stemness and that ACBD3 may 

decrease immune system detection in addition to Wnt signalling. 

 

Conference Presentations and Publications of this work  

The research for this thesis was presented at a number of internal conferences. Plans 

to present this work externally were restricted by the COVID-19 pandemic which was 

most unfortunate. 

 

A poster presentation of this work won 2nd prize at the 2018 College of Health and 

Life Sciences PhD Research Conference. 

 

Sections from the introduction chapter of this thesis were used to write a review article 

that was published in Cancer Studies and Therapeutics. Full reference:  

Houghton-Gisby, J. and Harvey, A.J., 2020. ACBD3, its Cellular Interactors, and its 

role in Breast Cancer. Cancer Studies and Therapeutics, 5(2), pp. 1-7. 

  



vi 
 

Contents 

Declaration .......................................................................................................................... ii 

Acknowledgements ........................................................................................................... iii 

Abstract .............................................................................................................................. iv 

Conference Presentations and Publications of this Work ............................................... v 

Contents ............................................................................................................................. vi 

List of Tables ...................................................................................................................... xi 

List of Figures ................................................................................................................... xii 

Abbreviations ................................................................................................................... xvi 

Chapter 1 Introduction ........................................................................................................ 1 

1.1 Breast Cancer .............................................................................................................. 1 

1.1.1 History .................................................................................................................. 1 

1.1.2 Statistics ............................................................................................................... 2 

1.1.3 Breast Cancer Subtypes and Pathology ................................................................ 3 

1.1.4 Treatment ............................................................................................................. 4 

1.1.5 Breast Cancer Genetics ........................................................................................ 6 

1.1.6 Chromosome 1 and Breast Cancer ....................................................................... 7 

1.2 ACBD3 ........................................................................................................................ 8 

1.2.1 Functional domains ............................................................................................... 9 

1.2.2 ACBD3 in Breast Cancer .................................................................................... 10 

1.2.3 PI4Kβ in Breast Cancer and Interaction with ACBD3 .......................................... 12 

1.3 ACBD3 Related Proteins ........................................................................................... 14 

1.4 ACBD3 Roles at the Trans Golgi Network ................................................................. 17 

1.4.1 The Golgi Apparatus ........................................................................................... 17 

1.4.2 ACBD3 at the Golgi ............................................................................................. 18 

1.4.3 Golgin-160 .......................................................................................................... 18 

1.4.4 GLUT4 ................................................................................................................ 19 

1.4.5 Golgin45 ............................................................................................................. 21 

1.4.6 GTPases ............................................................................................................. 22 

1.5 ACBD3 at the Mitochondrial Membrane ..................................................................... 23 

1.5.1 Steroidogenesis .................................................................................................. 23 

1.5.2 Redox Stress ...................................................................................................... 26 

1.6 Iron Transport ............................................................................................................ 27 

1.7 ACBD3 in Signalling .................................................................................................. 30 

1.7.1 NUMB ................................................................................................................. 30 

1.8 ACBD3 and Disease .................................................................................................. 33 



vii 
 

1.8.1 Huntington’s Disease .......................................................................................... 33 

1.8.2 Coxsackie Virus .................................................................................................. 34 

1.8.3 Salmonella .......................................................................................................... 34 

1.9 Other Oncoproteins that Interact with ACBD3 Pathways ........................................... 35 

1.9.1 PI3K/AKT/mTOR ................................................................................................. 35 

1.9.2 Krüppel Like Factor 9 (KLF9) .............................................................................. 35 

1.10 Project Aims ............................................................................................................ 36 

Chapter 2 Materials and Methods .................................................................................... 38 

2.1 Materials .................................................................................................................... 38 

2.1.1 Products and Manufacturers ............................................................................... 38 

2.1.2 Compound Reagent Preperations ....................................................................... 40 

2.1.3 DNA Plasmids ..................................................................................................... 42 

2.2 Methods ..................................................................................................................... 44 

2.2.1 Cell lines ............................................................................................................. 44 

2.2.2 Cell Culturing ...................................................................................................... 46 

2.2.3 Sub-culturing Cells from Cryostorage .................................................................. 47 

2.2.4 Cryopreservation ................................................................................................. 48 

2.2.5 Cell Imaging ........................................................................................................ 48 

2.2.6 Cell Growth Curves ............................................................................................. 49 

2.2.7 Anoikis Resistance Assays ................................................................................. 49 

2.2.8 Cell Transfection with siRNA ............................................................................... 49 

2.2.9 Bacterial Transformation ..................................................................................... 50 

2.2.10 Cell Transfection with Plasmid DNA .................................................................. 51 

2.2.11 Site Directed Mutagenesis ................................................................................ 51 

2.2.12 Sanger Sequencing of the C3 Vector ................................................................ 52 

2.2.13 Cell Line Drug Treatments ................................................................................ 53 

2.2.14 MTT Cell Viability Assay ................................................................................... 53 

2.2.15 Sulforhodamine B Assay ................................................................................... 54 

2.2.16 Lysing Cells for SDS-Polyacrylamide Gels ........................................................ 55 

2.2.17 SDS-PAGE ....................................................................................................... 55 

2.2.18 Coomassie Staining .......................................................................................... 55 

2.2.19 Western Blotting ................................................................................................ 56 

2.2.20 RNA Extraction ................................................................................................. 57 

2.2.21 Reverse Transcription of RNA and cDNA Synthesis  ........................................ 57 

2.2.22 Quantitative Polymerase Chain Reaction  ......................................................... 58 

2.2.23 Reference Gene Assessment  .......................................................................... 59 



viii 
 

2.2.24 Proteome Profiler Oncology Antibody Array  ..................................................... 60 

2.2.25 Immunohistochemistry ...................................................................................... 61 

2.2.26 Bioinformatics Resources  ................................................................................. 62 

2.2.27 Statistical Analysis  ........................................................................................... 65 

Chapter 3 ACBD3 Bioinformatics and Clinical Analysis ................................................ 66 

3.1 Introduction ................................................................................................................ 66 

3.2 Chapter Aims ............................................................................................................. 67 

3.3 Results ...................................................................................................................... 68 

3.3.1 ACBD3 Expression in Tumours and Normal Tissue  ........................................... 68 

3.3.2 ACBD3 Amplification and Mutation in Cancer ..................................................... 69 

3.3.3 Copy Number Variation and Promoter Methylation of ACBD3 in Breast Cancer  . 72 

3.3.4 ACBD3 Transcription Factors in Breast Tissue ................................................... 73 

3.3.5 ACBD3 mRNA Expression and Breast Cancer Patient Prognosis  ...................... 75 

3.3.6 Relapse Free Survival is Worse When Tumour ACBD3 Expression is Above the 

Median ......................................................................................................................... 75 

3.3.7 Overall Survival is Worse When Tumour ACBD3 Expression is Above the Median 

 .................................................................................................................................... 77 

3.3.8 Distant Metastasis Free Survival is Worse When ACBD3 Expression is Above the 

Median  ........................................................................................................................ 77 

3.3.9 ACBD3 Expression in Responders and Non-Responders to Chemotherapy in 

Breast Cancer  ............................................................................................................. 78 

3.3.10 Novel ACBD3 Protein Interactions .................................................................... 79 

3.4 Discussion ................................................................................................................. 81 

3.4.1 ACBD3, Oestrogen Receptor Status, and Signalling  .......................................... 83 

3.4.2 ACBD3, the HER2 Receptor, and Insulin Signalling in Breast Cancer  ................ 85 

Chapter 4 ACBD3 Expression in Breast Cancer Cell Lines and Breast Cancer ........... 88 

4.1 Introduction ................................................................................................................ 88 

4.2 Chapter Aims ............................................................................................................. 90 

4.3 Results ...................................................................................................................... 90 

4.3.1 Validation of Reference Genes ........................................................................... 90 

4.3.2 mRNA expression of ACBD3 in breast cell lines  ................................................ 91 

4.3.3 mRNA expression of PI4Kβ in breast cell lines ................................................... 93 

4.3.4 the Relationship Between ACBD3 and PI4Kβ Gene Expression  ........................ 94 

4.3.5 ACBD3 and PI4Kβ protein expression in breast cell lines  .................................. 95 

4.3.6 ACBD3 Undergoes Posttranslational Modifications to Different Extents in Different 

Cell Lines  .................................................................................................................... 97 

4.3.7 Immunohistochemical Staining of Breast Cancer Patient Breast Sample Cores  . 98 



ix 
 

4.3.8 ACBD3 Protein Expression in Malignant, Cancer Adjacent, and Normal Adjacent 

Breast Tissue ............................................................................................................. 101 

4.3.9 ACBD3 Protein Expression in Malignant Breast Tissue and Metastatic Lymph 

Node Tissue .............................................................................................................. 102 

4.3.10 ACBD3 Protein Expression in Malignant Breast Tissue of Multiple Subtype 

Receptor Status and Pathology  ................................................................................ 104 

4.3.11 Examination of Histology and Patterns of ACBD3 Staining in Breast Cancer 

Tissue Cores  ............................................................................................................. 106 

4.4 Discussion ............................................................................................................... 108 

4.4.1 PI4Kβ Expression in Breast Cancer Cell Lines and Relationship with ACBD3 

Expression ................................................................................................................. 108 

4.4.2 ACBD3 expression in breast cell lines and ER status ........................................ 110 

4.4.3 ACBD3 expression in breast cancer patient samples  ....................................... 110 

Chapter 5 Examining regulators of ACBD3 and PI4Kβ Expression in Breast Cancer 

Cell Lines .................................................................................................................... 113 

5.1 Introduction .............................................................................................................. 115 

5.2 Chapter Aims ........................................................................................................... 115 

5.3 Results .................................................................................................................... 116 

5.3.1 Iron Treatment of the MDA-MB-231 Breast Cancer Cell Line  ........................... 116 

5.3.2 ACBD3 Protein Expression in Response to Ferric Ammonium Citrate 

Supplementation  ....................................................................................................... 116 

5.3.3 MDA-MB-231 Cell Growth in Response to Iron Supplementation  ..................... 117 

5.3.4 PI4Kβ inhibition in the MDA-MB-231 Breast Cancer Cell Line  .......................... 119 

5.3.5 Treatment of MDA-MB-231 Cells with BQR695 ................................................. 120 

5.3.6 ACBD3 Protein Expression in Response to BQR695 treatment  ....................... 121 

5.3.7 ACBD3 and PI4Kβ mRNA Expression in an Everolimus Resistant T47D Breast 

Cancer Cell Line  ....................................................................................................... 123 

5.3.8 ACBD3 is Upregulated in the T47D Everolimus Resistant Cell Line  ................. 124 

5.3.9 Everolimus Treatment Does Not Affect ACBD3 mRNA Expression in the T47D 

Cell Line  .................................................................................................................... 125 

5.3.10 Everolimus Treatment Does Not Affect ACBD3 Protein Expression in the T47D 

Cell Line  .................................................................................................................... 126 

5.3.11 ACBD3 and PI4Kβ Expression in Response to Cell Seeding Density .............. 128 

5.3.12 ACBD3 mRNA Expression  ............................................................................. 129 

5.3.13 PI4Kβ mRNA Expression  ............................................................................... 130 

5.3.14 ACBD3 and PI4Kβ Protein Expression  ........................................................... 127 

5.4 Discussion ............................................................................................................... 135 

 



x 
 

5.4.1 Iron ................................................................................................................... 137 

5.4.2 PI4Kβ Inhibition  ................................................................................................ 139 

5.4.3 Cell Density ....................................................................................................... 139 

5.4.4 The Everolimus Resistant T47D Cell Line  ........................................................ 141 

Chapter 6 ACBD3 Overexpression and Mutation in the T47D Breast Cancer Cell Line

 ..................................................................................................................................... 143 

6.1 Introduction .............................................................................................................. 143 

6.2 Chapter Aims ........................................................................................................... 145 

6.3 Results .................................................................................................................... 145 

6.3.1 ACBD3 knockdown  .......................................................................................... 145 

6.3.2 ACBD3 Targeting siRNA Treatment  ................................................................. 146 

6.3.3 Overexpression of ACBD3 ................................................................................ 147 

6.3.4 Characterising ACBD3 Overexpressing Cell Lines  ........................................... 148 

6.3.5 Mutation of Key ACBD3 Protein Interaction Sites  ............................................. 151 

6.3.6 Acyl-CoA Binding Domain Loss of Function Mutation ACBD3(KQ117AA) ......... 152 

6.3.7 GOLD Domain Deletion – ACBD3(K381_R528delinsXX)  ................................. 155 

6.3.8 Transfection Confirmation ................................................................................. 158 

6.3.9 Everolimus Resistance T47D Breast Cancer Cell Line Overexpressing ACBD3 or 

KQ117AA Mutant ....................................................................................................... 161 

6.3.10 Anoikis resistance in ACBD3 overexpressing T47D cells  ............................... 163 

6.3.11 Oncogenic protein Expression Changes in the ACBD3 Overexpressing T47D 

Breast Cancer Cell Line  ............................................................................................ 164 

6.4 Discussion ............................................................................................................... 168 

6.4.1 ACBD3 Overexpression  ................................................................................... 169 

6.4.2 Oncogenic Protein Expression Changes ........................................................... 171 

Chapter 7 Discussion ..................................................................................................... 175 

7.1 Key Findings ............................................................................................................ 175 

7.2 Graphical Overview of ACBD3 Functions  ............................................................... 177 

7.3 ACBD3 as a Marker in Breast Cancer ..................................................................... 178 

7.3.1 ACBD3 and the Human Epidermal Growth Factor Receptor 2 (HER2) ............. 180 

7.3.2 ACBD3 and the Oestrogen Receptor (ER) ........................................................ 181 

7.3.3 ACBD3 and the Progesterone Receptor (PR)  .................................................. 183 

7.4 ACBD3 and Breast Cancer Therapy  ....................................................................... 183 

7.5 PI4KB, and its Interaction with ACBD3 .................................................................... 185 

7.6 Future Work  ............................................................................................................ 187 

7.7 Concluding Remarks  .............................................................................................. 188 



xi 
 

 

Chapter 8 List of References .......................................................................................... 190 

Chapter 9 Appendix ........................................................................................................ 221 

 

List of Tables 

Chapter 1 Introduction 

Table 1.1 A brief description of breast cancer features by stage  ....................................... 4 

Table 1.2 A brief description of breast cancer appearance by grade ................................. 4 

Chapter 2 Materials and Methods 

Table 2.1 Sources and details of manufactures for the reagents and consumables used in 

this project  ...................................................................................................................... 39 

Table 2.2 Reagents to make up laemmli lysis buffer for lysing cells and preserving protein 

 ........................................................................................................................................ 40 

Table 2.3 Reagents to make up 10X SDS buffer  ............................................................ 40 

Table 2.4 Reagents used to make the stacking and resolving layers for one acrylamide 

protein separating gel  ..................................................................................................... 41 

Table 2.5 reagents to make up Coomassie stain for total protein staining of acrylamide 

gels and destain  ............................................................................................................. 41 

Table 2.6 Reagents to make up 10X TOWBIN buffer  ..................................................... 42 

Table 2.7 Reagents to make up 10X TRIS buffered saline  ............................................. 42 

Table 2.8 Reagents for electrochemiluminescence (ECL) components A and B  ............. 42 

Table 2.9 Breast cancer type, receptor status and pathology of cell lines used in this work 

 ........................................................................................................................................ 44 

Table 2.10 Base medium and additives used for different breast cancer cell lines  .......... 47 

Table 2.11 12 well plate layout for siRNA transfection assays  ........................................ 50 

Table 2.12 Program for SDM PCR, annealing temperatures for individual primer pairs are 

detailed in chapter 6 ........................................................................................................ 52 

Table 2.13 Universal C3 primers used to sequence inserts in the multiple cloning site of 

the eGFP-C3 vector from upstream into the insert (forward primer) and downstream into 

the insert (reverse primer  ................................................................................................ 53 

Table 2.14 Iron concentration in ng/ml used for MTT experiments and equivalent molarity 

used to make valid comparisons with ammonium citrate controls at equivalent 

concentration in cell medium  .......................................................................................... 54 

Table 2.15 Concentration of antibodies used and working concentration for western 

immunoblot incubations  .................................................................................................. 56 

Table 2.16 Thermocycler program for RNA reverse transcription reaction  ...................... 58 



xii 
 

Table 2.17 Program for QPCR for all samples and GeNorm analysis using the applied 

biosystems Quant Studio 7 Flex  ..................................................................................... 59 

Table 2.18 Wash steps to remove paraffin from array slide  ............................................ 62 

Table 2.19 Percentage of DAB staining intensity represented by staining score for breast 

core arrays  ..................................................................................................................... 63  

Chapter 5 Examining regulators of ACBD3 and PI4Kβ Expression in Breast 

Cancer Cell Lines 

Table 5.1 Actual seeding density of samples at time of collection from results in Figure 

5.13 based on growth rate calculated in Figure 5.14 ...................................................... 135 

Chapter 6 ACBD3 Overexpression and Mutation in the T47D Breast 

Cancer Cell Line 

Table 6.1 Primer pairs for creating ACBD3 mutants  ..................................................... 158 

Table 6.2 Oncogenic proteins that had at least a 1.5-fold change in expression in ACBD3 

overexpressing T47D cells relative to control  ................................................................ 166 

Table 6.3 oncogenic proteins that had at least a 1.5-fold change in expression in 

ACBD3(K381_R528del) overexpressing T47D cells relative to control  ......................... 167 

 

List of Figures 

Chapter 1 Introduction 

Figure 1.1 Predicted 3D structure of human ACBD3 .......................................................... 9 

Figure 1.2 ACBD3 tethers PI4Kβ to Golgi membranes  ................................................... 13 

Figure 1.3 The effect of insulin on TUG, the interaction between TUG and ACBD3, 

and the recycling of GLUT4 storage vesicles to regulate glucose import   ............. 20 

Figure 1.4 ACBD3 has functions at the mitochondria  ...................................................... 24 

Figure 1.5 ACBD3 binds Dexras1 and DMT1 promoting cellular import of iron  ............... 29 

Figure 1.6 The differential regulation of NOTCH signalling by ACBD3 and NUMB in 

neurogenesis  .................................................................................................................. 32 

Chapter 2 Materials and Methods 

Figure 2.1 pEGFP-C3-ACBD3 plasmid map deduced by sanger sequencing using 

universal C3 plasmid primers  .......................................................................................... 43 

Chapter 3 ACBD3 Bioinformatics and Clinical Outcomes 

Figure 3.1 ACBD3 mRNA in breast tumour samples ....................................................... 68 

Figure 3.2 ACBD3 is mutated infrequently but is amplified more in breast cancer than in 

any other cancer  ............................................................................................................. 70 

Figure 3.3 Position and frequency of mutations in ACBD3 that result in amino acid 

changes  .......................................................................................................................... 70 



xiii 
 

Figure 3.4 ACBD3 promoter methylation in normal breast tissue and breast tumour tissue 

 ........................................................................................................................................ 72 

Figure 3.5 Transcription factors that change ACBD3 transcription  .................................. 74 

Figure 3.6 Kaplan Meier plots for patient prognosis when divided by ACBD3 mRNA 

expression  ...................................................................................................................... 76 

Figure 3.7 ACBD3 expression in breast chemotherapy responders and non-responders  79 

Figure 3.8 GeneMANIA protein association data for interactions with ACBD3 ................. 80 

Chapter 4 ACBD3 Expression in Breast Cancer Cell Lines and Breast Cancer 

Figure 4.1 The M value of each reference gene .............................................................. 90 

Figure 4.2 The V value as determined by the Qbase+ software  ...................................... 90 

Figure 4.3 ACBD3 mRNA was increased in breast cancer cell lines relative to the MCF12A 

normal-like breast cell line  .............................................................................................. 92 

Figure 4.4 Relative quantity of PI4Kβ mRNA transcripts in different breast cell lines  ...... 93 

Figure 4.5 The relationship between ACBD3 and PI4Kβ expression  .............................. 95 

Figure 4.6 ACBD3 protein expression is higher in breast cancer cell lines than the normal 

like MCF12A cell line  ...................................................................................................... 96 

Figure 4.7 Western blot of 3 biological replicates of the MDA-MB-231 cell line with high 

separation between 60kDa and 90kDa  ........................................................................... 97 

Figure 4.8 An ACBD3 antibody-stained invasive carcinoma tissue core observed at 

various magnifications  .................................................................................................... 99 

Figure 4.9 Bland Altman plot comparing difference in ACBD3 intensity scoring on different 

days and between two scorers  ....................................................................................... 99 

Figure 4.10 ACBD3 staining score of the BC08032a US biomax tissue array  ............... 101 

Figure 4.11 ACBD3 staining score of the BR1008B US BIOMAX array  ........................ 103 

Figure 4.12 ACBD3 staining score of the BR1401 US biomax array  ............................. 105 

Figure 4.13 Histology of ACBD3 stained breast cores at 10X and 40X magnification  ... 106 

Figure 4.14 Less typical ACBD3 staining in breast cores  .............................................. 107 

Chapter 5 Examining regulators of ACBD3 and PI4Kβ Expression in Breast 

Cancer Cell Lines 

Figure 5.1 ACBD3 protein expression is upregulated in response to ferric ammonium 

citrate treatment in the MDA-MB-231 cells  .................................................................... 117 

Figure 5.2 Relative cell number after 72 hour ferric ammonium citrate treatment  .......... 118 

Figure 5.3 The molecular structure of BQR695, a PI4Kβ specific inhibitor with sub-

micromolar affinity  ........................................................................................................ 119 

Figure 5.4 MDA-MB-231 relative cell number after 72 hours of BQR695 treatments  .... 120 

Figure 5.5 Western blot of lysates from MDA-MB-231 cells treated with 2X IC50 of 

BQR695 ........................................................................................................................ 122 



xiv 
 

Figure 5.6 Western blot detecting ACBD3 protein expression in MDA-MB-231 cells treated 

with 10X IC50 of BQR695  ............................................................................................. 123 

Figure 5.7 ACBD3 and PI4Kβ are more highly expressed in the everolimus resistant T47D 

cell line than the T47D parental cell line ........................................................................ 124 

Figure 5.8 mRNA expression of ACBD3 and PI4Kβ in the T47D breast cancer cell line 

after 24 hours treatment with 100nM everolimus  .......................................................... 125 

Figure 5.9 ACBD3 protein did not change over time following everolimus treatment in the 

T47D cell line but did increase over time in the DMSO only controls  ............................ 127 

Figure 5.10 ACBD3 mRNA expression in the T47D parental and T47D-EveR cell lines 

when seeded at different densities  ............................................................................... 129 

Figure 5.11 PI4Kβ mRNA expression in the T47D parental and T47D-EveR cell lines when 

seeded at different densities  ......................................................................................... 131 

Figure 5.12 ACBD3 protein expression in the T47D parental cell line when seeded at 

different densities did not change within 24 hours  ......................................................... 132 

Figure 5.13 ACBD3 and PI4KB protein expression changes over time starting at 

1.042X104 cells/cm2 cell seeding density ..................................................................... 133 

Figure 5.14 Growth curves of the T47D parental and T47D-EveR cell lines ................... 134 

Chapter 6 ACBD3 Overexpression and Mutation in the T47D Breast 

Cancer Cell Line 

Figure 6.1 Transfection of siGLO with DharmaFECT transfection reagent resulted in 

higher efficiency than transfection with jetPRIME  ......................................................... 146 

Figure 6.2 25nM ACBD3 targeting siRNA did not knockdown ACBD3 protein levels after 

48 hours in the T47D breast cancer cell line  ................................................................. 147 

Figure 6.3 Growth patterns of different T47D cell line variants change when stably 

transfected  .................................................................................................................... 149 

Figure 6.4 Growth curves of T47D parental cells, T47D eGFP-C3 transfected cells, and 

T47D eGFP-ACBD3 transfected cells  ........................................................................... 151 

Figure 6.5 Example ACB domain from ACBP shown from 2 different angles ................. 152 

Figure 6.6 Multiple sequence alignment between the ACB domains of ACBD3 and ACBP 

proteins  ........................................................................................................................ 153 

Figure 6.7 Primer set to mutate ACBD3 codons 117 and 118 from AAG and CAA to GCG 

and GCA  ...................................................................................................................... 154 

Figure 6.8 multiple sequence alignments of ACBD3 wildtype and mutated ACBD3-

KQ117AA  ..................................................................................................................... 154 

Figure 6.9 Primer 1 to delete ACBD3 codons 381 to 529 (base pairs 1144-1587) and 

bases downstream of the open reading frame and add ATC ATT complement to stop 

codons  .......................................................................................................................... 155 

Figure 6.10 Primer 2 to delete ACBD3 codons 381 to 529 (base pairs 1144-1587) and 

additional bases downstream of the ORF in the pEGFP-C3-ACBD3 plasmid  ............... 156 



xv 
 

Figure 6.11 Multiple sequence alignments of ACBD3 wildtype (WT) and mutated ACBD3-

K381_R528delinsXX amino acid sequence  .................................................................. 157 

Figure 6.12 T47D cells were successfully transfected with ACBD3 constructs and protein 

expression was maintained until the end of experimentation  ........................................ 159 

Figure 6.13 PI4Kβ is upregulated in T47D overexpressing ACBD3, ACBD3(KQ117AA), or 

ACBD3(K381_R528del) protein relative to control  ........................................................ 160 

Figure 6.14 The T47D-EveR cell line had increased everolimus resistance, T47D cells 

transfected with ACBD3 or ACBD3(KQ117AA) did not have increased everolimus 

resistance compared to controls  ................................................................................... 162 

Figure 6.15 T47D cells transfected with wildtype ACBD3 or ACBD3 mutants have less 

anoikis resistance  ......................................................................................................... 164 

Figure 6.16 comparison of oncoprotein expression in T47D cells overexpressing ACBD3 

or ACBD3(K381_R528delinsXX) relative to an empty vector control ............................. 165 

Figure 6.17 Network analysis of protein level changes in the T47D breast cancer cell line 

when ACBD3 was overexpressed  ................................................................................ 171 

Chapter 7 Discussion 

Figure 7.1 Graphical overview of ACBD3 function  ........................................................ 171 

Chapter 9 Appendix 

Figure 9.1 ACBD3 protein did not change over time following everolimus treatment in the 

T47D cell line but did increase over time in the DMSO only controls ............................. 221 

Figure 9.2 T47D cells were successfully transfected with ACBD3 constructs and protein 

expression was maintained until the end of experimentation  ........................................ 222 

Figure 9.3 KMplotter results for ER- breast cancer patients when ACBD3 mRNA 

expression was above the median or below the median  ............................................... 223 

 

 

 

 

  



xvi 
 

Abbreviations 

17βE2 – 17β-estradiol 

1p – Chromosome 1 arm p 

1q – Chromosome 1 arm q 

3D – 3 dimensional 

A – Alanine 

aa – Amino acid 

AC – Adenocarcinoma  

ACB – Acetyl CoA binding 

ACBD – Acyl CoA Binding Domain containing protein 

ACBP – Acyl CoA binding protein 

ACC – Adrenocortical carcinoma 

ACTB – beta actin (gene) 

ACTH – Adrenocorticotropic hormone 

ADP – Adenosine diphosphate 

ALDH – Aldehyde dehydrogenase 

APS – adapter protein with a pleckstrin homology and Src homology 2 domain 

ATP – Adenosine triphosphate 

ATP5B – Adenosine triphosphate synthase F1 subunit beta 

AKT – Protein kinase B 

ARF1 – Adenosine diphosphate-ribosylation factor 1 

ATM – ataxia-telangiectasia mutated 

Axl – anexelekto protein 

BAD – Bcl-2-associated death promoter 

BCL-x – B-cell lymphoma-extra large 

BLCA – Bladder urothelial carcinoma 

BLZF1 – Basic Leucine Zipper Nuclear Factor 1 (gene of GOLGIN45)  

BOLERO – Breast cancer trials of oral everolimus 



xvii 
 

BPA – Bisphenol A 

BRCA – Breast invasive carcinoma 

BRCA1 – Breast cancer type 1 susceptibility protein 

BRCA2 – Breast cancer type 2 susceptibility protein 

C3G – Guanyl-nucleotide exchange factor, isoform L 

CA2+ – Calcium 

CamKII – Calcium/calmodulin-dependent protein kinase 

cAMP – cyclic adenosine triphosphate 

CAP – Catabolite activator protein 

CBL – Castitas B-lineage lymphoma proto oncoprotein 

CD34 – Cluster of differentiation 34 protein 

CESC – Cervical squamous cell carcinoma and endocervical adenocarcinoma  

CDH1 – Cadherin 1 

CDK1 – Cyclin Dependent Kinase 1 

cDNA – complementary deoxyribonucleic acid 

CEACAM-5 – Carcinoembryonic antigen-related cell adhesion molecule 5 

CEBPB – CCAAT Enhancer Binding Protein Beta) 

CHEK2 – Checkpoint Kinase 2 

ChIP-Seq – Chromatin immunoprecipitation Sequence 

CHOL – Cholangiocarcinoma 

c-MET – Mesenchymal epithelial transmission tyrosine kinase receptor  

CMF – Cyclophosphamide, methotrexate, Fluorouracil 

COAD – Colon adenocarcinoma 

COPI – Coat protein I 

CRISPR – Clustered regulatory interspaced short palindromic repeats 

CSC – Cancer stem cell 

cT – Cycle threshold 

CTCF – CCCTC-binding factor 



xviii 
 

CTNNB1 – beta catenin (gene) 

CVB3 – Coxsackie virus B3 

CYC1 – Cytochrome C1 

DBI – Diazepam binding inhibitor (also known as ACBD1) 

delins – Deletion insertion 

DEXRAS1 – Dexamethasone-induced Ras-related protein 1 

DLBC – Lymphoid neoplasm diffuse large B cell lymphoma 

DMEM – Dulbecco’s modified eagle’s medium  

DMFS – Distant metastasis free survival 

DMSO – Dimethyl sulfoxide 

DMT1 – Divalent metal transporter 1 

DNA – deoxyribonucleic acid 

E – Glutamic acid 

ECI2 – Enoyl-CoA Delta Isomerase 2 (also known as ACBD2) 

EcoRI – E.coli restriction enzyme 1 

eGFP – Enhanced green fluorescent protein 

EIF4A2 – Eukaryotic translation initiation factor 4A2 

EMT – Epithelial to mesenchymal transmission 

ER – Oestrogen receptor 

ERBB2 – Human epidermal growth factor receptor 2 (gene) 

ERK – Extracellular signal-regulated kinase 

ESCA – Oesophageal carcinoma 

ESRRG – Oestrogen related receptor gamma 

EveR – Everolimus resistant 

F – Phenylalanine 

FASN – fatty acid synthase 

FBS – Foetal bovine serum 

FEC – Fluorouracil, epirubicin, cyclophosphamide 



xix 
 

FEC-T – Fluorouracil, epirubicin, cyclophosphamide, docetaxel 

FGR basic – Feline Gardner-Rasheed sarcoma 

FOXA1 – Forkhead box A1 

FOXA2 – Forkhead box A2 

FOXC2 – Forkhead box C2 

GABA – Gamma aminobutyric acid 

GAP – GTPase-activating protein 

GAPDH – Glyceraldehyde-3-Phosphate Dehydrogenase 

GBM – Glioblastoma multiforme 

GCP60 – Golgi Resident Protein 60 (alias for ACBD3) 

GDI – GDP dissociation inhibitors 

GDP – Guanosine diphosphate 

GEPIA – Gene expression profiling interactive analysis 

GNST – Genistin 

GTP – Guanosine triphosphate 

GI60 – Growth inhibition 60% 

GLUT – Glucose transporter protein 

GM130 – Golgin subfamily A member 2 (also known as GOLGA2) 

GOLD – Golgi Dynamics 

GOLGB1 – Golgin subfamily B member 1 

GORASP2 – Golgi reassembly stacking protein 2 (gene of GRASP55) 

GRASP – Golgi reassembly stacking proteins 

GSEA – Genome set enrichment analysis 

GSV – Glucose transporter type 4 storage vesicles 

HD – Huntington’s disease 

HER2 – Human epidermal growth factor receptor 2 

HIF1 – Hypoxia inducible factor 1 

HIST2H2BE – Histone H2B type 2-E 



xx 
 

HNSC – Head and neck squamous cell carcinoma 

HO-1 – Haem oxygenase 1 

HRT – Hormone replacement therapy 

HTT – Huntingtin 

I – isoleucine 

IC50 – Inhibitory concentration 50% 

ICAM-1 – Intracellular adhesion molecule 1 

IDC – Invasive ductal carcinoma 

IGF – Insulin like growth factor 

IGF1R – Insulin like growth factor 1 receptor 

IHC – Immunohistochemistry 

IL – Interleukin 

IL-2 RA – interleukin-2 receptor alpha 

IMM – Inner mitochondrial membrane 

IR – Insulin receptor 

IRE – Iron response element 

JEM1 – Also known as GOLGIN45 

JUN – Ju-nana protein 

K – lysine 

K381_R528delinsXX – deletion of amino acids 381 to 528 two stop codons inserted 

kDa – kilodalton 

KDM2B – Lysine demethylase 2B 

KICH – Kidney chromophobe 

KIRC – Kidney renal clear cell carcinoma 

KIRP – Kidney renal papillary cell carcinoma 

KLF9 – Krüppel Like Factor 9 

Kpn1 – Klebsiella pneumoniae nuclease 1 

KQ117AA – lysine 117 and glutamine 118 mutation to alanine and alanine 



xxi 
 

LAML – Acute myeloid leukaemia; 

LD50 – Lethal dose 50% 

LGG – Brain lower grade glioma  

LIHC – Liver hepatocellular carcinoma 

LH – luteinizing hormone 

LUAD – Lung adenocarcinoma 

LUSC – Lung squamous cell carcinoma 

MESO – Mesothelioma 

mRNA – messenger ribonucleic acid 

MEK1 – MAPK ERK kinase 

MT1-MMP – Membrane type 1 matrix metalloprotease 

mTOR – Mammalian target of rapamycin 

MCP – Monocyte Chemoattractant Protein 

MNDA – N-methyl-D-aspartic acid 

MST1 – Macrophage stimulating 1 

NBEC – Normal breast epithelial cells 

NMR – Nuclear magnetic resonance 

NMT – N-myristoyltransferase 

nNOS – Neuronal nitric oxide synthase 

NOX5 – NADPH oxidase 

NRAS – Neuroblastoma cell rat sarcoma protein 

N/S – Not significant 

NUMBL – NUMB-like 

OMM – Outer mitochondrial membrane 

OS – Overall survival 

OV – Ovarian serous cyst-adenocarcinoma 

P450scc – (gene CYP11A1) 

P53 – Tumour protein 53 



xxii 
 

PAAD – Pancreatic adenocarcinoma 

PALB2 – Partner and localiser of BRCA2 

PAP7 – PBR/PKA-RI-alpha-associated protein (alias for ACBD3) 

PBS – Phosphate buffered Saline 

PCR – Polymerase chain reaction 

PCPG – Pheochromocytoma and paraganglioma 

PDGF-AA – platelet derived growth factor-AA 

PECAM-1 – Platelet And Endothelial Cell Adhesion Molecule 1 

PH – Pleckstrin homology 

PI – Phosphatidylinositol 

PI3K – Phosphoinositide 3-kinase 

PI(4)P – Phosphatidylinositol 4-phosphate 

PI4Kβ – Phosphatidylinositol 4 kinase beta (also known as PI4KIIIβ)  

PIP5K1A – Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha 

PIST – PDZ interacting specifically with TC10 

PKA – Protein kinase A 

PKCA – Protein kinase C alpha 

PKN2 – PKC-related serine/threonine-protein kinase 

PLK1 – Polio like kinase 1 

polyHEMA – poly-2-hydroxyethyl methacrylate 

PPNAD – primary pigmented nodular adrenocortical disease 

PR – Progesterone receptor 

PRAD – Prostate adenocarcinoma 

PTEN – Phosphatase and tensin homolog deleted on chromosome 10 

Q – Glutamine 

QPCR – Quantitative polymerase chain reaction 

QPS – Glutamine penicillin streptomycin 

R – Arginine 



xxiii 
 

RAB4 – Ras-related protein 4A 

RAS – Rat sarcoma protein 

RCN – Relative cell number 

READ – Rectum adenocarcinoma 

RET – Rearranged during transfection proto-oncogene 

RFS – Relapse free survival 

Rhes – Ras homolog enriched in striatum 

RNA – ribonucleic acid 

ROS – Reactive oxygen species 

Sacl – Streptomyces achromogenes restriction enzyme 1 

SAM68 – SRC associated in mitosis of 68 kDa 

SARC – Sarcoma 

SCV – Salmonella-containing vacuoles 

SD – Standard deviation 

SDM – site directed mutagenesis 

SDS-PAGE – sodium dodecyl sulfate - polyacrylamide gel electrophoresis 

siRNA – short interfering ribonucleic acid 

SIRT1 – Silent mating type information regulation 2 homolog 

SKCM – Skin cutaneous melanoma 

SLC35A1 - Solute carrier family 35 member A1 

SMURF2 – SMAD specific E3 ubiquitin protein ligase 2 

SPARC – Secreted protein acidic and cysteine rich 

SPI-2 T3SS – Salmonella pathogenicity island 2 type III secretion system 

SRB – Sulforhodamine B 

SRSF2 – Serine and arginine rich splicing factor 2 

Src – Sarcoma protein 

SREBP – Sterol regulatory element binding protein 

SseF – Secretion system effector F 



xxiv 
 

SseG – Secretion system effector G 

SSP – Signaling pathways project 

STAD – Stomach adenocarcinoma 

StAR – steroidogenic acute regulatory 

START – (StAR)-related lipid transfer 

STK11 – Serine/Threonine Kinase 11 

TBC1D22 – TBC domain 1 containing protein 22 

TBS-T – Tris buffered saline - Tween20 

TC10α – Ras Homolog Family Member Q 

TCF4 – Transcription factor 4 

TF – Transferrin 

TGCA – The cancer genome atlas program 

TGCT – Testicular germ cell tumours 

TGN – Trans Golgi network 

THCA – Thyroid carcinoma;  

THYM – Thymoma 

Tie-2 - Angiopoietin receptor 

TMED8 – trans-membrane p24 trafficking protein 8 

TMEM41B – Transmembrane protein 41B 

TNBC – Triple negative breast cancer 

TNM – Tumour size, node invasion, metastasis (tumour grading system) 

TOP1 – DNA topoisomerase 1 

TSPO – transporter protein 

TUG – Tether containing UBX domain for GLUT4 

UBC – Ubiquitin C 

UBX – Ubiquitin regulatory X protein  

UCEC – Uterine corpus endometrial carcinoma 

UCS – Uterine carcinosarcoma 



xxv 
 

UK – United Kingdom 

UNC45A – Unc-45 myosin chaperone A 

UVM – Uveal melanoma 

VAPB – Vesicle associated membrane protein-associated protein B 

VDAC1 – Voltage dependent anion channel 1 

VEGF – Vascular endothelial growth factor 

VPS36 - Vacuolar protein sorting 36 homolog 

vRNA – Viral ribonucleic acid 

XhoI – Xanthomonas holcicola restriction enzyme 1 

Wnt – Wingless Int-1 protein 

WT – wildtype 

YWHAZ - Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation 

Protein Zeta (gene) 

 

 



1 
 

Chapter 1 

Introduction 

 

1.1 Breast Cancer 

1.1.1 History 

Breast cancer is one of the earliest cancers to be documented and was known 

to medicine over 5,000 years ago where it was acknowledged to be untreatable and 

fatal (Breasted 1930). Through the 1800s the practice of mastectomy: removal of the 

breast tissue, was refined and it became popular to cut away tissue to the extent that 

breast lymph, surrounding muscle and sometimes chest cavity wall would be excised 

following the hypothesis that to cut more would cure more (Halsted 1907). This radical 

mastectomy would be commonplace for nearly 100 years until it was shown that a 

radical mastectomy provided no benefit in survival rates over a lumpectomy. The 

lumpectomy or wide local excision surgery aimed to cut away only the tumour and a 

border of healthy breast tissue and keep as much breast as was feasible, this was 

combined with radiotherapy and is still standard practice when cancer is confined to 

the breast. 

The subtyping of breast cancers and discovery that breast cancer cells can 

express: oestrogen receptors (ER), human epidermal growth factor 2 receptors 

(HER2), and progesterone receptors (PR) alone, in combination or not at all led to 

breakthroughs in targeted drug design and targeted therapies (Walt, AJ et al. 1976, 

Wei, Sheridan et al. 1987, Slamon, D. J., Clark et al. 1987) . The monoclonal antibody 

drug trastuzumab against the HER2 receptor is one of these targeted therapies and 

can significantly shrink HER2+ breast tumours and cells at secondary sites by 

labelling them for immune destruction (Slamon, D. J., Leyland-Jones et al. 1998). 

This has led to increased survival for HER2+ breast cancer patients. Anti-hormone 

therapy pre- and post-surgery for oestrogen and progesterone receptor positive 

cancers also improved patient outcomes. Other drugs followed as the understanding 

of cancer evolved with the publication of the Hallmarks of Cancer being a turning 

point in how cancer is viewed and should be attacked pharmacologically (Hanahan, 

Weingberg 2000, Hanahan, Weinberg 2011). Many modern drugs were developed 

based on that understanding, including those that target the metabolic and signalling 
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pathways of cancer cells as well as DNA replication apparatus (Bjornsti, Houghton 

2004, Kirchner, Meier-Wiedenbach et al. 2004, Saran, Foti et al. 2015). 

Alongside drug advancement came the understanding that certain genetic 

mutations could increase susceptibility to certain cancers. Most well-known to the 

wider world are mutations of the genes BRCA1 and BRCA2, either of which increase 

lifetime risk of breast cancer (72% and 69% rate of occurrence by age 80 respectively) 

(Kuchenbaecker, Hopper et al. 2017). This has helped tailor therapy regimes and 

assess the risk of recurrence. BRCA1 and BRCA2 mutant carriers are likely to have 

an earlier onset of breast cancer and benefit from full mastectomy over lumpectomy.  

  

1.1.2 Statistics 

Breast cancer is the most common cancer in women with one in eight 

developing breast cancer in their lifetime in the UK (Cancer Research UK 2017). 

Approximately 55,000 women and 350 men are diagnosed with invasive breast cancer 

in the UK each year. Breast cancer treatments have a large success rate (proportional 

to how early the cancer is discovered) with 78% of female patients surviving for over 

ten years but new treatments are in decline with triple negative breast cancer patients 

having little improvement in patient outcomes for decades (Won, Spruck 2020). 

Breast cancer incidence in the UK is increasing for females (25% over the last three 

decades, 6% in the last ten years) meaning that treatment of the same efficiency 

results in more total patient deaths now than ten years ago, without improved 

treatment there will be more deaths per year in the future. 11,563 deaths in the UK 

were attributed to breast cancer in 2016 and prevention is inarguably better than cure, 

approximately 23% of breast cancer occurrences are preventable with obesity and 

alcohol being the two largest modifiable risk factors (Brown, Rumgay et al. 2018, 

Cancer Research UK 2017). Tobacco smoking, lack of physical exercise, exposure 

to radiation, oral contraceptives and hormone replacement therapy (HRT) are also 

considered preventable risk factors for developing breast cancer (Cogliano, Baan et 

al. 2011, World Cancer Research Fund / American Institute for Cancer Research 

2018). 
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1.1.3 Breast Cancer Subtypes and Pathology  

 Breast cancer prognosis and progression varies considerably based on the 

presence or absence of oestrogen receptor (ER), progesterone receptor (PR), and 

human epidermal growth factor 2 receptor (HER2), and on their pathology (Lamb, 

Vanzulli et al. 2019, Ross-Innes, Stark et al. 2012, Inic, Zegarac et al. 2014, Russo, 

Russo 2006, Won, Spruck 2020). Receptor status and pathology are used to divide 

breast cancers into distinct subtypes that offer robust prediction of effective 

treatments and outcomes. 

The Luminal A subtype has a similar gene expression profile to luminal breast 

cells and are generally positive for ER and/or PR expression (Ciriello, Gatza et al. 

2015). Luminal A has the best prognosis of all subtypes (Carey, Perou et al. 2006). 

Patients with Luminal B breast cancers have a worse prognosis than those with 

Luminal A, and tumours have a higher expression of proliferative markers but are 

otherwise similar to the luminal A subtype (Inic, Zegarac et al. 2014). 

The HER2+ subtype expresses HER2 surface receptor and proteins in the 

HER2 pathway; patients with HER2+ subtype cancers have higher grade tumours and 

worse prognosis than patients with Luminal type cancers but also have effective 

specific therapies in the form of anti-HER2 antibodies and HER2 inhibiting drugs 

(Slamon, D. J., Leyland-Jones et al. 1998, Slamon, Dennis J., Leyland-Jones et al. 

2001, Carey, Perou et al. 2006, Eiger, Agostinetto et al. 2021) . 

Basal-like breast cancers are often triple negative meaning they do not express 

ER, PR, or HER2. Patients with basal-like breast cancers have the poorest prognosis 

of breast cancer subtypes (Carey, Perou et al. 2006, Liu, Y., Tamimi et al. 2011). The 

expression profile of basal-like breast cancers is similar to basal epithelial breast 

cells with high levels of proliferative markers and the fewest targeted therapy options. 

Triple negative breast cancers (TNBC) are likely to be higher grade than other breast 

cancer types, tend to be more aggressive, and are more likely to metastasise and 

recur (Cancer Research UK 2020). Lack of receptor markers means that TNBC has 

the fewest targeted treatment options and means the tumours are not as dependent 

on exogenous endocrine stimulation so are more likely to be self -sustaining in 

proliferative signalling (a classic hallmark of cancer) (Won, Spruck 2020, Hanahan, 

Weinberg 2011). Patients are more likely to have TNBC if they are under 50.  

 Staging and grading of breast cancers follows the same definition as other 

cancers and is summarised in Table 1.1 and Table 1.2 (Cancer Research UK 2020, 

Amin, Edge et al. 2017). 
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Stage features 

0 
Ductal carcinoma in situ. A pre-invasive cancer refined to the ducts 

that has not spread into surrounding breast tissue.  

1 
Small tumour located entirely within the breast tissue or local lymph 

node. 

2 Cancer is located in the breast tissue and/or local lymph nodes. 

3 
Cancer that has spread from the breast to local lymph nodes and/or 

breast skin and/or the chest wall. This is a locally advanced cancer.  

4 

Breast cancer that has spread to more distant locations in the body 

(secondary cancers, metastasis). The lungs are the most common 

site of metastasis in patients with brain, bone, and liver also 

common. 

Table 1.1 – A brief description of breast cancer features by stage.  

 

Grade Appearance 

1 Slow growing cells that look similar to normal breast cells. Ductal 

cancers form small tubules whilst lobular cancers form cords. This 

grade is associated with best prognosis 

2 Cells are less differentiated than grade 1 and do not resemble normal 

breast cells. 

3 Cells are not differentiated and are faster growing. They do not 

resemble normal breast cells, they spread quickly and are associated 

with worse prognosis. 

Table 1.2 – A brief description of breast cancer appearance by grade.  

 

1.1.4 Treatment 

In the United Kingdom breast cancer treatment will commonly involve surgery, 

either a lumpectomy where the tumour is excised along with a border of healthy breast 

tissue or a full mastectomy where all breast tissue is removed from one or both 

breasts. Patient genetics may inform this decision and BRCA1 and BRCA2 mutant 

carriers will benefit from full mastectomy of both breasts. For cancer in stages 0 -2, 

surgery followed by radiotherapy of the breast may be the only treatment necessary 
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to achieve remission but patients with larger early stage cancers may have 

chemotherapy pre-surgery to shrink the tumour before excision and this is especially 

effective with trastuzumab treatment in HER2+ patients (National Institute for Health 

and Care Excellence 2018). Patients with ER+ or PR+ cancer usually have hormone 

therapy for at least five years after surgery and HER2+ presenting cancer patients 

will have at least one year of trastuzumab (given at three-week intervals). Other 

chemotherapy may be given if the tumour was larger than 1cm or was a high grade. 

A local sentinel lymph node biopsy will be carried out after surgery to rule out the 

spread of the primary tumour. 

Stage 3 breast cancer treatment for non-inflammatory cancers is similar to 

lower stages but will most likely involve chemotherapy before and/or after surgery..  

Inflammatory breast cancer patients will usually have neo-adjuvant chemotherapy 

prior to surgery to reduce swelling and destroy any metastatic cells. Mastectomy is 

most common for inflammatory breast cancer and is followed by radiotherapy . 

For patients with stage 4 breast cancer, in addition to the treatments for 

previous stage, hormone therapy and antibody therapies can be effective a t 

controlling secondary cancers if they express HER2 (trastuzumab) or ER (aromatase 

inhibitors, tamoxifen), (National Institute for Health and Care Excellence 2017). 

Chemotherapies may be used for hormone negative cancers and metastatic cancer 

of the lungs and liver, or if patients are not responsive to anti-hormone therapy. 

Radiotherapy is used for metastatic cancer of the brain, bone, and skin around the 

breast. Palliative care is also employed to ease the symptoms of advanced cancers.  

According to the 2017 clinical guidelines for the management of breast cancer, 

standard breast cancer chemotherapy regime choices on the NHS in the UK include 

one of:  

• Fluorouracil (600mg/m2), Epirubicin (75mg/m2) and Cyclophosphamide 

(600mg/m2) for six cycles (FEC).  

• Doxorubicin (60mg/m2) and Cyclophosphamide (600mg/m2) (AC). 

• Fluorouracil (600mg/m2), Epirubicin (75mg/m2),Cyclophosphamide (600mg/m2) 

for six cycles followed by Docetaxel (100mg/m2) for two to three cycles (FEC-T). 
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When anthracyclines cannot be administered the following regimes are also 

approved: 

• Cyclophosphamide (600mg/m2), Methotrexate (40mg/m2) and Fluorouracil 

(600mg/m2) for six cycles (CMF). 

• Docetaxel (75mg/m2) and Cyclophosphamide (600mg/m2) for four cycles. 

Node positive patients should be considered for a taxane containing regime 

and palliative chemotherapeutics include: Capecitabine, Doxorubicin, Epirubicin, 

Paclitaxel, Taxotere, and Vinorelbine as single agents or in combination with 

Trastuzumab (for HER2+ cancers). 

The antineoplastic drug everolimus may be given in conjunction with 

exemestane for first or second line treatment for post-menopausal metastatic breast 

cancer patients that are ER+ and HER2- (NHS England 2018, Hortobagyi 2015). 

Everolimus (brand name Afinitor) is an mTOR inhibitor rapalogue, initially approved 

as an immunosuppressant and later (2012) for use in breast cancer.  The use of 

everolimus in breast cancer was evidenced by the BOLERO-2 (breast cancer trials of 

oral everolimus) phase III clinical trial that combined everolimus with exemestane for 

patients that had previously received letrozole or anastrozole. Patients treated with 

everolimus and exemestane in combination had significantly increased progression 

free survival (6.9-10.6 months), compared to exemestane with placebo treated 

patients (2.8-4.1 months) (Baselga, Campone et al. 2012, Beaver, Park 2012, Dorris, 

Jones 2014). 

 

1.1.5 Breast Cancer Genetics 

 Familial history often influences screening for breast cancer but less than 30% 

of breast cancers identified through family history are found to have high penetrance 

alleles for breast cancer risk. Despite their rarity, these minor alleles can infer up to 

an 80% lifetime risk of breast cancer and are associated with earlier onset in many 

cases. In addition to the previously described BRCA1 and BRCA2 mutant alleles, 

PTEN, P53, CDH1, STK11, ATM, PALB2, and CHEK2 all have rare alleles that confer 

risk to breast cancer with varying penetrance (Tung, Lin et al. 2016, Kuchenbaecker, 

Hopper et al. 2017, Filippini, Vega 2013, Ngeow, Sesock et al. 2017, Corso, Intra et 

al. 2016, Ciriello, Gatza et al. 2015, Petridis, Shinomiya et al. 2014, Masciari, Larsson 

et al. 2007, Lee, D. S., Yoon et al. 2012, Moran, Nikitina et al. 2017, Lipsa, Kowtal et 

al. 2019). 
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ERBB2, which encodes the HER2 receptor, has several common 

polymorphisms and some of these may affect risk of breast cancer and/or are 

differentially expressed in patients that are heterozygous for the ERBB2 aa655 

variants (Puputti, Sihto et al. 2006, Pinto, Vasconcelos et al. 2004, Montgomery, 

Gertig et al. 2003, Watrowski, Castillo-Tong et al. 2015). Women who were 

heterozygous or homozygous for the valine 655 allele over the isoleucine 655 allele 

had increased risk and earlier onset of breast cancer, and had less disease free 

survival when their breast cancer was HER2+ (Lee, S. C., Hou et al. 2008, Han, Diao 

et al. 2014, Krishna, Chaudhary et al. 2018). The cause of increased risk when HER2 

carries this polymorphism is not known but HER2 is known to heterodimerise with 

IGF-2 to overcome anti HER therapies and HER2 mutations could affect binding 

affinity or specificity for IGF-2 or other transmembrane receptors (Chan, J. Y., LaPara 

et al. 2016, Lu, Y., Zi et al. 2001, Nahta, Yuan et al. 2005) . 

 

1.1.6 Chromosome 1 and Breast Cancer 

Somatic gene mutations in patients and dysregulation of genes play a much 

larger role in the majority of breast cancers, which are not caused by high penetrance 

risk alleles. Some of this dysregulation can be attributed to chromosomal level 

changes and chromosome 1 in particular undergoes changes in breast cancer, 

typically deletions of 1p and amplification of 1q (Bièche, Champème et al. 1995, 

Orsetti, Nugoli et al. 2006, Tomasetto, Régnier et al. 1995, Goh, Feng et al. 2017) .  

Chromosome 1 arm q is frequently amplified in breast cancer and may even 

be the most common defining feature of these cancers (Soloviev, Esteves et al. 2013). 

ARF1 and RAB4 are located at 1q42.13 and were both found to be significantly 

overexpressed at the mRNA level in breast cancer. ARF1 (ADP-ribosylation Factor 1) 

and RAB4 (RAS related protein 4a) are both observed to have an effect in breast 

cancer. RAB4 in conjunction with RAB5 promotes and drives metastasis by facilitating 

the formation of cellular structures that make contact with and can degrade 

extracellular matrix (invadosomes) containing   (MT1-MMP) and β3 integrin which 

together degrade the extracellular matrix, a process vital for cancer invasion and 

metastasis (Frittoli, Palamidessi et al. 2014). RAB4 is overexpressed in breast 

cancers and unsurprisingly associated with increased cell motility, it is one of many 

RAS related proteins that has clinical significance in cancer (Tzeng, Wang 2016). 

ARF1 is the most amplified gene of the ADP-ribosylation factor family in breast 

cancers and its amplification is associated with increased gene transcription and 
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worse prognosis for patients (Xie, Tang et al. 2016). ARF1 inhibition prevents 

metastasis of tumour xenografts in immunodeficient mice and is replicable in 

zebrafish models of breast cancer metastasis.  

 The ACBD3 gene is located on chromosome 1 arm q (1q42.12) adjacent to 

ARF1 and RAB4 (1q42.13) in the middle of a large region of gain for breast cancers 

(Orsetti, Nugoli et al. 2006). Orsetti et al mapped the frequency at which regions of 

arm 1q were amplified or deleted in tumours and cell lines. The 1q42.12 locus was 

found to be amplified in eight different cell lines (BRCAMZ01, BT20, HCC2218, 

MDAMB436, MDAMB453, SUM149, ZR751 and ZR7530) and six out of twenty-five 

primary tumours (Orsetti, Nugoli et al. 2006). Loss of region 1q42.12 was seen only 

in one cell line (UACC812) where the terminal ~38 megabases of arm 1q were deleted 

and loss of 1q42.12 was not observed in any primary tumour samples. RNA 

expression levels of genes or groups of genes on arm 1q were analysed by a cDNA 

array to find regions of gain. 1q42.12 is located in the middle of a region of gain 

coined G7, the largest region of gain (in bases) on chromosome 1.  

The function and cellular importance of ACBD3 are understudied compared to 

other proteins that make as many interactions, in as many pathways as ACBD3 does 

and ACBD3 overexpression has recently been associated with poor breast cancer 

patient prognosis and the renewal of cancer stem cells (Huang, Y., Yang et al. 2018). 

Huang et al (2018) propose that ACBD3 maintains the cancer stem cell pool in breast 

cancer and ACBD3 in known to participate in preventing differentiation. ACBD3 

proximity to ARF1 and RAB4 may confer a huge selective advantage to breast cancer 

cells with amplifications of this locus imbuing these cells with both survival and 

invasive advantages (Zhou, Atkins et al. 2007). 

  

1.2 ACBD3 

 ACBD3 was first discovered as an interactor of GOLGB1, named GCP60 and 

independently found to be an interactor of the mitochondrial translocator protein 

TSPO and protein kinase A and named PAP7. ACBD3 has had several names, each 

of which captured a distinct aspect of its diverse function (Sohda, Misumi et al. 2001, 

Li, H., Degenhardt et al. 2001). Ultimately it was renamed as Acetyl CoA Binding 

Domain containing protein 3, or ACBD3, by the HUGO gene nomenclature committee 

reflecting its functional groups and protein family rather than any particular role, of 

which there are many (www.genenames.org). The ACBD family contains seven 

proteins (1-7) which all contain the Acyl-CoA binding (ACB) domain.  
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1.2.1 Functional Domains 

In addition to the acyl CoA binding domain at its N-terminus, ACBD3 contains 

a Golgi dynamics (GOLD) and a glutamine rich Q domain as well as a proline rich 

region (Figure 1.1)(Klima, Tóth et al. 2016). The GOLD domain is found in Golgi 

proteins and lipid trafficking proteins and makes up the C-terminus of ACBD3 (aa384-

526). It is a beta strand rich domain and is responsible for ACBD3 localization to the 

Golgi via direct interaction with GOLGB1 (Sohda, Misumi et al. 2001). ACBD3 is a 

largely unstructured or loosely structured protein, as many linkers are, and of all the 

recognisable domains only the GOLD domain structure has been solved by X-ray 

crystallography with the rest of ACBD3 being modelled by NMR and predictive 

modelling software (Figure 1.1). 

 

 

Figure 1.1 - Predicted 3D structure of human ACBD3. Modelled by Phyre2 software using 

the primary amino acid sequence which agrees strong ly with crystal structures of individual 

ACBD3 domains and related proteins (Kelley, Mezulis et al. 2015). From the N-terminus in 

blue to the C-terminus in red ACBD3 clearly contains 3 domains: the ACBP domain, the Q 

domain and the Golgi dynamics (GOLD domain) respectively connected by flexible linkers. 

The N-terminus also contains a proline rich region and two cryptic nuclear localisation 

sequences (ER4E4RERLQKE3KR3) between the ACB and GOLD domains. Supporting the 

nuclear localisation motif there are also nine DNA binding motifs (E/DRnED) between the 

ACB domain and Q domain (light blue) of ACBD3. The hydrophilic surface of acbd3 has been 

superimposed on ACBD3 showing the electrostatic charge of the prote in model with red 

depicting negative charge and blue depicting positive charge.  
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The Q domain is a glutamine rich region (aa241-308) which forms a long loop 

made of alpha helices. The N-terminus of PI4KB extends through this loop to interact 

with ACBD3 at the Golgi membrane and is supported by Rab11 (Figure 1.1, Figure 

1.2) (Klima, Tóth et al. 2016). The N-terminal ACB domain is part of a family that 

binds Acyl CoA and Palmitoyl CoA but the function of this domain in ACBD3 is 

unclear. To the N-terminus of the ACB domain is a proline rich region (aa21-60) which 

is indicative of protein-protein interaction sites and may complement the ACB domain 

which, as a family, is often found paired with protein-protein interaction domains such 

as the Pleckstrin homology domain (PH) and the Src homology domain.  

ACBD3 has no reported function in the nucleus but is known to have a 

signalling role in mitosis (Zhou, Atkins et al. 2007). Despite this, human ACBD3 

encodes two nuclear localisation signals that follow the motif: ER4E4RERLQKE3KR3 

and nine individual DNA binding motifs: E/DRnED (based on primary structure 

predictions). 

 

1.2.2 ACBD3 in Breast Cancer 

Chromosome 1 arm q contains many genes important in cancer progression or 

tumour suppression: NRAS, JUN, MYCL, ESRRG, ARF1 and RAB25 are amongst the 

best known. There are however many more 1q genes that are amplified in breast 

cancer with deletions strikingly rare despite common deletions in the p arm. Some of 

these genes (PI4Kβ, PIP5K1A and HIST2H2BE) have more recently been recognised 

as oncogenic with ACBD3 being the latest 1q gene observed to affect breast cancer 

(Waugh 2014).  

The ACBD3 containing 1q42.12 locus was seen to be amplified in six breast 

cell lines (BRCAMZ01, BT20, HCC2218, MDAMB436, SUM149, ZR751) and eight out 

of twenty-five primary breast tumours in a breast cancer 1q amplification study  

(Orsetti, Nugoli et al. 2006). Loss of region 1q42.12 was seen in only one cell line 

(UACC812) and was not observed in any primary tumour samples.  

There has only been one research article published to date concerning ACBD3 

overexpression in breast cancer but its findings have wide ranging implications 

(Huang, Y., Yang et al. 2018). The relative quantity of ACBD3 in normal (n=111) and 

tumour (n=1099) tissue was analysed and ACBD3 protein was shown to have a higher 

mean average quantity and larger range of expression in the breast tumour sample 

group and ACBD3 mRNA was similarly upregulated in breast tumour tissue matched 

against adjacent normal tissue; all subtypes of breast cancer (basal-like, HER2, 
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Luminal A, Luminal B) showed a statistically significant level of ACBD3 mRNA 

upregulation compared to normal tissue. Protein levels of ACBD3 were upregulated 

in eight breast cancer cell lines (MDA-MB453, MDA-MB-415, BT549, MDA-MB-231, 

ZR-75-30, SKBR3, T47D and MCF7) compared with two normal breast epithelial cell 

lines (NBEC1 and NBEC2). The same was also true of ACBD3 protein levels in nine 

breast tissue samples compared to matched adjacent normal tissue. In some cases , 

the difference between normal and tumour expression of ACBD3 was vast with one 

of the nine matched samples having eleven times the relative quantity of ACBD3 in 

tumour tissue compared to the adjacent normal tissue and no matched tissue from 

patients or from breast cell lines showed exception to the trend that ACBD3 is 

upregulated at mRNA and protein level in breast tumour cells.  

In a cohort of Chinese breast cancer patients Huang et al showed that ACBD3 

protein expression increased as cancer stage became more advanced (using 

histoimmunochemical staining of fixed tissue) with the mean optical density of ACBD3 

more than doubling from normal breast tissue to clinical stage I breast cancer  (Huang, 

Y., Yang et al. 2018). This trend repeated itself between clinical stage I and II: ACBD3 

increased to seven times the optical density of normal tissue between stage II and 

stage III and eight times the optical density between stage III and stage IV. This trend 

was also queried using the Kalpan-Meier plotter database and it was found that high 

levels of ACBD3 mRNA in breast tumour tissue predicted lower rates of patient 

survival and that this significance was less prominent in stages I and II but made a 

large difference in stage III and IV cancers with 60% probability of survival at 120 

months when ACBD3 expression is low and less than 30% probability of survival when 

ACBD3 expression is high. Later clinical stage in cancer correlated with poorer 

survival. These results showed that ACBD3 is more abundant in later stages of cancer 

and that high ACBD3 mRNA correlates with poorer survival. Taken together this 

shows that ACBD3 upregulation contributes to poorer outcomes of patients in later 

cancer stages. 

Gene set enrichment analysis (GSEA) showed that ACBD3 expression and cell 

cycle-activated gene signatures positively correlate (Huang, Y., Yang et al. 2018). 

Overexpression of ACBD3 caused increased side populations of stem-like cancer 

cells (measuring hoechst efflux by cells by flow cytometry) in cell cultures and 

inhibition of ACBD3 by siRNA reduced these side population cells significantly. When 

ACBD3 was overexpressed in mammospheres they became larger and more 

numerous in suspension cultures (Huang, Y., Yang et al. 2018). Conversely when 
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siRNA was used to silence ACBD3 fewer, smaller mammospheres were produced 

compared to controls in T47D and BT549 cell lines.  

GSEA was further analysed to look at specific pathways activated by ACBD3 

overexpression. It was found that CTNNB1 and TCF4 activated gene signatures both 

positively correlated with ACBD3 expression. CTNNB1 encodes the beta catenin 

protein which in response to Wnt signalling accumulates in the cytoplasm and then 

translocates to the nucleus where it propagates the Wnt signal. Wnt interacts with 

NOTCH, NUMB mediates the inhibition of NOTCH and ACBD3 enables NUMB to 

mediate these effects (detailed further in section 1.7.1) (Cheng, Huber et al. 2008, 

Zhou, Atkins et al. 2007). ACBD3 overexpression led to an increase of beta catenin 

in the cytoplasm and nucleus compared to when ACBD3 expression was low (65% 

versus 20% nuclear and cytoplasmic localisation) (Huang, Y., Yang et al. 2018). TCF4 

is a transcription factor for genes that code proteins in the Wnt signalling pathway. 

When TCF4 was knocked down the self-renewal ability of ACBD3-expressing cells 

was abolished and it was concluded that ACBD3 promoted cancer stem cell 

propagation via the Wnt/beta catenin signalling pathway.  

 ACBD3 makes interactions in diverse pathways including glucose import, 

steroidogenesis, neuronal cell fate, and redox stress which are described below. A 

protein involved in this many processes and with numerous binding partners including 

Protein kinase A could foreseeably have more involvement in breast cancer than just 

increasing β-catenin signalling. One promising line of inquiry is with ACBD3’s most 

studied and semi-constitutive binding partner PI4Kβ, a phospholipid kinase that is 

implicated in breast cancer in its own right. 

 

1.2.3 PI4Kβ in Breast Cancer and Interaction with ACBD3  

Phosphatidylinositol 4 Kinase III beta (PI4Kβ) is a lipid kinase that converts 

phosphatidylinositol (PI) into phosphatidylinositol 4-phosphate PI(4)P (both of which 

are signalling molecules) and is implicated in breast cancers with 20% of primary 

tumours showing over expression of PI4Kβ (Tan, Brill 2014, Morrow, Alipour et al. 

2014). 

PI4Kβ is localised to the Golgi by ACBD3 where the rate of conversion of PI to 

PI(4)P is increased. ACBD3 does not affect the enzymatic activity of PI4Kβ but by 

tethering it to the Golgi membrane PI4Kβ is proximal to the PI substrate and does not 

rely on diffusion through the cytoplasm for its interaction with substrates (Klima, Tóth 

et al. 2016). Interaction between ACBD3 and PI4Kβ is achieved by extension of an 
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amphipathic helix at the N-terminus of PI4Kβ (aa44-64) through the Q domain alpha 

helices loop of ACBD3 (aa241-308). The small GTPase Rab11 binds PI4Kβ to support 

this interaction whilst ACBD3 is tethered by GOLGB1 bringing PI4Kβ close to the 

Golgi membrane with its kinase active site facing the PI substrate embedded in the 

lipid bilayer (Figure 1.2). 

PI4Kβ is positioned on chromosome 1q, where amplification is common in 

breast cancers and may even be a defining feature (Orsetti, Nugoli et al. 2006). As 

ACBD3 is also positioned on 1q, it is likely that both genes will have a high copy 

number in many breast cancers. The copy number of a gene and its oncogenicity are 

not always causal, instead only some genes that are amplified have a role in cancers; 

some of these (including PI4Kβ) are established oncogenes with a large body of 

literature (Waugh 2014) whilst others, including ACBD3, are just emerging 

(Houghton-Gisby, Harvey 2020). 

 

Figure 1.2 - ACBD3 tethers PI4Kβ to Golgi membranes . In conjunction with the Rab11 

GTPase, ACBD3 maintains PI4Kβ in close and persistent contact with its PI substrate at the 

membrane which is then converted into PI(4)P (Klima, Tóth et al. 2016). The N-terminus of 

PI4Kβ which contains the amphipathic kinase helix protrudes through and binds to the Q 

domain loop of ACBD3. GOLGB1 binds to the GOLD domain of ACBD3 to tether it to the 

membrane. 

 

PI4Kβ is reported to have increased gene copy number in 62% of 939 patient 

breast tumour samples (Waugh 2014), PI4Kβ expression in breast cancer correlates 
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with poor patient outcomes and its locus (1q21.3) is a biomarker for breast cancer 

(Morrow, Alipour et al. 2014, Goh, Feng et al. 2017) . Evidence of PI4Kβ upregulation 

at the protein level in breast ductal carcinoma samples from the human protein atlas 

was also found by Waugh (Waugh 2014). Independent of its lipid kinase function, 

PI4Kβ also mediates indirect phosphorylation and activation of AKT (Protein kinase 

B), an important kinase in breast cancer signalling (Paplomata, O'Regan 2014, 

Morrow, Alipour et al. 2014). AKT dysregulation drives many breast cancers by 

promoting cell cycle progression and suppressing apoptosis, it is commonly 

overexpressed or constitutively active (Paplomata, O'Regan 2014).  

The PI4Kβ substrate phosphatidylinositol (PI) and the product PI(4)P are 

cellular signalling molecules and docking sites on the membrane for other proteins 

including ARF1 (ADP-ribosylation Factor 1). ARF1 is essential for the format ion of 

COPI vesicles and Golgi function including localisation of Golgin-160 to the Golgi and 

is encoded by a gene adjacent to ACBD3 on chromosome 1 (1q42.13) (Liu, Yizhou, 

Kahn et al. 2014). ACBD3 is hijacked by some picornavirus viral proteins to form 

replication organelles, and recruits PI4Kβ to these sites to enrich them for PI(4)P 

(Sasaki, Ishikawa et al. 2012, Xiao, Lei et al. 2017). This is another example of how 

the role of ACBD3 is contextual and dependent on its cellular location, cell cycle 

position and binding partners. PI4Kβ has been found to be a target in malaria and 

drugs to inhibit PI4Kβ have already been developed (McNamara, Lee et al. 2013). 

PI4Kβ mutants that do not bind ACBD3 have been engineered and compounds that 

inhibit PI4Kβ enzymatic function are available which aids its study (Greninger, 

Knudsen et al. 2013, McNamara, Lee et al. 2013). 

 

1.3 ACBD3 Related proteins 

The Acyl CoA binding domain containing protein family contains seven proteins 

(ACBD1-7). The simplest are ACBD1 and ACBD7 which only contain the ACBD 

domain, ACBD1 was originally known as Acyl CoA binding protein (ACBP). All other 

members of the ACBD family contain extra functional domains or, at the least, 

unstructured tails. Long chain Acyl CoA concentration is tightly regulated in the cell 

and most is bound up in Acyl CoA binding proteins with free Acyl CoA in the 5-20nM 

range (Færgeman, Knudsen 1997). As well as being tightly regulated, Acyl CoA has 

regulatory roles of its own and is essential for secretory and membrane protein 

trafficking between the endoplasmic reticulum and the Golgi. At the mitochondria Acyl 

CoA esters inhibit the mitochondrial adenine nucleotide translocase protein which 
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catalyses the exchange of ATP and ADP across the IMM (inner mitochondrial 

membrane) known to be the rate limiting step in energy metabolism. 

ACBD1 (known formally as diazepam binding inhibitor (DBI)) is a small ACBD 

family member at only 10kDa; it binds long chain Acyl CoA esters and is fairly 

ubiquitous between tissue types. It has been observed in the nucleus of rat liver cells 

where it influences transcription of genes related to Acyl CoA metabolism. DBI is 

known to have neurological roles including the balance of stem cell maintenance and 

clonal expansion in the post-natal brain by negatively regulating GABAA to promote 

stem cell proliferation (Dumitru, Neitz et al. 2017). DBI is a secreted protein in the 

brain, expressed mainly in astrocytes and binds to the GABA receptor complex 

directly (Guidotti, Forchetti et al. 1983, Khalil, Taïb et al. 2015). ACBD1 knockout 

mice show reduced interest in socialising and increased repetitive grooming 

(Ujjainwala, Courtney et al. 2018). 

ACBD2 (Enoyl-CoA Delta Isomerase 2 (ECI2)) contains the recognisable ACB 

domain at the N-terminus and an enoyl CoA isomerase/hydratase domain at the C-

terminus which catalyses the conversion of 3 type double bonds into 2-trans form in 

a number of enoyl-CoAs (Geisbrecht, Zhang et al. 1999). ACBD2 has roles in 

unsaturated fatty acid metabolism and peroxisomal fatty acid metabolism some of 

which may be redundant pathways in the cell(van Weeghel, te Brinke et al. 2012). 

Like some other ACBD proteins ACBD2 is implicated in feeding behaviour and 

efficiency (Reyer, Shirali et al. 2017). ACBD2 also has a role in prostate cancer cell 

survival that promotes fatty acid degradation and its expression is a measure for 

mortality (Itkonen, Brown et al. 2017). 

ACBD4 has an N-terminal ACBP domain and a long C-terminal region with no 

recognisable domains or function. It is a peroxisomal protein and interacts with 

vesicle associated membrane protein-associated protein B (VAPB) to promote 

association between peroxisomes and the endoplasmic reticulum (Costello, Castro et 

al. 2017a). ACBD4 may be a target of p53 as it was upregulated in cell lines treated 

with Inauhzin which inhibits SIRT1 to induce p53 (Liao, Jun-Ming, Zeng et al. 2012). 

ACBD5 is similar in structure to ACBD4 and is closely related to it with a longer 

amino acid chain to the C-terminus of its ACBP domain. ACBD5 is also associated 

with peroxisomes and binds VAPB to tether them to the ER and its deficiency causes 

very long chain fatty acid metabolism defects (Ferdinandusse, Falkenberg et al. 2017, 

Costello, Castro et al. 2017b).  An ACBD5 RET fusion gene has been observed in the 

papillary thyroid cancer of an atomic bomb survivor where the 3’ tyrosine kinase 
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domain of RET has translocated and been ligated to the 5’ of ACBD5 (Hamatani, 

Eguchi et al. 2014). RET is a known proto oncogene and the RET/ACBD5 fusion 

protein was shown to cause tumours in nude mice and was therefore suggested to be 

causative of the thyroid cancer.  

ACBD6 contains two C-terminal Ankyrin repeats and its N-terminal ACBP 

domain has preference for unsaturated long chain acyl-CoAs. ACBD6 is expressed in 

placenta, cord blood, CD34 progenitors, bone marrow, spleen, and embryonic stem 

cells suggesting that it is involved in blood vessel formation and haematopoiesis 

(Soupene, Serikov et al. 2008).The N-myristoyltransferase enzymes NMT1 and NMT2 

attach myristoyl-CoA onto glycine residues in proteins but lack specificity for only 

myristoyl-CoA. ACBD6 binds NMT1 and NMT2 to prevent competition between 

myristoyl-CoA and palmitoyl-CoA and allows N-myristoylation to proceed in the 

presence of abundant palmitoyl-CoA (Soupene, Kao et al. 2016). Chlamydia hijacks 

human ACBD6 to buffer Acyl-CoA levels in the bacterial replicative reticulate body in 

host cells to sustain bacterial acyltransferase activity and remodel host 

phosphatidylcholine (Soupene, Wang et al. 2014). 

ACBD7 is a smaller paralogue of ACBD1 containing only an ACBP domain with 

a very similar amino acid sequence (Burton, Rose et al. 2005). Little has been 

published about ACBD7 possibly because it is much less ubiquitous than ACBD1, 

being expressed mainly in the brain, and it has yet to be observed to bind Acyl CoA. 

It is known to have a role in the leptin-melanocortin pathway that controls feeding 

behaviour and is expressed in response to leptin in arcuate nucleus neurons in the 

hypothalamus (Lanfray, Richard 2017, Lanfray, Caron et al. 2016). 

There is also an isoform of ACBD1 known as endozepine-like peptide (ELP) 

expressed in the testis of most mammals but not primates, of which humans are 

included (Ivell, Balvers 2001, Pusch, Balvers et al. 1996). Like ACBD1, ELP binds 

mid to long chain Acyl CoAs but is also an essential part of spermatogenesis, 

expressed in post meiotic germ cell stages. Loss of ELP in primates follows a similar 

pattern to fertilin, another spermatozoon protein that is abundant in other mammals 

and it has been suggested that both of these proteins are at least in part responsible 

for relatively poor fertility in human males (Ivell, Pusch et al. 2000). ACBD3 also has 

a short isoform found in the testis of mice and other mammals but not in humans (Li, 

H., Degenhardt et al. 2001). 
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1.4 ACBD3 Roles at the Trans Golgi Network 

1.4.1 The Golgi Apparatus  

The Golgi apparatus receives newly synthesised secretory proteins from the 

endoplasmic reticulum and processes them, adding oligosaccharides to form 

glycoproteins. The Golgi also adds carbohydrates to lipids. Proteins processed by the 

Golgi are secretory and are either stored in the cell within vesicles/organelles or are 

excreted from the cell. This organelle is composed of a stack of cisternae that are 

generated from vesicles, in telophase at the centrosomes with coordination from 

microtubules, into distinctive flattened compartments that fragment again when 

mitosis is initiated (Mirinov, Beznoussenko 2011). 

The formation of the Golgi stacks from Golgi vesicles is not fully mapped but 

it is known that Golgi reassembly stacking proteins (GRASPs) are responsible for the 

tethering of individual stacks, or ribbons, to form the mature organelle. GRASP65 and 

GRASP55 are two cytosolic peripheral Golgi protein homologs that tether membranes 

of the cis and trans Golgi network respectively (Shorter, Watson et al. 1999, Barr, 

Puype et al. 1997). These GRASP proteins form stable dimers on the cytosolic face 

of Golgi membranes and further oligomerise with GRASP proteins on adjacent Golgi 

ribbons to form distinctive stacks (Xiang, Wang 2010). Oligomerization is achieved 

through interaction of N-terminal GRASP domains but phosphorylation of these 

domains by CDK1 and PLK1 for GRASP65 and ERK/MEK1 for GRASP55 (all 

recognisable as kinases associated with mitotic cell cycle progression) prevents their 

interaction and catalyses the decoupling of Golgi ribbons allowing for COPI 

vesiculation during late G2 phase (Colanzi, Corda 2007, Truschel, Zhang et al. 2012, 

Tang, D., Yuan et al. 2012). 

COPI is a protein complex that coats the vesicles that transport proteins 

between Golgi stacks from the cis Golgi through the medial stacks to the trans Golgi 

network (TGN), and between the Golgi and the endoplasmic reticulum (ER) (Cosson, 

Letourneur 1997). In prophase and prometaphase, the Golgi undergoes extensive 

COPI vesiculation following decoupling of GRASP proteins whilst vesicle fusion is 

inhibited. Fusion and reformation of the Golgi in telophase requires Golgin proteins 

including GM130, Golgin-160 and GOLGB1 (also known as Giantin) to capture 

vesicles and fuse them into Golgi ribbons in addition to the dephosphorylation of 

GRASP proteins to stack the ribbons. 
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1.4.2 ACBD3 at the Golgi 

ACBD3 was first discovered from a pull-down experiment baited with GOLGB1 

and it was found that they interact via their respective C-termini (Sohda, Misumi et 

al. 2001). GOLGB1’s function in cells is not well understood but loss of function 

mutations in mice have been shown that it  is vital for palate development (Lan, Zhang 

et al. 2016). At the Golgi GOLGB1 is likely to have an intracisternal function and may 

mediate the localisation of ACBD3 to the Golgi.  

 

1.4.3 Golgin-160 

  ACBD3 interacts with Golgin-160, a cytosolic Golgi membrane protein that has 

a role in glucose transporter type 4 sorting in adipose cells (Belman, Bian et al. 2015). 

Golgin-160 is cleaved by caspases during apoptotic signalling to create seven 

possible fragments. The initiator caspase: caspase 2 cleaves Golgin-160 to produce 

fragment aa140-311 which reveals a hidden nuclear localisation sequence on this 

fragment (Mancini, Machamer et al. 2000, Sbodio, Hicks et al. 2006) . Executioner 

caspases 3 and 7 also cleave Golgin-160 into alternate fragments in the execution 

stage of apoptosis. ACBD3 preferentially interacts with the caspase 2 generated 

fragment aa140-311 over full length golgin-160 or any of the alternate fragments and 

this interaction is dependent on the redox state of cysteine 463 on ACBD3 (Sbodio, 

Machamer 2007). 

Golgi fragmentation is a key feature of apoptosis and mutant Golgin-160 that 

cannot be cleaved delays apoptosis and Golgi destruction in response to 

staurosporine. The aa140-311 fragment has been suggested to have a prosurvival 

function in the nucleus and when ACBD3 is overexpressed cells become more 

sensitive to apoptosis by staurosporine because the majority of the Golgin-160 

aa140-311 fragments are bound to ACBD3 at the Golgi and cannot propagate a signal 

in the nucleus(Sbodio, Hicks et al. 2006). This is however in direct conflict with the 

observation that non cleavable Golgin-160 mutants reduce sensitivity to some 

apoptotic drugs, such as staurosporine, that cause endoplasmic reticulum stress or 

induce the ligation of death receptors (Maag, Mancini et al. 2005, Sbodio, Machamer 

2007). 

 

 

 



19 
 

1.4.4 GLUT4 

GLUT4 (glucose transporter type 4) allows the facilitated diffusion of glucose 

from the surroundings into cells via concentration gradient. GLUT4 is essential for 

the import of glucose into muscle and fat cells and its cell surface expression is 

regulated by insulin, a peptide hormone released in response to high glucose levels, 

typically following ingestion of carbohydrates (Li, j., Houseknecht et al. 2000). GLUT4 

is sequestered into storage vesicles (GSVs) that are tethered to Golgi membranes by 

TUG (Tether containing UBX domain for GLUT4), Golgin-160 and ACBD3 when 

insulin is absent (Figure 1.3). This prevents cells from importing glucose and forms 

part of the glucose homeostasis mechanism (Govers 2014). 

Circulating Insulin binds to and activates the insulin receptors (IR) of adipose 

and muscle tissue which causes phosphorylation of the Castitas B-lineage lymphoma 

proto oncoprotein (CBL) on tyrosines 700 and 774 (via recruitment by APS which is 

first activated by tyrosine-618 phosphorylation by IR). Phosphorylated CBL 

translocates to lipid raft subdomains of the plasma membrane, via the CBL 

constitutive partner CAP, and sequesters the CRK adapter protein with its 

constitutively associated partner C3G, a Rap guanine nucleotide exchange factor 

(Baumann, Ribon et al. 2000, Fecchi, Volonte et al. 2006). These events bring C3G 

into proximity with TC10α, a G protein on the lipid raft of the plasma membrane, and 

activates TC10α. PIST (PDZ interacting specifically with TC10) is the cytoplasmic 

effector of active TC10α and mediates cleavage of acetylated TUG (Bogan, Rubin et 

al. 2012). PIST binds to Golgin-160 and interacts with TUG but not GLUT4 (Figure 

1.3). 
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Figure 1.3 - The effect of insulin on TUG, the interaction between TUG and ACBD3, and 

the recycling of GLUT4 storage vesicles to regulate glucose import (Bogan, Rubin et 

al. 2012, Belman, Bian et al. 2015, Fecchi, Volonte et al. 2006) . a) (1) Extracellular insulin 

binds the transmembrane insulin receptor (IR) causing receptor activation. (2) The active IR 

tyrosine phosphorylates CBL inside the cell. (3) Phosphorylated CBL recruits the CRK-C3G 

complex to the membrane lipid raft sub domain facilitating interaction of C3G and TC10α. (4) 

C3G activates TC10α which subsequently activates its effector: PIST. (5) PIST relocates to 

the Golgi causing the release of GSVs with embedded GLUT4 transporter which fuse with 

the cell membrane (6) allowing glucose to enter the cell. GLUT4 is continuously cycled away 

from the membrane in GSVs creating a fast on and off switch for insulin dependent glucose 

import. 

b) (1) ACBD3 interacts with TUG and is dependent on the acetylation state of TUG. (2) 

Acetylation of TUG on lysine 549 causes TUG to preferentially bind Golgin -160 over ACBD3. 

(3) PIST, activated by the insulin receptor signalling cascade , also binds Golgin-160 and 

catalyses the cleavage of acetylated TUG causing GSVs to be released into the cytoplasm 

to fuse with the cell membrane (4). (5) GLUT4 is continuously cycled away from the cell 

membrane embedded in GSVs and is sequestered back to the Golgi where they bi nd TUG. 

 

ACBD3 binds TUG to sequester it at Golgi membranes initially in the absence 

of insulin. ACBD3 bound TUG can be acetylated on lysine 549 which increases its 

affinity for Golgin-160 over ACBD3 (Belman, Bian et al. 2015). TUG binds GSVs to 
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tether them at Golgi membranes and in response to insulin, the subsequently 

activated PIST binds Golgin-160 and stimulates acetylated TUG cleavage. This 

releases GSVs allowing them to integrate with the plasma membrane where GLUT4 

forms a channel for glucose import (Mohan, Sheena et al. 2010). GLUT4 is 

continuously cycled away from plasma membranes back into GSVs to increase the 

on/off response of insulin sensitive cells when insulin is not present. ACBD3 binds 

the cleaved TUG keeping it at Golgi membranes to be acetylated again and bind 

another GSV which is then released to the surface again by PIST activity. This 

process cycles for as long as the insulin signal persists (Figure 1.3) . GLUT4 

exocytosis is regulated by tankyrase 1 as are several other ACBD3 related processes 

discussed below including Golgin45 expression and the promotion of beta catenin 

transcription in the Wnt signalling pathway (Guo, H., Zhang et al. 2012, Huang, S. A., 

Mishina et al. 2009). Tankyrase 1 and 2 are currently being targeted as cancer 

therapeutics because of their interactions in carcinogenic pathways(Lu, H., Lei et al. 

2013, Seimiya, Muramatsu et al. 2005, Haikarainen, Krauss et al. 2014, Kim, M. K. 

2018). Tankyrase also targets Axin for degradation leading to increased Wnt 

signalling which is known to be aberrant in breast cancers and may be influenced by 

ACBD3(Huang, Y., Yang et al. 2018, Howe, Brown 2004). 

 

1.4.5 Golgin45 

Golgin45 (also known as JEM1 and BLZF1) is a Golgi scaffold protein that 

binds the GOLD domain of ACBD3 via its coiled coil domain. ACBD3 has been shown 

to greatly increase Golgin45 localisation to the Golgi and forms a cisternal adhesion 

complex with ACBD3, GRASP65 and TBC1D22 (a Rab33b GTPase specific activator 

(GAP)) (Xihua, Mengjing et al. 2017). The function of Golgin45 is not fully known but 

beyond its Golgi structural functions Golgin45 also has a leucine zipper motif and is 

theoretically capable of homo and heterodimerisation to form a nuclear factor 

(Duprez, Tong et al. 1997). Golgin45 has been suggested as an ACBD3 docking site 

that is distinct from GOLGB1 as Golgin45 is ubiquitous at the Golgi relative to 

GOLGB1 which is localised mainly around the Golgi rim (Koreishi, Gniadek et al. 

2013, Xihua, Mengjing et al. 2017). This supports observations that ACBD3 has a 

structural role in the Golgi and that loss of ACBD3 causes unstacking of the Golgi. 

Golgin45 is located on chromosome 1(q24) the same arm of the same chromosome 

as PI4Kβ and ACBD3, and is regulated by tankyrase, another Golgi associated 

protein, which promotes ubiquitination and degradation of targets (Zhang, Y., Liu et 

al. 2011). Golgin45 is shown to be downregulated in hepatocellular carcinomas and 
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in acute promyelocytic leukaemia cell line NB4 (Tong, Fant et al. 1998, Huang, Y., 

Yang et al. 2018). Golgin45 forms dimers in vivo with the structural Golgi protein 

GRASP55 (Zhao, Li et al. 2017). 

 

1.4.6 GTPases 

Rab (small Ras like) GTPases serve important roles at the Golgi, providing 

anchoring sites for Golgi proteins, regulating structure and taking part in retrograde 

transport on endoplasmic reticulum/Golgi vesicles (Moyer, Balch 2001). Rab 

GTPases are commonly chaperoned and recruited to membranes by specific binding 

partners and these interactions are mediated by GDP dissociation inhibitors (GDIs) 

(Ullrich, Stenmark et al. 1993). The combination of chaperones, resident membrane 

protein partners and GDIs ensures that different Rab proteins are recruited to their 

respective membranes/organelles in a location specific and tissue specific manner.  

Several of the ACBD3 interactors discussed in this thesis, as well as ACBD3 

itself, bind Rab GTPases or regulate their activities and in addition to the structural 

role of these Golgi proteins, the GTPases themselves appear to have a vital role in 

Golgi dynamics (Liu, Shijie, Storrie 2012, Stenmark 2009). The Golgin45/GRASP55 

complex at the medial Golgi binds Rab2 and is the effector for transport and structural 

functions of the Golgin45/GRASP55 complex (Short, Preisinger et al. 2001). This is 

supported by knockdown of Golgin45 which disrupts Golgi structure and by in vitro 

experiments with non-hydrolysable GTP analogues which promote the stacking of 

Golgi ribbons, presumed now to be by their constitutively activating effect on Rab2 

and other Rab GTPases (Rabouille, Misteli et al. 1995). 

ACBD3 binds the Rab33b GTPase activating protein TBC1D22 and localises it 

to the Golgi in a complex with the Golgin45/GRASP55 dimer (Xihua, Mengjing et al. 

2017). TBC1D22 activates Rab33b which has a role in Golgi transport to the 

endoplasmic reticulum and in nanoparticle trafficking (Panarella, Bexiga et al. 2016, 

Tregei, Yi et al. 2010). PI4Kβ is an important ACBD3 binding partner with roles in 

maintaining the PI4P pool at the Golgi membrane (Klima, Tóth et al. 2016). PI4kβ 

interacts with the GTP bound form of Rab11 and is required for Rab11 localisation at 

the Golgi. PI4Kβ in turn is recruited by ACBD3 and this complex, possibly with 

GOLGB1, promotes PI4P production (Figure 1.2) (Clayton, Minogue et al. 2013). 

Dexras1 is a small GTPase known to interact with ACBD3 at the Golgi (Cheah, 

Kim et al. 2006). Rhes is another GTPase protein very closely related to Dexras1 

expressed exclusively in the corpus striatum and is also a known interactor of ACBD3 
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(Falk, Pierfrancesco et al. 1999). Rhes is heavily implicated in Huntington’s disease 

progression and ACBD3 has been shown to mediate Huntington’s disease 

neurotoxicity (Baiamonte, Lee et al. 2013, Sbodio, Paul et al. 2013). 

 

1.5 ACBD3 at the Mitochondrial Membrane 

ACBD3 is often considered a resident Golgi protein due its structural role and 

interactions with other structural and functional components but it can also be found 

at other membranes including the cytosolic cell membrane and at the outer 

mitochondrial membrane (OMM). ACBD3 does not have any enzymatic activity of its 

own but serves as a tether and adapter for other molecules to build and retain 

complexes involved in cholesterol import and redox stress.  

 

1.5.1 Steroidogenesis 

ACTH (Adrenocorticotropic hormone) and LH (luteinizing hormone) activate G 

protein-coupled receptors in adrenal, leydig and ovarian cells causing the activation 

of intracellular adenylyl cyclase which in turn raises cytosolic cAMP concentration 

(Miller 2013). cAMP accumulation leads to protein phosphorylation and lipid and 

protein synthesis in the cell which all influence steroid production. Cholesterol forms 

the building block for steroids and must be transported to the OMM (outer 

mitochondrial membrane) of mitochondria to sustain steroid synthesis and is sourced 

from plasma membranes, lipid droplets, and by de novo synthesis within the 

endoplasmic reticulum (Shen, Azhar et al. 2015, Murphy, Martin et al. 2009). 

ACBD3 interacts with TSPO (previously the peripheral-type benzodiazepine 

receptor) on the cytosolic outer mitochondrial membrane (OMM) which stimulates 

cholesterol transport from the OMM to the IMM (Figure 1.4a) (Krueger, Papadopoulos 

1990, Li, H., Degenhardt et al. 2001). TSPO is anchored at the OMM by the voltage 

dependent anion channel VDAC1 and makes up approximately 2% of OMM proteins. 

TSPO tethers cytosolic ACBD3 to the OMM which subsequently recruits protein 

kinase A (PKA) via the PKARIα subunit. This brings PKA into proximity with one of its 

substrates: the steroidogenic acute regulatory (StAR) protein which is phosphorylated 

on residues S57 and S195 by PKA (Arakane, King et al. 1997). StAR then facilitates 

cholesterol import from the OMM to the IMM.  

StAR binds cholesterol via a hydrophobic sterol binding pocket (SBP) at the 

cytosolic OMM causing a conformational change of StAR that is essential for 
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cholesterol to cross the OMM (Rajapaksha, Kaur et al. 2013). At the IMM P450scc 

(CYP11A1) carries out the first reactive step in the conversion of cholesterol to steroid 

hormones, using its electron transfer partners: ferredoxin reductase and ferredoxin 

to produce pregnenolone (Miller, Auchus 2011). P450scc is located at the inner 

mitochondrial membrane (IMM) and determines the net steroidogenic capacity of the 

cell and is the chronic regulator of steroidogenesis (Strushkevich, MacKenzie et al. 

2011, Elustondo, Martin et al. 2017). The rate determining step in steroidogenesis is 

the transport of cholesterol from the OMM to the IMM and the ACBD3 protein is 

essential for this step. 

 

Figure 1.4 – ACBD3 has functions at the mitochondria. At the Outer Mitochondrial 

membrane (OMM) ACBD3 is essential for mediating interactions between PKA holoenzyme 

(via direct tethering with the PKAR1α subunit shown) and its substrates: StAR and VDAC1.  

a) The phosphorylation state of StAR determines whether cholesterol can cross the 

IMM and be converted to pregnenolone, the basic building block of all steroid hormones in 

mammals. Cholesterol import is the rate limiting step in steroidogenesis and ACBD3 is 

indispensable for this process. 

b) VDAC1 is a Ca2+ ion import channel at the OMM and phosphorylation by PKA 

closes this channel to prevent calcium import. Mitochondrial import of Ca 2+ forms part of the 

calcium homeostasis mechanism in the cell, closing the VDAC1 ion channel causes cytosolic 

Ca2+ concentration to rise in the cell which leads to redox stress and local inflammation. 

Again, ACBD3 is essential for localising PKA to the mitochondria where it can then 

phosphorylate the VDAC1 substrate.  
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Pregnenolone is transported to the endoplasmic ret iculum where the final 

steroid products are synthesised (Strushkevich, MacKenzie et al. 2011, Sewer, Li 

2008, Miller, Auchus 2011). This is the process by which all steroids are made in the 

hormone producing organs of mammals. These are comprised of six groups: 

Androgens (testosterone and dihydrotestosterone), oestrogens (oestradiol), 

glucocorticoids (cortisol and corticosterone), mineralocorticoids (aldosterone), 

progestins (progesterone) and calciferols (1,25-dihydroxy vitamin D) which are all 

tissue specific hormones synthesised from pregnenolone (Shen, Azhar et al. 2015, 

Acconcia, Marino 2016). ACBD3 overexpression increases chorionic gonadotropin 

induced steroid production (Liu, J., Rone et al. 2006). 

PKAR1α is a tumour suppressor and is important in primary pigmented nodular 

adrenocortical disease (PPNAD) nodule formation and tumorigenesis in mice and 

humans. Mutation of PKAR1α leads to hyercortisolism that drives tumorigenesis , and 

high ACBD3 expression in steroidogenic tissues (of which the adrenal cortex is one) 

may contribute to the overexpression/over activity of mutant PKAR1α. PPNADs are 

characterised by a resistance to apoptosis which in itself contributes to cancer 

occurrence and is a major hallmark of cancer (Hanahan, Weinberg 2011). The first 

publication to suggest any link between ACBD3 and cancer demonstrated that ACBD3 

follows the same expression profile as PKAR1α in PPNAD tissue and speculated that 

in tumorigenesis this could lead to deregulation of steroid synthesis (Liu, Jun, 

Matyakhina et al. 2003). PKA is a kinase with a huge range of targets and is controlled 

by a range of subunits that form distinct holoenzymes with different specificities. The 

inactivating mutations of PKARIα that lead to PPNAD cause increased PKA activity, 

PKA activates the mTOR pathway leading to phosphorylation of targets such as the 

proapoptotic BAD protein, inactivating it and contributing to apoptotic resistance (de 

Joussineau, Sahut-Barnola et al. 2014). mTOR is in itself an effector in many 

important signalling pathways and causative or accelerative in many cancers 

including breast cancer; in breast cancer mTOR dysregulation is common to the 

extent that several generations of chemotherapeutic rapalogues have been 

developed to inhibit it (Hare, Harvey 2017). 

Steroidogenic acute regulatory (StAR)-related lipid transfer (START) domain 

containing proteins, of which StAR was the first to be identified, play key roles in 

cholesterol metabolism at the mitochondria by binding cholesterol and other lipids 

(Alpy, Tomasetto 2005). ACBD3 tethering of PKA to the mitochondria is essential for 

StAR induced cholesterol import into intermembrane mitochondrial space and 

subsequent conversion to pregnenolone for steroid synthesis (Rajapaksha, Kaur et 
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al. 2013).  Other START domain containing proteins also play important roles in 

cholesterol trafficking and membrane transport which control cholesterol availability 

to the mitochondria. StARD3 (previously MLN64) is one such START domain 

containing protein which shares 37% amino acid sequence identity with StAR of which 

the C-terminal lipid binding domains are most conserved (50%) (Moog-Lutz, 

Tomasetto et al. 1997). StARD3 is not a known interactor of ACBD3, as StAR is not, 

but shares homology with StAR protein, the activation of which is dependent on 

ACBD3. StARD3 is upregulated in breast and ovarian cancer, as ACBD3 appears to 

be, and may contribute to the dysregulation of androgen production and signalling of 

these cancers (Tomasetto, Régnier et al. 1995). 

Whilst there is no direct link between StarD3 and ACBD3, it is very possible 

that ACBD3 will be found to influence steroidogenesis in cancers. As evidenced by 

the correlation of ACBD3 and PKA (RIα subunit) expression in PPNAD tissue, the 

increased steroid production in chronic gonadotropin when ACBD3 is overexpressed  

and the indispensable role of ACBD3 for steroid synthesis (Liu, Jun, Matyakhina et 

al. 2003, Liu, J., Rone et al. 2006). 

 

1.5.2 Redox Stress 

Interestingly, and in a separate process, TSPO tethered ACBD3 recruits PKA 

to phosphorylate VDAC1 and prevent Ca2+ import into the mitochondria (Figure 1.4b) 

(Gatliff, East et al. 2017). VDAC1 is important in Ca2+ homeostasis, especially 

mitochondrial Ca2+ homeostasis which controls the metabolism of mitochondria and 

therefore energy availability in the cell (Shoshan-Barmatz, Krelin et al. 2018). VDAC1 

is an ion channel permeable to Ca2+ and permits Ca2+ to enter the mitochondria along 

its concentration gradient; this imbues mitochondria with the ability to buffer 

intracellular Ca2+. 

ACBD3 can bind TSPO at the mitochondria to recruit the PKA complex via 

direct interaction with PKARIα (Figure – 1.4) (Li, H., Degenhardt et al. 2001). Unlike 

steroidogenesis, which is under hormonal control, this complex can also be localised 

to the mitochondria by increased TSPO expression induced by glutamate, a signalling 

molecule that is known to cause acute neurotoxicity (Gatliff, East et al. 2017, Atlante, 

Calissano et al. 2001). At the mitochondrial membrane PKA can then phosphorylate 

VDAC1 which prevents it from allowing Ca2+ transport into the mitochondria. This 

causes Ca2+ accumulation in the cytosol which signals redox stress via the calcium 

sensing CamKII and its effector NADPH oxidase (NOX5) leading to inflammation by 
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increased reactive oxygen species (ROS). This is particularly relevant to neuro-

inflammation and associated cytotoxicity where TSPO is not expressed in healthy 

brain tissue but can accumulate later, in age related degenerative disease or after 

traumatic stress, and may contribute to neurodegeneration (Kumar, Muzik et al. 

2012). This is another example of ACBD3 being part of multiple disparate functions 

within a single niche (in this case the OMM). 

Redox stress and ROS promote inflammation, and long-term inflammation can 

promote cancer and inflammation is common in the tumour microenvironment 

(Deshmukh, Srivastava et al. 2019, Hanahan, Weinberg 2011) . Elevation of cellular 

ROS have been detected in the majority of cancers including breast cancer (Storz 

2005, Toyokuni, Okamoto et al. 1995). ACBD3 upregulation and overexpression may 

contribute to a tumour promoting microenvironment by increased redox stress and 

ROS production.  

  

1.5. Lipid Metabolism 

Lipid metabolism defects are linked to diabetes, neurodegeneration and cancer   

(Menendez, Lupu 2007, Spell, Kölsch et al. 2004, Ferré, Foufelle 2007). Sterol 

regulatory element binding proteins (SREBPs) are transcription factors that maintain 

homeostasis of fatty acids and cholesterol in the body. Overexpression of ACBD3 

inhibits SREBP1 sensitive fatty acid synthase (FASN) activity, is observed to block 

SREBP1 maturation by direct binding and inhibits its nuclear form (Chen, Patel et al. 

2012). ACBD3 overexpression was also shown to reduce FASN and de novo palmitate 

synthesis pathways at the protein and transcription level and both of these appear to 

be mediated by the N-terminal region of ACBD3 containing the ACBP domain (Figure 

1.1). The N-terminal region was implicated by deletion of amino acids 1-171 which 

abolished much of ACBD3s influence of SREBP1 expression whereas deletion of C-

terminal amino acids did not. The two nuclear localisation sequences on human 

ACBD3 are located between amino acids 199 and 228 so were present in the N-

terminal deletion mutant (Fan, Liu et al. 2010). 

 

1.6 Iron Transport 

ACBD3 was found to be an interactor of Divalent metal transporter 1 iron 

responsive element (DMT1 IRE) by yeast 2 hybrid screening and it was demonstrated 

that siRNA silencing of ACBD3 prevented iron uptake into cells and downregulated 
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protein levels of DMT1 (Okazaki, Ma et al. 2012). Increasing iron in rat diets was 

shown to downregulate ACBD3 protein levels at the duodenum. These findings 

implicate ACBD3 as a regulator of iron transport in DMT1 (IRE) expressing cells and 

conversely ACBD3 is also regulated by dietary iron. The regulatory function of ACBD3 

is further evidenced by Choi et al who discovered that, in the brain, ACBD3 binds 

Dexras1 and DMT1 (Rhes and DMT1 in the corpus striatum) (Choi, Bang et al. 2013). 

ACBD3 and Dexras1 co-transfection into HEK293T cells enhanced iron uptake into 

cells whilst Dexras1 alone caused only a small change inferring that ACBD3 mediates 

the positive effect of Dexras1 on iron uptake by DMT1. This is in agreement with 

intestinal iron uptake (in rats) where low ACBD3 expression results in low protein 

levels of DMT1 (Okazaki, Ma et al. 2012). 

DMT1 is a membrane resident cotransporter of protons and divalent metal ions 

including iron. DMT1 has several isoforms and DMT1(IRE) (iron responsive element  

isoform I) is: essential for dietary iron absorption at the brush border membrane of 

the duodenum (small intestine), important in iron uptake in neuronal cells, and may 

have an iron transport role in other cells. DMT1 imports free iron directly through the 

plasma membrane into cells as well as transferrin bound iron via endosomes (Figure 

1.5) (Richardson, Ponka 1997, Cheah, Kim et al. 2006). Transferrin binds transferrin 

receptors on the cell surface and cause DMT1, the transferrin receptor and transferrin 

to be endocytosed. The transferrin endosomes then undergo acidification to release 

iron from transferrin whereby the free iron then enters the cytoplasm through the 

embedded DMT1 transporter (Dautry-Varsat, Ciechanover et al. 1983). 

ACBD3 is an adapter between DMT1 and its positive regulator Dexras1 and 

tethers Dexras1 to DMT1 at the cytosolic plasma membrane. In the brain N-methyl-

D-aspartic acid (NMDA) glutamate receptor activation causes activation of nNOS 

which s-nitrosylates Dexras1 to a more active form. Active Dexras1 then activates 

DMT1 via the ACBD3 adapter causing iron transport into the cytoplasm (Cheah, Kim 

et al. 2006). 
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Figure 1.5 – ACBD3 binds Dexras1 and DMT1 promoting cellular import of iron. The 

DMT1 metal transporter facilitates the import of both free iron and transferrin (TF) into cells 

of the small intestine and the brain. ACBD3 binds DMT1 at the cell membrane and Dexras1 

to stimulate DMT1 activity to import free iron. TF binds the transfe rrin receptor which is then 

endocytosed with DMT1 into an endosome. The endosome is then acidified causing release 

of iron from TF. DMT1 is stimulated by Dexras1, tethered to DMT1 by ACBD3, to pump iron 

from the endosome into the cytoplasm. In the brain Dexras1 is s-nitrosylated to a form of 

increased activity by nNOS in the NMDA signalling cascade (not shown). In the corpus 

striatum, Rhes replaces the role of Dexras1 (adapted from (Choi, Bang et al. 2013)).  
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1.7 ACBD3 in Signalling 

1.7.1 NUMB 

Mammalian NUMB, an endocytic adapter protein, is involved in cytosolic 

signalling and is segregated asymmetrically into one daughter cell during the mitosis 

of neural progenitor cells with its protein partner NOTCH (Artavanis-Tsakonas, Rand 

et al. 1999). This asymmetric distribution of NUMB results in one identical pluripotent 

daughter cell to maintain the population of neuronal precursors and one differentiated 

neuron cell. This balances the need to create neurons and maintain the pool of 

precursor cells in embryonic neurogenesis. Loss of function mutations in NUMB and 

the NUMB-like paralog in mice (NUMBL) results in overproduction of neurons but 

causes premature depletion of the progenitor pool whereas depletion of only one gene 

shows no change, alluding to a redundant pathway in neurogenesis between NUMB 

and NUMBL in mammals (Petersen, Zou et al. 2002). 

High levels of NUMB protein in one new daughter cell maintains an 

undifferentiated pluripotent cell phenotype the same as the parent cell whereas the 

other daughter cell, with low levels of NUMB, undergoes differentiation to become a 

neuronal cell, a mechanism that is conserved between drosophila and mammals 

(Uemura, Shepherd et al. 1989, Verdi, Schmandt et al. 1996) . In drosophila NUMB 

specifies cell fate by inhibiting NOTCH, a transmembrane receptor that mediates 

intercellular signalling in development, however, it is not certain that this is conserved 

in mammals. NUMB alone however is not enough to specify a pluripotent cell fa te as 

the daughter cell that does not receive NUMB starts to produce and accumulate 

NUMB protein early in G1 phase and NUMB is actually required for the cell to 

differentiate into a neuron (Zhou, Atkins et al. 2007). 

ACBD3 has been identified as a NUMB binding partner after it was observed 

that ACBD3 cytosolic release in mitosis and cellular location are paired with NUMB 

mediated cell fate (Zhou, Atkins et al. 2007). ACBD3 is bound to Golgi/mitochondrial 

membranes through most of the cell cycle and only binds NUMB during mitosis when 

the breakdown of the Golgi releases ACBD3 into the cytosol. Constitutively cytosolic 

ACBD3 inhibits neurogenesis in mouse embryos and results in less neurons. This 

suggests that permanently cytosolic ACBD3 is preventing differentiation in otherwise 

neuronal fated cells and that it achieves this by binding NUMB outside of mitosis. This 

explains how a protein level increase of NUMB in a NUMB deprived daughter cell still 

leads to neuronal differentiation after mitosis because ACBD3 is membrane bound , 
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whereas in a NUMB rich daughter cell during mitosis ACBD3 is cytosolic and free to 

bind NUMB (Figure 1.6). 

The ACBD3 interacting region on NUMB is essential for NUMB activity and 

interaction with ACBD3 increases NUMB activity (Zhou, Atkins et al. 2007). The C-

terminus of ACBD3 binds with the N-terminus of NUMB, and NOTCH also binds the 

N-terminus of NUMB (Guo, M., Jan et al. 1996). NUMB is still the effector protein of 

this signalling pathway as ACBD3 alone cannot prevent differentiation of neural 

progenitors (in drosophila). Cytosolic ACBD3 expression leads to inhibition of NOTCH 

suggesting that NOTCH inhibition by NUMB is conserved from drosophila to mammals 

and it can be concluded that ACBD3 and NUMB are both required to specify cell fate 

in neural progenitors. NOTCH signalling in the differentiating daughter neuron cell 

(Figure 1.6e) also has intercellular signalling capabilities causing lateral inhibition of 

NOTCH signalling in adjacent progenitor cells to prevent neighbours becoming 

neurons as well, this creates the familiar mosaic/chequered pattern of neurons and 

progenitors in the developing brain. 
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Figure 1.6 – The differential regulation of NOTCH signalling by ACBD3 and NUMB in 

neurogenesis (Zhou, Atkins et al. 2007). Cytosolic NUMB (yellow shading) acts 

synergistically with cytosolic ACBD3 (blue shading) to inhibit NOTCH signalling (represented 

by a green nucleus) and specifies progenitor cell fates during mitosis.  

a) NUMB accumulates asymmetrically in one half of a progenitor cell before mitosis. ACBD3 

is bound to the Golgi apparatus and other organelles (not shown) and does not interact with 

NUMB. b) During mitosis the Golgi apparatus fragments into vesicles and ACBD 3 is released 

into the cytosol where it can interact with asymmetrically distributed NUMB.  c) One of the 

daughter cells will contain NUMB and cytosolic ACBD3. ACBD3 increases the ability of NUMB 

to bind and inhibit NOTCH. Without NOTCH signalling the daugh ter cell remains a progenitor 

cell to maintain the pool of neuronal precursors.  d) The second daughter cell will contain 

cytosolic ACBD3 but no NUMB protein meaning that NOTCH is not inhibited and enters the 

nucleus signalling to the cell to differentiate.  e) NUMB protein is produced in the 

differentiating cell in G1 but at this time the Golgi has reformed and ACBD3 is no longer free 

in the cytoplasm and cannot interact with NUMB and so cannot inhibit NOTCH signalling.  
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1.8 ACBD3 and Disease 

ACBD3 has been implicated in diseases such as Huntington’s disease and 

breast cancer and is essential for infection of some viruses and salmonella. Due to 

the large number of cellular processes that ACBD3 is involved in, some literature 

hints at a role of ACBD3 in other cancers and we explore this possibility as broadly 

as possible. 

 

1.8.1 Huntington’s Disease 

Rhes is closely related to the protein Dexras1 which interacts with ACBD3 

(Harrison 2012, Falk, Pierfrancesco et al. 1999, Sbodio, Paul et al. 2013) . Based on 

this observation it was discovered that Rhes also interacts with ACBD3 and It has 

been found that ACBD3 mediates this cytotoxicity in Huntington’s disease (HD) 

mouse models and also that knockdown of ACBD3 abolishes the cytotoxicity in those 

models (Sbodio, Paul et al. 2013). It was further shown that Huntingtin (HTT) protein 

and disease causing mutant HTT protein (mHTT) bind ACBD3 and Rhes to form a 

ternary complex. ACBD3 is upregulated in HD mouse models and patients with HD 

show a 2.5-fold increase in ACBD3 expression based on striatal samples.  Golgi 

stress has been shown to be important in the physiological process of cytotoxicity 

and the mechanism by which cytotoxicity is induced in HD is thought to be by initial 

endoplasmic reticulum stress, leading to Golgi stress and toxicity which in turn 

induces ACBD3 expression. The upregulated ACBD3 may then perpetuate the cycle 

by binding Rhes. It is proposed that binding of Rhes and mHTT to ACBD3 at the Golgi 

may be the initial cause of this stress  (Lunkes, Mandel 1998, Baiamonte, Lee et al. 

2013, Sbodio, Paul et al. 2013). 

Whilst HD is thought of as a strictly neurodegenerative disease, caused by 

degradation of the corpus striatum; the testes of HD patients, and of mouse models, 

undergo severe degradation as the disease progresses (Van Raamsdonk, Murphy et 

al. 2007). It is noteworthy that the Rhes protein to which HTT binds is not found in 

the testes, but ACBD3 the speculative mediator of mutant huntingtin induced 

cytotoxicity, is abundant in the testes and the mHTT-ACBD3 interaction in these 

tissues merits further study. Linking ACBD3 further to HD is ACBD3s roles in iron 

homeostasis which has been reviewed in chapter 1.6 – iron transport. The ACBD3-

Rhes interaction is involved in the process of iron uptake and, possibly causally, iron 

transport is largely dysregulated in HD (Rosas, Chen et al. 2012, Okazaki, Ma et al. 

2012). 
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1.8.2 Coxsackie Virus 

Coxsackie virus is one of the leading causes of aseptic meningitis and 

Coxsackie virus B3 (CVB3) can induce inflammation of muscle, degeneration of brain, 

pancreas, heart, muscle and fat pads (in mice) (Alexander, Chapman et al. 1993, Yin-

Murphy, Almond 1996). Conflicting studies have shown that ACBD3 expression is 

either essential or dispensable for enteroviruses including Poliovirus, Aichi virus and 

Coxsackie virus. It is not controversial that 3A viral protein recruits ACBD3 to viral 

replication organelles, but the function of ACBD3 at replication organelles has been 

up for debate (Sasaki, Ishikawa et al. 2012). The viral 3A protein is present in many 

human pathogen members of the family picornavirus, genus enterovirus, and in host 

cells 3A inhibits protein transport and stimulates vRNA production by sequestering 

Golgi proteins to create viral replication organelles (Wessels, Notebaart et al. 2006). 

Using CRISPR to edit ACBD3 out of the genome and cause complete knockout, 

cells become resistant to CVB3 infection as the virus can no longer replicate  (Kim, H. 

S., Lee et al. 2018). All previous studies into the role of ACBD3 in viral replication 

used siRNA and it is postulated that incomplete knockdown of ACBD3 may account 

for the contradicting results where researchers found ACBD3 to be essential or 

dispensable for viral infection in a number 3A expressing enteroviruses. It is further 

suggested that viral replication may only require very low levels of ACBD3 which is 

why viral replication still occurred in Dorobantu’s observations although this is  

conjectural (2014).  

 

1.8.3 Salmonella 

Not dissimilarly to viruses, Salmonella enterica serovar typhimurium  bacteria 

replicates within host cells in membrane-bound compartments termed Salmonella-

containing vacuoles (SCVs). Following infection of epithelial cells, the SCV localises  

itself close to the host Golgi using SseF and SseG bacterial effector proteins which 

are part of the Salmonella pathogenicity island 2 type III secretion system (SPI -2 

T3SS). This secretion system translocates other effectors across the vacuole 

membrane onto the SCV surface, surrounding microtubules and the cytoplasm. SseF 

was found to bind to ACBD3 by the yeast 2 hybrid system and this binding was 

dependent on SseG (Yu, Liu et al. 2016).  
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1.9 Other Oncoproteins that Interact with ACBD3 Pathways 

Due in part to ACBD3s original classification as at least three different genes, 

its functions are rarely unified with papers tending to focus on one of ACBD3s many 

roles. This may be why it has taken so long to recognise ACBD3 as a potential 

protooncogene which whilst far from established is beginning to emerge (Huang, Y., 

Yang et al. 2018). For the most part current literature on ACBD3 shows that it 

interacts with many known oncogene products and participates in an unusually large 

number of major cellular processes that, when deregulated, form essential hallmarks 

for cancer initiation and progression. 

 

1.9.1 PI3K/AKT/mTOR 

AKT is a kinase and the effector of PI3K in the PI3K/AKT/mTOR signalling 

pathway that stimulates cellular growth and survival. AKT has a broad range of targets 

including many of the ACBD3 binding partners, of which, PI4Kβ and Rhes also have 

regulatory effects on AKT (Bang, Steenstra et al. 2012, Paplomata, O'Regan 2014). 

AKT, PI3K, mTOR and their activities are all implicated in progression of cancer and 

are targets for current or future therapies (Paplomata, O'Regan 2014, Hare, Harvey 

2017).  

 

1.9.2 Krüppel Like Factor 9 (KLF9) 

KLF9 is a basic transcription element binding protein that can supress or 

promote the expression of different genes depending on whether the promoter has 

one GC box (inhibition) or tandem repeats of the GC box (activation). KLF9 binds 

DNA via its C2H2 type zinc finger domain and is important in neural development, 

endometrial uterine proliferation, differentiation and adhesion and in pregnancy. KLF9 

also appears to have tumour suppression activity where it prevents invasion and 

depletes (cancer) stem cell populations. An analysis by Simmen and Frank (2008) on 

the targets of KLF9 shows that ACBD3 is suppressed by KLF9 and KLF9 is 

downregulated in invasive breast cancers where NOTCH and ACBD3 have roles, 

specifically in cancer stem cell maintenance as we discuss below (Hare, Harvey 

2017). 

KLF9 is significantly down regulated in invasive breast cancers, endometrial 

carcinoma, glioblastoma and colorectal cancer and its expression can inhibit growth 

of tumour xenografts from glioblastoma neurospheres (Ying, Tilghman et al. 2014, 
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Limame, de Beeck et al. 2014). It is thought that the role of KLF9 in depleting cancer 

stem cells reduces the number of cancer cells in the microenvironment that can 

metastasise and that inhibiting KLF9 increases the population of these stem cells. It 

has been shown that the inhibition of NOTCH1 by KLF9 is important in tumour 

suppression and that KLf9 supresses neurosphere formation by 60% in controls but 

only by 33% when NOTCH1 expression is constitutively active (Ying, Tilghman et al. 

2014). Whilst KLF9 is only a small part of the story in tumour suppression there may 

be more tumour suppressive targets for this transcription factor which explains why 

NOTCH1 expression only recovered 27% of neurosphere formation capacity.  

 

1.10 Project Aims 

The current understanding of breast cancer biology is better than most other 

cancers with several receptors known to play key roles, several alleles known to be 

risk factors, and many oncoproteins known to drive the disease. The picture however 

is not complete and there are potentially many more factors and roles left to uncover 

that have differing degrees of importance in breast cancer progression and therefore 

treatment. Targeted treatments are essential for increasing efficacy of 

chemotherapies whilst simultaneously reducing off target effects and are the focus of 

a whole generation of drug development in cancer and elsewhere.   

 ACBD3 is located on chromosome 1q whose locus is often amplified in breast 

tumours and in breast cancer cell lines. ACBD3 is involved in a large number of 

disparate cellular processes, has few known redundancies for its functions, and 

during the project ACBD3 overexpression was independently found to result in worse 

patient outcomes. This makes ACBD3 a logical gene to study in breast cancer, and 

in general ACBD3 is not well characterised.  

This work sought to determine whether ACBD3 expression affected breast 

cancer cell behaviour using breast cancer cell lines and breast cancer patient data . 

PI4Kβ activity is dependent on ACBD3 binding and is known to have a role in breast 

cancer, so was also studied throughout this work. Despite the limited information 

about ACBD3 regulation, efforts were made to find stimuli and compounds that 

regulated ACBD3 expression. Phenotypical and protein level changes were also 

measured when ACBD3 was overexpressed or mutated in breast cancer cell lines. 
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The aims were to:  

1) find and collate data on ACBD3 mRNA and protein expression in human tissue, 

specifically healthy and cancerous breast tissue to assess ACBD3 as a breast 

cancer biomarker and to compare this with breast cell lines to use as models 

for breast cancer in the laboratory.  

2) examine factors that affect ACBD3 expression in breast cancer cell lines and 

to trial some of these for therapeutic potential. 

3)  Examine the impact of ACBD3 overexpression on breast cancer cell 

phenotype and protein expression profile. 

 

To achieve these aims I: 

• Used many available bioinformatics resources and databases to characterise 

ACBD3 expression in healthy and cancerous tissue. 

• Assayed a range of different types of breast cell lines for ACBD3 mRNA and 

protein expression. 

• Used immunohistochemical techniques to determine ACBD3 protein 

expression in human breast and breast cancer cores/samples.  

• Used the literature on ACBD3 binding partners and related cellular processes 

to screen for compounds or conditions that might affect ACBD3 expression.  

• Created mutants of the ACBD3 gene, engineered a cell line that 

overexpressed wildtype and mutant ACBD3, and measured phenotypical and 

proteomic changes to this cell line. 
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Chapter 2 

Materials and Methods 

2.1 Materials 

2.1.1 products and manufacturers 

Product Manufacturer Address 

RPMI 1640 cell medium 

Gibco (Life 

Technologies) 
Carlsbad, California, USA RPMI DMEM/F12 cell medium 

TriplE express 

Foetal Bovine Serum Biosera 
Marikina, Manila, 

Philippines 

Cholera Toxin 

Sigma-Aldrich St. Louis, Missouri, USA 

Human Epidermal Growth Factor 

Hydrocortisone 

SigmaFast protease inihibtor 

cocktail tablets 

T25 and T75 cell culture flasks Nunc Roskilde, Denmark 

ACBD3 monoclonal antibody 

Abcam 
Cambridge, 

Cambridgeshire, UK 

Beta-actin monoclonal antibody 

Histone H2B polyclonal antibody 

PI4KB monoclonal antibody 

Anti-mouse polyclonal antibody 

conjugated to HRP reporter enzyme 

Dako 
Santa Clara, California, 

USA Anti-rabbit polyclonal antibody 

conjugated to HRP reporter enzyme 

Brilliant blue R-250 Bio-rad Hercules, California, USA 

RNeasy mini kit Qiagen 
Hilden, North Rhine-

Westphalia, Germany 

dNTPs Invitrogen (Life 

Technologies) 
Carlsbad, California, USA 

Human Recombinant Insulin 
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Lipofectamine 3000 and P3000 

Random primers 

Ribonuclease inhibitor 

Superscript II reverse transcriptase 

ACBD3 QPCR custom primers  

Primer Design 
Chandler’s Ford, 

Hampshire, UK 

PI4Kβ QPCR custom primers 

BrightWhite 96 well plates 

GeNorm QPCR kit 

PrecisionPlus 2X QPCR master mix 

with SYBR GREEN 

Precision nanoscript2 reverse 

transcription kit 

ACBD3 siRNA 

Dharmacon Lafayette, Colorado, USA 

DharmaFECT1 transfection reagent 

Jetprime transfection reagent Poly-plus transfection 
New York, New York, 

USA 

KLD enzyme mix and buffer 

New England Biolabs 
Ipswich, Massachusetts, 

USA Q5 polymerase 

Lysis Buffer 17 

R&D Systems 
Minneapolis, Minnesota, 

USA Proteome profiler XL Oncology array  

Breast core tissue array slides US Biomax Rockville, Maryland, USA 

Table 2.1 - Sources and details of manufactures for the reagents and consumables used 

in this project. Abbreviations: dNTPs = deoxy N(Adenosine / Cytidine / Guanidine / 

Thymidine) triphosphates, HRP = Horse Radish Peroxidase, ACBD3 = Acyl -Coa Binding 

Domain protein 3, PI4KB = Phosphatidylinositol 4 Kinase Beta, RPMI = Roswell Park 

Memorial Institute , DMEM = Dulbecco’s Modified Eagle Medium , QPCR = quantitative 

polymerase chain reaction. 
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2.1.2 Compound Reagent Preparations 

 Below are details for preparing all reagents, buffers, and materials that were 

not premanufactured. The use of these materials is detailed throughout chapter 2.2 

methods. 

Laemmli cell lysis buffer 

Reagent quantity 

1M TRIS pH 6.8 1ml 

Glycerol 2ml 

10% (w/v) SDS 4ml 

Β-mercaptoethanol 0.5ml 

Bromophenol blue Very little, enough to colour solution 

dH2O Up to 10ml 

Table 2.2 – Reagents to make up laemmli lysis buffer for lysing cells and preserving 

protein. 

 

10X SDS-PAGE running buffer 

Reagent quantity 

TRIS base 30.3g 

glycine 144.4g 

SDS 10g 

dH20 Make up to 1000ml 

Table 2.3 - Reagents to make up 10X SDS buffer. Working buffer (1X) was made by adding 

100ml of 10X buffer to 900ml of dH2O.  
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SDS-PAGE acrylamide gel 

Per gel Stacking layer 

Resolving layer 

8% 10% 12% 

dH2O 2.1ml 4.6ml 4ml 3.3ml 

30% acrylamide 0.5ml 2.7ml 3.3ml 4ml 

1.5M TRIS (pH 8.8)  2.5ml 2.5ml 2.5ml 

1M TRIS (pH 6.8) 0.38ml    

10% SDS 40µl 100µl  100µl 100µl 

10% (w/v) ammonium 

persulfate 
40µl 100µl  100µl 100µl 

TEMED 4µl 6µl  4µl 4µl 

Table 2.4 - Reagents used to make the stacking and resolving layers for one acrylamide 

protein separating gel. This preparation makes approximately 3ml of stacking layer gel and 

10ml of resolving layer gel. dH2O, 30% acrylamide, TRIS, and 10% SDS for the s tacking and 

resolving layer may be prepared in parallel, ammonium persulphate and TEMED should only 

be added immediately prior to casting the gel.  

 

Coomassie staining reagents 

Reagent Stain solution Destain solution 

Methanol 500ml 500ml 

Acetic acid 400ml 400ml 

dH2O 100ml 100ml 

Brilliant blue R-250 1g  

Table 2.5 – reagents to make up Coomassie stain for total protein staining of acrylamide 

gels and destain. Stain solution should be stirred until coomassie is completely dissolved, 

stain can be recovered after staining and renewed with additional coomassie brilliant blue 

(1g per litre). Destain can be recovered by filtering paper to remove brilliant blue.  
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10X TOWBIN buffer 

Reagent quantity 

TRIS base 24.1g 

Glycine 112.5g 

dH20 Up to 1000ml 

Table 2.6 - Reagents to make up 10X TOWBIN buffer. Working buffer (1X) was made by 

adding 700ml dH2O, 100ml of 10X Towbin transfer buffer, and 200ml methanol and making 

up to 1000ml total with dH2O. 

 

10X TBS 

Reagent Quantity 

TRIS base 24.1g 

NaCl 88g 

dH20 Up to 1000ml 

Table 2.7 - Reagents to make up 10X TRIS buffered saline . Working solution (1) was made 

by adding 100ml of 10X solution to 900ml dH2O. 

 

Electrochemiluminescence reagents 

ECL A ECL B 

2.5 ml 100mM TRIS 2.5ml 100mM TRIS 

55µl luminol (250mM) 3µl hydrogen peroxide 

22µl coumaric acid (90mM)  

Table 2.8 - Reagents for electrochemiluminescence (ECL) components A and B. solution 

A and B are made separately and mixed by pouring from one tube to the other, several times, 

directly prior to adding to the antibody-stained nitrocellulose membrane. Luminol and 

coumaric acid were solubilised in DMSO. 

 

2.1.3 DNA Plasmids 

The pEGFP-C3 empty vector was kindly donated to us by Dr Annabelle Lewis 

(Division of Biosciences, Brunel University London, UK) and the pEGFP-ACBD3 C3 

vector was kindly donated to us by Professor Carolyn Machamer (Department of Cell 
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Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 

USA) (Sbodio, Hicks et al. 2006) (Figure 2.1), plasmids were transformed into 

competent DH5α E.coli to grow my own stocks as described in 2.2.9. All mutants of 

the ACBD3 gene were engineered in and derived from the pEGFP-ACBD3 C3 vector. 

 

Figure 2.1 – pEGFP-C3-ACBD3 plasmid map deduced by sanger sequencing using 

universal C3 plasmid primers (figure created in snapgene). The ACBD3 gene is in frame 

with the EGFP gene meaning they are expressed as one transcript resulting in GFP tagged 

fluorescent ACBD3 protein. Primer pairs for engineering mutants are displayed on the map.  
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2.2 Methods 

2.2.1 Cell lines 

Various cell lines were used throughout this project as models for healthy and 

cancerous breast tissue and their characteristics are summarised in Table 2.9. All 

cell lines, except for the PMC42 line, were purchased from the American Tissue 

Culture Collection (ATCC), Manassas, VA, USA. 

Cell line 
Tissue/Cancer 

type 

ER 

status 

PR 

status 

HER2 

status 
Pathology 

MCF12A 
Luminal/ 

epithelial 
- - - Normal/fibrocystic 

BT20 Basal - - - IDC 

MDA-MB-231 Claudin low - - - AC 

MDA-MB-436 Basal B - - - IDC 

SKBR3 HER2 - - + AC 

MDA-MB-361 Epithelial + - + 
AC / brain 

metastasis 

PMC42 Basal + + - Not specified 

T47D Luminal A + + - IDC 

BT474 Luminal B + + + IDC 

Table 2.9 – Breast cancer type, receptor status and pathology of cell lines used in this 

work. Oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth 

receptor 2 (HER2) expression is given as either positive or negative for e ach cell line. 

Pathology abbreviations: AC = Adenocarcinoma; IDC = infiltrating ductal carcinoma. (Holliday 

and Speirs 2011, Chavez et al 2012, Whitehead et al 1984, Neve et al 2006).  Cell lines were 

ordered by normal followed by cancerous, then ER status,  then PR status, then alphabetical 

order. 

 

The MCF12A cell line is derived from a mammoplasty reduction from a 60-

year-old female with fibrocystic breast disease, it immortalised spontaneously and is 

non-cancerous. MCF12A cells were used in Chapter 4 as a normal like control for 

relative ACBD3 and PI4Kβ expression at the mRNA and protein level (Figures 4.3, 

4.4, 4.5 and 4.6). 

MDA-MB-231 cells were derived from the triple negative adenocarcinoma of a 

51-year-old female in 1973, MDA-MB-231 is a very fast growing low maintenance cell 

line and was often used for experiments requiring large cell numbers  (Cailleau, Olivé 



45 
 

et al. 1978). Cells were used to determine ACBD3 and PI4Kβ expression at the mRNA 

and protein level in a triple negative cell line (Chapter 4 – Figures 4.3, 4.4, 4.5, and 

4.6), to visual multiple bands of ACBD3 staining by appropriate antibody (Chapter 4 

– Figure 4.7), and to determine the efficacy of treatment with speculative ACBD3 

regulators (iron or BQR695 PI4Kβ inhibitor, Chapter 5 – Figures 5.1, 5.2, 5.4 and 

5.5). MDA-MB-231 cells were chosen to study the effects of ACBD3 regulators on 

growth as triple negative breast cancers currently have the fewest targeted treatment 

options. 

MDA-MB-436 cells were used a model for Basal B type breast cancer and are 

a type of triple negative breast cancer. They were derived from a 43-year-old female 

in the mid-1970s (Cailleau, Olivé et al. 1978). These cells were chosen to determine 

ACBD3 and PI4Kβ expression at the mRNA and protein level in another triple negative 

breast cancer cell line and compare to MDA-MB-231 cells (Chapter 4 – Figures 4.3, 

4.4, 4.5 and 4.6). 

BT20 cells were derived from a 74-year-old female in 1958 (Lasfargues, 

Etienne Y., Ozzello 1958). BT20 cells were used to determine and compare ACBD3 

and PI4Kβ expression at the mRNA and protein level in another basal type triple 

negative breast cancer cell line (Chapter 4 – Figures 4.3, 4.4, 4.5 and 4.6). 

PMC42 cells were derived from the pleural effusion of a metastatic breast 

cancer of a 68-year-old female in the late 1970s (Whitehead, Bertoncello et al. 1983). 

PMC42 cells were used as to determine ACBD3 and PI4Kβ protein expression in 

another basal type breast cancer but that were not triple negative (Figure 4.6). 

BT474 cells were derived from a ductal carcinoma in a 60-year-old female in 

1978, are of Luminal B subtype, and positive for ER, PR, and HER2 expression 

(Lasfargues, E. Y., Coutinho et al. 1978). BT474 cells were used to determine ACBD3 

and PI4Kβ mRNA expression in Luminal B type breast cancer cells (Chapter 4 – 

Figures 4.3, 4.5, and 4.6). 

SKBR3 cells were used as a model for HER2 type breast cancer derived from 

the adenocarcinoma of a 43-year-old female in 1970. Cells were used to determine 

ACBD3 mRNA expression in a HER2 type breast cancer cell line (Chapter 4, Figure 

4.3). Due to low expression, PI4Kβ mRNA for this cell line could not be included. 

Further complications with bacterial infection prevented this cell line being included 

in protein level expression of ACBD3 or PI4Kβ. The results of ACBD3 mRNA 

expression were included as SKBR3 was the only HER2+ ER- cell line reasonably 

available. 
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 MDA-MB-361 cells were derived from a breast tumour that metastasised to the 

brain in a 40 year old female patient. They were used to determine ACBD3 and PI4Kβ 

expression at the mRNA and protein level in a HER2+ and ER+ breast cancer cell 

line (Chapter 4 – Figures 4.3, 4.4, 4.5, 4.6) and were also transfected to stably 

overexpress ACBD3, unfortunately the transfected cells did not recover. 

T47D cells were derived from the pleural effusion of an invasive ductal 

carcinoma in a 54 year old female (Keydar, Chen et al. 1979). The T47D breast cancer 

cell line were used throughout this work to determine PI4Kβ expression at the mRNA 

and protein level in an ER+ Luminal A type cell line (Chapter 4 – Figures 4.3, 4.4, 

4.5, and 4.6) and determine the effect of cell density on expression (Chapter 5 – 

Figures 5.9, 5.10, 5.11, 5.12, and 5.13).The T47D-EveR (everolimus resistant) cell 

line was previously engineered from T47D cells by long term treatment with 

everolimus in medium (Hare 2018). ACBD3 and PI4Kβ was compared between the 

T47D and T47D-EveR cell line at the mRNA and protein level to determine if either 

were altered (Chapter 5 – Figures 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, and 5.13). The rate 

of growth was also compared between these line (Chapter 5 – Figure 5.14). ACBD3 

was upregulated in the T47D-EveR cell line so ACBD3 was stably transfected into the 

T47D cell line to determine if this augmented resistance to everolimus (Chapter 6 – 

Figures 6.3, 6.4, 6.13, 6.14, and 6.15). The effect of overexpression on anoikis 

resistance was also examined when ACBD3 was overexpressed (Chapter 6 – Figure 

6.15) and oncoprotein expression level changes were also examined (Chapter 6 – 

Figures 6.17). 

 

2.2.2 Cell culturing 

All cell work was carried out in a laminar flow cabinet under sterile conditions 

that were maintained by cleaning with 70% industrial methylated spirit (IMS) before 

and after every use as well as regular deep cleaning with chemgene cleaning agent 

in addition to IMS. Plasticware and disposables entering the cabinet were pre-

sterilised and packaging was also sterilised using IMS. Water baths used to incubate 

medium and samples were cleaned at least weekly and filled with dH 2O. Cell 

incubators were cleaned regularly with chemgene and IMS and humidity was 

maintained using heat treated dH2O. 
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2.2.3 Sub-culturing Cells from Cryostorage 

Cell line stocks were stored in liquid nitrogen in 1.5ml cryo tubes in 1ml of the 

recommended medium with 10% Dimethyl sulfoxide (DMSO) as a cryoprotectant. 

Cells to be thawed were transferred, on ice, from liquid nitrogen to a 37°C water bath 

and once fully thawed were added to 9ml of pre-warmed medium. They were then 

centrifuged at 1000 g for 5 minutes (to remove DMSO) and the pellet was 

resuspended in 5ml of medium at 37°C and then transferred to a T25 culture flask. 

The cells were then incubated at 37°C, 5% CO2, 95% humidity, for 24 hours followed 

by a medium change or passaging of cells if confluence had reached 80%.  

Cell line 
Base 

Medium 
Additives 

MCF12A 

DMEM/F12 

with 

glutamine 

5% Foetal Bovine Serum, 20ng/ml 

Epidermal Growth Factor, 10µg/ml insulin, 

0.5µg/ml hydrocortisone, 100ng/ml Cholera 

toxin. 

BT20, BT474, PMC42, 

SKBR3, T47D, T47D-EveR, 

MDA-MA-231, MDA-MA-

361, MDA-MB-436 

RPMI 1640 

10% Foetal Bovine Serum, 20µg/ml L-

glutamine, 100U/ml penicillin, 100μg/ml 

streptomycin. 

T47D, T47D-EveR, and 

MDA-MB-361 stably 

transfected cell lines 

RPMI 1640 
10% Foetal Bovine Serum, 20µg/ml L-

glutamine, 400μg/ml G418 sulphate.  

T47D-EveR Maintenance 

media 
RPMI 1640 

10% Foetal Bovine Serum, 20µg/ml L-

glutamine, 100U/ml penicillin, 100μg/ml 

streptomycin. Everolimus 100100μM 

Table 2.10 – Base medium and additives used for different breast cancer cell lines. 

 

Cells were passaged, whenever confluence reached 80%, by removing 

medium, washing twice with 5-10ml of phosphate buffered saline (PBS) and detached 

from the flask surface by incubation at 37°C with TriplE express (1ml for T25 flasks, 

2ml for T75 flasks) until cells could be seen to detach from the flask (2-6 minutes). 

TryplE treated cells were then passaged into new T25 flasks or from T25 flasks into 

T75 flasks. The dilution factor varied between cell lines but was generally a 1/3 or 1/4 

dilution. Once passaged, appropriate medium (at 37°C) was added, which also 

deactivated TriplE, and cells were incubated at 37°C, 5% CO 2, 95% humidity. Details 
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of medium used for each cell line can be viewed in Table 2.9. T47D everolimus 

resistant cells (EveR) were grown in the standard medium with the addition of 100nM 

everolimus for 48-72 hours every 3 passages. 

 

2.2.4 Cryopreservation 

Once cell numbers had been expanded for experimental use, aliquots were 

taken to replace those taken from cryostorage. The medium was removed from 1 T75 

flask and the cells were washed twice with 10ml of PBS. 2ml of 37°C TripleE express 

was added and the flask was incubated at 37°C until cells detached from the flask 

surface. 5ml of appropriate medium was added to the flask and the contents of the 

flask were centrifuged at 1000 g for 5 minutes with a low deceleration speed to avoid 

pellet displacing from the bottom of the tube. The pellet was then resuspended in 2ml 

of appropriate medium (see Table 2.10) with 10% DMSO then aliquoted into 2 1.5ml 

cryo-tubes. These were then transferred to the vapour phase of a liquid nitrogen tank 

for at least three hours, and then lowered into the liquid phase for storage.  

 

2.2.5 Cell Imaging 

All cellular imaging was undertaken on the FLoid cell imaging station (Thermo Fisher 

Scientific) at 460X magnification using either white light or the green light fi lter. 
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2.2.6 Cell Growth Curves 

 Cells were grown to 80% confluence and then detached as previously 

described. 5ml PBS was added and cells were transferred to a 15ml falcon tube and 

centrifuged at 1000 g for 5 minutes. The supernatant was discarded and the pellet 

was resuspended in a known volume of medium (usually 10ml). Cells were counted 

by adding 25μl of cell suspension to each end of a haemocytometer and counting the 

total number of cells in 3 4X4 grids (top left, bottom left, bottom right) then dividing 

by 3 and multiplying by 10,000 to determine for the number of cells per ml of 

suspension. The suspension was then diluted to the desired concentration and 2ml 

was added to each of a total of 18 wells in 6 well plates (6 plates each with cells in 3 

wells). At 24, 48, 72, 96, 120, and 168 hours a plate was washed twice in PBS and 

cells were detached in 300μl TriplE per well. Cells were then counted by 

haemocytometer as before and the total cells were recorded. Cell number was plotted 

as the mean average cells for the 3 wells with standard deviation. 

 

2.2.7 Anoikis Resistance Assays 

Poly-2-hydroxyethyl methacrylate (PolyHEMA) powder was dissolved in 98% 

ethanol to a final concentration of 20mg/ml and agitated overnight in a 50ml tube. 1ml 

of this solution was then added to each well of a 6 well plate in a sterile hood and the 

lids were left off allowing the ethanol and water to evaporate for 2 to 3 hours. This 

was then repeated with another 1ml of solution and then lids were placed onto plates 

which were sealed in polypropylene bags and stored at 4°C until use. Cells were 

seeded onto polyHEMA coated plates at 2X105 cells in 2ml of appropriate medium 

and incubated for 24 hours at 37°C, 95% humidity and 5% CO2. The medium and cells 

were then extracted, the cells were pelleted and resuspended in 400µl TriplE and 

incubated at 37°C for 7 minutes. 30µl of the suspension was then added to 10µl of 

trypan blue dye (v/w 0/4%) and incubated for 3 minutes. Cell death was calculated as 

the number of blue stained cells divided by the total number of cells counted. 

 

2.2.8 Cell Transfection with siRNA 

ACBD3 ON TARGETplus smartpool siRNA was used in conjunction with 

DharmaFECT 1 transfection reagent to transfect breast cell lines. Cells were seeded 

at 50,000 per well in 12 well plates with 1ml of medium and incubated for 18 hours. 

After 18 hours wells were washed with antibiotic free and serum free medium and 
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then 800μl of antibiotic-free medium (containing 10% serum) was added to each well. 

No treatment, transfection reagent only, and transfection reagent with non-targeting 

siRNA were used as negative controls. Transfection reagent with previously verified 

siRNA that targets PRKCA was used as a positive control, and all transfections were 

carried out in duplicate in addition to the target siRNA (Table 2.11). For each condition 

( in duplicate) 2μl of transfection reagent was added to 198μl of serum and antibiotic 

free medium, concurrently, appropriate siRNA was added to serum and antibiotic free 

medium to a total volume of 200μl and both solutions were incubated for 5 minutes 

at room temperature. The transfection reagent and the siRNA containing medium 

were then mixed by gentle pipetting and inversion and incubated at room temperature 

for 20 minutes. 200μl of transfection medium was then added dropwise to the 

appropriate well. This was repeated after 24 hours where media was changed and 

new transfection medium was added. Samples were then collected either 24, 48 or 

120 hours after the second transfection by removing medium and adding hot laemmli 

lysis buffer directly to the well and scratching the well with the tip, pipetting up and 

down to lyse the cells and suspend the contents. Untreated cells were expected to 

grow faster than those treated with transfection reagent and were seeded in 

quadruplicate, 2 wells were harvested in the same volume of lysis buffer as treated 

cells and 2 wells were harvested in 150% the volume of lysis buffer to account for a 

possible higher cell number. 

Untreated cells Untreated cells 
Transfection reagent 

only 

Transfection reagent 

only 

Non-targeting siRNA Non-targeting siRNA 
Positive control 

siRNA 

Positive control 

siRNA 

ACBD3 siRNA ACBD3 siRNA Untreated cells Untreated cells 

Table 2.11 – 12 well plate layout for siRNA transfection assays.  

 

2.2.9 Bacterial Transformation 

 50µl of chemically competent DH5α were removed from -80°C storage and 

thawed on ice for 30 minutes, then 10-25ng plasmid DNA was added and gently mixed 

by inversion. This DH5α were then incubated on ice for 1 hour, heat shocked at 42°C 

for 45 seconds, and placed on ice for 5 minutes. 950ul of antibiotic -free LB medium 

was added and the DH5α incubated at 37°C on a shaker for 1 hour. 950µl was then 

spread onto a selection LB agar plate and the remaining solution was diluted by a 

factor of 20 in 950µl LB medium and spread onto a second selection plate. For pEGFP 
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C3 vector and derivatives there of the selection drug was Kanamycin (50µg/ml). 

Plates were incubated at 37°C for 18-48 hours until single colonies were visible. 

Individual colonies were picked and grown in 5ml LB medium with 50µg/ml Kanamycin 

at 37°C in a shaker for 24 hours. Plasmid DNA was then extracted using centrifugal 

spin columns following standard protocols. 

 

2.2.10 Cell Transfection with Plasmid DNA 

 Plasmid was transfected into breast cell lines using lipofectamine 3000. One 

day before transfection, cells from a T75 at or just over 80% confluency were 

detached and transferred to a 24-well plate at 105 cells per well in 500μl antibiotic 

free medium. The next day 25μl medium and 1μl lipofectamine 3000 (per well) were 

added to 1 eppendorf and 25μl medium (per well), 500ng plasmid (per well) and 1μl 

P3000 reagent (per well) were added to a second Eppendorf. The contents of these 

tubes were then mixed by pipetting and inversion and incubated at room temperature 

for 15 minutes. 50μl of transfection mixture was then added to each well. No treatment 

and lipofectamine 3000 only were used as negative controls and SiGLO siRNA was 

used as a positive transfection control as it is easy to visualise at 24 and 48 hours 

post transfection and is not reliant on being transcribed. G418 was the appropriate 

selection antibiotic for the EGFP C3 vector and several assays were undertaken to 

find the optimal concentration for different cell lines. It was found that 400μg/ml G418 

effectively abolished viable T47D parental, T47D everolimus resistant, and MDA-MB-

361 cell lines within 10 days. G418 was added to the transfected and control wells 

and was replaced with new medium every 72 hours. Controls were kept until all cells 

died at which point medium was changed to standard medium and incubated for 10 

days to ensure no viable cells remained. 

 

2.2.11 Site Directed Mutagenesis (SDM) 

SDM was carried out on the pEGFP-ACBD3 C3 vector to make specific base 

changes in the ACBD3 open reading frame that resulted in protein level residue 

changes. Primer design and mutant development is described in chapter 7 but briefly 

primers were designed with non-complementary bases at the centre of one primer 

and at least 9 complementary bases either side of the non-complementary bases. A 

second primer was designed to be fully complementary to the other DNA strand 

immediately after the 5’ of the first primer creating an origin of replication for PCR. 

Normal considerations for primer design were also considered such as GC content, 
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unique sequence, primer dimers, primer hair pinning, and ensuring at least three out 

of the five 3’ bases are a G or C. Q5 high fidelity polymerase was used to extend the 

primers and amplify the entirety of the plasmid, introducing the mutation encoded on 

the first primer following the program in Table 2.12. 

1µl of PCR product was then treated with NEB KLD (kinase, ligase, DNAse) 

enzyme mix to phosphorylate blunt ends of the PCR product, ligate the linear product 

into a circular plasmid, and digest the template DNA (the DNAse targets only 

methylated DNA, the template DNA used in all cases was harvested from DH5α which 

methylates DNA). 5µl of the KLD mix was then used to transform competent DH5α 

and transfect cell lines as described in sections 2.2.9 and 2.2.10. 

Process Temperature Time Cycles 

Initial denaturation 95°C 30 seconds 1 

Denaturation 95°C 10 seconds 

25 Annealing Primer dependent 20 seconds 

Extension 60°C 180 seconds 

Hold 4°C indefinite 1 

Table 2.12 - Program for SDM PCR, annealing temperatures for individual primer pairs 

are detailed in chapter 6. 

 

2.2.12 Sanger Sequencing of the C3 Vector 

 Purified plasmid DNA from E.Coli transformations was sent to Genewiz (Essex, 

United Kingdom) for Sanger sequencing, in the first instance to confirm the  ACBD3 

wildtype sequence and subsequently to confirm successful mutations had been 

introduced to ACBD3 by SDM. In all instances the universal C3 primers were used to 

analyse ACBD3 from both ends of the gene (Table 2.13). DNA was diluted to 1μg in 

20 ul dH2O and posted in Eppendorf tubes. Sequencing data was analysed in clustal 

omega multiple sequence aligner both for the DNA sequence and the amino acid 

sequence (derived using ExPasy translate) (Madeira, Park et al. 2019, Gasteiger, 

Gattiker et al. 2003). 
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Primer Sequence 

EGFP-C-Forward 5’- CATGGTCCTGCTGGAGTTCGTG -3’ 

EGFP-C-Reverse 5’- GTTCAGGGGGAGGTGTG -3’ 

Table 2.13 – Universal C3 primers used to sequence inserts in the multiple cloning site 

of the eGFP-C3 vector from upstream into the insert (forward primer) and downstream 

into the insert (reverse primer).  

 

2.2.13 Cell Line Drug Treatments 

96 well plates were seeded and incubated with appropriate medium for 24 

hours to allow cells to attach. After 24 hours drug treatment was made up to 1000X 

of final concentration in suitable carrier (DMSO for everolimus and BQR695, complete 

medium for ammonium citrate and ammonium iron citrate) and 5μl of 1000X solution 

was added to 495ul medium. 11μl of this solution was then added to wells and cells 

were incubated as described for 72 hours (medium only, no cells, wells were also 

present). Each treatment concentration was assayed in sextuplet per plate and each 

experiment was carried out independently 3 times. 

 

2.2.14 MTT Cell Viability Assay 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays 

were carried out in 96 well plates; the MTT tetrazolium dye is reduced to insoluble 

formazan crystals by mitochondrial succinate dehydrogenase activity and is therefore a 

relative measure of the quantity of viable cells (Berridge, Tan 1993). MTT assays 

were used to assess cell growth with different concentrations of ferric ammonium 

citrate, ammonium citrate and BQR695 PI4Kβ inhibitor. Formazan is purple and 

absorbs light of 500nm to 600nm strongly (peak absorbance of 590nm but this varies 

depending on biological material in the sample). Formazan was measured at 540nm 

and the background absorbance at 630nm was used as a baseline.  

After 72 hours of treatment the MTT reagent was made up in medium to a final 

concentration of 2.5mg/ml, the plates were washed twice with PBS and 100μl of 

medium/MTT solution was added to each well. Plates were then incubated for 2.5 

hours at 37°C, 5% CO2, 95% humidity. After incubation, the medium/MTT solution 

was removed and 100μl of acidified isopropanol (0.04N HCL) was added and pipette 

tips were used to dislodge and dissolve the formazan crystals that adhere to the plate. 
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Plates were incubated for a further 15 minutes before absorbance was taken using a 

Biotek ELx808 plate reader. 

The 630nm mean background reading was subtracted from the 540nm reading 

of each well to remove nonspecific absorbance. To allow for comparison of results 

from individual experiments relative cell number was calculated as the mean 

absorbance value for each concentration divided by the mean absorbance of the 

control carrier reagent (no treatment) only.  

 Ferric ammonium citrate concentrations were calculated by the effective iron 

concentration in mass per volume but were converted to molarity concentration to 

make direct comparisons between ferric ammonium citrate and ammonium citrate 

which have different molecular weights. The conversion from mass per volume to 

molarity is detailed in Table 2.14. 

 

Table 2.14 - Iron concentration in ng/ml used for MTT experiments and equivalent 

molarity used to make valid comparisons with ammonium citrate controls at equivalent 

concentration in cell medium. 

 

2.2.15 Sulforhodamine B assay (SRB)  

 The MTT assay was not suitable for testing dose responses to everolimus as 

everolimus inhibits mTOR which affects mitochondrial activity and MTT is 

insolubilised by mitochondrial succinate dehydrogenase activity. The SRB assay was 

chosen instead as a colorimetric assay with comparable sensitivity and works by 

staining total protein and therefore equates to relative total cell number for a given 

cell line. 

After 72 hours of treatment cells were fixed by the gentle addition of 25μl ice 

cold 50% (w/v) trichloroacetic acid to each well (without removing medium) and 

Iron concentration (ng/ml) 
Ammonium Iron(III) Citrate 

molarity (nM) 

0 0 

10 1.7907 

50 8.9534 

100 17.907 

500 89.534 

1,000 179.07 

5,000 895.34 

10,000 1790.68 

50,000 8953.4 

100,000 17906.8 

500,000 89534 

1,000,000 179068 
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incubated for 1 hour at 4°C. Plates were then rinsed 4 times in a large container of 

tap water and air dried. Fixed cells were stained with 50μ l 0.4% (w/v) SRB in 1% 

acetic acid and incubated for 20 minutes at room temperature. The SRB dye was 

tipped out and wells were washed 4 times with 200μl 1% acetic acid and air dried. 

SRB was then solubilised in 100μl 10mM TRIS base solution and mixed by pipetting 

up and down and scraping the well with the tip. Plates were read at 405nm and 550nm 

absorbance using a BMG Labtech clariostar plate reader. The 405nm mean 

background reading and 550nm medium only mean reading were subtracted from the 

550nm reading of each well to remove nonspecific absorbance.  

Relative cell number was calculated as the mean absorbance value for each 

concentration divided by the mean absorbance of the DMSO only absorbance value.  

 

2.2.16 Lysing Cells for SDS-Polyacrylamide Gel  

Cells were detached from flasks as previously stated and counted using a 

haemocytometer then centrifuged at 1000 g for 5 minutes with a low spin down speed 

and lysed in hot 1ml laemmli buffer per 107 cells, separated into 50μl aliquots and 

stored at -20oC.  

 

2.2.17 SDS-PAGE 

Polyacrylamide gels were made with a stacking and resolving layer to separate 

proteins by molecular weight (Table 2.3). dH2O, acrylamide, TRIS and SDS were 

mixed in a 15ml falcon tube, ammonium persulfate and TEMED were added 

immediately prior to casting each respective layer of the gel and left to set for 20 

minutes. Approximately 5.5ml of resolving gel and 2.5ml of stacking gel was used per 

gel cast. Page ruler plus prestained protein ladder was used to visualise separation 

and cell lysate was added to wells in equal quantities (approximately 105 cells per 

well in most cases), electrophoresis was carried out at 40 milliamps per gel in SDS 

buffer (Table 2.4). 

 

2.2.18 Coomassie staining 

 New samples run of SDS-page gels were stained with coomassie blue to 

indicate loading and as a control prior to western blotting and staining for loading 

control protein (Table 2.5). SDS-page gel was transferred to a lidded container and 
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approximately 20ml of coomassie stain was added and incubated for 3 hours at room 

temperature on a rocker. After 3 hours, the stain was poured away, the container and 

gel were rinsed with water and destain solution was added and incubated on a rocker 

for 10 minutes. Destain was then removed and replaced with new destain and 

incubated on a rocker overnight or until the gel background staining was reduced and 

protein bands were visible on the gel. Image J software was then used to approximate 

relative loading and adjustments to loading were made as necessary for SDS-page 

for western blotting.  

 

2.2.19 Western blotting 

Separated proteins in the acrylamide gel were transferred to a nitrocellulose 

membrane by wet electrophoresis in Towbin transfer buffer (Table 2 .6) at 300 volts 

for 1 hour. The nitrocellulose membrane was then blocked in 5% reconstituted 

powdered cows milk in Tris-buffered saline with 0.1% tween-20 (TBS-T), or undiluted 

UHT soya milk with 0.1% tween-20, for 1 to 2 hours at room temperature on a rocker 

at 30 RPM. To detect proteins of interest, the membrane was then incubated with 

primary antibody (diluted in 0.1% tween-20 milk, 3ml total) overnight at 4°C on a 

rocker at 30RPM. The membrane was then washed in TBS-T, 3 times for 10 minutes 

each on a rocker prior to incubation with secondary antibody (diluted in TBS-T milk) 

for 1 to 2 hours in a sealed plastic envelope on a rocker at room temperature. The 

membrane was then washed 3 times in TBS-T 0 for 10 minutes per wash. 

Concentrations of antibodies and working concentrations for incubations are detailed 

in Table 2.15. 

Antibody concentration dilution 
Working 

concentration 

Rabbit anti ACBD3 primary 1.021g/l 1:1000 1.021µg/ml 

Rabbit anti PI4KB primary 1.671g/l 1:1000 1.671 µg/ml 

Mouse anti β-actin primary  1:5000  

Goat anti rabbit HRP conjugated secondary 0.25g/l 1:1000 0.25 µg/ml 

Rabbit anti mouse HRP conjugated 

secondary 
 1:2000  

Table 2.15 - Concentration of antibodies used and working concentration for western 

immunoblot incubations. 
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Visualisation of antibodies was carried out using light sensitive film  and 

electrochemiluminescence solution (Table 2.8). 1 minute exposures were carried out 

followed by longer or shorter exposures as necessary. 

 

2.2.20 RNA extraction 

Cells were detached from their flasks and centrifuged as described in section 

2.2.3. RNA extraction was carried out on cell pellets immediately after centrifugation. 

Several methods, including centrifugal spin columns and magnetic beads were used 

for RNA extractions using the standard protocols. Briefly, cell pellets were lysed and 

centrifuged to remove debris and aggregates. For spin columns, supernatant was 

transferred to the column and centrifuged, flow through was discarded followed by 

several wash centrifugations with decreasing ethanol. RNAse free dH2O was then 

added to the column and incubated for 2 minutes before centrifugation to elute the 

RNA from the column. 

For magnetic bead RNA extraction, pellets were lysed in the supplied buffer 

including proteinase K and mixed carrier RNA and magnetic beads. A magnetic rack 

was used to retain the beads with bound RNA whilst samples were washed with buffer 

containing 80% ethanol. RNA was then detached from the beads with RNAse free 

dH2O. magnetic bead extraction was found to give lower yield of RNA compared to 

spin columns. 

RNA was eluted in dH2O and was pipetted to aid suspension before reading 

RNA concentration at 260nm using a Nanodrop 2000 spectrophotometer (Thermo 

scientific). The 260/280 absorbance ratio was to determine the RNA:DNA ratio. A 

ratio of at least 2.00 was considered acceptable. The RNA was also separated on a 

1% denaturing agarose gel at 100V on ice to check the quality of the RNA product 

mainly by visual conformation of 18s and 28s RNA bands and absence of smearing.  

RNA was kept on ice at all points following elution and stored at -80°C. 

 

2.2.21 Reverse Transcription of RNA and cDNA Synthesis 

Reverse transcription (RT) of RNA to cDNA was performed using Superscript 

II to achieve first strand synthesis. a small amount of RT was carried out using 

Nanoscript2 RT kit from Primer Design when superscript II was not available. In both 

cases, standard protocols were used starting with a known quantity of RNA as follows: 

1µg RNA, 1µl random primers (150ng/µl), 1µl dNTP mix (10mM ATP, 10mM TTP, 
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10mM GTP, 10mM CTP) were mixed and made up to 12µl with nuclease free dH 2O 

and heated at 65°C for 5 minutes. The reaction mixture was then placed back on ice 

and 4µl first strand buffer, 2µl 0.1M DTT, 1µl ribonuclease inhibitor was added to 

each tube which was then incubated at 25°C for 2 minutes. 1µl of reverse 

transcriptase (200U/µl nanoscript from primer design or superscript II from Invitrogen) 

was then added and tubes were placed in a thermocycler using the program in Table 

2.16. 

Temperature Time 

25°C 10 minutes 

42°C 50 minutes 

70°C 15 minutes 

4°C Hold/indefinite 

Table 2.16 - Thermocycler program for RNA reverse transcription reaction. The 

thermocycler should use a heated lid of 80°C (10°C above maximum temperature of reaction) 

and the program can be stopped as soon as the temperature reaches 4°C or left overnight.  

 

2.2.22 Quantitative Polymerase Chain Reaction (QPCR)  

All QPCR reactions were carried out in 96-well brightwhite plates using the 

applied biosystems Quant Studio 7 Flex real-time PCR system. All reactions used 

carried a total volume of 20µl using 10µl precisionPLUS 2X master mix, 1µl of primers, 

8.5µl of nuclease free dH2O and 0.5µl cDNA. cDNA concentration was not measured 

directly but in all cases was made from the reverse transcription of a known quantity 

of RNA (1µg) using the same programme and thermocycler. QPCR was then carried 

out using the program detailed in Table 2.17 where data collection was carried out at 

60°C followed by melt curve analysis. Three independent biological experiments 

(three biological replicates) were tested per condition and each biological replicate 

was measured in triplicate. 

 The primers used to validate reference genes for chosen cell lines and 

subsequently used as reference genes were provided in the commercial primer design 

geNorm kit. The primer sequences for chosen reference genes are detailed in Table 

2.16. ACBD3 and PI4Kβ primers were custom ordered from primer design and the 

sequences were proprietary. 
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Process Temperature Time Cycles 

Denaturation 95°C 120 seconds 1 

Denaturation 95°C 10 seconds 

40 Annealing and extension (Data 

collection) 
60°C 60 seconds 

Melt curve variable - 1 

Table 2.17 - Program for QPCR for all samples and GeNorm analysis using the  applied 

biosystems Quant Studio 7 Flex. 

 

2.2.23 Reference Gene Assessment 

Reference genes that were most stable between 8 cell lines were found by 

QPCR using the 12 gene GeNorm kit from Primer design. Two replicates for BT20, 

BT474, MCF10a, MDA-MB-231, MDA-MB-436, PMC42, SKBR3 and T47D cell lines 

were used, and the data was analysed by Qbase+ software (Biogazelle). For the 12 

reference genes, an M and V value was calculated to give expression stability of the 

genes and an optimal number of reference genes to use in QPCR assays. 

Comparisons between the T47D parental, T47D everolimus resistant, and MDA-MB-

361 cell lines and derivatives thereof were made using YWHAZ and TOP1 reference 

gene primers as these had previously been established to be the best choice by 

earlier GeNorm analysis (Hare 2018). 

Qbase+ software was used to analyse QPCR results of GeNorm assays. All 

other analysis was carried out in Microsoft Excel using self -made templates and 

equations using the 2-ΔΔCt method. Briefly, the mean Ct for each set of technical 

replicates was taken to give a Ct value for each biological replicate. The geometric 

mean of the reference gene Ct values was then calculated for each biological 

replicate to calculate the normalisation factor. The gene of interest Ct was then 

subtracted from the normalisation factor to give the ∆Ct of the gene. The ∆Ct was 

then subtracted from the reference sample ∆Ct (usually the first sample alphabetically 

or the lowest seeding density or control) to give the ∆∆Ct value. The relative quantity 

was then calculated as 2 -∆∆Ct, this is further summarised in Equation 2.1 below. 
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𝟐−(𝒔𝒂𝒎𝒑𝒍𝒆(𝑪𝒕(𝒈𝒆𝒏𝒆 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕)−𝑪𝒕(𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒂𝒕𝒊𝒐𝒏 𝒈𝒆𝒏𝒆)))−(𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆(𝑪𝒕(𝒈𝒆𝒏𝒆 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕)−𝑪𝒕(𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒂𝒕𝒊𝒐𝒏 𝒈𝒆𝒏𝒆))) 

Equation 2.1 – Relative quantity of the gene expression in a sample relative to the 

quantity of the same gene in a reference sample. The relative quantity of the gene of 

interest in the reference sample will always equal 1 as the ∆Ct is subtracted from itself 

equalling 0 and 2 -0 equals 1. 

 

2.2.24 Proteome Profiler Oncology Antibody Array 

 The R&D systems XL oncology array consisted of a membrane with fixed 

antibodies for many key oncoproteins, tumour suppressors and markers of cancer. It 

was used to assess proteome changes when cell lines were stably transfected with 

an ACBD3 expressing vector compared to an empty control vector.  

 Cells were detached from culture flasks and pelleted as previously described 

and lysed in R&D lysis buffer 17 (90%) and 10X sigma-fast protease inhibitor cocktail 

(10%) at 100µl per 106 cells. lysates were rocked for 30 minutes at 4°C, centrifuged 

at 14,000 x g for 5 minutes and the supernatant was retained in a new tube and stored 

at -80°C. 

 Per membrane, 2ml of array buffer 6 was added to 1 well of the supplied 4 well 

plate, the membrane was added and placed on a rocker for 1 hour at room 

temperature. Up to 0.5ml of sample was added to 0.5ml of array buf fer 4 and adjusted 

to a total volume of 1.5ml with array buffer 6. When comparing samples, the same 

amount (whichever sample had the least volume) of each sample was added to 

minimise loading differences. Array buffer 6 was aspirated from the 4 well plate and 

1 sample was added to each well/membrane and incubated at 4°C overnight. 

 Membranes were placed into individual plastic trays and washed 3 times with 

1X wash buffer (supplied) for 10 minutes each. The 4 well plate was washed 

thoroughly with dH2O and air dried and the membranes were returned to the same 

wells of the plate. Per membrane 30µl of detection antibody cocktail was mixed with 

1.5ml of array buffer 4/6 (1 part array buffer 4 and 2 parts array buffer 6) and 1.5ml 

was added to each membrane. The plate was then incubated on a rocker at room 

temperature for 1 hour, the membrane and plate were then washed as described 

previously. Streptavidin-HRP was diluted according to the batch specification 

(1:2000) in 2ml of array buffer 6 per membrane, membranes were placed in the 4 well 

plate and incubated with 2ml diluted streptavidin-HRP for 30 minutes at room 

temperature on a rocker. Membranes were then washed again as described and then 
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partially dried by touching the side of the membrane to blue roll to wick away the 

wash buffer. To process: the membranes were placed on individual polypropylene  

sheets and 1ml of chemi reagent was added to each membrane. Membranes were 

covered with polypropylene sheet and incubated at room temperature for 2 minutes 

and the reagent was removed by wicking the edge against blue roll. The arrays were 

then placed into a fresh polypropylene sheet inside a dark box and exposed to 

hyperfilm for 1 minute, 2 minutes, and 10 minutes, (and 3 hours for membranes where 

less than 250µl of lysate was added). Films were then developed, fixed, and scanned 

at 600 dots per inch for analysis.  

 The arrays were analysed in ImageJ software using a circle sampler to 

measure mean grey pixel density. This was then inverted by subtraction from 255 and 

the background (negative control dots on the array) was also subtracted. Reference 

samples were used to normalise results between arrays and the normalisation factor 

was calculated as the mean average of an array reference spots / by the other array 

reference spots, the pixel density of reference spots was measured at 1 minute 

exposure. All other spots were measured on the film with the lowest exposure time 

where all dots were visible with the naked eye (not including the negative control).  

 

2.2.25 Immunohistochemistry 

Arrays of breast core samples were stained for ACBD3 protein using anti -

ACBD3 primary antibody (from rabbit), the specificity of which was verified by use in 

western blots producing a band of expected size (Chapter 4 – Figure 4.6) 

Augmentation of ACBD3 expression also altered that intensity of ACBD3 staining by 

western blot, further validating the antibody (Chapter 6). 

 Breast core arrays of breast cancer, adjacent, and normal adjacent tissue were 

purchased from Biomax US, in all cases the slides were stained in the same way. The 

protective paraffin layer was removed by washing in coplin jars of histoclear and 

ethanol as outlined in Table 2.18, all reagents were a total of 50ml. wash was wicked 

from the slide between every step. 
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Wash Time 

Histoclear 2 X 5 minutes 

1:1 Histoclear:Ethanol 

3 minutes each 

100% Ethanol 

95% Ethanol 

70% Ethanol 

50% Ethanol 

dH2O 1 minute 

Table 2.18 – Wash steps to remove paraffin from array slides.  

 

 The slide was then placed in a tray of 50ml of hot 22µM sodium citrate and 

was heated in a microwave at medium power (90 seconds on, 30 seconds off) for a 

total of 10 minutes. The slide was left to cool in solution and was then washed twice 

in PBS with 0.025% Triton-X. the slide was then wicked for excess wash and 

incubated in a coplin jar with 3% hydrogen peroxide-PBS for 15 minutes. The slide 

was then washed 3 times in PBS Triton X then 200µl 5% bovine serum albumin (BSA) 

in PBS was added directly to the top of the slide to cover the core array and parafilm 

was placed on top to spread the BSA and cover the slide. The slide was then 

incubated in a humidity chamber at room temperature for 1 hour.  

 BSA was removed from the slide by wicking onto blue roll, ACBD3 primary 

antibody was then diluted in 5% BSA (1:100 for array BC08032a, 1:75 for other 

arrays) and 200µl of diluted antibody was added to the slide, covered with parafilm 

and incubated in a humidity chamber at 4°C overnight. The next day the slide was 

washed 3 times in PBS Triton-X, wicked dry and then 3 drops of Zytochem Plus kit 

secondary antibody was added to the slide, spread with parafilm, and incubated for 1 

hour in a humidity chamber at room temperature. The slide was then washed 3 times 

in PBC Triton-X, wicked dry, and 3 drops of streptavidin-HRP was added to the slide, 

spread with parafilm and incubated for 45 minutes in the humidity chamber at room 

temperature. The slide was washed 3 times in PBC Triton-X, wicked dry, and 200µl 

of zytochem plus DAB solution was added to the slide, spread with parafi lm and 

incubated for 2 to 10 minutes (until visible red-brown colour change). 

 Slides were then washed in dH2O for 5 minutes, wicked dry, stained with 

haematoxylin (200µl for 30 seconds), then immediately rinsed with dH 2O added 
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dropwise to on end of the slide. The slide was then placed in 0.1% sodium bicarbonate 

(w/v in dH2O) for 60 seconds and wicked dry. The slide was then dehydrated following 

the steps in Table 2.17 in reverse (50% ethanol to histoclear). Finally, 50µl of DPX 

mounting glue was added to a cover slip and the slide was lowered face down onto 

the coverslip and gently pushed against the cover slip until the glue covered the array 

and cover slip. The slide was then picked directly upwards to avoid moving the cover 

relative to the samples and was left to dry face up at 4°C overnight. 

 Cores were analysed manually using a microscope. Cores were looked at 1/3 

at a time (upper left, upper right, bottom centre) and scored for intensity of brown 

(DAB) staining against blue background (Haematoxylin nuc lear stain). Scores were 

given as in Table 2.19 and scoring was repeated for each array 3 times on sequential 

days. The mean average of each 1/3 core was taken and then the mean average of 

all 3 days was calculated to give the final score. Scores were then compared to 

available data about each patient that the core was derived from. 

Score % DAB staining intensity 

0 0-10 

1 10-25 

2 25-50 

3 50-75 

4 75-100 

Table 2.19 - Percentage of DAB staining intensity represented by staining score for 

breast core arrays. 

 

2.2.26 Bioinformatics Resources 

Expression of ACBD3 was validated by the gene expression profile interactive 

analysis resource (GEPIA) (http://gepia.cancer-pku.cn/) using the GTEx and TCGA 

databases (40). 

Copy number variation and mutations were retrieved from the TCGA cohort 

pan-cancer data with the cBIO portal resource (http://www.cbioportal.org/) (41, 42). 

Gene variants and upstream intergenic variants were retrieved from the genome wide 

association studies catalogue (https://www.ebi.ac.uk/gwas/) and from genehancer 

(https://www.genecards.org/) (43, 44). pan-cancer analysis data sampled: ACC, 

adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast 
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invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical 

adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, 

lymphoid neoplasm diffuse large B cell lymphoma; ESCA, oesophageal carcinoma; 

GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; 

KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney 

renal papillary cell carcinoma; LAML, acute myeloid leukaemia; LGG, brain lower 

grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; 

LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous 

cyst-adenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, 

pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, 

rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, 

stomach adenocarcinoma; TGCT, testicular germ cell tumours; THCA, thyroid 

carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, 

uterine carcinosarcoma and UVM, uveal melanoma. 

Methylation data were retrieved from TCGA and MET500 OMICs data using 

the UALCAN resource (http://ualcan.path.uab.edu/) (45). 

Predicted protein structures were modelled by the Phyre2 protein fold 

recognition server (www.sbg.bio.ic.ac.uk/~phyre2/) and the subsequent 3D models 

were analysed in Chimera X software (https://www.cgl.ucsf.edu/chimerax/) (46, 47).  

Breast cancer patient relapse free survival, overall survival, and distant 

metastasis free survival data were retrieved and analysed into Kaplan-Meier survival 

curves in the KMplotter resource using the jetset data set (https://kmplot.com/) (48, 

49). ACBD3 expression data in breast cancer patient responders and non-responders 

to therapies were retrieved from ROCplotter using the jetset dataset 

(http://www.rocplot.org/) (50).  

ACBD3 binding factors and transcription factors were found using the 

signalling pathways project resource (https://www.signalingpathways.org/) to probe 

manually curated ChIP-Seq and transcriptomic data (51). 

ACBD3 protein data were retrieved from the human protein atlas 

(https://www.proteinatlas.org/) (52). Association data for protein interactions and co-

expression were carried out using geneMANIA (genemania.org) (53) . 
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2.2.27 Statistical Analysis 

Mean averages of data were taken across independent experiments and unpaired T-

tests were performed to calculate statistical significance. Significant data were 

defined by P<0.05 and confidence intervals were defined as * = P<0.05, ** = P<0.01, 

*** = P<0.001. 
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Chapter 3 

ACBD3 Bioinformatics and Clinical Analysis 

 

3.1 Introduction 

Increased ACBD3 mRNA expression has previously been found to correlate 

with poor breast cancer patient prognosis and ACBD3 was overexpressed in breast 

cancer cell lines based on observations in the TGCA database and 253 breast core 

samples from Chinese breast cancer patients (Huang, Y., Yang et al. 2018). ACBD3 

overexpression in T47D and BT549 breast cell lines caused increased, bulkier, 

mammosphere formation in suspension cultures whilst silencing of ACBD3 with siRNA 

reduced the size and number of mammospheres (Huang, Y., Yang et al. 2018). 

Similarly, ACBD3 overexpression increased side populations of cell lines inferring 

that ACBD3 promoted self-renewal and maintained cancer stem cell (CSC) 

populations (Huang, Y., Yang et al. 2018). It was concluded that ACBD3 activated the 

Wnt/β-catenin signalling pathway and that this was causative of CSC side population 

maintenance and malignant mammosphere formation. 

The mechanism by which ACBD3 promotes CSCs and worsens patient 

outcomes is not understood and may be much broader than activation of the Wnt/β-

catenin signalling pathway (Huang, Y., Yang et al. 2018). The role of ACBD3 is highly 

contextual depending on partners and cellular location and ACBD3 has a lack of 

known redundancies for many of its functions (Fan, Liu et al. 2010, Yue, Qian et al. 

2019). ACBD3 has many interactors, some of which are implicated in breast cancer 

in their own right  (Houghton-Gisby, Harvey 2020, Rostoker, Abelson et al. 2015, 

Garrido, Osorio et al. 2015, Morrow, Alipour et al. 2014, Stylianou, Clarke et al. 2006, 

Colaluca, Tosoni et al. 2008, Zhang, J., Shao et al. 2016, García-Heredia, Verdugo 

Sivianes et al. 2016, Acharya, Xu et al. 2016). Several ACBD3 roles could arguably 

promote the hallmarks of cancer including dysregulating cellular energetics, 

sustaining proliferative signalling, replicative immortality and tumour -promoting 

inflammation (Hanahan, Weingberg 2000, Hanahan, Weinberg 2011, Belman, Bian et 

al. 2015, Liu, Jun, Matyakhina et al. 2003, Arakane, King et al. 1997, Zhou, Atkins et 

al. 2007, Gatliff, East et al. 2017). 

As cancer treatments become more specialised and regimes become more 

personalised there is a need to profile gene and protein expression in tumours.  

Different types of cancer can have very distinct mRNA and protein expression profiles 
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and within cancer types, subtypes also have defining expression patterns. In breast 

cancer, tumours are subtyped based on oestrogen receptor, progesterone receptor, 

and epidermal growth factor receptor status, in addition to the allele variant of BRCA1, 

BRCA2, and mutations in genes such as P53 (Walt, AJ et al. 1976, Wei, Sheridan et 

al. 1987, Slamon, D. J., Clark et al. 1987, Kuchenbaecker, Hopper et al. 2017, 

Filippini, Vega 2013, Lee, D. S., Yoon et al. 2012). Chromosome 1 is commonly 

amplified in breast cancers and increased copy number increases transcription of 

many chromosome 1q genes (Waugh 2014, Orsetti, Nugoli et al. 2006, Bièche, 

Champème et al. 1995),  The location of ACBD3 on arm q of chromosome 1 locus 

(1q42.13)  may be important because of this (Orsetti, Nugoli et al. 2006). 

It is imperative to study any genes that may influence therapy options or 

present as biomarkers for risk, progression, or patient prognosis in breast cancer. 

Genes may be overexpressed by a number of mechanisms including copy number 

increase or changes in transcription regulation including transcription factors or DNA 

methylation. For genes causative or promotive of cancer, inhibiting expression uses 

different strategies depending on the mechanism of upregulation. Protein coding 

mRNA that is not translated has no known effects in cancer, but increased mRNA 

often leads to increases in protein level expression. Protein expression increases can 

have a wide range of effects and targeting oncogenic proteins, or their interactors 

forms the core of modern chemotherapeutic design.  

 

3.2 Chapter Aims 

The aim of this thesis was to determine whether ACBD3 is overexpressed in 

breast cancer, to investigate whether its expression impacts patient survival and 

therapeutic outcomes and to consider the broader implications of ACBD3 expression 

in terms of its interactions. As direct evidence for the mechanisms that correlate 

ACBD3 expression and cancer prognosis are very limited, bioinformatic resources 

were searched to build a more comprehensive picture of ACBD3 expression, 

regulation, and mutation in healthy and cancerous breast tissue. In addition, 

databases were queried to investigate the link between ACBD3 expression and 

survival, relapse and metastatic outcomes for patients divided by receptor status, 

breast cancer subtype and response to chemotherapeutic agents. Finally, string 

analysis was used to identify potential novel ACBD3 binding partners.  
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3.3 Results 

3.3.1 ACBD3 Expression In Tumours and Normal Tissue 

To investigate the difference in ACBD3 expression between normal and tumour 

tissues, the gene expression profiling interactive analysis tool (GEPIA) was queried 

for ACBD3 transcription levels in different tissues, and most normal tissues were 

found to have lower expression of ACBD3 than their paired tumour samples (Figure 

3.1). 

 

Figure 3.1 - a) Median ACBD3 mRNA expression in transcripts per million of different 

tumours and matched normal tissue (Tang, Z., Li et al. 2017). b) ACBD3 mRNA in breast 

tumour samples (red) and paired normal breast tissue (green)  (*P value < 0.001, Log2FC 

cutoff = 0.75). ACBD3 expression was 93.06% higher in cancerous breast tissue and samples 

also had a larger range of expression than normal tissue. c) Protein levels of ACBD3 

measured by antibody staining.  

 

The highest levels of ACBD3 mRNA were found in in invasive breast carcinoma 

with 38.38 transcripts per million (TPM), higher than in any other cancer or paired 

healthy tissue (Figure 3.1a) (Tang, Z., Li et al. 2017). By comparison ACBD3 mRNA 

was expressed at 19.88 TPM in paired normal breast tissue, meaning that ACBD3 

expression was increased almost 2-fold in tumours compared with normal breast 

a. 

*** 

b. 

c. 
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tissue. Expression also varied more between the breast cancer samples than in the 

paired normal breast tissue with a much larger interquartile range, smaller minimum 

value, higher maximum value, and more numerous and distant outliers beyond the 

maximum range (Figure 3.1b). 

Conversely, ACBD3 mRNA expression in acute myeloid leukaemia was lower 

than its paired normal tissue (37.71 vs 19.56 TPM), a very close inverse to the breast 

ACBD3 expression profile, potentially suggesting differences in role or context of 

ACBD3 function between solid and haematopoietic tumours. Three other tumour 

types: adrenocortical carcinoma, kidney chromophobe, and uterine corpus 

endometrial carcinoma showed downregulation of ACBD3 mRNA expression 

compared to matched normal tissue. 

To investigate whether high expression of ACBD3 protein were also found in 

cancers, and if these correlated with ACBD3 mRNA expression, the human protein 

atlas was queried. Whilst a direct correlation was not expected, it was reassuring that 

tissues with higher mRNA expression levels such as prostate and colon cancer as 

well as head and next carcinoma samples also had higher protein levels. Breast 

cancer had one of the highest levels of ACBD3 protein expression by the methodology 

used (11 out of 11 patient samples had medium levels of ACBD3 staining) (Figure 

3.1c).  

 

3.3.2 ACBD3 Amplification and Mutation in Cancer 

The cBIO portal for cancer genomics was used to examine the amplification of 

the ACBD3 gene in tumours as well as determine the frequency of mutations and 

fusions (Cerami, Gao et al. 2012, Gao, Aksoy et al. 2013). Mutation frequency was 

generally low across all the cancers examined (Figure 3.2) Breast cancers were found 

to have the highest proportion of ACBD3 gene amplifications at 8.76% and a low 

percentage of mutations relative to other cancers such as uterine and prostate (Figure 

3.2), but interestingly ovarian cancer had no ACBD3 mutations. In breast cancer, 

ACBD3 mutations occurred in 5 out of 1084 patients, one each of: E212Q, E226K, 

E348Q, R523T mutation, and a E348Nfs*21 frame shift deletion (Figure 3.3). Whilst 

the highest of the cancers examined, the ACBD3 amplification rate in breast cancer 

was less than expected based on the ACBD3 transcriptional upregulation observed 

with the GEPIA tool (Figure 3.1) and the commonality of chromosome 1q amplification 

in breast cancer (Orsetti, Nugoli et al. 2006). 
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Figure 3.2 – Frequency of ACBD3 alterations in different cancers.  There was a higher 

frequency of ACBD3 alteration in breast cancer (first bar) than in any other cancer. ACBD3 

was mutated infrequently (green) but underwent gene amplification (red) more in breast 

cancer than in any other cancer. ACBD3 was most frequently mutated in adrenocortical 

carcinoma. Acute myeloid leukaemia samples had no alteration frequency.  Data was 

accessed from cBIOportal (Cerami, Gao et al. 2012). 

Figure 3.3 – Position and frequency of mutations in ACBD3 that resulted in amino acid 

changes for a.) all cancers, and b.) breast cancers. ACBD3 somatic mutation frequency 

in breast cancers was 0.5%, green circles represent single amino acid level changes, black 

circles represent missense mutations (Cerami, Gao et al. 2012). 

a. 

b. 
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The four ACBD3 breast cancer mutants with base changes were cross 

referenced with the literature and it was found that none of the single amino acid 

change mutants had been engineered previously or studied in vivo or in vitro so any 

functional changes caused by the codon changes are unknown. The fifth mutation 

identified, the E348Nfs*21 deletion, results in early termination of transcription and 

encodes a truncated ACBD3 protein that terminates at aa367. This protein would be 

missing the entirety of the Golgi dynamics (GOLD) domain making it very unlikely that 

this mutant protein would localise to the Golgi or interact with any Golgi resident 

proteins (Horova, Lyoo et al. 2019). All other instances of mutation occurred in the 

flexible linkers, outside of known domains. To better understand how the mutants 

might affect the structure of ACBD3 the Phyre2 protein fold recognition server was 

used to model the mutant proteins but results were inconsistent with the same input 

sequence providing different output structures (data not shown) (Kelley, Mezulis et 

al. 2015). ACBD3 is a flexible protein and X-ray crystal structures have only been 

produced and solved for the GOLD domain suggesting that the protein has many 

conformations of equivalent stability and that this did not allow Phyre2 to model one 

definitive structure (Klima, Chalupska et al. 2017). 

ACBD3 minor alleles and intergenic variants were queried in the Genome Wide 

Association Studies catalogue for phenotypic risk association (Buniello, MacArthur et 

al. 2019). It was found that five DNA variants upstream of ACBD3 (three intergenic 

variants and two regulatory region variants) were associated with core binding factor 

acute myeloid leukaemia risk (Lv, Zhang et al. 2017). There was one other risk variant 

but this was not linked to cancer but rather behaviour which is not that surprising 

given several other ACBD family proteins are known to influence behaviour in animals 

(Ujjainwala, Courtney et al. 2018, Lanfray, Caron et al. 2016, Lanfray, Richard 2017). 

The Genehancer database was also searched corroborating that the same five 

ACBD3 variants were associated with core binding factor acute myeloid leukaemia 

risk and, additional ACBD3 regulatory region variants were found that enhanced the 

red blood cell distribution width (a measure of red blood cell volume variation), and 

that were associated with plateletcrit: (the percentage of blood volume occupied by 

platelets) (Fishilevich, Nudel et al. 2017). Another ACBD3 regulatory region variant 

was associated with DNA methylation. 
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3.3.3 Copy Number Variation and Promoter Methylation of ACBD3 in 

Breast Cancer 

As ACBD3 was found to be upregulated in many cancers, with the highest 

expression in breast cancers, and gene amplification events were relatively low, the 

UALCAN resource was queried to determine the mechanisms underlying this 

upregulation. Methylation of the ACBD3 promoter region was examined using TCGA 

and MET500 databases (Chandrashekar, Bashel et al. 2017), as variations in 

methylation of gene promoters are  linked with transcriptional regulation, typically 

repression (Baylin, Herman 2000, Smiraglia, Plass 2002, Laird 2003, Yang, Park 

2012, Bouras, Karakioulaki et al. 2019, Achinger-Kawecka, Valdes-Mora et al. 2020). 

Tumour sample ACBD3 promoter methylation was not found to be significantly 

different from paired normal tissue methylation (*P = 0.86) and methylation was 

observed to be very low in both cases (Figure 3.4). This suggests that the ACBD3 

reading frame is constitutively open and accessible in healthy and cancerous breast 

tissue and that methylation is not a major regulator of the ACDB3 gene expression. 

ACBD3 promoter methylation was similarly low in all other tissues examined (data not 

shown). 

 

Figure 3.4 – ACBD3 promoter methylation in normal breast tissue (blue) and breast 

tumour tissue (red). a low beta value represents low methylation and therefore low inhibition 

of transcription. A beta value below 0.3 is considered hypomethylation.  
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3.3.4 ACBD3 Transcription Factors in Breast Tissue 

Both methylation and amplification of ACBD3 were low in breast cancer 

samples compared to the level of ACBD3 upregulation, therefore the signalling 

pathways project (SPP) ChIP-seq database was used to find ACBD3 binding factors 

in normal tissue that may be important in breast cancer (Ochsner, Abraham et al. 

2018). A large number of factors were discovered that bind within 10,000 bases of 

the ACBD3 transcription start site across all tissues and some of these stand out as 

having roles in breast cancers including NOTCH1-NICD, CDK9, CTCF, and CEBPB 

(Stylianou, Clarke et al. 2006, Reedijk, Odorcic et al. 2005, Schlafstein, Withers et 

al. 2018, Brisard, Eckerdt et al. 2018, McLaughlin, He et al. 2019, Aulmann, Bläker 

et al. 2003, Docquier, Kita et al. 2009, Mustafa, Lee et al. 2015, Oh, Oh et al. 2017, 

Damaschke, Gawdzik et al. 2020, Grimm, Rosen 2003, Zahnow 2009, Kurzejamska, 

Johansson et al. 2014). The transcriptomics function of the SPP was used to find 

regulators of ACBD3 expression that caused a fold change of two or more for all 

tissues (Figure 3.5a). Amongst those identified across tissue types were the 

oestrogen receptor (when stimulated with Bisphenol A), the insulin receptor, the 

vitamin D receptor, FOXA1 and a number of viral transcription factors.  

In breast tissue specifically, the insulin receptor pathway-related X10 ligand 

and the FOXA1 transcription factor were shown to increase ACBD3 transcription by 

2-fold or more (Figure 3.5b).  
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Figure 3.5 – Transcription factors that change ACBD3 transcription in: a) all tissues 

and b) normal breast tissue. blue dots show repression of ACBD3 transcripts, red dots show 

promotion of ACBD3 transcripts (*P < 0.001).  
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3.3.5 ACBD3 mRNA Expression and Breast Cancer Patient Prognosis 

Previously high ACBD3 tumour expression was correlated with poorer overall 

survival for breast cancer patients irrespective of clinical stage (Huang, Y., Yang et 

al. 2018), but little is known about the impact of ACBD3 expression in the different 

breast cancer subtypes, or on either relapse free or distant metastasis free survival. 

The KMplotter breast cancer mRNA gene chip database was used to look at 

differences in survival, relapse and distant metastasis in breast cancer patients based 

on whether mRNA levels of ACBD3 were above or below the median expression level 

in their breast tumour (Nagy, Lánczky et al. 2018). The patient cohort overall and 

subgroups were analysed and results with a significant difference were recorded.  

Higher ACBD3 levels were associated with earlier relapse, more probable 

distant metastasis and lower survival. When exploring subgroups and tumour 

subtypes, high ACBD3 expression was associated with a higher probability of relapse 

and distant metastasis in patients with ER+, HER2- and Luminal B tumours. High 

tumour ACBD3 was also associated with less overall survival in ER+ and HER2- 

tumours (Figure 3.6). 

 

3.3.6 Relapse Free Survival is Worse When Tumour  ACBD3 Expression is 

Above the Median 

Relapse free survival (RFS) was less likely when ACBD3 tumour expression 

was above the median level in breast cancer patients, median survival was 229 

months when ACBD3 was below the median and 173 months when ACBD3 expression 

was above the median (Figure 3.6a). RFS was not significantly different when HER2+ 

patients were divided by ACBD3 expression but was significantly lower in HER2- 

patients with ACBD3 expression above the median level (43 months) compared to 

below the median (74 months) (Figure 3.6b). RFS was not significantly different when 

triple negative breast cancer patients were divided by median ACBD3 but both ER+ 

and ER- negative groups had less RFS when tumour ACBD3 was expressed above 

the median (Figure 3.6c and 3.6d). RFS was also not significantly different when PR+ 

and PR- patients were divided by ACBD3 expression. Luminal B breast cancer 

patients were found to have the largest difference in RFS of all intrinsic subtypes 

when divided by ACBD3 expression (Figure 3.6e). 
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Figure 3.6 – Kaplan Meier plots for patient prognosis when divided by ACBD3 mRNA 

expression. Black data points represent patients whose breast tumours had ACBD3 

mRNA expression below the median level. Red data points represent patients whose 

breast tumours had ACBD3 mRNA expression above the median level. 

(a-e) Relapse free survival when ACBD3 is high or low for: a) breast cancer patient cohort 

overall, b) HER2- breast cancer patients, c) ER+ breast cancer patients, d) ER-breast 

cancer patients, e) Luminal B breast cancer patients. 

(f-h) Overall survival when tumour ACBD3 is high or low for: f) the breast cancer patient 

cohort overall, g) HER2- breast cancer patients, h) ER+ breast cancer patients. 

(i-l) Overall distant metastasis free survival when tumour ACBD3 was high or low for: i) 

the breast cancer patient cohort overall, j) HER2- breast cancer patients, k) ER+ breast 

cancer patients, l) intrinsic type luminal B breast cancer patients. 
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3.3.7 Overall Survival is Worse When Tumour ACBD3 Expression is Above 

the Median 

The probability of overall survival (OS) was reduced in breast cancer patients 

with tumour ACBD3 expression above the median level (Figure 3.6f). Upper quartile 

survival was 126 months for patients when ACBD3 was below the median level and 

82 months when ACBD3 was above the median level. HER2-, and ER+ patients had 

less OS when ACBD3 expression above the median (*P < 0.05) (Figure 3.6g and 

3.6h) but these changes were not as large as those seen in RFS differences (Figure 

3.6b and 3.6c). ER+ patients had an upper quartile survival of 144 months when 

ACBD3 expression was below the median and 105 months when ACBD3 was 

expressed above the median level. OS in Luminal B patients was not significantly 

different between patients divided by ACBD3 expression. ACBD3 expression was not 

a predictor for OS in Luminal B breast cancer patients.  

 

3.3.8 Distant Metastasis Free Survival is Worse When ACBD3 Expression 

is Above the Median 

Distant matastasis free survival (DMFS) was less likely when ACBD3 

expression was high, the uper quartile DMFS was 138 months for the cohort as a 

whole when ACBD3 was expressed below the median level in breast tumour and 68 

months when ACBD3 was expressed above the median (Figure 3.6i). HER2- patients 

were at greater risk of distant metastasis when ACBD3 was high in their tumours 

(Figure 3.6j). ER+ patients were more likely to have distant metastasis if tumour 

ACBD3 was above the median level, upper quartile DMFS was 75 months when 

ACBD3 was high and 143 months when ACBD3 was low (Figure 3.6k).  Luminal B 

breast cancer patients had less DMFS when ACBD3 was expressed above that 

median level, upper quartile DMFS was 107 months when  ACBD3 was below the 

median level and 38 months when ACBD3 was above the median (Figure 3.6l). These 

findings in breast cancer patients indicate that high ACBD3 mRNA expression 

negatively effects survival, relapse risk and distant metastasis risk.  

  



 
 

 

       78  
 
 

 

3.3.9 ACBD3 Expression in Responders and Non-Responders to 

Chemotherapy in Breast Cancer 

Given ACBD3 expression over the median was found to predict less relapse 

free survival, less overall survival and less distant metastasis free survival for patients 

in many subgroups, it appears that ACBD3 could be predictive of patient outcomes. 

ROCplotter was queried to determine whether ACBD3 expression had an impact on 

therapeutic outcomes (Fekete, Győrffy 2019). ACBD3 expression was higher in 

patients who had pathological complete response to combination chemotherapy 

regimens (FAC, FEC, CMF), as well as to individual agents such as ixabepilone, 

Taxane, and anthracycline (Figure 3.7a). This observation is a strong contrast to data 

in Figure 3.6 where high ACBD3 expression had consistently negative patient 

outcomes. ACBD3 expression was not significantly different between those that had 

5 years relapse-free survival and those that relapsed before 5 years following 

chemotherapy (Figure 3.7b). 

The picture for patients with HER2+ cancer was slightly different. Here, those 

who had complete pathological response to chemotherapy had lower ACBD3 RNA 

expression than those who did not respond (Figure 3.7c). Patients who responded to 

trastuzumab did not have significantly different ACBD3 expression but those treated 

with lapatinib anti-HER2 therapies had significantly lower ACBD3 expression than 

those who did not respond (Figure 3.7d and 3.7e). Anthracycline treatment appeared 

to be more effective when ACBD3 expression was significantly lower (Figure 3.7f). 

Patients taking trastuzumab who were relapse free for 5 years did not have 

significantly different tumour ACBD3 RNA expression from those that relapsed before 

5 years (data not shown). 
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Figure 3.7 – a) ACBD3 expression in breast chemotherapy responders and non-

responders. ACBD3 is 1.1-fold higher in responders than in non-responders to 

chemotherapy overall in breast cancer (P* = 0.0000014). b) ACBD3 expression in HER2+ 

chemotherapy responders and non-responders. ACBD3 mRNA expression is 1.2-fold 

higher in HER2- responders to chemotherapy (P* < 0.000001). c) ACBD3 expression in 

HER2- responders and non-responders to any chemotherapy. ACBD3 is 1.2-fold higher 

in HER2+ non responders to chemotherapy (P* = 0.007). d) ACBD3 expression in 

responders and non-responders to trastuzumab. There was no significant difference in 

ACBD3 expression between responders and non-responders to trastuzumab.  e) ACBD3 

expression in responders and non-responders to lapatinib. ACBD3 was 1.2-fold higher 

in non-responders to lapatinib (P* = 0.025). f) ACBD3 expression in HER2+ responders 

and non-responders to anthracycline. ACBD3 was 1.2-fold higher in HER2+ non-

responders to anthracycline (P* = 0.0056). 

 

3.3.10 Novel ACBD3 Protein Interactions 

There are to date only a modest number of publications concerning ACBD3 

and there are limited known ACBD3 interactors despite several essential cellular 

roles. The GeneMANIA network was queried to determine if there are more protein 

*** *** ** 

** * N/S 



 
 

 

       80  
 
 

 

interactors of ACBD3 as well as proteins that co-localise or co-express. GeneMANIA 

collates data from primary studies found in protein interaction databases, including 

BioGRID and PathwayCommons, physical interactions were defined as two gene 

products found to interact in a protein-protein interaction study. ACBD3 was queried 

in GeneMANIA and many novel interactions were found including The VPS36 

endosomal sorting complex protein and SLC35A1 Golgi membrane protein (Figure 

3.8). Of particular interest to cancer study were the interactions with UNC45A 

(encodes a regulatory component of the progesterone receptor/heat shock protein 90 

chaperoning complex), PKN2 (PKC-related serine/threonine-protein kinase) and 

KDM2B (histone lysine demethylase).  

 

Figure 3.8 – GeneMANIA protein association data for interactions with ACBD3. Physical 

interactions between gene products are represented by pink lines between genes, co -

expression is represented by purple lines between genes and co -localization in blue. Thicker 

lines indicate more evidence (publications) supporting the interaction.  

 

Another nuclear protein, SRSF2, was found to interact with ACBD3 and ACBD3 

has previously been reported to have both nuclear import signals (Fan, Liu et al. 
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2010). SRSF2, a member of the serine/arginine rich family of pre-mRNA splicing 

factors, was also found to interact with ACBD3.  

Co-expression of genes was also queried in geneMANIA and the genes of 

several novel protein interactors of ACBD3 are also co-expressed. These include: 

SMURF2, GORASP2, PKN2 and SLC35A1, increasing the validity of the interaction 

data. Other co-expressing genes include, ARF4: encodes ADP ribosylation factor 4, 

TMEM41B: encodes transmembrane protein 41B, and TMED8: encodes trans-

membrane p24 trafficking protein 8, a paralogue of ACBD3. 

 

3.4 Discussion 

Bioinformatic databases were used to determine whether ACBD3 is 

overexpressed in breast cancer, and to search for leads in regulating ACBD3 in breast 

cell lines and to search for possible mechanisms by which ACBD3 might affect breast 

cancer. These results showed that ACBD3 was widely expressed in different tissue 

types, and, in many cases, expression was increased in tumour samples when 

compared with normal tissue. Expression was highest in breast cancer, with a large 

difference in expression between normal samples and tumour samples. Acute myeloid 

leukaemia was the only cancer with a notable downregulation of ACBD3. The data 

support a potential role for ACBD3 in tumour development in a wide range of cancers 

including breast cancer; however, gene amplification and mutation rates were 

relatively low compared to other more well-known oncogenes such as p53 which is 

mutated in over 30% of breast cancers (Filippini, Vega 2013, Lee, D. S., Yoon et al. 

2012, Duffy, Synnott et al. 2018) . Additionally, analysis of copy number variation and 

promoter methylation revealed that changes in expression are not related to 

increased copy number or changes in methylation patterns suggesting that other 

mechanisms were responsible for ACBD3 over expression.  

ACBD3 was more highly expressed in breast cancer than in any other cancer 

or matched normal tissue. Copy number variation and promoter demethylation could 

not account for the 93% upregulation of ACBD3 mRNA in breast cancer. FOXA1, 

Bisphenol A, and calcitriol were discovered as ACBD3 positive transcriptional 

regulators; oestrogen receptor and insulin receptor-related agonists were found to be 

either repressors or promoters of ACBD3 transcription. ACBD3 protein was also 

upregulated in breast cancer and several novel ACBD3 binding partners were found, 
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including nuclear proteins and the progesterone receptor co-chaperone UNC45A. 

ACBD3 expression over the median level in breast cancer tissue resulted in reduced 

relapse free overall, and distant metastasis free survival for breast cancer patients 

as a whole with some differences observed between subtypes. ACBD3 tumour 

expression was higher in HER2+ patients that did not respond to anti HER2 therapies, 

or anthracycline chemotherapies. 

It was hypothesised that over expression of ACBD3 was most likely linked to 

upregulation of, or increased activation of, transcription factors. The analysis showed 

that several transcription factors, already linked to breast cancer could increase 

ACBD3 expression (Figure 3.5a and 3.5b).  

ACBD3 was previously predicted to enter the nucleus as it was proposed to 

have 2 nuclear import signals and 9 DNA binding motifs (Fan, Liu et al. 2010);  ACBD3 

has not however been observed in the nucleus. It is interesting then to find a potential 

interaction of ACBD3 with two nuclear proteins in high throughput studies, SRSF2: a 

spliceosome and RNA export protein and KDM2B: a histone lysine demethylase which 

promotes breast cancer stem cell renewal and higher expression is associated with 

poor prognosis for TNBC patients (Zheng, Fan et al. 2018, Kottakis, Foltopoulou et 

al. 2014, Fraile, Chavdoula et al. 2020, Yan, Yang et al. 2018) (Figure 3.8). This may 

be the first step in a decade toward finding an ACBD3 function in the nucleus, or, as 

with Src and Sam68 (Roche, Fumagalli et al. 1995, Resnick, Taylor et al. 1997, 

Fumagalli, Totty et al. 1994, Taylor, Shalloway 1994), it is possible that the interaction 

occurs during mitosis when the nuclear envelope breaks down. KDM2B inhibits 

senescence and, like ACBD3, is implicated in CSC self -renewal and Wnt/β-Catenin 

signalling in breast cancer (Pfau, Tzatsos et al. 2008, Lu, L., Gao et al. 2015, Huang, 

Y., Yang et al. 2018). The finding that they physically interact in protein interaction 

studies is interesting and merits further study as it provided further evidence that 

implicates ACBD3 in the Wnt signalling pathway, and an additional ACBD3 

association with CSC-maintaining proteins in breast cancer. This could explain why 

breast cancer patient relapse is more likely when ACBD3 expression is high.  

Interaction with UNC45A was the novel protein interaction with the most likely 

impact in breast cancer. UNC45A Is a regulatory component of the progesterone 

receptor/heat shock protein 90 chaperoning complex, which functions in the assembly 

and folding of the progesterone receptor. The encoded protein is thought to be 

essential for normal cell proliferation, and for the accumulation of myosin during 



 
 

 

       83  
 
 

 

development of muscle cells (Chadli, Graham et al. 2006a). UNC45A expression in 

cancer correlates with progression, grade, and metastasis and downregulation of 

UNC45A also downregulates the mitotic kinase NEK7 (Chadli, Graham et al. 2006a, 

Eisa, Jilani et al. 2019, Guo, W., Chen et al. 2011, Bazzaro, Santillan et al. 2007, 

Epping, Meijer et al. 2009). UNC45A is not essential for normal breast development 

but is important in breast cancer cell proliferation where siRNA silencing of UNC45A 

causes cell cycle arrest and cell death in the Hs578T cell line (Guo, W., Chen et al. 

2011, Eisa, Jilani et al. 2019). 

PKN2 is a PKC-related serine/threonine-protein kinase and Rho/Rac effector 

protein that participates in the regulation of cell cycle progression (Schmidt, Durgan 

et al. 2007), actin cytoskeleton assembly and cell adhesion (Calautti, Grossi et al. 

2002), cell migration and tumour cell invasion (Lachmann, Jevons et al. 2011), 

embryogenesis (Danno, Kubouchi et al. 2017), and insulin responsiveness in skeletal 

muscle (Ruby, Riedl et al. 2017). KDM2B is a histone lysine demethylase that is 

expressed ubiquitously and has ubiquitin ligase activity (Saritas-Yildirim, Pliner et al. 

2015). KDM2B inhibits cell senescence (Pfau, Tzatsos et al. 2008), promotes cell 

proliferation (He, Kallin et al. 2008), and promotes cell migration (Zacharopoulou, 

Tsapara et al. 2018). Like ACBD3, KDM2B is involved in stem cell renewal, and has 

functions in cancer development including a role in breast cancer where it is 

implicated in CSC self-renewal (Yan, Yang et al. 2018, Kottakis, Foltopoulou et al. 

2014). KDM2B regulates Wnt/β-Catenin signalling by controlling turnover of nuclear 

β-Catenin in Xenopus (Lu, L., Gao et al. 2015). 

 

3.4.1 ACBD3, Oestrogen Receptor Status, and Signalling 

The oestrogen receptor has a long-established link to breast cancer 

development with the majority of breast cancers being ER-positive (Lamb, Vanzulli et 

al. 2019) and modulation of oestrogen receptor has been key to declining mortality 

from breast cancer for over 30 years. There was significantly less survival, more 

relapse, and more distant metastasis in ER+ patients when divided by ACBD3 

expression, and ACBD3 overexpression appears to be universally detrimental to 

breast cancer prognosis.  

Tumour ACBD3 above the median level equated to patient relapse 4 years and 

8 months earlier than patient with tumour ACBD3 below the median (24% decrease 



 
 

 

       84  
 
 

 

in relapse free time). It is a testament to the quality of treatment for breast cancer 

that we were not able to produce median time values for any subgroup of patients or 

for the cohort when looking at overall survival and distant metastasis free survival. 

This is because so many patients stay relapse free, metastasis free, and survive, that 

with almost 25 years of data the median threshold for these metrics has not been 

reached and we therefore only have upper quartile values for some other metrics. 

75% of patients survived for 126 months when ACBD3 was below the median level 

compared to 82 months when ACBD3 was above the median level (a 35% decrease 

in upper quartile survival time). Even more strikingly 75% of patients stayed distant 

metastasis free for 138 months when ACBD3 was below the median but only for 68 

months if ACBD3 was above the median (a 51% decrease in upper quartile distant 

metastasis free time). The increased risk of, and decreased time to, relapse and 

metastasis support a role for ACBD3 in cancer stem cell formation and maintenance. 

By extension, the metastases risk decreases overall survival as 90% of cancer deaths 

are caused my metastatis (Peitzsch, Tyutyunnykova et al. 2017). 

FOXA1 is a forkhead DNA binding protein transcription factor and can be 

tumour-suppressive or tumour-promoting depending on the cancer. It is essential for 

oestrogen receptor-α expression and is involved in breast morphogenesis (Bernardo, 

Lozada et al. 2010). FOXA1 is itself associated with low tumour grade, ER expression 

and positive outcomes in breast cancer but its overexpression has also been 

associated with invasiveness, and FOXA1 mutations were found in endocrine therapy 

resistant breast tumours (Thorat, Marchio et al. 2008, Ciriello, Gatza et al. 2015, 

Razavi, Chang et al. 2018, Rheinbay, Parasuraman et al. 2017). FOXA1 expression 

is commonly coordinated with ER expression in breast metastases and FOXA1 has 

been shown to mediate ER binding reprogramming (Ross-Innes, Stark et al. 2012). 

FOXA1 protein expression is downregulated when BRCA1 is downregulated and both 

proteins regulate the CDC inhibitor p27 (Williamson, Wolf et al. 2006). 

FOXA1 was found to be a positive ACBD3 transcription factor in normal breast 

tissue and FOXA1 is associated with ER expression in breast cancer (Thorat, Marchio 

et al. 2008). FOXA1 induces both ERα and ACBD3 expression, but GNST and 17βE2 

(activators of ER signalling pathway) were found to repress ACBD3 transcription by 

at least 2-fold. It is conceivable that ER signalling negatively regulates ACBD3 

expression in breast cancer, but that FOXA1 expression contributes to the 

reprogramming of ER binding and signalling in breast cancer (Ross-Innes, Stark et 
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al. 2012), cancelling out the negative impact of  GNST- and 17βE2-mediated ER 

transcriptional repression of ACBD3. This would explain why decreased distant 

metastasis-free survival was observed in ER+ patients when ACBD3 expression was 

high. 

 

3.4.2 ACBD3, the HER2 Receptor, and Insulin Signalling in Breast Cancer  

HER2 signalling through alternate pathways, and upregulation of HER2 

downstream signalling pathways are two of the main mechanisms for anti -HER2 

therapy resistance (Pohlmann, Mayer et al. 2009). ACBD3 levels were found to be 

statistically higher in non-responders to anti-HER2 therapy and ACBD3 transcription 

to be induced by X10, an insulin analogue that activates the IGF and insulin receptors. 

IGFIR can phosphorylate and activate the HER2 receptor to negate the effects of anti 

HER2 therapies in breast cancer cell lines and anti IGFIR drugs re-sensitize 

trastuzumab resistant cell lines to trastuzumab (Lu, Y., Zi et al. 2001, Lu, Y., Zi et al. 

2004, Nahta, Yuan et al. 2005). Higher expression of ACBD3 in non-responders to 

anti-HER2 therapies may be an indicator of the increased IGF signalling that sustains 

HER2 activation and signalling. 

X10, also known as ASPB10, is a potent artificial insulin analogue where 

aspartic acid substitutes the histidine-B10 residue of insulin to prevent hexamer 

formation and increase uptake and availability. It is an agonist of both the insulin like 

grown factor (IGF) receptor and the insulin receptor (IR). The insulin and IGF1 

receptors have important roles in breast cancer; IGF signalling is important in 

mammary gland development and metastatic pathways, and its receptor is 

overexpressed and hyperphosphorylated in breast cancer, the insulin receptor is now 

being explored as a target for therapy (Chan, J. Y., LaPara et al. 2016, Papa, Gliozzo 

et al. 1993, Resnik, Reichart et al. 1998, Rostoker, Abelson et al . 2015, Chan, Jie 

Ying, Hackel et al. 2017). These pathways are both linked to breast cancer 

development  where IGF1R is an activator of metastatic pathways and the IR is often 

overexpressed or constitutively active increasing glucose import to propagate the 

Warburg effect (Milazzo, Sciacca et al. 1997, Chan, J. Y., LaPara et al. 2016, 

Svendsen, Winge et al. 2013, Resnik, Reichart et al. 1998, Rostoker, Abelson et al. 

2015, Hvid, Blouin et al. 2013, Barbosa, Martel 2020). 
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Glucose transporter 1 is classically associated with the Wahlberg effect but 

glucose transporter 4 should not be overlooked as its downregulation impairs growth 

and causes remodelling of metabolism in breast cancer cells (Acharya, Xu et al. 2016, 

Garrido, Osorio et al. 2015). ACBD3 is involved in glucose transporter 4 vesicle 

cycling and subsequent glucose import in response to insulin, it would therefore be 

logical that the insulin signalling pathway regulates ACBD3 expression (Belman, Bian 

et al. 2015, Bogan, Rubin et al. 2012) . Although an artificial and potent insulin 

analogue, X10 strongly upregulated ACBD3 transcription in healthy breast tissue. it 

is conceivable that an increase in Golgi localised ACBD3, induced by IGF1R 

signalling, would increase the pool of available GLUT4 containing vesicles and 

therefore increase glucose import and energy for the proliferating cancer cells. X10 

is reported to cause breast cancer in Sprague-dawley rats and had a mitogenic effect 

in MCF7 cells (Milazzo, Sciacca et al. 1997, Drejer 1992, Svendsen, Winge et al. 

2013). X10 has also been seen to increase the growth of MC38 colon cancer allografts 

on obese mice and increased mammary tumour occurrence in rats (Hvid, Blouin et al. 

2013). 

 

Overall, the work in this chapter has validated the choice to study ACBD3 

expression in the context of breast cancer. High ACBD3 mRNA expression was found 

in breast cancer and was associated with worse patient outcomes in relapse, 

metastasis and survival. ACBD3 was also high at the protein level in breast cancer 

and several novel protein interactors were found. The mechanism by which ACBD3 

was upregulated could not be determined by the techniques used but binding factors 

and regulators of transcription have been discovered which has informed work in 

subsequent chapters. Finding that several activators of oestrogen receptor signalling 

were also repressors of ACBD3 was interesting, especially when it is considered that 

FOXA1 was found to promote both ER and ACBD3 expression in breast tissue. ER 

expression is one of the most important markers in breast cancer determining both 

therapies and, to a certain extent, outcomes. If ER signalling is a repressor of ACBD3 

then it is prudent that ACBD3 expression be determined in ER+ and ER- breast cancer 

cell lines and patient samples. 

Now that the correlation between high tumour ACBD3 expression and poorer 

prognosis has been corroborated, this work can focus on determining if ACBD3 is 

affecting breast cell behaviour directly or if it is a marker of other changes such as 
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FOXA1 signalling and associated ER reprogramming, or of PI4Kβ expression/activity. 

The next step will be to compare cell line models to the data here, to use these results 

and the literature to uncover ACBD3 regulators and to design ACBD3 mutants based 

on literature and mutants found in patient breast tumours.  
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Chapter 4 

ACBD3 Expression in Breast Cancer Cell Lines and 

Breast Cancer 

 

4.1 Introduction 

The purpose of this thesis was to examine whether ACBD3 is biologically 

important in breast cancer occurrence and/or progression and if ACBD3 expression 

is a reliable biomarker for breast cancer characteris tics and/or patient outcomes. The 

introduction provides lines of evidence as to the functions of ACBD3 in normal cellular 

processes  and highlights the functions that are implicated in, or may be relevant 

in, cancer. The results of chapter 3 reinforced assertions that ACBD3 has a role in 

breast cancer and corroborates previously published work (Huang, Y., Yang et al. 

2018). ACBD3 was found to be commonly upregulated in breast cancers and 

expression above the median level correlated with worse patient prognosis when 

relapse free survival, overall survival and distant metastasis free survival were 

considered. There were also small but statistically significant differences in ACBD3 

expression between subgroups of breast cancer patients who did, or did not, respond 

to chemotherapies; particularly ACBD3 was increased in HER2+ patients that did not 

respond to anti HER2+ therapies. The human protein atlas also showed that ACBD3 

protein expression was high in breast cancers, but this sample was limited to eleven 

breast cancer cores with no normal tissue control.  

 To study ACBD3 expression in breast cancer further, models for breast cancer 

were needed and these took the form of breast cell lines. A number of factors informed 

the choice of cell lines including existing literature where amplification of 1q loci, 

including the ACBD3 loci (1q42.12), was analysed in breast cell lines and primary 

tumour samples (Orsetti, Nugoli et al. 2006). 

Relative mRNA expression analysis was performed by QPCR, and comparison 

of protein levels carried out by western blotting. In addition to ACBD3, PI4Kβ 

expression was also of interest as it encodes an important binding partner of ACBD3 

and, as a gene, is implicated in breast cancer in its own right (Sasaki, Ishikawa et al. 

2012, Orsetti, Nugoli et al. 2006, Goh, Feng et al. 2017). Using QPCR, relative 
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quantity (RQ) of these genes between cell lines and relative quantities, or ratios, in 

respect to each other (within and between cell lines) were recorded. 

In addition to work on cell lines, breast cancer arrays of embedded breast core 

samples were stained for ACBD3 protein to determine any correlations between 

ACBD3 protein levels and patient data such as age, pathology of tumour and receptor 

status. This was important as it allowed links to be made between the findings of in 

vitro cell line models and patient samples and allowed for the analysis of hundreds of 

individual patient tumours rather than relying only on a limited number of cell lines. It 

also allowed for a direct comparison of ACBD3 protein expression between healthy 

and cancerous breast tissue which was not possible using the methodology in chapter 

3. 

 

4.2 Chapter Aims 

 The aim of this chapter was to detect levels of ACBD3 and PI4Kβ in my chosen 

breast cancer models and examine any correlation between levels of transcription 

and translation of these genes and their protein products. The results from these 

models were then compared to patient sample cores where correlations between 

ACBD3 expression and tumour characteristics were analysed.  

 

4.3 Results 

4.3.1 Validation of Reference Genes 

Quantitative polymerase chain reaction (QPCR) is a comparative method of 

quantifying mRNA transcripts. mRNA quantity of a target gene is given relative to a 

reference gene to normalise for cell number and total amount of cDNA. Common 

reference genes such as ACTB and GAPDH are not always suitable loading controls 

when studying cells, especially cancer cells where transcription and translation are 

dysregulated. Proteins that are stably expressed do not always have correspondingly 

stable expression of mRNA. Because of these factors, the expression of twelve 

house-keeping genes in eight breast cancer cell lines were analysed to find which 

were most stably expressed between the cell lines to make quantification of target 

mRNA (ACBD3 and PI4Kβ) comparable between cell lines. Multiple reference genes 

are used to reduce variation and normalise to multiple controls. To achieve this the 
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GeNorm kit from primer design was used to perform QPCR on cDNA from breast cell 

lines in conjunction with Qbase+ software; the GeNorm kit contains  primers for 12 

reference/housekeeping genes for use with qPCR and the Qbase+ software then 

analyses the results using an algorithm to determine the stability of expression (the 

M value) and how many reference genes should be used to validate results (V va lue) 

(Figures 4.1 and 4.2). Qbase+ uses a proprietary algorithm and software but briefly 

the M value is an arbitrary unit of the stability of expression of each reference gen 

across all cell lines (Figure 4.1). the V value indicates pairwise variation of an 

increasing number of reference genes between 2 sequential normalisation factors 

(Figure 4.2). A high variation (lower V value) indicates that adding a reference gene 

has a significant positive effect on calculating a reliable normalisation factor for QPCR 

analysis. 

 

Figure 4.1 - The M value of each reference gene, or the mean average stability of 

expression of each reference gene over 8 different breast cell lines. M represents the 

discrepancy in expression between samples where the smallest M value represents the most 

stable expression between samples. The order of stability increases from left to right 

(increasing M value) with CYC1 being most stably expressed gene between cell lines. 

 

It was found that the optimal number of genes to use as reference genes is 5 

but this value is subject to available sample and costs. The experiment was 

undertaken twice and the 5 most stably expressed genes were CYC1, ATP5B, UBC, 

EIF4A2 and TOP1 in descending order (figure 4.1 and figure 4.2). It was decided that 

3 reference genes would be used as a compromise between cost, availability and 

validity and because an initial GeNorm qPCR experiment (not shown) with 
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contamination in the non-template controls showed similar results but with TOP1 and 

UBC exchanging stability ranking in M value. It was decided that CYC1 and ATP5B 

reference genes would be used as the two genes with the most stable expression 

between cell lines and EIF4A2 would be used as it was the fourth most stably 

expressed gene across two GeNorm experiments. 

 

Figure 4.2 - The V value as determined by the Qbase+ software. V represents the pairwise 

variation between different numbers and combinations of reference genes to standardise 

results from QPCR experiments. Below 0.15 V the addition of extra reference genes does not 

increase the validity of results. In this case V5/6 is the least number of reference genes in 

combination below the 0.15 V threshold (blue line). The number of reference genes that are 

ultimately used is based on other factors such as cost and available sample material which 

may be limiting factors. The results for subsequent QPCR assays will use these reference 

genes: CYC1, ATP5B and EIF4A2, considered to be a balance between reference stability, 

cost and sample availability. 

 

4.3.2 mRNA expression of ACBD3 in breast cell lines 

The cell lines were grown to 80% confluency and RNA was immediately 

extracted from them. From this cDNA was produced and 3 biological replicates per 

cell line were assayed for gene expression using the reference genes identified in 

section 4.3.1. 

ACBD3 mRNA expression was significantly higher in all breast cancer cell lines 

tested compared to the non-cancerous breast cell line MCF12A (Figure 4.3). The 

SKBR3 breast cancer cell line, derived from a HER2+ invasive ductal carcinoma, had 

that highest level of ACBD3 mRNA (506% higher compared to MCF12A, *P = 
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0.000556) followed closely by the triple negative invasive ductal carcinoma derived 

BT20 cell line (480% higher compared to MCF21A, *P = 0.000978). The BT20 and 

SKBR3 cell lines are both negative for ER and PR receptors but share little else in 

common. There was no statistically significant difference between ACBD3 expression 

in the breast cancer cell lines overall when divided by PR status or ER status 

suggesting that ACBD3 overexpression was not related to breast cancer receptor 

status. There were also no statistical differences when cell lines divided by pathology, 

subtype or HER2 receptor status. The breast cancer cell lines with the highest level 

and lowest level of ACBD3 expression were both triple negative cell lines (BT20 and 

MDA-MB-231 respectively). 

 

Figure 4.3 – ACBD3 mRNA was increased in breast cancer cell lines relative to the 

MCF12A normal-like breast cell line. Cell type from left to right: MCF12A - normal-like, 

T47D - Luminal A, BT474 - Luminal B, MDA-MB-361 and SKBR3 - HER2+, BT20,                

MDA-MB-231, and MDA-MB-436 - triple negative. SKBR3 cells had the highest expression at 

6.06 times the RQ of MCF12A expression. mRNA levels were measured by QPCR, each cell 

line was measured from 3 independent samples and each sample was measured 3 times 

(n=3). error bars represent the standard deviation, Asterisks represent confidence interval of 

expression difference relative to the MCF12A cell line.  
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MDA-MB-436 ACBD3 expression was 263% higher (*P = 0.01504), BT474 

256% higher (*P = 0.000323), MDA-MB-361 245% higher (*P = 0.002138), T47D 

162% higher (*P = 0.012792), and MDA-MB-231 111% higher (*P = 0.001866), all 

relative to MCF12A expression. Statistical analysis was performed on the ∆∆Ct per 

biological replicate as the relative quantity (RQ) is a log value and does not follow a 

normal distribution. 

 

4.3.3 mRNA expression of PI4Kβ in breast cell lines 

 

Figure 4.4 – Relative quantity of PI4Kβ mRNA transcripts in different breast cell lines. 

a) Cell type from left to right: MCF12A - normal-like, T47D - Luminal A, BT474 - Luminal B, 

MDA-MB-361 and SKBR3 - HER2+, BT20, MDA-MB-231, and MDA-MB-436 - triple negative. 

PI4Kβ expression was significantly higher in the MDA-MB-231 breast cancer cell line 

compared to the non-cancerous normal like MCF12A breast cell line. The BT474, MDA-MB-

361 and T47D breast cancer cell lines had significantly lower relative PI4Kβ expression than 

the MCF12A cell line. error bars represents the standard deviation. b) PI4Kβ RQ in 

Adenocarcinoma and Invasive Ductal Carcinoma cell lines was significantly different. 

Adenocarcinoma derived cancer cell lines (MDA-MB-231 and MDA-MB-361) had significantly 

higher PI4Kβ expression than Invasive Ductal Carcinoma derived cell lines (BT 20, BT474, 

MDA-MB-436, and T47D). Quantity in each case is relative to MCF12A cell line expression 

in 4.4a (*P = 0.000391). 

 

a. b. 
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mRNA expression of the ACBD3 binding partner PI4Kβ was also examined, 

and it was found that PI4Kβ expression was significantly different in four breast 

cancer cell lines compared to the MCF12A control (Figure 4.4a). PI4Kβ expression 

was significantly higher in the adenocarcinoma derived MDA-MB-231 breast cancer 

cell line (86%, *P = 0.000881) and significantly lower than the control in the invasive 

ductal carcinoma derived BT474 (58%, *P = 0.000405), MDA-MB-436 (86%, *P = 

0.022517) and T47D (72%, *P = 0.014182) cell lines. PI4Kβ expression data for the 

SKBR3 cell line was not included as variance between technical replicates was high 

and overall expression very low suggesting that PI4Kβ expression in this cell line was 

very low. SYBR green chemistry used to perform these QPCR experiments has 

difficulty in detecting very low-level late cycle exponential amplification of targets 

according to the manufacturer (email correspondence with PrimerDesign, 

Southampton, UK, 2019). 

The relative quantity (RQ) of all adenocarcinomas (ACs) biological replicates 

was compared to the invasive ductal carcinomas (IDCs) biological replicates and it 

was found that PI4Kβ expression was statistically significantly lower in the invasive 

ductal carcinomas, the median average RQ of the IDCs was 0.35 compared to 1.58 

for the ACs relative to the MCF12A cell line (Figure 4.4b). 

 

4.3.4 The Relationship Between ACBD3 and PI4Kβ Gene Expression 

 Due to the functional interaction between ACBD3 and PI4Kβ proteins and their 

location on chromosome 1 arm q, it was decided to examine any correlation between 

the expression of the two genes. PI4Kβ mRNA expression was lower than ACBD3 

mRNA expression in all cell lines (PI4Kβ was amplified at a later cycle than ACBD3 

during QPCR in all cases relative to the reference genes). Overall, there was no clear 

relationship between the expression of ACBD3 and PI4Kβ with no correlation for 

individual biological replicates of all cell lines (MCF12A, BT20, BT474, MDA-MB-231, 

MDA-MB-361, MDA-MB-436, T47D) (Figure 4.5a). 

All breast cancer cell lines had a lower PI4Kβ to ACBD3 ratio than the normal 

MCF12A control cell line and, as with PI4Kβ expression status, the adenocarcinoma-

derived cell lines had a higher ratio than the invasive ductal carcinoma cell lines 

(Figure 4.5b). The PI4Kβ/ACBD3 ratio did not correlate with any receptor status, just 

as expression of either gene in isolation could not, the ratio did follow a similar pattern 



 
 

 

       95  
 
 

 

to PI4Kβ mRNA expression alone. The MDA-MB-231 cell line had the lowest 

expression of ACBD3 of the breast cancer cell lines and the highest PI4Kβ 

expression. 

 

Figure 4.5 – The relationship between ACBD3 and PI4Kβ expression. a) PI4Kβ RQ was 

plotted against ACBD3 RQ for each biological replicate of all cell lines. There was no 

correlation between ACBD3 expression level and PI4Kβ expression level (slope of trendline 

=0.06181, deviation from 0 was not significant (*P = 0.8249). The ratio of ACBD3 to PI4Kβ 

was not a predictor for any breast cancer cell line characteristic. b) PI4Kβ/ACBD3 expression 

as a ratio for each cell line. All breast cancer cell lines had a lower PI4Kβ/ACBD3 ratio than 

the normal like MCF12A cell line and the ratios of cancer cell lines closely matched PI4Kβ 

expression alone (except for the MCF12A cell line) (Figure 4.4a). 

 

4.3.5 ACBD3 and PI4Kβ protein expression in breast cell lines 

 ACBD3 and PI4Kβ protein expression was examined for breast cell lines as 

mRNA and protein expression can be very different. Whilst there was a large amount 

of data available for mRNA expression in breast cancer (Chapter 3, throughout), data 

for protein expression were limited (Chapter 3, Figure 1c). Breast cell lines were 

grown to 80% confluency and lysed directly in laemli buffer for analysis by western 

blot. ACBD3 and PI4Kβ protein expression was then compared by western blot and 

β-actin expression was also measured as a loading control (in addition to cell counting 

prior to lysis) . 

a.                                                                       b.  
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As with mRNA expression, ACBD3 protein levels were lowest in the MCF12A 

breast cell line and there was considerable variance between breast cancer cell lines 

(Figure 4.6). The ER+ and PR+ PMC42 And T47D cell lines had the highest ACBD3 

levels followed by the ER+ MDA-MB-361 cell line. The MDA-MB-436 cell line had the 

least ACBD3 expression of the cancer cell lines, and MCF12A, BT20 and MDA-MB-

231 cell lines all showed multiple banding suggesting post translational changes to 

ACBD3. 

 

Figure 4.6 – ACBD3 protein expression is higher in breast cancer cell lines than the 

normal like MCF12A cell line, PI4Kβ protein expression is also higher in 5 out of 6 

breast cancer cell lines compared to the MCF12A cell line.  From left to right: MCF12A 

has 3 distinct bands of staining of ACBD3, BT20 and MDA-MB-231 have 2 bands, MDA-MB-

436, PMC42, T47D, and MDA-MB-361 have 1 band of ACBD3 staining. Most cell lines have 

2 bands of staining for PI4Kβ and PI4Kβ protein expression was lower in the MDA -MB-436 

cell line compared to the MCF12A cell line. β-actin was stained as a loading control, exposure 

= 10 seconds, ACBD3 exposure = 2 minutes, PI4Kβ exposure = 1 minute, representative of 

n=2. 

 

The same blot was also used to detect PI4Kβ protein levels and showed a 

similar expression pattern to ACBD3 except that MDA-MB-436 cell line which had 

lower PI4Kβ expression than the MCF12A normal-like cell line. This is in line with the 

mRNA expression data where MDA-MB-436 had the lowest relative quantity of PI4Kβ. 

The PI4Kβ protein expression profile does not follow the mRNA expression profile, 
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instead PI4Kβ protein expression closely matches ACBD3 protein expression in each 

cell line. It should be noted that the cell lines used for protein analysis are not the 

same as the cell lines used for mRNA analysis in all cases.  

 

4.3.6 ACBD3 Undergoes Posttranslational Modifications to Different 

Extents in Different Cell Lines 

Multiple bands of ACBD3 protein on westerns blots were observed for some 

cell lines (Figure 4.6) and so the lysates of 3 independent biological replicates  of the 

MDA-MB-231 cell line were separated on a 12% polyacrylamide gel to better visualise 

multiple bands of ACBD3. 4 different bands at approximately 62kDa, 70kDa, 80kDa 

and 90kDa were found. MDA-MB-231 cells were enriched for highest weight ACBD3 

form with  less intense lower-weight ACBD3 bands and minimal 62kDa ACBD3 (Figure 

4.7). This suggests that ACBD3 undergoes posttranslational modif ications and the 

spacing between bands of approximately 8kDa possible indicates ubiquitination of the 

protein as ubiquitin subunits are 8.5kDa each. Whilst there is literature and structural 

information to support the notion that ACBD3 is phosphorylated at  multiple sites, there 

is currently no evidence of ubiquitination of ACBD3 in vivo. 

 

Figure 4.7 – Western blot of 3 biological replicates of the MDA-MB-231 cell line with 

high separation between 60kDa and 90kDa. In all lanes a band is visible corresponding to 

62kDa which is the predicted weight of ACBD3. There are then 3 distinct bands of higher 

molecular weight. MDA-MB-231 is enriched for the highest weight band and the band of 

expected size is the least prominent. Loading control was measured by coomassie staining 

and all lanes appear to be equally loaded. The spacing between bands is 8 -10kDa with the 

lowest conferring to 62kDa, then 70Da and 80kDa and 90kDa (all approximate values). It is 

unlikely that the bands show intermediary breakdown products of ACBD3 as full length 

ACBD3 has a mass of 62kDa, the approximate size of the lowest weigh t band. 
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4.3.7 Immunohistochemical Staining of Breast Cancer Patient Breast 

Sample Cores 

Breast core tissue arrays were incubated with ACBD3 antibody, which was 

detected with a biotin-labelled anti-rabbit secondary antibody and streptavidin-HRP, 

to examine ACBD3 protein levels in breast cancer patient tissue. staining. Each core 

was scored per 1/3 core as: 0-10% staining=0, 10-25% staining=1, 25-50% 

staining=2, 50-75% staining=3, 75-100% staining=4; all cores were scored on 3 

sequential days and the mean score for all days was taken. 

 

Figure 4.8 – An ACBD3 antibody-stained invasive carcinoma tissue core observed at 

various magnifications. An invasive carcinoma from a 39-year-old female, stage IIA, ER- 

PR- HER2 2+ reveals a pattern of differential ACBD3 staining (brown), haematoxylin was 

used a as a nuclear stain (blue). a) low magnification image of entire core, fibrous interlobular 

tissue has a low level of ACBD3 staining whilst breast duct acini have high levels of ACBD3 

staining. b) medium magnification of regular and irregular duct acini. c) high magnification of 

regular small acini have high ACBD3 staining of luminal epithelial and basal myoepithelial 

cells. d) high magnification of an irregular large acini. Luminal epithelial and basal 

myoepithelial cells are both highly stained for ACBD3 but cells within the acini, po ssibly a 

ductal carcinoma in situ have a moderate to low level of ACBD3 staining, with some 

embedded cells with high levels of ACBD3, possibly luminal epithelial cells.  

 

Figure 4.8 shows a 1mm core from the BR1008b array with ACBD3 typical 

staining patterns. There are areas of higher staining at the ducts or lobules with 

surrounding tissue showing low or no staining for ACBD3 (Figure 4.8a). At 40X 

magnification, individual cells of both regular and irregular lobules can be seen; 

luminal epithelial cells that line of the lobules have strong staining for ACBD3 as do 

the myoepithelial basal layer of cells beneath (Figure 4.8b). At 60X magnification the 

regular acini (Figure 4.8c) and irregular acini with invasive cells (Figure 4.8d) can be 

seen at a cellular level. Fibrous surrounding tissue has low staining for ACBD3 whilst 

a. b. c. d. 
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the invasive cells have cells of epithelial appearance and high ACBD3 staining 

embedded within cells with low or no ACBD3 staining.  

  

Figure 4.9 – Bland Altman plot comparing difference in ACBD3 intensity scoring on 

different days and between two scorers. Day 1 scores compared to day 2 and day 3, and 

mean score for data presented compared to score from an independent observer with 

experience in the technique used for: a-c) BC08032a array, d-f) BR1008b array, g-i) 

BR1401 array. The average score per core on 2 days is plotted on the x axis and the 

difference between scores is plotted on the y axis. The solid line represents the bias value, 

and the dotted lines represent 95% limits of agreement. 

 

 Scores for ACBD3 staining on independent days were analysed for each array 

and presented as Bland Altman plots (Figure 4.9) (Altman, Bland 1983). In all cases 

the bias value (the average of the difference in score) was very small indicating that 

a.                                              b.                                               c. 

 

 

 

e. 

d.                                              e.                                               f. 

 

 

 

g.                                               h.                                               i. 
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scores were not biased between days and were therefore equally valid. Difference in 

ACBD3 staining score between days was smallest at high score value (4 out of 4) for 

all 3 arrays. The +/- 95% limit of agreement and hence the difference was smaller 

between the data presented here and the data generated by an independent scorer 

than the difference between repeated measurements by me on sequential days. This 

highlights the importance of taking a mean average of repeated measurements and 

also suggests the techniques between myself and an experienced tissue core scorer 

were consistent. The bias was very low between myself and the other scorer but my 

scores were consistently slightly higher across all arrays (Figure 4.9c, f, and i). 

There was a clear trend in the BR18008b array where difference in score 

between days was highest for scores of 3, decreasing for lower or higher scores 

(Figure 4.9d and e). This suggests that scoring cores around 75% ACBD3 staining 

intensity was the least consistent and most susceptible to ambiguity. This array also 

had fewer low ACBD3 intensity scored cores (minimum mean score = 1.3). 

To a lesser extent there was also a trend in the BR1401b array towards larger 

differences between days around scores of 2, but there was a more even distribution 

of scores overall (Figure 4.9g and i). Larger differences between days for scores 

between 2 and 3 may be down to the heterogeneity of samples and therefore ACBD3 

staining making it harder to consistently score cores with middling overall ACBD3 

protein staining. 

The relatively thick cores (5 micron) prevented automatic reading of the arrays 

by computer as the reader could not focus on cores consistently . Overall the scoring 

was not biased from day to day, but there was some ambiguity in scoring. The identity 

of the individual cores was not known until after all scoring was complete and scores 

from previous days were not observed when repeating measurements. 

The interclass correlation coefficient (ICC) was also calculated for the data 

compared in Figure 4.9. Firstly the ICC was calculated using the two way mixed 

effects model to measure consistency between the scorers (myself and an 

independent scorer model: ICC(3,k)) (Koo, Li 2016). The ICC score between scorers 

for the BC08032a array slide was 0.923 meaning reliability between scores was 

excellent. For the BC1008b array the ICC was 0.741 indicating moderate reliability 

bordering good reliability. The ICC score for the BR1401 array equalled 0.733, very 

similar to the score for the BC1008b array. 
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The ICC between days of scoring was then calculated. As this was undertaken 

by 1 scorer (myself) then the test type was test/retest, the model was the same but 

the ICC score dictates absolute agreement and not consistency.  ICC between 

repeated measures of the BC08032a array was 0.913 indicating excellent agreement 

between repeated scoring. The ICC score for BC1008b 0.699 indicating moderate 

agreement between days, as in the bland-altman plots (Figure 4.9d and e) there was 

clearly more discrepancy in score for this array than in others. The ICC value for the 

BR1401 scoring was 0.822 indicating that there was good agreement between scores 

on different days. 

 

4.3.8 ACBD3 Protein Expression in Malignant, Cancer Adjacent, and 

Normal Adjacent Breast Tissue  
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Figure 4.10 – ACBD3 staining score of the BC08032a US biomax tissue array. ACBD3 

protein levels are significantly lower in malignant tissue compared to either cancer adjacent 

tissue or normal adjacent tissue. 

 

Breast core array BC08032a consisted of 64 cores: 1 adrenal cortex control 

core plus equal parts malignant breast tissue, cancer adjacent breast tissue and 
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normal adjacent breast tissue. Array BC08032a was chosen to make direct 

comparisons between normal and cancerous breast tissue, and to analyse any 

significant differences between breast cancer pathologies within the sample of 31 

breast cancer tissue cores. 

Contrary to previous reports (Huang, Y., Yang et al. 2018), ACBD3 protein 

staining results for this array slide found ACBD3 protein staining to be statistically 

significantly lower in malignant breast cancer tissue compared to adjacent tissue or 

normal adjacent tissue (Figure 4.10). The mean average ACBD3 staining for 

malignant tissue was 0.92/4 compared to 2.14/4 for adjacent tissue (*P < 0.001), and 

2.31 for normal adjacent tissue (*P < 0.001). There was no significant difference in 

staining between the cancer adjacent and normal adjacent breast tissue samples. 

Comparing breast core staining by receptor status, subtype, grade, stage or TNM 

score did not produce any differences that reached statistical significance within this 

limited sample. 

ACBD3 antibody was diluted to 1:100 for slide array BC08032a and staining 

was weaker than expected overall. To avoid a loss in dynamic range of staining in 

subsequent array slides, ACBD3 antibody was incubated at 1:75 on subsequent array 

slides meaning that ACBD3 staining of breast cancer cores cannot be directly 

compared between this slide and the two subsequent slides. The core diameter on 

this slide is also larger at 1.55mm diameter compared to 1mm diameter for 

subsequent slides (the core thickness remained at a consistent stated 5μm although 

many cores across all array slides required adjustment of microscope focus 

suggesting discrepancies in core thickness). The pattern of staining of different cell 

types within cores was consistent across all arrays. 

 

4.3.9 ACBD3 Protein Expression in Malignant Breast Tissue and 

Metastatic Lymph Node Tissue 

Array BR1008b consisted of 101 cores: 1 adrenal cortex control core, 50 cores 

of malignant non-metastatic breast cancer tissue of various stage, grade, and 

receptor status. 40 cores were of breast cancer metastasis into lymph node tissue, 

and 10 cores were of normal adjacent tissue. Array BR1008b was chosen to analyse 

differences in ACBD3 protein expression between malignant non-metastatic breast 

tissue, metastatic breast cancer in lymph node tissue and normal adjacent breast 
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tissue. Unfortunately, multiple cores from this slide were completely lost during 

staining and many more were partially lost, including complete loss of 7 normal 

adjacent tissue cores and partial loss of the remaining 3. It has been previously noted 

informally by other researchers that loss of cores is more likely with smaller (1mm 

diameter) cores and that normal tissue cores are more likely to be lost than malignant 

cores (Kerslake, 2021 Personal Communication). Therefore, the analysis focussed 

on differences between in situ and invasive samples and on differences in ACBD3 

expression when patient samples were divided by receptor status.  

 

Figure 4.11 – ACBD3 staining score of the BR1008B US BIOMAX array. a) There was no 

statistical difference in ACBD3 staining between malignant breast tissue (n=48) and 

metastatic breast cancer of the lymph node (n=38). b) ACBD3 protein expression was 

significantly higher in PR negative breast cancer cores (n=50) compared to PR 3+ cores (n=9) 

(malignant breast tissue and metastatic lymph tissue, *P = 0.0067), but there was no 

statistical difference between PR- samples compared to all grades of PR+ core (not shown).  

 

There was no statistical difference between ACBD3 protein expression 

between malignant breast tissue and metastatic breast cancer in lymph node (Figure 

4.11a). High ACBD3 expression has previously been associated with more advanced 

stage tumours and with cancer stem cells and so it was unexpected to find no 

a. b.  
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statistical difference between non-metastatic and metastatic breast tissue (Huang, 

Y., Yang et al. 2018). ACBD3 protein levels were significantly higher in PR- breast 

cancers (mean=3.296) compared to breast cancers with high expression of PR (PR 

3+) (mean=2.642) (*P = 0.0067) (Figure 4.11b). this included both non-metastatic and 

metastatic (lymph node) breast cancer samples and this trend did not extend to PR- 

breast cancer samples when compared to samples with lower PR expression (PR 1+, 

PR 2+). Although most normal adjacent tissue cores detached during staining, 3 

partial cores were scored and had a mean score of 2.70; whilst this small sample size 

could not reach any statistical conclusions, it is was lower than the mean average for 

the breast cancer tissue cores overall (3.25) which is in keeping with previous 

literature but contradictory to the results of Figure 4.11 where ACBD3 protein 

expression was higher in breast cancer cell lines than a normal like breast cell control 

(Huang, Y., Yang et al. 2018). 

Overall, breast cancer cores in the BR1008b array had increased ACBD3 

staining compared to the BC08032a array which has been attributed to the increased 

concentration of ACBD3 antibody at 1:75 dilution (Compared to 1:100 for the 

BC08032a array). The BR1401b array however was also stained with 1:75 ACBD3 

antibody and has a more dynamic range of core scoring with many cores scored as 4 

but also many scored as <1.  

 

4.3.10 ACBD3 Protein Expression in Malignant Breast Tissue of Multiple 

Subtype Receptor Status and Pathology 

Array B1401b consisted of 141 cores: 1 adrenal cortex control core, and 140 

cores of breast cancer tissue of various stage, grade, receptor status and pathology. 

This array was chosen to analyse differences in ACBD3 protein expression between 

breast cancers with different features with a large enough sample size to determine 

statistical significance between breast cancer subgroups. This array contained cores 

the same size as array BR1008b and was stained in parallel, very few cores were lost 

from this array during staining and there were an acceptable number of partial core 

losses. 
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Figure 4.12 – ACBD3 staining score of the BR1401 US biomax array. There was a 

statistically significant difference between HER2- (grade 0) breast cancer samples and HER 

1+ samples, *P = 0.0107. 

 

In spite of the sample size of array BR1401, there were no cases of breast 

cancer with PR 3+ receptor status so the results from Figure 4.11b could not be 

corroborated in a larger sample size. HER2- breast cancer samples had significantly 

higher ACBD3 protein expression than HER2 1+ breast cancer samples (2.038, n=49, 

versus 1.055, n=4, respective mean averages, *P = 0.0107) (Figure 4.12). there was 

no significant difference between HER2- (0) breast cancer samples and HER2+ 

samples of any grade or between HER2 1+ and HER2 2+ breast cancer samples. The 

BR1008b array had no breast cancer samples with HER2 1+ staining and so this 

result could also not be corroborated between arrays. 

No other statistically significant changes were found between subgroups of the 

sample including by age, TNM score, grade, stage, pathology, or other receptor status 

(data not shown). 
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4.3.11 Examination of Histology and Patterns of ACBD3 Staining in Breast 

Cancer Tissue Cores 

 There were not many clear differences in ACBD3 staining based on patient 

pathology other than those described above (Figure 4.10, 4.11, and 4.12). There 

were, however, consistent and repeated patterns of staining of cores based on cell 

type and local structure (Figure 4.13). The 1.55mm cores of array BC08032a stained 

in a consistent and structure specific manner for cancer adjacent tissue, normal 

adjacent tissue and breast cancer tissue, Figure 4.13 shows some typical patterns of 

ACBD3 staining at 10X and 40X magnification from this core. 

 

Figure 4.13 – Histology of ACBD3 stained breast cores at 10X and 40X magnification. 

ACBD3 staining was detected by 3,3′-Diaminobenzidine (DAB) in brown, nuclei were stained 

by haematoxylin in blue. a) invasive ductal carcinoma of a 47-year-old female. Stage IA, 

grade 3, T1N0M0 scored as 1.1 overall for ACBD3 staining. b) invasive ductal carcinoma of 

a 50-year-old female. Stage IIA, Grade 2, T2N0M0 scored as a 2 overall for ACBD3 staining. 

c) normal adjacent breast tissue with ductal ectasia of a 41-year-old female, scored 2.9 

overall. d) cancer adjacent tissue (adenosis) of a 39-year-old female, scored 1.7 overall.  

 

Figure 4.13a shows a core from an invasive ducal carcinoma, ACBD3 protein 

staining (brown) overall is low despite high coverage of haematoxylin nucleus staining 

(blue). At higher magnification of the central duct there is a mix of cells with high and 

low expression of ACBD3 with moderate to low expression of ACBD3 in fibrous tissue 

a. b. 

c. d. 
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at the bottom of the high magnification image (pink hue). The core in Figure 4.13b is 

also from an invasive ductal carcinoma and contains many more small ducts and, in 

this case, invasive cells in the ducts have higher staining of ACBD3 compared to the 

surrounding tissue. Invasive cells are tightly packed and have a uniform amount of 

ACBD3 staining. Fibrous tissue appears to have low ACBD3 staining overall.  

Figure 4.13c shows a normal adjacent breast tissue core from a 41-year-old 

female with ducal ectasia. Adipose cells are visible at the lower right of the core and 

ACBD3 staining cannot be seen here in sharp contrast to the surrounding fibrous 

tissue where ACBD3 staining is higher. Increased magnification of the small ductal 

acini showed that staining was low in the benign ectasia cells blocking the ducts with 

some staining of ACBD3 at the basal myoepithelial cells. Figure 4.13d shows a core 

of cancer adjacent tissue with benign adenosis (enlarged more numerous lobules). 

Epithelial and myoepithelial cells lining the ducts have high levels of ACBD3 staining 

with moderate staining of the surrounding tissue. 

 

Figure 4.14 – Less typical ACBD3 staining in breast cores. a) 53-year-old female cancer 

adjacent breast tissue, Adipose cells have no ACBD3 staining in agreement with other 

observations whilst multiple small acini have very strong ACBD3 staining of luminal epithelial 

cells that are densely packed. Fibrous interlobal tissue has a moderate to high level of ACBD3 

staining typical of AT cores.  b) 41-year-old female normal adjacent breast tissue, ACBD3 

staining is low in the acini including the luminal epithelial cells and what appear to be invasive 

cells within the ducts, this in direct contrast to most normal and cancerous cores where there 

is strong ACBD3 staining of luminal epithelial cells. The fibrous interlobal moderately high in 

the fibrous interlobal tissue which is typical of NAT cores.  

 

ACBD3 staining was high in the luminal epithelial and basal myoepithelial cells 

of breast duct acini in both healthy breast and breast cancer samples but there were 

some exceptions (Figure 4.14). ACBD3 was moderate in fibrous interlobular tissue 

and stroma. Less normal appearing ducts that were small and closed had high levels 

a. b. 
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of ACBD3 staining (Figure 4.14a). Occasionally cores were found to have no ACBD3 

staining of luminal epithelial or basal myoepithelial cells of the ducts (Figure 4.14b) 

and occasionally ducts were also full of cells despite being normal tissue samples. 

ACBD3 staining was not detectable in adipose tissue. 

 

4.4 Discussion 

 The work in this chapter has determined basal mRNA and protein expression 

in breast cancer cell lines and was in agreement with the results of chapter 3, 

validating these cells as appropriate breast cancer models. These models also found 

that there was positive correlation between ACBD3 protein expression and ER 

positivity. As available protein expression data was limited breast cores were stained 

by IHC techniques and correlations between ACBD3 expression and receptor status 

were found. PI4Kβ expression was also queried as it is a known interactor of ACBD3 

with a role in breast cancer, and to determine whether the expression of ACBD3 and 

PI4Kβ correlated in any way. 

ACBD3 expression was increased in breast cancer cell lines compared to the 

MCF12A normal-like breast cells at the mRNA and protein level and this supported 

the hypothesis that ACBD3 has a role in breast cancer and corroborated the 

bioinformatic results from patient samples in chapter 3 (Figure 3.1b and c). This also 

validated breast cell lines as a viable model for studying ACBD3 in breast cancer. 

There was particular difficulty in achieving equal loading between all 7 cell lines for 

western blot due at least in part to different cell size and therefore different total cell 

number at 80% confluency. The blot is representative of what was observed in two 

biological replicates of each cell line, but the second set of biological replicates could 

not be presented on one blot. 

 

4.4.1 PI4Kβ Expression in Breast Cancer Cell Lines and Relationship with 

ACBD3 Expression 

 At the mRNA level there was a clear and statistically significant difference in 

PI4Kβ expression between cell lines derived from adenocarcinomas (high expression) 

and cell lines derived from invasive ductal carcinomas (low expression) (Figure 4.4b). 

PI4Kβ expression was previously found to be a marker for breast cancer recurrence 
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and is upregulated in 20% of breast tumours (Goh, Feng et al. 2017, Tan, Brill 2014, 

Morrow, Alipour et al. 2014). mRNA levels of PI4Kβ varied between the cell lines and 

expression was lower in several breast cancer lines (BT474. MDA-MB-436, T47D) 

compared to the normal-like breast cell line (Figure 4.4a). Only the MDA-MB-231 cell 

line had higher PI4Kβ expression to a statistically significant level.  

Contrary to mRNA expression data, PI4Kβ protein levels were higher in breast 

cancer cell lines compared to the normal-like control, with the exception of the MDA-

MB-436 cell line which had lower PI4Kβ protein expression. The MDA-MB-436 cell 

line also had the lowest PI4Kβ mRNA expression. 

Unlike PI4Kβ mRNA expression, ACBD3 mRNA expression did not correlate 

with any particular characteristics of the cell lines. At the protein level, breast cancer 

cell lines with high levels of ACBD3 protein also had high levels of PI4Kβ protein 

(Figure 4.6). The PI to PI(4)P conversion activity of PI4Kβ is not dependent on ACBD3 

protein, but ACBD3 localises PI4Kβ to PI-containing membranes and by association 

greatly increases PI4Kβ activity. The overexpression of ACBD3 protein may lead to 

overexpression of PI4Kβ as, without ACBD3, PI4Kβ activity is low regardless of 

expression but there is no direct evidence for a causal relationship here (Klima, Tóth 

et al. 2016, McPhail, Ottosen et al. 2017, Lyoo, van der Schaar, Hilde M. et al. 2019, 

Sasaki, Ishikawa et al. 2012). It is also possible that PI4Kβ overexpression  leads to 

overexpression of ACBD3 for the same reason. 

The positive correlation between PI4Kβ and ACBD3 protein expression was 

absent at the mRNA level. ACBD3 mRNA levels also did not correlate well with 

ACBD3 protein levels: T47D and MDA-MB-361 cells had high levels of ACBD3 protein 

expression but second and third lowest expression of ACBD3 mRNA respectively, 

(not including the normal like MCF12A line). Also, ACBD3 mRNA expression varied 

between different breast cancer cell line and was 2.1-fold to 5.8-fold higher in breast 

cancer cell lines compared to the MCF12A cell line. This suggests that ACBD3 protein 

levels are regulated post transcriptional and/or post translation and this is supported 

by chapter 3 (Figure 3.4) showing that the ACBD3 reading frame is hypomethylated 

and not regulated by methylation at the stage of transcription in normal breast or 

breast cancer.  
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4.4.2 ACBD3 expression in breast cell lines and ER status 

 ACBD3 protein expression was highest in ER+ cell lines. PMC42 and T47D are 

both ER+ PR+ HER2- whilst the MDA-MB-361 cell line is ER+ PR- HER2+. This 

association was not found at the mRNA level (Figure 4.3). In chapter 3 it was 

hypothesised that ACBD3 mRNA expression may be a marker for oestrogen receptor 

remodelling and it was found that oestrogen related pathways were associated with 

ACBD3 transcription repression (Chapter 3 – Figure 3.5). Despite this, high ACBD3 

protein levels were associated with breast cancer cell lines that expressed the 

oestrogen receptor which further suggests ACBD3 expression could be a marker of a 

remodelled oestrogen receptor signalling pathway that no longer represses ACBD3 

transcription. Core staining of array BR1401 found that the highest mean ACBD3 

protein scoring was found in ER+, PR-, HER2-, breast cancer patients, but this 

difference did not reach statistical significance compared to patients with other 

combinations of receptor status. 

 The ACBD3 antibody used throughout this project was found to give multiple 

bands in some, but not all cell lines, in western blots, ruling out the possibility of non -

specific binding, and all of the prominent bands are of a size larger than the size of 

ACBD3 (62 kDa). We were unable to determine the cause of the multiple banding but 

one candidate was poly-ubiquitination as bands have equal spacing of around 8.5 

kDa (Figure 4.7) and ACBD3 was found to interact directly with KDM2B which has 

known ubiquitin ligase activity (Chapter 3 – Figure 3.8). The triple negative BT20 and 

MDA-MB-231 cell lines showed the clearest evidence of multiple ACBD3 banding, if 

these multiple bands are from poly-ubiquitination then this may be a mechanism of 

regulation in these cell lines that have lower expression of ACBD3 compared to the 

ER+ lines. 

 

4.4.3 ACBD3 expression in breast cancer patient samples 

 It was unexpected to find that ACBD3 scoring was much lower for the cancers 

compared to either adjacent tissue. It does not match the findings in cell lines, 

bioinformatics, or previous publications (Huang, Y., Yang et al. 2018). The fibrous 

and connective tissue in the adjacent tissues had more ACBD3 staining and, as the 

bulk of many cores were made up of this, they scored highly. Fibrous tissue of the 

malignant cores had low to moderate staining with invasive cells that themselves had 
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varying and sometimes strong staining for ACBD3. It is possible that the level of 

ACBD3 protein is negatively affected by tissue disruption and links between ACBD3 

overexpression and extracellular proteins are found later in chapter 6. A possible 

explanation is that ACBD3 protein expression was high in cancerous cells (as 

evidenced by high staining of irregular ductal epithelial cells and invasive cells of the 

duct) but that in the context of a whole core including normal tissue and adipose 

tissue, ACBD3 was not increased. ACBD3 may even be the target of downregulation 

in response to breast cancer that cancerous cells do not respond to but that normal 

cells surrounding them do. There is some precedent for this as ACBD3 was found to 

be supressed by ER signalling but is highest in ER+ cell lines suggesting that 

repressors of ACBD3 may be reprogrammed in breast cancer. ACBD3 staining was 

significantly higher in PR- breast cancer cores compared to PR 3+ cores on one slide 

and significantly higher in HER2- cores compared to HER2 1+ cores on another slide 

but this result could not be cross corelated between slides because only one slide 

had PR 3+ breast cancer patients and that same slide had no HER2 1+ patients.  

A common feature of normal and cancerous tissue was high ACBD3 staining 

of luminal epithelial and myoepithelial basal cells of ducts. As many breast cancers 

originate from myoepithelial basal cells, that may be why ACBD3 protein levels were 

higher in breast cancer cell lines but ACBD3 expression did not appear high when 

viewed in the context of whole breast cores with cancer in part of as opposed to the 

whole core. As a protein that is strongly associated with Golgi function, it would be 

logical to find increased ACBD3 in the cells of the breast duct  which are secretary 

and ACBD3 expression may be required for secretion from these cells.  

Unfortunately, the adjacent tissue samples on other arrays were 

destroyed/displaced during the staining process and this has anecdotally been 

referred to as common on large (100 or more core) arrays where the core samples 

are smaller in diameter (Kerslake, 2021 Personal Communication).  

 

There was no significant difference in ACBD3 staining between malignant non-

metastatic breast cancer cores and cores from metastatic breast cancer of the lymph 

node suggesting that ACBD3 expression does not correlate with metastasis (Figure 

4.11a). ACBD3 overexpression in breast cancer cell lines promotes the formation of 

cancer stem cells(Huang, Y., Yang et al. 2018), and these are often slower growing 

more dormant cells and so an association between ACBD3 expression and lymph 
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node invasion was not necessarily expected . It was observed with invasive ductal 

carcinomas that there were often many invasive cells in the lobules that had low 

staining for ACBD3 but some cells embedded in them had very high staining, and this 

could be, in effect, staining cancer stem cells or cells that may become them as the 

heterogenous tumour evolves. 

 ACBD3 interacts with the progesterone receptor chaperone UNC45A, a 

regulatory component of the progesterone receptor/heat shock protein 90 

chaperoning complex, which functions in the assembly and folding of the 

progesterone receptor (Chadli, Graham et al. 2006b). An ACBD3-UNC45A interaction 

could have a negative effect on PR nuclear expression, and it is possible that PR 

signalling-dependent breast cancers may be under selection pressure to 

downregulate ACBD3 protein relative to PR- breast cancers. 

In summary, the breast cancer cell lines chosen as models for this project all 

had higher levels ACBD3 mRNA and protein than a normal like breast cell control and 

ACBD3 expression varied between cancer cell lines. There was positive correlation 

between ACBD3 and PI4Kβ protein levels in breast cell lines. These results serve as 

a baseline for work in subsequent chapters and informed which cell lines should be 

used for different experiments. 

ACBD3 protein expression in patient tumour core samples were found to be 

higher in normal breast tissue compared to breast cancer tissue, conflicting with 

results found in breast cell lines in this chapter, with bioinformatic analysis in chapter 

3, and previously published results. It was also found that in breast cancer patient 

samples, ACBD3 expression positively correlated with PR negativity and HER2 

positivity. 
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Chapter 5 

Examining regulators of ACBD3 and PI4Kβ Expression 

in Breast Cancer Cell Lines 

 

5.1 Introduction 

 ACBD3 is essential for embryogenesis, is causative of disease progression in 

mouse models of Huntington’s disease, is essential for CBV3 viral infection, and has 

no known redundancies for its functions (Zhou, Atkins et al. 2007, Sbodio, Paul et al. 

2013, Kim, H. S., Lee et al. 2018, Lyoo, van der Schaar, Hilde M. et al. 2019) . Despite 

its importance in normal cell function and in disease, there are few experimentally 

confirmed regulators of ACBD3 at the protein level and none at the mRNA level 

(Okazaki, Ma et al. 2012, Okazaki, Glass 2017). 

Chapter 4 confirmed that ACBD3 is overexpressed in breast cancer cell lines 

at the mRNA and protein level, and ER+ breast cancer cell lines had the highest 

expression of ACBD3 protein (Chapter 4 – Figure 4.6). In patient sample core 

analysis, it was found that ACBD3 protein levels were higher in HER2- breast cancer 

patients than HER2 1+ breast cancer patients (Chapter 4 – Figure 4.11a) and higher 

in PR- breast cancer patients than PR 3+ breast cancer patients (Chapter 4 – Figure 

4.10). Chapter 3 uncovered potential factors that affect ACBD3 transcription levels 

(Chapter 3 – Figure 3.5), found that ACBD3 was overexpressed in breast cancer 

patient tumours (Chapter 3 – Figure 3.2) and found novel ACBD3 interactors and co-

expressors (Chapter 3 -Figure 3.8). From the cumulative results of chapters 3 and 4 

it was hypothesised that ACBD3 is either directly involved in breast cancer 

occurrence/progression with differential effect depending on receptor status (ER, PR, 

HER2) or that ACBD3 could be a biomarker for cellular changes that occur in breast 

cancer. 

If ACBD3 has a direct role in breast cancer, then finding regulators of its 

expression are important as these could form part of a breast cancer treatment (or 

prevention) regime in the future. In the shorter-term, finding regulators of ACBD3 in 

breast cancer will provide evidence as to how ACBD3 is upregulated and what 

consequence that upregulation might have for breast cancer patients. As ACBD3 is 

an essential gene that is expressed in all tissues, direct silencing or inhibition of its 

functions may not be desirable and instead targeting one or more of its known 
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interactors, such as PI4Kβ, may have more efficacy as a treatment option (Yue, Qian 

et al. 2019, Klima, Tóth et al. 2016). 

To find out how ACBD3 expression might be regulated in breast cancer, I 

started with the one of two experimentally confirmed regulators of ACBD3 in any 

tissue: iron in the duodenum (Okazaki, Ma et al. 2012). ACBD3 interacts with the iron 

transporter DMT1 and its positive regulator Dexras1 to facilitate free iron and 

transferrin bound iron cellular import. This process is dependent on ACBD3 pro tein 

expression and is experimentally confirmed to also take place in the brain (Okazaki, 

Ma et al. 2012, Choi, Bang et al. 2013). Iron levels in the cells of the gut regulate 

ACBD3 protein levels by providing negative feedback which reduces ACBD3 protein 

and therefore prevents further iron import. 

 It was decided to target PI4Kβ activity as it is a key binding partner of ACBD3 

and PI4Kβ was found to be upregulated at the protein level in the BT20, MDA-MB-

231, PMC42, T47D, and MDA-MB-361 breast cancer cell lines compared to the non-

cancerous MCF12A breast cell line (Chapter 4 – Figure 4.6). Breast cancer cell lines 

with the highest ACBD3 protein expression also had the highest PI4Kβ protein 

expression and this relationship could be causal with the expression of one affecting 

the expression of the other. As direct Inhibition of ACBD3 might not be desirable, 

inhibition of its binding partners may provide a more effective and specific treatment 

option for breast cancers. 

PI4Kβ expression is associated with breast cancer but its inhibition in breast 

cancer has not been studied experimentally (Goh, Feng et al. 2017, Tan, Brill 2014, 

Morrow, Alipour et al. 2014, Waugh 2014). The MDA-MB-231 cell line was chosen to 

study the effects of a PI4Kβ inhibitor as it is the only breast cancer cell line in this 

project to express PI4Kβ mRNA to a significant level above the expression of the 

normal-like MCF12A cell line (chapter 4 - Figure 4.4a) and MDA-MB-231 cells have 

a high level of protein expression (relative to the MCF12A cell line, chapter 4 - Figure 

4.6). The MDA-MB-231 cell line is also derived from a triple negative breast cancer 

and these tumours have the fewest treatment options and are associated with the 

worst prognosis for patients meaning evaluating novel treatment options for triple 

negative breast cancers is especially important (Won, Spruck 2020). 

 This chapter covers broad factors in a search for regulators of ACBD3 and 

their effect on breast cancer cell growth. The lack of relationship between these 

factors represents the gaps in current knowledge about ACBD3, its regulation in 
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general, and especially its regulation in breast cancer. The exploration of some 

compounds, such as a PI4Kβ inhibitor and iron, have a clear rationale whilst other 

findings came from experimental observations in relation to inconsistent  results. 

mRNA expression of ACBD3 was tested in a previously engineered everolimus 

resistant T47D breast cancer cell line (Hare 2018, Hare, Harvey 2017) and expression 

was found to be increased in some biological replicates but not others. Other 

inconsistencies in mRNA measurements led to further inquiries into a relationship 

between ACBD3 expression and the seeding density of cell lines in culture.  

Everolimus is an mTOR inhibitor and rapamycin analogue originally approved 

as an immunosuppressant for organ transplant patients (Kirchner, Meier-Wiedenbach 

et al. 2004, Beaver, Park 2012, Baselga, Campone et al. 2012). It was later approved 

as a second line treatment for breast cancer patients who are ER+ and have 

previously had aromatase inhibitor therapies. Whilst there are currently no published 

cases of acquired resistance to everolimus in breast cancer patients, it was 

considered important to determine what changes occur in cells with engineered 

everolimus resistance in an attempt to pre-empt any future acquired resistance in 

patients. Changes in mTOR related genes were found in the resistant cells as well as 

changes in the expression of several oncoproteins but the mechanism of resistance 

was not fully concluded (Hare 2018). ACBD3 expression changes in the everolimus 

resistant cell line and ACBD3 expression changes following everolimus treatment 

expands on the previous research and this is taken further in chapter 6. PI4Kβ 

expression in the T47D parental and T47D everolimus resistant cell line was also 

analysed. 

 

5.2 Chapter Aims 

The aim of this chapter was to discover regulators of ACBD3 expression in breast 

cancer cell lines and to examine whether ACBD3 expression changes correlated with 

changes in PI4Kβ expression. Based on these discoveries, the factors that regulate 

ACBD3 expression were analysed for efficacy as breast cancer treatments.  
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5.3 Results 

5.3.1 Iron Treatment of the MDA-MB-231 Breast Cancer Cell Line  

Iron is one of the few known negative regulators of ACBD3 protein expression 

(Okazaki, Ma et al. 2012). Inorganic iron is insoluble, so ferric ammonium citrate was 

used as the most suitable soluble form of iron as it is soluble in water and water-

based solvents such as PBS and cell culture medium. The availability of ammonium 

citrate was also a factor as it allowed for the use of effective controls. Ferric 

ammonium citrate was solubilised in PBS at the concentrat ions indicated below, 

added to cell culture medium, and the effect on ACBD3 protein expression was 

measured by western blot in the MDA-MB-231 breast cancer cell line. Ferric 

ammonium citrate containing media was formulated in weight per volume but 

converted to molarity to make direct comparisons between an ammonium citrate 

control and because the molarity of the iron in ferric ammonium citrate would be equal 

to the molarity of the ferric ammonium citrate. A table of conversion between molarity 

and weight per volume can be found in chapter 2 – section 2,2.14 (Table 2.14). 

 

5.3.2 ACBD3 Protein Expression in Response to Ferric Ammonium Citrate 

Supplementation 

Initially the effects of ferric ammonium citrate on ACBD3 expression were 

compared to a PBS control. Ferric ammonium citrate in medium at 0.179μM and 

89.53μM concentrations resulted in increased ACBD3 protein expression compared 

to PBS only control after 72 hours (Figure 5.1). Following 447.7μM ferric ammonium 

citrate treatment, ACBD3 was downregulated at the protein level compared to the 

0.179μM and 89.53μM added ferric ammonium citrate conditions. There were multiple 

bands of staining with ACBD3 antibody (as in chapter 4 - Figure 4.6) and these bands 

appeared at first as two bands but were found to be four  bands in the two close 

couplets that can be best visualised in lane one (PBS control) and lane five (447.7μM 

ferric ammonium citrate). The higher and lower weight bands of ACBD3 protein were 

differentially expressed with all bands upregulated compared to the no iron control 

following 0.179μM and 89.53μM ferric ammonium citrate treatment. Following 

447.7μM ferric ammonium citrate treatment the lower weight couplet of bands were 

slightly upregulated compared to the PBS control and the higher weight couplet o f 

bands were downregulated. After 89.53μM ferric ammonium citrate treatment  or 
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higher, cell pellets were visibly orange indicating that iron was being taken up by the 

cells. 

 

Figure 5.1 – ACBD3 protein expression is upregulated in response to ferric ammonium 

citrate treatment in the MDA-MB-231 cells. ACBD3 protein levels were increased after 72 

hours of treatment with 0.179μM and 89.53μM ferric ammonium citrate compared to PBS only 

control. ACBD3 was slightly upregulated in the 447.7μM ferric ammonium citrate treated cells 

(combined floating and adherent cells) compared to control. There were multiple bands of 

ACBD3 staining and these were differentially expressed between differ ent treatments. 

Exposure time for ACBD3 bands was 2 minutes. β -actin protein staining was used as a 

loading control in addition to cell counting before lysis (10 second exposure). Blot is 

representative of results from n=2. 

 

5.3.3 MDA-MB-231 Cell Growth in Response to Iron Supplementation 

ACBD3 protein levels were upregulated in response to 0.179μM and 89.53μM  

ferric ammonium citrate supplementation suggesting that iron does not negatively 

regulate ACBD3 protein levels in breast cancer. Increased ACBD3 expression in 

breast cancers could increase the cells’ capacity to import iron, and cellular iron levels 

are linked to redox stress which can drive inflammation. An inflammatory 

microenvironment can promote cancer (Deshmukh, Srivastava et al. 2019, Hanahan, 

Weinberg 2011) but there is a limit to how much redox stress cells can 

tolerate(Townsend, He et al. 2008, Wang, J. B., Erickson et al. 2010, Perillo, Di 

Donato et al. 2020). If ACBD3 overexpression increases cellular iron, then breast 

cancers may be more sensitive to further increases in iron as a treatment than normal 

cells. The MDA-MB-231 cell line was again chosen to study the effect of iron on cell 

growth measured by MTT assay to calculate relative cell number.  
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Ferric ammonium citrate or ammonium citrate were added to medium at 

equivalent molarity for direct comparison. Supplemented medium was added to cells 

in 96 well plate format and treated for 72 hours. Cell viability was measured by MTT 

assay to determine cell growth relative to untreated cells (media + PBS carrier).  

Ferric ammonium citrate increased mean relative cell number (RCN) above the 

level of untreated cells up to 1.79μM, with a maximum RCN of 124% for cells treated 

with 17.907nM ferric ammonium citrate compared to controls (Figure 5.2a). Mean 

RCN decreased above 1.79μM ferric ammonium citrate and the reduction in RCN 

compared to controls reached statistical significance at and above 17.907μM ferric 

ammonium citrate treatment. 

 

Figure 5.2 – a) Relative cell number after 72 hour ferric ammonium citrate treatment. 

17.91nM ferric ammonium citrate treatment significantly increased relative cell number in the 

MDA-MB-231 cell line, MDA-MB-231 are tolerant to high levels of ferric ammonium citrate 

treatment. Ammonium citrate alone yielded no growth advantage relative to the PBS only 

control and ammonium citrate treatments had a lower mean relative cell number than ferric 

ammonium citrate treatment up to 17.907μM equivalent treatments. Relative cell number 

was measured by MTT assay after 72 hours of treatment with ammonium iron citrate or 

ammonium citrate compared to PBS only control . Data are plotted as mean plus/minus 

standard deviation error bars. All data were collected in sextuplet per assay and the assay 

was repeated three times independently (n=3). b) 72-hour iron treatment increases MDA-

MB-231 relative cell number between 100-1000ng/ml. To find the specific effect of iron on 

cell growth, ammonium iron citrate treatment was normalised against ammonium citrate 

treatment at equal molarity. The dotted line represents 0% increased cell number compared 

to control *P values represent significant difference in relative cell number compared to the 

control for the same reagent.  

a.                                                             b.                                           
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Cells treated with ammonium citrate (without iron) showed no increase in RCN 

at any concentration in medium compared to controls but caused statistically 

significant decreases in RCN at 17.907nM, 179.07nM, 8.9534μM, 17.907μM, 

89.534μM, and 179.07μM. It is possible that the ammonium citrate in the ferric 

ammonium citrate treatments was responsible for the decreasing RCN at high 

concentrations (>1.79μM) but as iron is insoluble without a suitable ligand this cannot 

be tested directly. Treatments were measured in moles rather than concentration by 

weight per volume to allow for direct comparisons between ammonium citrate and 

ferric ammonium citrate as they have different molecular weights.  

 To separate the effects of the iron from the effects of the ammonium citrate 

ligand as much as is possible, the RCN for ferric ammonium citrate treatments was 

normalised against the RCN for ammonium citrate treatments at equivalent molarity 

(Figure 5.2b); however, this cannot rule out the direct interplay between iron and 

ammonium citrate, which is mildly acidic. Iron supplementation d id not decrease RCN 

at any concentration compared to equivalent ammonium citrate controls. 100ng/ml 

iron treatment (17.907nM) led to a 54.05% RCN increase (*P = 0.009271), 500ng/ml 

iron treatment 86% increase (*P = 0.031142) and 1μg/ml iron treatment 70.29% 

increase (*P = 0.015492) (Figure 5.2b). The largest difference was seen at 100μg/ml 

iron (182.66% increase) but, as can be seen in Figure 5.2a (17,907nM equivalent 

molarity), RCN for both conditions was small and the difference did not reach 

statistical significance (*P = 0.264012).  

 

5.3.4 PI4Kβ inhibition in the MDA-MB-231 Breast Cancer Cell Line 

 

Figure 5.3 – The molecular structure of BQR695, a PI4Kβ specific inhibitor with sub -

micromolar affinity (McNamara, Lee et al. 2013). 

 

BQR695 is a PI4Kβ specific small molecule inhibitor from the Novartis compound 

library with a reported IC50 of 90nM; it is soluble in DMSO and insoluble in water 

(McNamara, Lee et al. 2013). BQR695 binds the ATP-binding pocket of PI4Kβ and 
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this binding is competitive with ATP.  BQR695 is a quinoxaline compound with a 

central benzene ring and pyrazine ring and molecular formula: C 12H20N4O3. Its 

structure is represented in Figure 5.3.  

 

5.3.5 Treatment of MDA-MB-231 Cells with BQR695 

 BQR695 was found to be a PI4Kβ specific inhibitor whilst studying malaria 

infection and has not been tested for any therapeutic effect in cancers in spite of the 

evidence for a PI4Kβ role in cancer (Waugh 2014, McNamara, Lee et al. 2013, Goh, 

Feng et al. 2017, Tan, Brill 2014, Orsetti, Nugoli et al. 2006, Morrow, Alipour et al. 

2014). The MDA-MB-231 cell line was treated with 50nM to 100μM BQR695 for 72 

hours and the cell number was then measured relative to controls by MTT assay.  
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Figure 5.4 –MDA-MB-231 relative cell number after 72 hours of BQR695 treatments 

relative to the DMSO only (0nM BQR695) control. There was a significant difference 

between 0nM treatment and 100,000nM treatment (*P = 0.019771), 100nM and 50,000nM 

treatment (*P = 0.001398), and 100nM and 100,000nM (*P = 0.000138). 0nM BQR695 = 

DMSO only control (0.1% DMSO), all other treatments had a final concentration of 0.1% 

DMSO. MTT experiment was carried out three times independently (n=3) and each 

experiment was measured in sextuplet, error bars represent the standard deviation.  
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BQR695 treatment up to 2μM did not have a negative effect on MDA -MB-231 cell 

growth relative to the DMSO only control, based on mean relative cell number (RCN) 

(Figure 5.4). Only the 100μM BQR695 treatment had a statistically significant 

difference in RCN compared to the control (44.2% decrease in cell number, P = 

0.019771). The 100nM treatment was close to the reported IC50 for PI4Kβ activity 

inhibition(90nM) and had no statistically significant effect on RCN compared to the 

control (McNamara, Lee et al. 2013). The 50μM and 100μM treatments had 

significantly lower RCN compared to the 100nM treatment (41.3% cell number 

decrease *P = 0.001398, and 47.8% cell number decrease *P = 0.000138 

respectively). 

 

5.3.6 ACBD3 Protein Expression in Response to BQR695 treatment 

 ACBD3 protein and PI4Kβ protein expression were found to positively correlate 

with each other (chapter 4 – Figure 4.6), and it was hypothesised that expression or 

activity of one may affect expression of the other. It has already been found that 

PI4Kβ activity is dependent on protein expression of ACBD3 although even low levels 

of ACBD3 protein (post ACBD3 siRNA treatment) allow for PI4Kβ activity (Kim, H. S., 

Lee et al. 2018, Lyoo, van der Schaar, Hilde M. et al. 2019, Dorobantu, Cristina M., 

van der Schaar et al. 2014). 

PI4Kβ was inhibited in the MDA-MB-231 cell line to find out if ACBD3 protein 

expression was dependent on the activity of PI4Kβ. MDA-MB-231 cells were seeded 

at 100,000 cells per well in six well plates. After 24 hours, cells were treated with 

double the IC50 of BQR695 inhibitor (180nM) in media for 24 hours and then lysed 

for analysis by western blot (n=3). ACBD3 was found to be upregulated at the protein 

level in one of three biological replicates treated with 180nM BQR695 in DMSO carrier 

compared to cells treated with DMSO only (Figure 5.5). There was variance in ACBD3 

expression in all biological replicates and two BQR695 biological replicates had very 

similar or possibly lower ACBD3 expression than the controls. The BQR695 treated 

cells showed stronger higher weight banding of ACBD3 as visible in lane six of Figure 

5.5 that is most apparent in the top panel (ACBD3 five-minute exposure). 



 
 

 

       122  
 
 

 

 

Figure 5.5 – Western blot of lysates from MDA-MB-231 cells treated with 2X IC50 of 

BQR695 (180nM) compared to DMSO only control treatment. 5 minute and 1 minute 

exposure western blot of ACBD3 protein expression, β-actin protein staining was used as a 

loading control in addition to cell counting before lysis (10 second exposure). Each lane 

contains the lysate of an independent biological experiment (n=3 per condition).  

 

 Multiple banding was previously observed in the MDA-MB-231 breast cancer 

cell line and other cell lines and had differential intensities. Inhibition of PI4Kβ activity 

appears to have increased the prevalence of the highest weight band of ACBD3 and 

it is possible that this represents a post translational modification to the ACBD3 

protein when PI4Kβ is not active.  

Upregulation of ACBD3 was observed in one sample of 180nM BQR695 treated 

cells and the experiment was repeated, this time with 10 times the IC50 of BQR695 

(900nM). At this concentration of treatment there was still no definite upregulation of 

ACBD3 (Figure 5.6) and, overall, it cannot be concluded that PI4Kβ inhibition has a 

consistent effect on overall ACBD3 protein levels in the MDA-MB-231 cell line. At 

900nM BQR695 treatment there was a less obvious effect on the proportion of higher 

weight ACBD3 bands. 
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Figure 5.6 – Western blot detecting ACBD3 protein expression in MDA-MB-231 cells 

treated with 10X IC50 of BQR695 (900nM) compared to DMSO only control treatment. 1 

minute exposure of ACBD3 staining.  β-actin protein staining was used as a loading control 

in addition to cell counting before lysis (10 second exposure).  

 

5.3.7 ACBD3 and PI4Kβ mRNA Expression in an Everolimus Resistant 

T47D Breast Cancer Cell Line 

An everolimus resistant T47D breast cancer cell line (T47D-EveR) was 

previously established to investigate any mechanism that might cause everolimus 

resistance (Hare 2018). ACBD3 mRNA expression was measured by QPCR in the 

T47D naïve parental cell line and T47D everolimus resistant cell line. As a separate 

GeNorm analysis had been performed to find suitable reference genes for the T47D 

parental and T47D-EveR cell lines (Hare 2018), that analysis was referred to and the 

YWHAZ and TOP1 reference genes were used in place of the reference genes 

described for previous QPCR experiments (Chapter 4 – 4.2.1). The relative quantity 

of several mTOR related proteins were also measured, RICTOR and mTOR 

expression matched previous mRNA expression results (not shown) (Hare 2018). 

RAPTOR was found to have approximately a 3-fold increase in expression where fold 

changes in expression were not found previously by Hare (2018), Hare did find 

RAPTOR to be upregulated at the protein level in the T47D-EveR cell line. 

 

5.3.8 ACBD3 is Upregulated in the T47D Everolimus Resistant Cell Line  

ACBD3 mRNA was found to be 155% higher in the T47D-EveR cell line relative 

to the parental T47D cell line but only one biological replicate was tested (not shown). 

When this was repeated with three biological replicates the fold change disappeared 

and there was high variance between biological replicates. It was hypothesised that 
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ACBD3 mRNA expression may be cell density dependent in breast cell lines as was 

reported by Okazaki et al 2012, but their data were not shown in the paper. A third 

QPCR experiment to compare the expression of ACBD3 between the T47D parental 

and T47D-EveR cell lines was carried out that controlled for cell densi ty, cells were 

seeded at 5.33X104 cell/cm2 in T75 flasks and then harvested for RNA extraction after 

24 hours (n=3). This density was chosen as it approximates 60-70% confluency for 

this cell line and cells would be in log growth whilst also being a large enough cell 

number to minimise errors in counting and distributing (4 million cells per 75cm 2 

flask). 
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Figure 5.7 –ACBD3 and PI4Kβ are more highly expressed in the everolimus resistant 

T47D cell line (T47D-EveR pink) than the T47D parental cell line (white). ACBD3 

expression was increased 2.56-fold in the everolimus resistant cell line and PI4Kβ expression 

was increased 2.92-fold. mRNA quantity is relative to the quantity in the parental cell line for 

each respective gene and was measured by QPCR. Error bars represent the standard 

deviation of the biological replicates (n=3). Each biological repl icate was tested 3 times (3 

technical replicates) per gene and normalised to TOP1 and YWHAZ relative expression. 

 

It was found that ACBD3 was 113% higher in the T47D-EveR line (*P = 

0.000472) and PI4Kβ expression was 192% higher (*P = 0.000553) compared to the 

parental cell line (Figure 5.7). This upregulation of ACBD3 was similar to the initial 

single biological replicate finding for the everolimus resistant cell line. Taken 
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together, these results suggest that ACBD3 expression is higher in the T47D-EveR 

cell line and also that expression of ACBD3 might be dependent on cell density. 

 

5.3.9 Everolimus Treatment Does Not Affect ACBD3 mRNA Expression in 

the T47D Cell Line 

The T47D-EveR cell line has undergone multiple changes compared to the 

T47D parental line including a slower reported growth rate and upregulation of β-

catenin protein expression (Hare 2018). During routine culture the T47D-EveR cell 

line was treated with 100nM everolimus in media for 72 hours every third passage to 

maintain resistance. To determine whether ACBD3 upregulation was a consequence 

of the everolimus treatment, the parental cell line was treated with 100nM everolimus 

for 24 hours and then RNA was harvested. As with the results in Figure 5.7, cells 

were seeded at 5.33X104 cells/cm2. Treatment medium was made up to a final 

concentration of 100nM everolimus in DMSO (0.002% DMSO final concentration) and 

control media contained 0.002% DMSO. Each condition was assayed 3 times, 

independently and in parallel (n=3). 

ACBD3 PI4Kβ

0.0

0.5

1.0

1.5

2.0

2.5

mRNA expression

Gene

R
e
la

ti
v
e
 Q

u
a
n

ti
ty

Untreated

Everolimus 100nM

✱✱

 

Figure 5.8 – mRNA expression of ACBD3 and PI4Kβ in the T47D breast cancer cell line 

after 24 hours treatment with 100nM everolimus. PI4Kβ was 1.82-fold upregulated 

following everolimus treatment (*P = 0.006794), ACBD3 expression was not significantly 

different. Error bars represent standard deviation, n=3.  
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ACBD3 mRNA expression in the T47D parental cell line was not significantly 

different after 24 hours everolimus treatment compared to the DMSO-only control 

(untreated) despite being upregulated in the T47D-EveR cell line (Figure 5.8); 

however, PI4Kβ expression was upregulated by almost two-fold (81.6% upregulation) 

following 24 hours of everolimus treatment.  

 

5.3.10 Everolimus Treatment Does Not Affect ACBD3 Protein Expression 

in the T47D Cell Line 

 The T47D-EveR cell line resistance to everolimus was maintained with one 

passage of 100nM everolimus complete media every three passages. The everolimus 

resistant cell line overexpressed ACBD3 at the mRNA level but everolimus treatment 

did not affect ACBD3 mRNA levels in the T47D cell line. T47D cells were again treated 

with everolimus and samples were taken at multiple time points to determine if 

everolimus had an effect on ACBD3 protein levels independently of mRNA expression 

changes.. Parental cells were seeded into seven wells of six well plates at 2X10 4 

cells/cm2 and after 24 hours media was changed to 100nM everolimus complete 

media for three of the wells and fresh complete control media (equivalent amount 

DMSO 0.002%) to three others. The seventh well was harvested simultaneously to 

treatment, by addition of hot laemmli buffer directly to the plate, followed by scraping 

with a pipette for a time 0 sample. After 6 hours, one treated and one untreated 

sample was harvested, and again at 24 hours and 72 hours. This was repeated for 

two experiments (n=2) and the results gained were consistent.  

ACBD3 protein expression was not different at any time point for the 

everolimus treated cells but was upregulated at 6 hours and 72 hours after DMSO 

only control treatment (untreated) (Figure 5.9).  PI4Kβ protein expression also 

increased overtime in the control samples at 6 and 72 hours compared to time and at 

72 hours in the 100nM everolimus-treated cells. 
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Figure 5.9– ACBD3 protein did not change over time following everolimus treatment in 

the T47D cell line but did increase over time in the DMSO only controls.  PI4Kβ protein 

expression increased at 72 hours everolimus treatment but also increased over time in the 

controls. β-actin protein staining was used as a loading control in addition to cell counting 

before lysis. β-actin exposure = 10 seconds, ACBD3 exposure = 2 minutes,  PI4Kβ exposure 

= 1 minute. Representative blot from n=2. (Panels are from a single blot that has been 

cropped to better interpret the results, the original uncropped blot image in the appendix - 

Figure 9.1). 

 

The everolimus resistant cell line grew slower in everolimus containing medium 

and I had previously hypothesised that ACBD3 expression may be dependent on cell 

density. It is possible that ACBD3 protein levels did not increase over time in the 

everolimus treatment group because growth was largely inhibited meaning that cell 

density changed very slowly whilst in the control group cell density increased more 

rapidly in the same time. 

 

5.3.11 ACBD3 and PI4Kβ Expression in Response to Cell Seeding Density 

 Initial QPCR results for baseline ACBD3 expression were inconsistent when 

looking at T47D breast cell lines under different conditions. The loading control for 

QPCR was previously taken at the point of RNA extraction with cDNA synthesis based 

on RNA concentration. Cells were taken from a T25 or T75 flask at 80% confluency 

leaving some variability in the total cell number / cell density. ACBD3 protein 

expression was previously reported to be 2-fold greater in the K562 leukaemia cell 



 
 

 

       128  
 
 

 

line when grown at 2.5X105 cells/ml than in the same cell line grown at four times that 

density (the data were not shown in the paper) (Okazaki, Ma et al. 2012). Despite this 

observation being in suspension culture, because ACBD3 protein levels were also 

found to increase over time for untreated T47D cells (Figure 5.9), I hypothesised that 

this could also be due to increasing cell density. These three factors formed the 

hypothesis that ACBD3 expression in breast cancer cell lines is dependent on the 

density of the cells. As PI4Kβ is one of the main binding partners of ACBD3, PI4Kβ 

expression was also measured. 

 

5.3.12 ACBD3 mRNA Expression 

 Cells were grown to 80% confluency in 75cm2 flasksand then seeded at 106, 

2X106, 4X106, or 6X106 in a 75cm2 flask (1.33X104, 2.66X104, 5.33X104, or 8X104 

cells/cm2 respectively). The T47D parental cell line and the T47D-EveR cell line were 

both tested as I was interested in ACBD3 expression changes between these cell 

lines as well as for ACBD3 expression changes in response to cell density. The TOP1 

and YWHAZ reference genes were used for QPCR again as they had previously been 

validated as appropriate references for the T47D and T47D-EveR cell lines as in 

Figure 5.7 and Figure 5.8 and by Hare 2018, each condition was assayed 3 times 

independently for n=3. 

 ACBD3 mRNA expression followed a similar pattern as cell density changed in 

both the T47D parental and T47D-EveR cell lines. In both cases ACBD3 was low at 

1.33X104 cell/cm2 and increased greatly at 2.66X104 cell/cm2, there was only a small 

change in quantity between 2.66X104 cell/cm2 and 5.33X104 cell/cm2 for both cell 

lines (Figure 5.10). In the T47D-EveR cell line ACBD3 mRNA expression decreased 

sharply between 5.33X104 cell/cm2 and 8X104 cell/cm2 but this did not occur in the 

parental cells.  

Changes to ACBD3 expression in the parental cell line depending on cell 

density did not reach statistical significance. In the T47D-EveR cell line, fold change 

differences in ACBD3 expression were larger between cell density conditions than 

the parental cell line and reached statistical significance in most instances.  

T47D-EveR cells seeded 2.66X104 cell/cm2
 or 5.33X104 cells/cm2 had higher 

ACBD3 expression than cells seeded 1.33X104 cell/cm2. ACBD3 expression was 
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significantly decreased when T47D-EveR cells were seeded at 8X104 cells/cm2 

compared to 2.66X104 cell/cm2
 and 5.33X104 cell/cm2 seeding densities.  
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Figure 5.10 – ACBD3 mRNA expression in the T47D parental and T47D-EveR cell lines 

when seeded at different densities. There were no statistically significant changes to 

ACBD3 expression in the T47D parental cells (white) when seeded at different densities. In 

the T47D-Ever cell line (pink), ACBD3 was significantly upregulated at 2.66X104 cell/cm2 (RQ 

= 12.59, *P = 0.006824) and 5.33X104 cell/cm2 (RQ = 10.08, *P = 0.000458) compared to at 

1.33X104 cell/cm2 (RQ = 1.50). in the T47D-EveR cell line, ACBD3 was significantly 

upregulated at 2.66X104 cell/cm2 (RQ = 12.59, *P = 0.004422) and 5.33X104 cell/cm2           

(RQ = 10.08, *P = 0.000059) compared to at 8X104 cell/cm2 (RQ = 2.80). All values are 

relative to the T47D parental cell line seeded at 1.33X104 cell/cm2, error bars represent the 

standard deviation, n=3 per condition and each biological replicate was assayed 3 times.  

 

ACBD3 mRNA expression between the T47D parental and T47D-EveR cell line 

were also compared at equivalent densities. The comparison at 5.33X104 cell/cm2 

was previously reported in Figure 5.7 where ACBD3 was upregulated in the          

T47D-EveR cell line to a statistically significant level (2.13-fold increase, (*P = 

0.000236). At 1.33X104 cell/cm2 there was no statistical difference in ACBD3 

expression between the cell lines (*P = 0.554878). There was also no statistical 
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difference at 2.66X104 cell/cm2 (*P = 0.060729) despite a 2.59-fold increase in mean 

ACBD3 expression in the T47D-EveR cell line. ACBD3 expression was downregulated 

1.41-fold in the T47D-EveR cell line at 8X104 cell/cm2 compared to the parental cell 

line, a small but statistically significant change (P = 0.000723). 

 

5.3.13 PI4Kβ mRNA Expression 

 PI4Kβ mRNA expression was measured simultaneously to ACBD3 expression 

in the T47D parental and T47D-EveR cell lines in the same samples with the same 

methodology (n=3). Expression of PI4Kβ in the T47D parental cell line seeded at 

1.33X104 cell/cm2 was only reliably detectable in one of the three biological replicates 

(RQ = 0.576, relative to the parental cells seeded at 2.66X104 cell/cm2) and so was 

excluded. As stated in chapter 4 – 4.2.3, there are limitations to low level gene 

detection using SYBR green QPCR chemistry and linearity of amplification is lost 

resulting in high variance. All expression values were therefore given relative to 

PI4Kβ expression in the T47D parental cell line seeded at 2.66X104 cell/cm2. 

 In the T47D parental line, PI4Kβ mRNA expression was highest in cells seeded 

at 2.66X104 cell/cm2 (RQ = 1) and by comparison was lower to a statistically 

significant level when cells were seeded at 5.33X104 cell/cm2 (RQ = 0.68,                       

*P = 0.045865) and when seeded at 8X104 cell/cm2 (RQ = 0.57, *P = 0.010594) 

(Figure 5.11). There was no significant difference in expression between cells seeded 

at 5.33X104 cell/cm2 and 8X104 cell/cm2. 

 In the T47D-EveR cell line, PI4Kβ mRNA expression was lowest at the lowest 

cell density (RQ = 0.22). Expression was comparatively higher at all other seeding 

densities to a statistically significant level (2.33X104 cell/cm2 RQ = 1.07, 4.70-fold 

upregulated, *P = 0.027576; 5.33X104 cell/cm2 RQ = 1.98, 8.73-fold upregulated            

*P < 0.00001; 8X104 cell/cm2 RQ = 0.62, 2.75-fold upregulated, *P = 0.00811). PI4Kβ 

mRNA expression was not statistically different between T47D-EveR cells seeded at 

2.66X104 cell/cm2 and cells seeded at 5.33X104 cell/cm2. There was a 3.17-fold 

difference in expression between cells seeded at 5.33X104 cell/cm2 and cells seeded 

at 8X104 cell/cm2 (*P = 0.000752). 
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Figure 5.11 - PI4Kβ mRNA expression in the T47D parental and T47D-EveR cell lines 

when seeded at different densities. all values are relative to the T47D parental cell line 

seeded at 2.66X104 cell/cm2, error bars represent the standard deviation, n=3 per condition 

and each biological replicate was assayed 3 times. 

 

Overall, PI4Kβ mRNA expression in the T47D parental cell line trends 

downwards as cell density increases from 2.33X104 cell/cm2 upwards. In the        

T47D-EveR line, PI4Kβ mRNA expression trends upwards as cell density increases 

to a maximum of 8.73-fold and then expression reduces at 8X104 cell/cm2 down to a 

level that is intermediary compared to expression at 1.33X10 4 cell/cm2 and 2.66X104 

cell/cm2 seeding densities. 

Expression was not significantly different between cell lines at equivalent 

densities when seeded at 2.66X104 cell/cm2 or at 8X104 cell/cm2 but was statistically 

upregulated in the T47D-EveR cell line when seeded at 5.33X104 cell/cm2 (*P = 

0.000553). ACBD3 mRNA expression was also statistically different between these 

two cell lines at 5.33X104 cell/cm2 seeding density. 
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5.3.14 ACBD3 and PI4Kβ Protein Expression 

 The mRNA expression of ACBD3 and PI4Kβ were found to be sensitive to cell 

seeding density which has implications for all cell line work that studies these genes. 

It was decided that any changes at the protein level should also be assessed as 

mRNA and protein levels do not always correlate and this was already found to be 

true of baseline ACBD3 and PI4Kβ expression (Chapter 4). T47D parental cells were 

seeded at the same cell density as in previous experiments (Figures 5.10 and 5.11) 

and incubated for 24 hours before being lysed for protein analysis by western blot. 

There was no difference in ACBD3 expression in T47D cells seeded at different 

cell densities after 24 hours (Figure 5.12). This is in contrast to mRNA data where 

ACBD3 expression increased 4 to 4.7-fold between 1.33X104 and higher seeding 

densities (Figure 5.10).  

 

Figure 5.12 – ACBD3 protein expression in the T47D parental cell line when seeded at 

different densities did not change within 24 hours. ACBD3 did not change after 24 hours 

of seeding at different densities (5 minute exposu re time), β-actin was stained as a loading 

control (10 second exposure time).  

 

 In a previous experiment looking at the effect of everolimus treatment on 

ACBD3 protein expression over time it was found that ACBD3 expression increased 

in the control group (Figure 5.9). Based on this it was hypothesised that ACBD3 

protein expression does change depending on cell density but that 24 hours might 

not be enough time to see these changes. To test this, the T47D parental and T47D-

EveR cell line were seeded at 100,000 cells in 6-well plates for a starting density of 

1.042X104 cells/cm2 and lysates were collected every 24 hours for 96 hours total. In 

both cell lines ACBD3 protein expression increased over time which was inferred to 
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be due to increasing cell density (Figure 5.13). In the T47D parental cell line ACBD3 

expression increased between 24 hours and 48 hours, and then decreased relative 

to 48 hours at 72 hours. In the T47D-EveR cell line ACBD3 protein expression 

increased between 24 hours and 48 hours and then did not substantially change for 

the rest of the time points. 

PI4Kβ protein expression also increased over time in both cell lines. In the 

parental cell line PI4Kβ expression increased between 24 hours and 48 hours to its 

maximum level, then reduced to an intermediary level at 72 and 96 hours. In the 

T47D-EveR cell line PI4Kβ expression increased between 24 hours and 48 hours. 

Between 48 and 72 hours, samples had similar PI4Kβ expression and expression 

reduced to an intermediary level at 96 hours. ACBD3 pro tein expression and PI4Kβ 

protein expression were upregulated in the T47D-EveR cell line at all time points 

relative to the parental cells. 

 

Figure 5.13 – ACBD3 and PI4KB protein expression changes over time starting at 

1.042X104 cells/cm2 cell seeding density. ACBD3 protein increased between 24 hours and 

48 hours after seeding in the T47D parental cell line. PI4Kβ protein expression increased 

between 24 hours and 48 hours and then reduced slightly at 72 hours and 96 hours after 

seeding. PI4Kβ expression followed the same pattern of increase in the T47D -EveR cell line 

and expression was higher in the T47D-EveR cell line at all time points. ACBD3 expression 

increased between 24 hours and 48 hours in the T47D-EveR cell line and remained stable  

up to 96 hours post seeding, ACBD3 expression was higher in the T47D -EveR cell line at all 

time points. β-actin protein staining was used as a loading control in addition to cell counting 

before lysis. β-actin exposure = 10 seconds, ACBD3 exposure = 2 minutes, PI4Kβ exposure 

= 1 minute. Representative blot from n=2.  
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Cells for protein expression analysis were seeded at 1.33X10 4 cells/cm2 and 

then collected at 24-hour intervals. In order to make comparisons between mRNA and 

protein expression at equivalent densities, growth curves of the T47D parental and 

T47D-EveR cell lines were measured (Figure 5.14), the equation of the curve was 

calculated, and this was used to approximate the cell density at all time points in 

Figure 5.13. The doubling time for the T47D parental cell line was 37 hours, within 

the range of previously reported doubling times of 33 hours and 38.5 hours (Figure 

5.14) (Finlay-Schultz, Jacobsen et al. 2020, Cailleau, Olivé et al. 1978). The doubling 

time for the T47D-EveR cell line was 31 hours, a higher growth rate than the parental 

line and faster than previous reports for this engineered cell line (Hare 2018). 

 

Figure 5.14 – Growth curves of the T47D parental (circle markers, solid trendline) and 

T47D-EveR (triangle markers, dotted trendline) cell lines over 7 days (168 hours) 

starting from 20,000 cells seeded in 9.6cm2 wells. Cells were counted before seeding and 

then the cells of one well were detached and counted in triplicate for n=3 per day per cell 

line. Error bars represent the standard deviation. T47D parental growth curve equation 

y=20,000e(0.0189x), T47D-EveR growth curve equation y=20,000e(0.0249x).  
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 The equation of the growth curve trendline in Figure 5.16 was used to calculate 

approximate cell number in protein samples of Figure 5.15. For example, the T47D-

parental cells were seeded at 100,000 cells,  

𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 𝑠𝑒𝑒𝑑𝑒𝑑 × 𝑒(0.0187×ℎ𝑜𝑢𝑟𝑠 𝑎𝑓𝑡𝑒𝑟 𝑠𝑒𝑒𝑑𝑖𝑛𝑔) 

= 100,000e(0.0187*24) = 156,643 cells.  

The area of the well was 9.6cm2 so the density after 24 hours = 156,643/9.6 = 

1.63X104 cells/cm2. This was repeated for other time points and for the T47D-EveR 

cell line using the equation of the growth curve for that cell line (Figure 5.16). The 

actual density for the mRNA data in Figure 5.12 and Figure 5.13 after 24 hours was 

also calculated and together these allow for comparison between the mRNA and 

protein level data. These densities are summarised in Table 5.1. Protein samples 

were collected every 24 hours from an initial fixed seeding density meaning that the 

difference in cell density between the T47D-EveR and T47D parental line increased 

over time. 

Protein data (western blot) 

Time after seeding (hours) 24 48 72 96 

T47D parental cell density 1.63X104 2.56X104 4X104 6.27X104 

T47D-EveR cell density 1.78X104 3.05X104 5.22X104 8.94x104 

Table 5.1 – Actual seeding density of samples at time of collection from results in 

Figure 5.13 based on growth rate calculated in Figure 5.14.  The T47D-EveR cell line 

grows faster than the parental line causing a large difference in cell density between cell 

lines for protein level results 72 hours and 96 hours after seeding.  

 

5.4 Discussion 

The purpose of the work in this chapter was to determine potential regulators 

of ACBD3 expression in breast cancer cells based on the literatire and assess their 

suitability as a treatment. ACBD3 was found to be overexpressed in breast cancer 

cell lines in chapter 4 and high expression was found to confer to worse breast cancer 

patient outcomes, making ACBD3 a possible target for therapy. As ACBD3 does not 

have any enzymatic function to target, known regulators in other tissues and protein 

binding partners were targeted. 
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 ACBD3 protein expression was upregulated in the MDA-MB-231 cell line 

following 179nM and 89.53μM Ferric Ammonium citrate treatment and 17.9nM 

treatment was found to increase relative cell number (RCN) in culture compared to 

controls. the effect of ferric ammonium citrate on cell number was normalised against 

ammonium citrate at equivalent molarity to deduce the effects of iron, iron was found 

to increase RCN at 100ng/ml, 500ng/ml, and 1000ng/ml and was not detrimental to 

RCN at any concentration. 

 The PI4Kβ inhibitor BQR695 did not consistently affect the protein expression 

of ACBD3 in the MDA-MB-231 cell line suggesting that PI4Kβ activity is not a 

regulator of ACBD3 protein expression. Inhibition of PI4Kβ was assayed as an 

inhibitor of MDA-MB-231 cell growth and treatment only resulted in a statistical 

reduction in cell number at 50μM and 100μM (555-fold and 1111-fold the reported 

IC50 respectively). Without data for the LD50 of BQR695 in any models it is not 

possible to say if these concentrations would be within physiologically tolerable limits 

and therefore a viable treatment option but these concentrations are very high and it 

is unlikely. 

 ACBD3 expression was upregulated at the mRNA and protein level in the T47D 

everolimus resistant cell line (T47D-EveR) compared to the parental T47D cell line 

from which it was derived. Everolimus treatment of the parental cell line did not affect 

ACBD3 mRNA or protein expression directly and it was hypothesised that ACBD3 

could have a role in everolimus resistance. During these experiments it was found 

that there was some discrepancy in mRNA level results and that untreated control 

cells had increasing ACBD3 protein expression over time forming another hypothesis 

that ACBD3 expression may be dependent on cell density. It was found that mean 

ACBD3 expression changed in the T47D cell line depending on seeding density, but 

this did not reach statistical significance. In the T47D-EveR cell line, ACBD3 

expression changed by a larger amount between different seeding densities and there 

was statistical significance between results. Overall, it was found that ACBD3 

expression increases from low to medium cell density (low density equivalent to 15% 

confluency, medium density equivalent to 30-70% confluency). ACBD3 expression 

then decreased at high density (equivalent to 85%+ confluency). Similarly, ACBD3 

protein expression was found to increase over time from a fixed seeding density in 

the T47D parental and T47D-EveR cell lines and was higher in the T47D-EveR cell 

line at all equivalent time points. 
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 PI4Kβ mRNA expression was also increased in the T47D-EveR cell line 

compared to parental cells and by a larger fold change than for ACBD3 expression. 

PI4Kβ protein expression increased following 72 hours of everolimus treatment but 

expression also increased in the untreated control cells at the same time point. Cell 

density also affected PI4Kβ expression at the mRNA and protein level. mRNA 

expression changes at different seeding densities followed a different pattern 

between the T47D parental and EveR cell lines, protein expression was approximately 

positively correlated with ACBD3 protein expression when measuring protein 

expression over time from a fixed seeding density. 

 

5.4.1 Iron 

Iron was an appealing choice to study as a regulator of ACBD3 protein 

expression as it is a naturally occurring product and a popular supplement that is well 

tolerated in the diet. Iron is an essential part of haemoglobin and women who are iron 

deficient are often anaemic. Iron deficiency is more common in women at 

approximately 30% of reproductive aged females compared to only 12.7% of men, 

and this percentage reduces for post-menopausal women (McLean, Cogswell et al. 

2009, Wu, Y., Ye et al. 2020). Increased iron deficiency prevalence in reproductive 

aged women is thought to be related to menstruation, a regular loss of haemoglobin 

(Percy, Mansour et al. 2017). This means that iron deficiency is less common in the 

age group of women who are most likely to develop breast cancer (over 50) and it 

also means that iron levels are likely to be lower in young women, who are in turn 

more likely to develop breast cancers that are triple negative (Cancer Research UK 

2017). 

ACBD3 is directly involved in iron transport into the cell where it binds DMT1 

iron transporter and the positive regulator Dexras1, and ACBD3 protein expression is 

downregulated by high levels of iron in the duodenum via negative feedback to 

maintain iron homeostasis (Okazaki, Ma et al. 2012, Okazaki, Glass 2017). There is 

no direct evidence for negative feedback in other tissues but ACBD3 is also required 

for iron import in the brain, even in the corpus striatum where the positive regulatory 

role of Dexras1 is replaced by Rhes but ACBD3 maintains its role (Cheah, Kim et al. 

2006, Harrison 2012, Falk, Pierfrancesco et al. 1999, Sbodio, Paul et al. 2013) . In 

Huntington’s disease, ACBD3 protein is overexpressed in the corpus striatum and 
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iron levels are also dysregulated suggesting that ACBD3 is not negatively regulated 

by iron in the brain (Sbodio, Paul et al. 2013, Rosas, Chen et al. 2012). ACBD3 

overexpression has been shown to increase iron import, and resultant redox stress 

may even form a positive feedback loop that exacerbates Huntington’s disease 

(Rosas, Chen et al. 2012, Sbodio, Paul et al. 2013, Falk, Pierfrancesco et al. 1999). 

Any feedback loop that increases redox stress has implications in cancer as redox 

stress can cause inflammation which can promote a tumour microenvironment 

(Hanahan, Weinberg 2011). ACBD3 can also induce redox stress by promoting 

phosphorylation of VDAC1 at the mitochondria which prevents mitochondrial calcium 

import (Gatliff, East et al. 2017). 

Isoforms of DMT1 are present in most tissues and it would be unexpected if 

ACBD3 did not have a similar role in other tissues and therefore be similarly regulated 

(Lis, Barone et al. 2004). It was unexpected then to find out that supplementing iron 

in cell culture medium actually increased ACBD3 protein expression at 1μg/ml and 

500μg/ml iron concentration in the MDA-MB-231 cell line compared to no iron control 

(Figure 5.1). This means that intracellular iron is not negatively regulating ACBD3 in 

this breast cancer cell line. The breast cancer cells were extremely tolerant of iron 

supplementation and ferric ammonium citrate increased growth in cell culture up to 

1.79μM (Figure 5.2). Whether this was an effect of the iron alone or the combination 

of iron and ammonium citrate is impossible to be certain of but there was no increase 

in RCN when cells were treated with ammonium citrate at equivalent molarity (Figure 

5.2b). I would conclude from this that iron would be a poor therapeutic option for 

breast cancers based on this and certainly if ACBD3 has a role in breast cancer then 

iron does not target its action. 

It should be noted that whilst the RPMI-1640 medium does not contain iron, 

the foetal bovine serum that it is supplemented with does contain iron. By adjusting  

for the approximate quantity of FBS already present, an adjusted distribution is 

produced. Iron in FBS is predominantly in the form of transferrin and may not be 

comparable to the iron chelated in ferric ammonium citrate. The iron levels of 12 

commercial FBS serums were available, and it was found that iron levels are between 

1.56 and 3.37μg/ml with a mean of 2.40 ± 0.63μg/ml which is equal to 0.043μM 

(Kakuta, Orino et al. 1997). Cell culture medium contained 5% FBS and would have 

a final concentration of 120ng/ml based on the mean average stated above. 

Concentrations of iron that had a statistically significant increase compared to 
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ammonium citrate only controls ranged from 100-1000ng/ml added iron and so total 

iron was closer to 220-1220ng/ml for these conditions. 

 

5.4.2 PI4Kβ Inhibition 

 PI4Kβ has previously been found to have a role in breast cancer but treating 

MDA-MB-231 cells with the reported IC50 of a PI4Kβ specific inhibitor had no 

statistical effect on cell growth, it took a much larger dose of the treatment to cause 

significant cell number decrease (50-100μM). The 0nM treatment had large variance 

making it hard to perform statistical analysis against it. It is not known what the LD50 

would be in humans or animals as there has been very limited study of this compound, 

but 50% cell viability (CC50) was found here to be between 50μM and 100μM in the 

MDA-MB-231 cell line. This is much higher than the reported IC50 which is sub-

micromolar at 90nM and could result in many harmful off target effects if ever used 

at GI50 concentration in patients. It’s possible that as a combined therapy that 

BQR695 could have a value in breast cancer treatment but would appear to be a poor 

candidate as a single treatment due to the high dose required to reach the GI50 in 

the MDA-MB-231 breast cancer cell line. 

PI4Kβ activity is dependent on the presence of ACBD3 in vitro, and it was 

hypothesised that this relationship could be reciprocal with PI4Kβ activity affecting 

ACBD3 expression (Klima, Tóth et al. 2016). ACBD3 protein was upregulated in one 

of three samples of MDA-MB-231 cells treated with 180nM BQR695 compared to 

controls and there was no difference seen in cells treated with 900nM BQR695 

compared to controls. A treatment-independent variance in ACBD3 expression was 

seen between samples in both the control and treated cells and this, and several 

other discrepancies in ACBD3 expression in repeated measures of breast cancer cell 

lines, led to studying ACBD3 expression in response to cell density.  

 

5.4.3 Cell Density 

 Mean ACBD3 mRNA expression was different in the T47D cell line depending 

on cell seeding density but these differences fell just short of statistical significance. 

At the protein level there was a clear increase in ACBD3 between 24 and 48 hours 

after seeding followed by fluctuation between 48 and 96 hours after seeding. In a 
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T47D cell line with engineered everolimus resistance (T47D-EveR) there were much 

larger changes in ACBD3 mRNA expression and those changes did reach statistical 

significance at several seeding densities. Protein levels of ACBD3 in the T47D-EveR 

cell line also changed over time from a fixed initial seeding density where ACBD3 

increased between 24 hours and 48 hours and then remained stable for the rest of 

the time course. From this it could be concluded that ACBD3 expression is dependent 

on cell density, especially in the T47D-EveR cell line and this same conclusion was 

previously made in a chronic myeloid leukaemia suspension cell line (Okazaki, Ma et 

al. 2012). Larger changes in this cell line may be because it was later found that the 

T47D-EveR cell line has a faster growth rate than the parental line (Figure 5.14) and 

so they reached a higher maximum density than the parental cells (8X10 4 cells/cm2 

condition for mRNA and 96 hours for protein, summarised in Table 5.2). 

 It is especially difficult to make conclusions about how cell density findings 

might be translated to a tumour environment. At the least, these results show that, 

when studying ACBD3 and PI4Kβ at both mRNA and protein level, cell density should 

be accounted for and ideally controlled for. If the time and resources were available 

then certainly this would have been repeated for all of the cell lines used in the thesis. 

All cell line mRNA data in chapter 4 were collected at sub confluency (70-80%) in 

order to measure cells in log growth phase and ACBD3 mRNA expression was found 

to change least between medium confluency levels (30-65% confluency) in both the 

T47D parental and EveR cell lines. Further to this the T47D parental cell line did not 

show a significant decrease in ACBD3 expression at high seeding density.  

 Beyond the proof of a need for additional controls when studying ACBD3 and 

PI4Kβ in cell lines, changes in transcription with density could be related to other 

observations in the cell lines. It has been demonstrated that breast cancer cell lines 

have lower invasiveness at high cell densities, where matrix metalloproteinase (MMP) 

and tissue inhibitor of metalloproteinases (TIMP-1) are negatively regulated by 

Activator protein 1 (AP-1), NF Kappa B (nuclear factor kappa-light-chain-enhancer of 

activated B cells), and cAMP response element-binding protein (CRE), all 

transcription factors (Bachmeier, Vené et al. 2005, Bachmeier, Albini et al. 2005). 

This presents cell density as a major mechanism of control for invasiveness 

and that cell density affects a range of cancer related pathways. Low cell density is 

mostly associated with expression of genes that facilitate more aggressive behaviour 

such as invasion, proliferation and activation or angiogenic pathways. Not 
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dissimilarly, I found in the T47D-EveR cell line that ACBD3 expression was highest 

at the medium cell seeding densities and decreased at the highest density. ACBD3 

overexpression has previously been shown to increase mammosphere formation and 

activate Wnt signalling (Huang, Y., Yang et al. 2018). ACBD3 is also associated with 

cancer stem cell formation; these are cells that are generally slower growing and are 

not as invasive or proliferative as other cancer cells(Peitzsch, Tyutyunnykova et al. 

2017). This also supports my observation that ACBD3 protein expression was lowest 

at the lowest cell densities. These less dense populations may have increased 

signalling of proliferative and invasive pathways whereas ACBD3 promotes a stem 

cell like side population phenotype that becomes more prevalent at higher cell 

densities. 

 

5.4.4 The Everolimus Resistant T47D Cell Line 

 Whilst changes in ACBD3 expression varied between the T47D parental and 

everolimus resistant cell lines, ACBD3 expression was either higher or not different 

at the mRNA level in the T47D-EveR cells at all densities and higher at the protein 

level at all time points after seeding. Increased expression of ACBD3 suggested that 

it could have a role in promoting or maintaining everolimus resistance in these cells. 

Direct upregulation of ACBD3 by everolimus treatment was ruled out by treating T47D 

cells with everolimus, but PI4Kβ expression was significantly upregulated following 

everolimus treatment in the same samples. This led to the hypothesis that ACBD3 

upregulation might contribute to the everolimus resistance and this is explored in 

chapter 6. Work by a previous student who engineered the T47D-EveR cell line found 

that β-catenin protein was upregulated in that cell line (Hare 2018) combined with the 

knowledge that ACBD3 overexpression in breast cancer has been shown to increase 

β-catenin activity (Huang, Yang et al. 2018), provides a further possible link between 

ACBD3 and everolimus resistance in breast cancer.   

There were also large changes in PI4Kβ expression found between cells 

seeded at different densities, and between the parental and everolimus resistant cell 

lines. PI4Kβ was expressed at a lower level in the T47D (parental) cell line relative 

to the normal like MCF12A cell line (Chapter 4 – Figure 4.4a); at the protein level, 

PI4Kβ was higher in the T47D cell line compared to the same control (Chapter 4 – 

Figure 4.6). The results for PI4Kβ expression in this chapter have not been 



 
 

 

       142  
 
 

 

overlooked but instead there will be a larger discussion of the PI4Kβ findings 

throughout this thesis in the final discussion chapter (Chapte r 7) to separate PI4Kβ 

results from the primary objective of characterising ACBD3 in breast cancer.  
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Chapter 6 

ACBD3 Overexpression and Mutation in the T47D 

Breast Cancer Cell Line 

 

6.1 Introduction  

Previous chapters found ACBD3 expression to be higher in breast cancer than 

other cancers and that expression was higher in breast cancer than normal breast 

tissue. ACBD3 was upregulated at the mRNA and protein level in seven breast cancer 

cell lines compared to a normal like control cell line. Ferric ammonium citrate/iron and 

cell density both altered expression of ACBD3, and ACBD3 was upregulated in an 

everolimus-resistant T47D breast cancer cell line.  

Chapters 3 and 5 sought to determine how ACBD3 might be regulated in breast 

cancer and how its upregulation might be altered. New information about ACBD3 was 

found, but the small base of information available has made it difficult to expand those 

findings in the laboratory. Instead, it was decided that ACBD3 expression should be 

manipulated directly, using siRNA to downregulate ACBD3 or a vector to stably 

overexpress ACBD3. 

ACBD3 knockdown by siRNA has been achieved several times, mostly in 

research concerning viral infection. The first publication to knockdown ACBD3 found 

that siRNA silencing prevented Aichi virus replication, and this was also the first 

publication to find that ACBD3 and PI4Kβ interact  (Sasaki, Ishikawa et al. 2012). 

Subsequent papers on Aichi viruses had conflicting results with some finding that 

ACBD3 silencing did not supress virus replication, a criticism of these papers was 

that ACBD3 protein may not be fully knocked down and some residual ACBD3 protein 

expression can be seen on western blot figures in these papers (Dorobantu, Cristina 

M., van der Schaar et al. 2014, Dorobantu, C. M., Ford-Siltz et al. 2015). Ultimately, 

ACBD3 deletion by CRISPR-CAS9 found that complete deletion of ACBD3 prevents 

Aichi virus replication and incomplete knockdown of ACBD3 using siRNA is cited as 

an explanation for the previous conflicting results (Kim, H. S., Lee et al. 2018, Lyoo, 

van der Schaar, Hilde M. et al. 2019, Horova, Lyoo et al. 2019, Shin, Ku et al. 2021) . 

It could be inferred that ACBD3 can still carry out its roles when expressed at low 

levels. 
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 ACBD3 overexpression experiments have been conducted several times, 

including the overexpression of mutant constructs (Lyoo, van der Schaar, Hilde M. et 

al. 2019). The first ACBD3 overexpression experiment was carried out in HeLa cells 

using an eGFP-C3-ACBD3 vector and found that ACBD3 preferentially binds caspase 

generated fragments of Golgin-160 over the full-length protein (Sbodio, Hicks et al. 

2006). Overexpression of ACBD3 also sensitized cells to apoptosis by staurosporine. 

Multiple subsequent publications where human ACBD3 was overexpressed used the 

construct created by Sbodio et al (Sbodio, Machamer 2007, Sbodio, Paul et al. 2013). 

The ACBD3 protein has also been mutated at various positions on the Q domain 

where single or combination substitutions of amino acids between 256 and 259 to 

alanine resulted in partial or full loss of PI4Kβ binding (Greninger, Knudsen et al. 

2013, McPhail, Ottosen et al. 2017, Klima, Tóth et al. 2016). FQ258AA was the 

smallest substitution that led to complete loss of PI4Kβ binding (McPhail, Ottosen et 

al. 2017). 

Mutation of the Acetyl-CoA binding domain (ACBD) of ACBD3 has not been 

published before and it is not certain which CoAs ACBD3 binds. Other members of 

the ACBD family (1-7) bind enoyl-CoA and parmityl-CoA, they have conserved 

residues in the domain associated with CoA binding and also conservation with the 

ACB domain of ACBP (Geisbrecht, Zhang et al. 1999, Soupene, Serikov et al. 2008). 

Substitution mutations have also been engineered in the Golgi dynamics 

(GOLD) domain of ACBD3 which had no effect on PI4Kβ binding but LWR514AAA 

mutation caused greatly diminished ACBD3 Golgi localisation (Greninger, Knudsen 

et al. 2013, Horova, Lyoo et al. 2019). Chapter 3 (Figure 3.3b found one breast cancer 

patient where tumour ACBD3 contained a frame shift deletion (E348Nfs*21) resulting 

in a truncated ACBD3 protein missing the GOLD domain. The GOLD domain is 

responsible for ACBD3 localisation to the Golgi and for many ACBD3-Golgi-protein 

interactions including Golgin-160. ACBD3 is essential for proper Golgi formation, 

structure, and function and knockdown causes fragmentation of the Golgi in HeLa 

cells (Liao, J., Guan et al. 2019) (see Chapter 1 - 1.4 ACBD3 Roles at the Trans Golgi 

Network).  

Chemotherapeutic drug efflux from the cell by efflux pump proteins, such as 

P-glycoprotein 1 are a major cause of chemoresistance in cancer and, as surface 

proteins, efflux pumps are processed by the Golgi apparatus (Molinari, Cianfriglia et 

al. 1994, Ughachukwu, Unekwe 2012, Nanayakkara, Vogel et al. 2019, Chintamani, 
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Singh et al. 2005). ACBD3 expression was found to be upregulated by a small but 

statistically significant amount in breast cancer patients that did not respond to some 

chemotherapies including anthracyclines (Chapter 3 – Figure 3.7). It is therefore 

possible that ACBD3 protein expression may influence the availability, or rate of 

production, of efflux pump proteins and therefore chemotherapy resistance.  

In chapter 5 it was found that ACBD3 was upregulated in a T47D everolimus 

resistant cell line, but ACBD3 could not be induced by everolimus directly suggesting 

that ACBD3 upregulation could have a role in the everolimus resistance of these cells. 

This could be either by increasing Golgi size via a structural role, or by recruiting 

more Golgi associated protein to increase activity, to process or export surface 

proteins. Alternately ACBD3 might increase everolimus resistance by an as yet 

undetermined mechanism. 

 

6.2 Chapter Aims 

The aim of this chapter was to determine if ACBD3 upregulation was causative 

of everolimus resistance in the T47D-EveR cell line, and if so, were ACBD3 mutants 

able to elicit the same resistance. This was achieved by overexpression of ACBD3 in 

the parental T47D cell line. Further to this, other phenotypical changes were 

measured including growth rate and anoikis resistance when ACBD3 was 

overexpressed. As ACBD3 has many roles and is understudied, I sought to determine 

which oncogenic proteins, if any, underwent changes in expression when ACBD3 was 

overexpressed. 

 

6.3 Results 

6.3.1 ACBD3 Knockdown 

Prior to treating cells with ACBD3 siRNA, several transfection reagents were 

tested. DY-547 fluorescently labelled SiGLO was used to determine the effectiveness 

of Dharmafect formula 1 and Jetprime transfection reagents for transfecting the T47D 

and MDA-MB-231 cell lines. Transfection was carried out twice per well on 

consecutive days in both cases. It was found that SiGLO treatment with Dharmafect 

formula 1 produced more numerous fluorescent cells that also had a more fluorescent 
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appearance and therefore greater efficiency than SiGLO treatment with Jetprime 

(Figure 6.1). 

 

Figure 6.1 – Transfection of siGLO with DharmaFECT transfection reagent resulted in 

higher efficiency than transfection with jetPRIME. green fluorescence of MDA-MB-231 

cells treated with siGLO fluorescent siRNA and either jetPRIME or DharmaFECT transfection 

reagents. Images captured with FLoid cell imaging station at 460X magnification and an 

excitation wavelength of 482/18, representative of n=2 . 

 

6.3.2 ACBD3 Targeting siRNA Treatment 

25nM ACBD3 siRNA was not able to knockdown ACBD3 protein levels at 48 

hours post transfection (Figure 6.2). PKCA siRNA was used as a positive control for 

the transfection and its inhibition by appropriate siRNA appeared to upregulate 

ACBD3 protein expression relative to untreated and transfection reagent only 

controls. in all siRNA assays, cells were treated twice at 24-hour intervals and cells 

were analysed 48 hours after the second treatment. ACBD3 expression varied 

between all cell conditions but was lowest in the transfection reagent-only and non-

targeting siRNA conditions. There was also a large difference in ACBD3 expression 

between 2 independent pairs of untreated cells (lanes 1 and 2, 11 and 12, 2 biological 

replicates of 2 technical replicates each). 

 This experiment was repeated several times at 80nM ACBD3 siRNA and 

120nM siRNA without successful knockdown of ACBD3 protein (not shown, typical of 

results in Figure 6.2, with high variance in ACBD3 expression between conditions and 

between replicates). Ultimately attempts to downregulate ACBD3 were unsuccessful 

and instead work was focussed on overexpression and mutation of ACBD3. 
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Figure 6.2 – 25nM ACBD3 targeting siRNA did not knockdown ACBD3 protein levels 

after 48 hours in the T47D breast cancer cell line. Each condition was assayed twice 

independently for n=2 (shown), all siRNA treatments at 25nM in medium. ACBD3 exposure 

time = 5 minutes, Beta actin was measured as a loading control (exposure time = 10 

seconds). 

 

6.3.3 Overexpression of ACBD3 

 ACBD3 protein was stably expressed in cell lines using a pEGFP-C3 ACBD3 

containing transfection vector. Appropriate concentration of the selection drug G418 

was tested for the T47D parental and T47D-EveR cell lines using previous literature 

to inform initial trial concentrations. Cells were seeded at 50,000 per well in 6 well  

plates and treated with complete media and selection drug at various concentrations 

in duplicate for 14 days, media was changed every 3 days. After 14 days, all wells 

were checked for living cells and concentrations of G418 at or above 400μg/ml left 

no visible viable cells. Medium was then changed to complete medium with no 

selection agent and plates were incubated for a further 10 days to ensure no viable 

cells remained. The minimum concentration that killed all cells in 14 days was used 

as the selection concentration for stable transfection. 

 T47D parental and T47D everolimus resistant cell lines were transfected using 

lipofectamine 3000 reagent using the standard protocol in 24 well plates. After 48 

hours, cell lines were checked for fluorescence and selection media was added. 

Controls included transfection reagent only, transfection with pEGFP-C3 empty 

vector, and transfection with siGLO RNA. When cells appeared 80% confluent they 

were transferred into sequentially larger flasks. Recovery time for cells to grow at a 
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reasonable rate varied between cell line and between vectors but was generally 4 

weeks.  

 Only the parental T47D cell line transfected with ACBD3 constructs was used 

for experimentation as maintaining everolimus resistance in the T47D-EveR cell line 

(100nM everolimus every third passage) in addition to transfection with eGFP-C3-

ACBD3 vector and maintenance with selection media added too many variables to 

experiments. The MDA-MB-361 cell line was also transfected with ACBD3 constructs 

but the cells failed to recover even up to six weeks post transfection. This was 

repeated with a larger starting number of MDA-MB-361 cells to transfect but these 

cells also failed to recover from the transfection and so could also not be used for 

experimentation. It appeared that these cells were dividing as evidenced by islands 

of cells that would reappear after dispersion by trypsin detachment but that cells were 

dying at approximately the same rate they were dividing. There was a previous 

attempt to create an everolimus resistant MDA-MB-361 cell line but these cells did 

not reach the same level of resistance as the T47D-EveR cell line (Hare 2018). 

 

6.3.4 Characterising ACBD3 Overexpressing Cell Lines 

 Both the T47D parental and T47D-EveR cell lines were transfected with 

pEGFP-C3 ACBD3 and both grew much slower initially than their non-transfected 

equivalents. Qualitatively, after 10 passages the T47D parental transfected cells grew 

almost as quickly as the non-transfected cells and T47D EveR transfected cells grew 

faster than the T47D-EveR non-transfected cell line. The T47D-EveR and T47D-

EveR-ACBD3 cell lines were both treated with 100nM everolimus complete media 

every 3 passages to maintain resistance. The EveR-ACBD3 cells appeared to recover 

growth faster than the EveR cell line when transferred into complete medium without 

everolimus. 
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Figure 6.3 – Growth patterns of different T47D cell line variants change when stably 

transfected with eGFP-C3-ACBD3 vector and grown in complete media containing 

400μg/ml G418 selection media. a)  T47D parental cells. b) T47D-ACBD3 cells. c) T47D-

EveR cells. d) T47D-EveR-ACBD3 cells. Transfection with ACBD3 caused cell lines to grow 

in larger tighter islands than their non-transfected equivalents. The T47D-EveR line grew in 

loose islands whereas the T47D parental cell line did not, ACBD3 overexpression cause d 

T47D parental cells to grow in islands and T47D-EveR cells to grow in larger tighter islands.  

 

The parental T47D cell line grows like many other typical breast cancer cell 

lines, cells are adherent and grow evenly across the plate and may form loose and 

very small islands of cells (Figure 6.3a). When transfected with pEGFP-C3 ACBD3 

and grown in selection media (G418 400μg/ml) cells formed small compact islands 

and were more strongly adherent taking several minutes longer to detach from flasks 

when using trypsin (Figure 6.3b). The everolimus resistant T47D cell line (T47D-

EveR) grew somewhat evenly across the plate and formed loose small islands that 

are consistent with previous reports of this cell line (Figure 6.3c) (Hare 2018). When 

a.                 b. 

c.                          d. 
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transfected with ACBD3 and grown in selection media, the T47D-EveR cells grew in 

much larger islands of cells with lone cells being uncommon (Figure 6.3d).  

The pEGFP-C3-ACBD3 vector encodes ACBD3 with C-terminal conjugated 

green fluorescent protein meaning that the transfected ACBD3 protein fluoresces. 

The transfected cell lines had varying fluorescence and some cells fluoresced more 

than others suggesting that transfection efficiency varied. This may have relevance 

to findings that in 3D cell culture, ACBD3 overexpression led to side populations of 

cells (Huang, Y., Yang et al. 2018). If ACBD3 overexpression was causing T47D cells 

to form side populations of stem like cells they may be able to promote the growth of 

non-transfected cells or replace them in the selection media effectively creating a 

heterogeneous population of cells. 

The eGFP-C3 transfected T47D cells had a similar rate of growth to the T47D 

parental cells overall except at 168 hours where the mean cell number was less for 

the eGFP-C3 transfected cells (262,222 cells) compared to the parental cells 

(465,556 cells) (Figure 6.4). The eGFP-C3 had no mean increase in cell number 

between 120 hours and 168 hours but the high standard deviation of the eGFP-C3 

transfected cells at 168 hours meant that it was not statistically significantly different 

from the parental cells at the same time point (*P = .207656). eGFP-C3 transfection 

was chosen as the control for relative cell number experiments where ACBD3 was 

overexpressed, and it was reassuring that empty vector transfect ion did not affect 

growth rate of the control cells relative to the parental cells. At the same time, the 

growth curve was not exactly the same between the parental cells and the eGFP-C3 

transfected cells, highlighting the importance of an empty vector control as selection 

media could have an effect on cell growth. 

Cell growth was increased in the eGFP-C3-ACBD3 transfected cells compared 

to both the parental cells and the eGFP-C3 transfected cell controls (Figure 6.4). The 

mean number of ACBD3 transfected cells was greater than the controls at all time 

points after seeding and was greater to a statistically significant degree at 168 hours 

(1,400,000 total cells for ACBD3 transfected cells, 262,222 total cells for control, *P 

= 0.008615). 
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Figure 6.4 - Growth curves of: T47D parental cells (cross marker, dotted line), T47D 

eGFP-C3 transfected cells (circle marker, solid line), and T47D eGFP-ACBD3 

transfected cells (triangle marker, dashed line) over 7 days (168 hours) starting from 

20,000 cells seeded in 9.6cm2 wells. Each time point was measured in 3 independent 

replicates (n=3),.  Parental cell equation of trendline = y=20000e 0.0189x, eGFP-C3 cells 

equation of trendline = y=20000e0.0194x, eGFP-C3-ACBD3 cells = y=20000e0.0243x. 

 

6.3.5 Mutation of Key ACBD3 Protein Interaction Sites  

 ACBD3 overexpression in cell lines is useful for modelling what happens when 

ACBD3 is upregulated in cancer but tells us little about which ACBD3 functions play 

a role in any phenotypical changes. ACBD3 has an unusually diverse number of 

cellular functions and 3 distinct domains. I chose to mutate each domain using site 

directed mutagenesis (SDM) to prevent specific or general functions of ACBD3 and 

transfected mutants into cell lines as previously described. The ACBP domain was 

targeted based on literature for Acyl CoA inhibiting mutations in other ACB domain 

containing proteins (Kragelund, B. B., Andersen et al. 1993). This domain is highly 

conserved between ACBD protein family members, but it is not known how this domain is 

connected to ACBD3 function. Null mutation of this domain may lead to behaviour changes 

that give insight as to the function of ACB domain of ACBD3. If ACBD3 upregulation facilitates  

everolimus resistance then I would expect this mutant to rule in or out the role of the ACB 

domain in any resistance to everolimus. 
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The GOLD domain of ACBD3 contains several putative binding sites for other 

proteins but these are not all characterised, instead the GOLD domain contains many 

sites for Golgi interaction and because of this I decided to delete the entire domain 

and create a truncated ACBD3 protein missing the N-terminal 147 amino acids giving 

a weight of 43.5 kDa. A GOLD deletion mutant cannot bind Golgi but I would expect 

many of ACBD3s cytoplasmic roles and roles at the mitochondrial membrane to 

remain intact. Any behavioural differences between cells overexpressing the wildtype 

and cells expressing the truncated ACBD3 would therefore be down to the loss of 

ACBD3 at the Golgi and relative increase elsewhere. This may uncover which 

functions of ACBD3 are dependent on Golgi localisation and how delocalisation  of 

ACBD3 effects breast cancer as deletion of this domain has previously been detected 

in 1 breast cancer tumour (Chapter 3 – Figure 3.3b). 

Attempts were made to mutate the Q domain on residues F258 and Q259 to A 

and A based on previous literature showing that this abolishes interaction between 

ACBD3 and PI4Kβ (McPhail, Ottosen et al. 2017). Several revisions were made to 

the primer design and PCR procedure but a successful ACBD3 FQ258AA mutant 

could not be attained by the methodology. 

 

6.3.6 Acyl-CoA Binding Domain Loss of Function Mutation 

ACBD3(KQ117AA) 

As was discussed in the introduction, ACBD3 is part of the Acetyl CoA binding 

domain containing family of proteins but has not been shown to bind CoAs. To explore 

the role of the ACB domain in ACBD3, it was decided that the ACB domain should be 

mutated to inhibit speculative Acyl-CoA binding as based on its ACB domain 

structure; ACBD3 is predicted to bind palmitoyl-CoA (Fan, Liu et al. 2010). There are 

5 possible amino acid targets to inhibit the ACB domain which is made up of 4 α -

helices with conserved residues and motifs (Figure 6.5). Amino acids K117 and Q118 

were chosen for mutation because they could both be mutated in one round of SDM 

PCR, were located on the second coil which is an inner coil of the domain that makes 

up an important part of the binding pocket, and are fully conserved between ACBP 

and ACBD3 (Figure 6.6) (Færgeman, Sigurskjold et al. 1996, Kragelund, Birthe B., 

Poulsen et al. 1999, Kragelund, Birthe B., Knudsen et al. 1999, Kragelund, B. B., 
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Andersen et al. 1993). Mutating multiple essential residues made it more likely to 

achieve ACB functional inhibition. 

 

Figure 6.5 - Example ACB domain from ACBP shown from 2 different angles (90 O 

rotation) (https://www.uniprot.org/uniprot/P07108, adapted from (Taskinen, van Aalten 

et al. 2007). The ACB domain of ACBD3 is closely related to the ACB domain of ACBP shown 

above. There is no experimentally solved structure for the ACB domain whilst there is for 

ACBP. The ACB domain is made up of 4 coils (1-4) in both proteins and the residues that are 

required for function are well conserved between ACB domain containing proteins 

(Færgeman, Sigurskjold et al. 1996, Kragelund, Poulsen et al. 1999, Kragelund, Knudsen et 

al. 1999). 

 

 

Figure 6.6 – Multiple sequence alignment between the ACB domains of ACBD3 and 

ACBP proteins. Asterisks represent conserved residues, colons represent highly similar 

residues, single dots represent weakly similar residues. The green arrows represent ACBD3 

residues essential for speculative CoA binding (Kragelund, B. B., Andersen et al. 1993, Fan, 

Liu et al. 2010). 
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To engineer this mutant, 2 primers were created, primer 1 was created to be 

complementary to the sense strand with the centre of the primer over codons 117 and 

118 (base 349-355 of the ACBD3 transcript coding for lysine and glutamine) (Figure 

6.7). The primer is non-complementary to codons 117 and 118 and instead contains 

the sequence CGCCG followed by the complementary base T. A second primer was 

designed to be fully complementary to the antisense strand binding immediately after 

primer 1 creating an origin of PCR. 

 

Figure 6.7 – Primer set to mutate ACBD3 codons 117 and 118 (base pairs 349-355) from 

AAG (lysine) and CAA (glutamine) to GCG (alanine) and GCA (alanine) (created in 

snapgene). During PCR primers are extended on opposite strands of the pEGFP-C3-ACBD3 

circular plasmid in opposite directions from a single point of origin. Note that primer 1 is the 

reverse complement and therefore the codons are inverted and complementary to the 

mutation being achieved. 

During the first round of SDM PCR these primers are extended at the 3’ end 

with a high-fidelity polymerase (Q5) causing amplification of the entire plasmid and 

introduces the CGCCG mutation from primer 1 to the newly synthesised linear 

antisense DNA strand. In subsequent PCR cycles an increasing amount of available 

template, in the form of linear PCR product with base changes from primer 1, was 

incorporated into these products and when primer 2 annealed to these products it 

was subsequently extended. As the antisense template strand has the desired 

mutation, this newly synthesised sense strand also contains the mutated sequence. 

In these products the very 5’ end of the sense strand is complementary to primer 2 

and the very 5’ end of the antisense strand is complementary to primer 1 and from 

this point the reaction continues in the same way as a standard PCR. This causes all 

PCR product to contain the 117 and 118 codon changes from AAG CAA to GCG GCA. 
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a) 

 

b) 

 

Figure 6.8 – multiple sequence alignments of ACBD3 wildtype and mutated ACBD3-

KQ117AA. a) DNA sequence and b) translated single letter amino acid sequence (Madeira, 

Park et al. 2019). Asterisks represent complementary alignment; the correct DNA mutations 

are confirmed here and no other mutations were introduced to the ACBD3 transcript. The 

DNA mutations translate to the correct amino acid changes which were also aligned, in this 

case K117 and Q118 were each mutated to A (Gasteiger, Gattiker et al. 2003). 

 

After PCR the linear products were treated with a kinase, ligase, DNase (KLD) 

mix to phosphorylate and subsequently blunt end clone the PCR product into a 

circular plasmid. The plasmid was grown in DH5α E.Coli and the template DNA is 

methylated, whilst DNA produced by PCR is not, the DNase only digests methylated 

DNA destroying the wildtype plasmid and leaving only the circularised mutant PCR 

product. Mutation in the plasmid was then confirmed by sanger sequencing using 

commercially available universal C3 plasmid primers (EGFP-C3 forward: 5’ 

CATGGTCCTGCTGGAGTTCGTG 3’, EGFP-C3 reverse: 5’ 

GTTCAGGGGGAGGTGTG 3’) that allow any DNA inserted into C3 multiple cloning 

site to be read from either end. The sequencing results were aligned with the wildtype 

sequence in the clustal omega tool confirm the mutation and to check that no other 

mutations had been introduced to the gene (Figure 6.8a) (Madeira, Park et al. 2019). 

The translated amino acid sequence (using the Expasy translate tool) was also 

aligned to ensure the right codon changes had been introduced (Figure 6.8b) 

(Gasteiger, Gattiker et al. 2003). 

 

6.3.7 GOLD Domain Deletion – ACBD3(K381_R528delinsXX) 

It was decided that the GOLD domain should be deleted rather than mutated 

due to multiple protein-protein binding motifs and uncertainty around the roles of 

different sections of the domain. Making deletions using SDM differs from mutating 
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DNA, instead of using primers with non-complementary bases from a single point of 

origin, primers were designed to flank either side of the DNA sequence to be deleted. 

In this case transcription termination was required after codon 380 (coding for amino 

acid isoleucine) so a primer was designed that annealed the sense strand with 

additional noncomplementary bases that code for 2 stop codons (TAG TAA) (Figure 

6.9).  

 

Figure 6.9 - Primer 1 to delete ACBD3 codons 381 to 529 (base pairs 1144-1587) and 

bases downstream of the open reading frame and add ATC ATT complement to stop 

codons (XX). 

 

The sequence of the full pEGFP-C3-ACBD3 plasmid was not immediately 

available, so primer 2 was designed to be complementary to the plasmid sequence 

on the antisense strand after the KpnI restriction site of the multiple cloning site as it 

was previously reported that the ACBD3 cDNA was inserted into the pEGFP-C3 

plasmid using the SacI and KpnI endonucleases to engineer the ACBD3 expressing 

vector (Figure 6.10) (Sbodio, Hicks et al. 2006).  

 

Figure 6.10 - Primer 2 to delete ACBD3 codons 381 to 529 (base pairs 1144-1587) and 

additional bases downstream of the ORF in the pEGFP-C3-ACBD3 plasmid (figure 

created in snapgene) After PCR and ligation, the 5’ end of the sequence complementary to 

primer 1 and 5’ end of the sequence complementary to primer 2 will be joined, removing the 

GOLD domain, the 5’ end of primer 1 also adds 2 stop codons to terminate transcription at 

base pair 1143. The DNA sequence displayed is the pEGFP-C3-ACBD3 plasmid confirmed 

by sanger sequencing. 

 

 



 
 

 

       157  
 
 

 

 

 

 

 

 

Figure 6.11 - Multiple sequence alignments of ACBD3 wildtype (WT) and mutated 

ACBD3-K381_R528delinsXX amino acid sequence.  The mutated plasmid was sequenced, 

translated into amino acid sequence, and aligned. A) Forward read from the start of gene 

shows no base changes up to amino acid 300. B) reverse read shows no changes to sequence 

between amino acids 180 and 381. Codons 382 and 383 were successfully changed to stop 

codons. Sequence downstream of CBD3-K381_R528delinsXX termination matches the 

sequence of the C3 plasmid. 

 

a) 

b) 



 
 

 

       158  
 
 

 

This primer pair and PCR program successfully deleted the GOLD domain 

without affecting other parts of the ACBD3 sequence of DNA upstream or downstream 

of the insert (Figure 6.11). Subsequent sequencing of the wildtype and mutant C3 

plasmids found that ACBD3 had been cloned into the vector differently than reported, 

most likely using XhoI and EcoRI restriction enzymes (Chapter 2 - Figure 2.1). 

Fortunately, the downstream sequence used to engineer K381_R528delinsXX primer 

2 anneals downstream of the EcoRI cut site so was still successful in creating a GOLD 

deletion mutant. The primers for all ACBD3 mutations are detailed in Table 6.1.  

 

 

primer sequence 
Anneal 

temp 

KQ117AA primer 1 5’- GCCCATAAGAACT GC C GC ATGCAGTGCCAC -3’ 

71°C 

KQ117AA primer 2 5’- CCATATAATCCAGACACTTGTCCTGAGGTTGG -3’ 

K381_R528delinsXX 

primer 1 
5’- TTACTA TTTGATCTGAGGTCGTGTCC -3’ 

56°C 

K381_R528delinsXX 

primer 2 
5’- GCCATACCACATTTGTAGAGG -3’ 

Table 6.1 – Primer pairs for creating ACBD3 mutants. Green shaded and undelined bases 

signify a mismatch from the ACBD3 wildtype DNA sequence and orange represents added 

bases. K381_R528delinsXX primer 2 is the only primer that anneals downstream of the 

ACBD3 gene on the plasmid directly after the multiple c loning site. 

 

6.3.8 Transfection Confirmation 

 Successful transfection of ACBD3 containing plasmids was confirmed by 

western blotting. Figure 6.12 is a western blot of T47D cell line lysates transfected 

with either eGFP-C3 or eGFP-C3 with one of the ACBD3 constructs (WT, KQ117AA, 

K381_R528delinsXX). The samples were taken one passage after the final 

experiment in this chapter to prove that expression of ACBD3 or ACBD3 mutant was 

maintained until the end of experimentation. Endogenous ACBD3 appeared to be 

upregulated in all ACBD3 transfected cell compared to the eGFP-C3 transfected cells 

(Figure 6.12a).  
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Figure 6.12 – T47D cells were successfully transfected with ACBD3 constructs and 

protein expression was maintained until the end of experimentation. Lysates of 

transfected T47D cells were taken one passage after the final experiment using these cells. 

each cell lysate was loaded in duplicate on one SDS-PAGE gel and stained for either ACBD3 

or GFP in the 50-120 kDa size range. GFP staining was also carried out in the 0 -35kDa size 

range. β-actin was used as a loading control in addition to cell counting immediately prio r to 

lysis. a) unconjugated GFP (28kDa) was only detectable in T47D cells transfected with the 

eGFP-C3 plasmid (lane 1). Endogenous ACBD3 (70kDa) was upregulated in eGFP-C3-

ACBD3, eGFP-C3-ACBD3(KQ117AA) and eGFP-C3-ACBD3(K381_R528delinsXX)  

transfected cells (lanes 2 to 4) compared to eGFP-C3 transfected cells (lane 1). GFP-ACBD3 

and conjugate protein was not detectable by ACBD3 staining, the GFP-ACBD3(KQ117AA) 

protein was only weakly detected by ACBD3 antibosy and the GFP-

ACBD3(K381_R528delinsXX) conjugate was readily detectable (lane 4, 75kDA). b) GFP-

ACBD3 conjugate was detectable by GFP antibody for all ACBD3 constructs (lanes 2 to 4) 

and was of the expected size in all cases. As in Figure 6.11a, unconjugated GFP was only 

detectable in cells transfected with the eGFP-C3 plasmid (lane 1). a and b were carried out 

as one blot (8 lanes), the uncropped blot is available in the appendix – Figure 9.2. 

 

The ACBD3 antibody could not detect the GFP-ACBD3 and GFP-ACBD3(KQ117AA) 

conjugate protein was only weakly detected (Figure 6.12a, lanes two and three, top 

panel), ACBD3 antibody could detect the GFP-ACBD3(K381_R528delinsXX) protein 

(Figure 6.12a, lane four top panel) as visualised by the second higher weight band. 

Unconjugated GFP was only detected in the eGFP-C3 transfected cells (Figure 6.12a, 

lane one, bottom panel) confirming that all the detected green fluorescence post 

transfection was due to GFP-ACBD3 protein in the ACBD3 transfected cells. ACBD3 

a. b. 
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is a loosely structured and flexible protein, it is possible the the GFP tap covers the 

antibody epitope in the wildtype and double point mutation mutant (KQ117AA) 

preventing detection by western blot. ACBD3(K381_R528delinsXX) has a much larger 

change (truncation by deletion of the GOLD domain) which may cause much larger 

structural change, allowing for exposure of the epitope sequence.  

 GFP staining in the expected size region of the GFP-ACBD3 conjugate protein 

produced bands of the expected size (ninety-eight kDa) for the GFP-ACBD3 wildtype 

(Figure 6.11b, lane two, top panel) and GFP-ACBD3(KQ117AA) (Figure 6.12b, lane 

three, top panel). The GFP-ACBD3(K381_R528delinsXX) has an expected molecular 

weight of 43.5 kDa as the protein is truncated with GOLD domain deleted and GFP 

tag added (71.5 kDa total). The wildtype ACBD3 protein consistently bands at 

approximately 8 kDa larger than expected on western blots so the expected band size 

for GFP-ACBD3(K381_R528delinsXX) was between 71.5 kDa and 79.5 kDa. GFP-

ACBD3(K381_R528delinsXX) was detected by GFP antibody at approximately 75 kDa 

(Figure 6.12b, lane 4, top panel), this protein was also detected at the same size by 

the ACBD3 antibody in Figure 6.12a. This confirmed that GFP-ACBD3 was expressed 

at the protein level and that this expression was maintained until all experimentation 

was complete. Figure 6.12a also showed that endogenous ACBD3 expression was 

higher in the eGFP-ACBD3 (all constructs) transfected cells than in the eGFP only 

transfected cells. 

PI4Kβ protein expression was compared between T47D cells transfected with 

different vectors. PI4Kβ protein expression was highest in the eGFP -C3-ACBD3 

transfected cells, eGFP-C3-ACBD3(KQ117AA) and eGFP-C3-ACBD3 

(K381_R528delinsXX) transfected cells also had higher PI4Kβ expression than the 

eGFP-C3 transfected cells (Figure 6.13).  
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Figure 6.13 – PI4Kβ is upregulated in T47D overexpressing ACBD3, ACBD3(KQ117AA), 

or ACBD3(K381_R528del) protein relative to control. This western blot is the same as in 

Figure 6.12a with the addition of the PI4Kβ panel which was stained with anti PI4Kβ antibody. 

 

6.3.9 Everolimus Resistance T47D Breast Cancer Cell Line 

Overexpressing ACBD3 or KQ117AA Mutant  

 ACBD3 was found to be upregulated at the mRNA level and protein level in the 

T47D everolimus cell line relative to the parental line (Chapter 5 – Figure 5.9, Figure 

5.15). ACBD3 expression was not induced by everolimus treatment at the 

maintenance dose (100nM in medium) and so it was hypothesised that ACBD3 had a 

role in everolimus resistance. Everolimus tolerance was measured in the T47D 

parental, T47D eGFP-C3, T47D eGFP-C3-ACBD3, T47D eGFP-

C3ACBD3(KQ117AA), and T47D-EveR cell lines by Sulforhodamine B (SRB) assay. 

Cells were treated with different concentrations of everolimus or DMSO only control 

for 72 hours and repeated 3 times independently for a total of n=3 with 6 technical 

replicates per condition per run. After 72 hours the cells were fixed and stained with 

SRB. Relative cell number (RCN) was calculated where the DMSO control mean 

optical density equalled one. 

 The T47D parental and T47D-EveR cell lines were first compared to 

corroborate the previous finding that the T47D-EveR cell line was everolimus 

resistant and had maintained that resistance (Hare 2018). The T47D-EveR cell line 
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was found to have higher relative cell number (RCN) at 0.1nM, 1nM, 10nM, and 

1000nM everolimus treatment relative to the T47D parental cell line (*P = 0.018, 

0.015, 0.02, 0.032 respectively) (Figure 6.14a). differences were smaller than 

previously reported but reached statistical significance. T47D cells transfected with 

eGFP-C3 and the T47D parental cells had a very similar response to everolimus and 

RCN was not significantly different at any everolimus concentration. This provided 

evidence that C3-eGFP transfected cells were a good control for measuring 

resistance in other transfected T47D cells and that G418 selection media did not 

augment everolimus tolerance by measure of RCN. 

 

Figure 6.14 – The T47D-EveR cell line had increased everolimus resistance, T47D cells 

transfected with ACBD3 or ACBD3(KQ117AA) did not have increased everolimus 

resistance compared to controls. a) The T47D-EveR cell line had a higher relative cell 

number (RCN) after 72-hour everolimus treatment compared to the T47D parental cell line at 

0.1nM, 1nM, 10nM, and 1000nM treatment. There was no significant difference between the 

T47D parental cells and cells transfected with eGFP-C3. b) T47D parental cells transfected 

with eGFP-C3-ACBD3 or eGFP-C3-ACBD3(KQ117aa) had no increased resistance to 

everolimus compared to control cells transfected with eGFP-C3 at any concentration. Cells 

transfected with eGFP-C3-ACBD3(KQ117aa) had a statistically higher RCN than cells 

transfected with eGFP-C3-ACBD3 at 1000nM everolimus treatment (*P = 0.006879). error 

bars represent the standard deviation.  

 

 T47D cells transfected with eGFP-C3-ACBD3 or eGFP-C3-KQ117AA did not 

have any additional resistance to everolimus compared to cells transfected with 
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eGFP-C3 control at any concentration of everolimus treatment (Figure 6.14b). 

increasing concentrations of everolimus resulted in decreasing RCN and no 

concentration of everolimus increased cell number. There was a statistically 

significant difference between eGFP-C3-ACBD3 and eGFP-C3-KQ117AA transfected 

cells at 1000nM everolimus treatment (0.384 RCN and 0.484 RCN respectively,  *P = 

0.006879). 

 

6.3.10 Anoikis resistance in ACBD3 overexpressing T47D cells 

 The purpose of this thesis has been to further characterise ACBD3, uncover 

regulators or expression and determine why ACBD3 has a negative effect on breast 

cancer outcomes. ACBD3 overexpression has been associated wi th cancer stem cell 

maintenance, which is associated with recurrence, and worse prognosis for breast 

cancer patients (Huang, Y., Yang et al. 2018, Peitzsch, Tyutyunnykova et al. 2017) . 

Metastasis, where cancer cells can break through the basal lamina of their immediate 

environment and overcome anoikis to move to distant sites in the body, accounts for 

the most cancer deaths. A role for ACBD3 in escaping the immediate environment 

could explain why its overexpression is associated with worse patient prognosis.  

Anoikis is a form of programmed cell death when cells lose adhesion ( in vivo 

this is loss of adhesion to the extracellular membrane) (Frisch, Francis 1994, Kim, Y. 

N., Koo et al. 2012). The ability of T47D cells to resist anoikis when transfected with 

vectors encoding ACBD3 or ACBD3 mutants was measured by coating culture plates 

with poly-2-hydroxyethyl methacrylate (polyHEMA) to prevent adhesion. After 24 

hours cells were stained with trypan blue and counted to assess viability.  

T47D cells transfected with eGFP-C3-ACBD3 had 18% less resistance to 

anoikis than control cells transfected with eGFP-C3 and this reached statistical 

significance (*P = 0.020437) (Figure 6.15). eGFP-C3-ACBD3(KQ117AA) and eGFP-

C3-ACBD3 (K381_R528delinsXX) transfected cells also had decreased anoikis 

resistance compared to controls (12% decrease, *P = 0.002776 and 18% decrease 

*P = 0.004062 respectively). 
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Figure 6.15 – T47D cells transfected with wildtype ACBD3 or ACBD3 mutants have less 

anoikis resistance than T47D cells transfected with an empty vector control.  After 24 

hours incubation in suspension culture, there was a small but statistically significant decrease 

in anoikis resistance for cells transfected with: eGFP-C3-ACBD3 (74.49%, *P = 0.020437), 

eGFP-C3-ACBD3(KQ117AA) (80.58%, *P = 0.002776) eGFP-C3-ACBD3 

(K381_R528delinsXX) (74.84%, *P = 0.004062) compared to control cells transfected with 

eGFP-C3 (92.6%). Anoikis was measured in 3 biological replicates per condition (n=3), error 

bars represent the standard deviation.  

 

6.3.11 Oncogenic protein Expression Changes in the ACBD3 

Overexpressing T47D Breast Cancer Cell Line 

 Overexpression of ACBD3 did not lead to increased everolimus resistance but 

led to decreased anoikis resistance (Figures 6.14 and 6.15). To probe the effect of 

ACBD3 expression, an array to determine the relative expression of a series of onco -

proteins was performed on ACBD3 and ACBD3(K381_R528del) overexpressing T47D 

cells relative to an empty vector control (Figure 6.16). Proteins that had at least a 2-

fold change in expression in the ACBD3 and/or ACBD3(K381_R528del) 

overexpressing cells are briefly described. Proteins with at least a 1.5 -fold change in 

expression are summarised in Table 6.2 and 6.3
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Figure 6.16 – comparison of oncoprotein expression in T47D cells overexpressing ACBD3 or ACBD3(K381_R528delinsXX) relative to an empty 

vector control. A human oncology array of 84 oncoproteins was performed and array spots were analysed with ImageJ software to determine pixel density. 

Control spots were used to normalise total loading between different arrays and the pixel density of the control (T47D cells transfected with eGFP-C3) for 

each protein was reported as 1 and pixel density was then reported for T47D cells transfected with eGFP-C3-ACBD3 or green for T47D cells transfected with 

eGFP-C3-ACBD3(K381_R528delinsXX) relative to the controls. The relative amount of protein expression is represented in red for T47D cells transfected 

with eGFP-C3-ACBD3 and green for T47D cells transfected with eGFP-C3-ACBD3(K381_R528delinsXX). Each sample was measured in duplicate with a 

mean average taken, n=1. Proteins with fold changes larger than 1.5 are detailed in Table 6.2 for ACBD3 overexpressing cells and Table 6.3 for 

ACBD3(K381_R528del) overexpressing cell
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Protein Fold change Protein Fold change 

HIF-1a 2.53-fold increase Lumican 2.13-fold increase 

FGR basic 1.52-fold decrease MCP-1 1.52-fold increase 

HO-1 1.71-fold increase Mesothelin 1.95-fold decrease 

c-MET 1.45-fold increase PDGF-AA 3.82-fold decrease 

ICAM-1 1.7 fold decrease Progesterone Receptor 1.63-fold decrease 

IL-2 Ra 2.02-fold decrease Serpin B5 1.63-fold increase 

IL-6 1.47-fold decrease Tenascin C 5.13-fold decrease  

Leptin 1.59-fold increase  

Table 6.2 – Oncogenic proteins that had at least a 1.5-fold change in expression in 

ACBD3 overexpressing T47D cells relative to control. Fold changes of 1.95 or more are 

highlighted in green for increases and red for decreases. 

 

 Hypoxia inducible factor 1-α was 2.53-fold upregulated in the ACBD3 

overexpressing T47D cell line and 3.07-fold upregulated in the 

ACBD3(K381_R528del) expressing cell line. It is a member of the bHLH-PAS super 

family of proteins and contains a basic helix-loop-helix that binds DNA and PER-

ARNT-SIM domain (Scheuermann, Yang et al. 2007). This domain allows for hetero-

dimerization with HIF-1b which subsequently allows its activity as a transcription 

factor (Dengler, Galbraith et al. 2014). 

Interleukin-2 receptor α (IL-2 Ra, also known as CD25) was 2.02-fold 

downregulated in the ACBD3 overexpressing cells. IL-2 Ra expression is associated 

with node invasion and worse prognosis for breast cancer patients (Kuhn, Dou 2005). 

 Lumican is an extracellular matrix protein and was found to be 2.13-fold 

upregulated in ACBD3 overexpressing cells and 1.95-fold upregulated in 

ACBD3(K381_R528del) expressing cells. 

 Mesothelin is a cell surface glycoprotein associated with immunogenicity and 

was 1.95-fold downregulated in ACBD3 overexpressing cells (Zhenjiang, Rao et al. 

2017). Mesothelin was 1.67-fold upregulated in the ACBD3(K381_R528del) 

expressing cells. 
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 Platelet derived growth factor-AA (PDGF-AA) is decreased by pro inflammatory 

cytokines and was 3.82-fold downregulated in ACBD3 overexpressing cells (Kose, 

Xie et al. 1996). It was 1.67-fold upregulated in ACBD3(K381_R528del) expressing 

cells. 

 Tenascin C was 5.13-fold downregulated in ACBD3 overexpressing cells and 

2.06-fold upregulated in the ACBD3(K381_R528del) overexpressing cells.  

Protein Fold change Protein Fold change 

Angiopoietin-1 1.58-fold increase Lumican 1.95-fold increase 

Angiopoietin-like 4 1.58-fold increase MCP-1 1.83-fold increase 

Axl 1.54-fold increase MCP-2 1.69-fold increase 

BCL-x 1.75-fold decrease Mesothelin 1.67-fold increase 

CEACAM-5 1.62-fold increase MST1 1.60-fold increase 

Decorin 1.90-fold increase Osteopontin 1.58-fold increase 

Endoglin 1.50-fold increase PDGF-AA 1.56-fold increase 

ERα 1.62-fold increase PECAM-1 2.27-fold increase 

FGR basic 1.73-fold increase Serpin B5 1.57-fold increase 

Fox C2 2.37-fold increase Serpin E1 1.97-fold increase 

c-Met 2.01-fold increase Snail 1.64-fold increase 

HIF1a 3.07-fold increase SPARC 1.93-fold increase 

Fox A2 1.78-fold increase Survivin 1.51-fold decrease 

IL-2 Ra 1.67-fold increase Tenascin C 2.06-fold increase 

IL-6 1.67-fold increase Tie-2 1.65-fold increase 

IL-8 2.68-fold increase Urokinase 1.77-fold increase 

Leptin 1.69-fold increase VEGF 2.82-fold decrease 

Table 6.3 – oncogenic proteins that had at least a 1.5-fold change in expression in 

ACBD3(K381_R528del) overexpressing T47D cells relative to control. Fold changes of 

1.95 or more are highlighted in green for increased and red for decreases.  
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Foxhead Box C2 (FoxC2) protein was 2.37-fold upregulated in the 

ACBD3(K381_R528del) overexpressing cells. FOXC2 is a transcription factor that 

may have a role in the development of mesenchymal tissues (Hollier, Tinnirello et al. 

2013). 

 c-MET (Hepatocyte growth factor receptor) is a tyrosine kinase receptor that 

is expressed in epithelial cells and was 2.01-fold upregulated in 

ACBD3(K381_R528del)-overexpressing cells. In cancer it promotes angiogenesis 

and has been found to be deregulated in breast cancer (You, McDonald 2008, 

Chaudhary, Choudhary et al. 2020).  

 Interleukin-8 (CXLCl8/IL-8) is expressed by macrophages and epithelial cells. 

IL-8 can induce chemotaxis (cell movement) and angiogenesis and is associated with 

cellular inflammation and oxidant stress (Bickel 1993, Heidemann, Ogawa et al. 

2003). It was 2.68-fold upregulated in ACBD3(K381_R528del) overexpressing cells.  

 Platelet endothelial cell adhesion molecule (PECAM-1) was 2.27-fold 

upregulated in ACBD3(K381_R528del) overexpressing cells. 

 Plasminogen activator inhibitor-1 (SERPIN E1) is a serine protease inhibitor 

that inhibits Plasmin formation and matrix metalloproteinases, ultimately inhibiting 

fibrinolysis or extracellular membrane breakdown (Lee, E., Vaughan et al. 1996, 

Flevaris, Vaughan 2017). It was 1.97-fold upregulated in ACBD3(K381_R528del) 

overexpressing cells. 

 Vascular endothelial growth factor (VEGF) was 2.82 fold downregulated in 

ACBD3(K381_R528del) overexpressing cells. VEGF promotes angiogenesis and high 

expression is associated with poor prognosis in breast cancer (Liu, Y., Tamimi et al. 

2011, Shibuya 2011). NUMB prevents VEGF degradation (van Lessen, Nakayama et 

al. 2015). 

 

6.4 Discussion 

ACBD3 was previously found to be upregulated in the everolimus resistant 

T47D cell line and it was hypothesised that this upregulation may contribute to the 

resistance. To determine if this was the case, ACBD3 was overexpressed in the T47D 

cell line and several mutant constructs of ACBD3 were also engineered. As well as 

everolimus resistance, cells overexpressing ACBD3 were also assayed for growth 
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rate, anoikis resistance, and changes in oncoprotein expression to determine if 

ACBD3 might have other, currently unexplored, roles in breast cancer.  

PI4Kβ was overexpressed in all the ACBD3 transfects relative to the empty 

vector control. A mutant to abolish ACBD3-PI4Kβ interactions was unsuccessful so 

the effect of a non PI4Kβ binding ACBD3 mutant could not be determined. The Acyl -

CoA binding inhibiting mutant (KQ117AA) expressing cells had less PI4Kβ protein 

expression than WT or K381-R528del ACBD3 expressing cells. 

ACBD3 overexpression did not increase everolimus resistance in the T47D cell 

line relative to the empty vector (eGFP-C3) control and neither did the ACB domain 

mutant (KQ117AA). KQ117AA and WT ACBD3 overexpressing cells had significantly 

different RCN at 1000nM everolimus treatment. Mean RCN was not very different 

from other concentrations, but smaller errors (measured by standard deviation) meant 

that the results reached a statistical significance (*P = 0.006879). The WT ACBD3 

overexpressing line performed the worst out of all lines assayed at 10,000nM 

everolimus treatment, but this did not reach statistical significance relative to any 

other cell line treated with the same concentration.  The empty vector control and 

parental cells had a very similar response to everolimus treatment proving that the 

empty vector cells were a good control for this experiment and that the vector and the 

G418 selection drug did not affect everolimus tolerance.  

ACBD3 monoclonal antibodies failed to stain for GFP-ACBD3 but did stain the 

endogenous wildtype ACBD3. Conjugated GFP may cover the epitope in the 

introduced ACBD3. GFP-ACBD3(K381_R528del) could be detected by both ACBD3 

and GFP antibodies. ACBD3 containing C3 vector was different than expected based 

on previous reports. Based on the position of ACBD3 within the multiple cloning site, 

it was almost certainly spliced in using XhoI and EcoRI restriction enzymes as 

opposed to the Kpn1 and SacI enzyme previously reported (Sbodio, Hicks et al. 

2006). It is possible that multiple constructs were made by the group.   

 

6.4.1 ACBD3 Overexpression 

MDA-MB-361 cells transfected with WT ACBD3, or any of the ACBD3 mutants 

failed to recover even 8 weeks post transfection. The C3 empty vector transfected 

cells also had a slow growth rate but grew noticeably faster than the ACBD3 

transfects. Unfortunately, A large enough cell number to perform cell growth assays 
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was never reached. MDA-MB-361 cells also reached a lower maximum everolimus 

resistance in the work that established the T47D-EveR cell line (Hare 2018). 

Everolimus resistance was maintained from previous reports although the 

difference between T47D-EveR and T47D parental cells everolimus was smaller (this 

still reached statistical significance at 0.1nM, 1nM, 10nM, and 1000nM treatment. It 

was not disclosed whether the T47D-EveR cells were assayed for resistance one or 

two passages after maintenance treatment with 100nM everolimus, all tolerance 

experiments in this work were performed 2 passages after the maintenance treatment 

which may be the source of reported resistance differences. 

ACBD3 overexpression did not increase cell number at any concentration of 

everolimus treatment relative to cell transfected with an empty vector control. 

Expression of the ACBD3(KQ117AA) mutant in the same cell line also resulted in no 

increased resistance to everolimus. The ACBD3(K381_R528) (GOLD deletion 

mutant) was not ready at the time of the SRB assays and performing the assay 

separately and later for these cells would have introduced too many sources of error. 

As WT ACBD3 and Acyl-CoA binding mutant ACBD3 did not affect everolimus 

resistance, it is unlikely that the truncated form of ACBD3 would result in any increase 

in tolerance. 

Based on this, the hypothesis that ACBD3 is causative of everolimus 

resistance must be rejected. ACBD3 may still have a role in everolimus resistance in 

the T47D-EveR cell line, or may be a marker of other changes that are causative. 

Another possible candidate for the mechanism or resistance is PI4Kβ which was also 

upregulated at the mRNA level (Chapter 5 – Figure 5.7) and protein level (Chapter 5 

– Figure 5.13) in the T47D-EveR cell line, and mRNA expression was induced by 

everolimus treatment (Chapter 5 – Figure 5.8). 

ACBD3 overexpression also resulted in cells that grew in tighter islands much 

like the phenotypical change seen in the T47D cells when they were engineered to 

be everolimus resistant (Hare 2018). ACBD3 transfection of T47D-EveR cells was 

qualitatively observed to recover growth after everolimus maintenance treatment 

more quickly suggesting either less inhibition of growth or less lag time in growth after 

media change. Whilst ACBD3 could not affect everolimus resistance, it may be a 

consequence of resistance or contribute to some other feature of the resistant cell 

line. 
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6.4.2 Oncogenic Protein Expression Changes 

 

Figure 6.17 – Network analysis of protein level changes in the T47D breast cancer cell 

line when ACBD3 was overexpressed. Arrows next to proteins show upregulation or 

downregulation in response to ACBD3 upregulation. The way in which these expression 

changes may alter breast cancer cells is then given in shaded boxes. The roles of these 

proteins and how their differential expression might affect breast cancer cells is detailed 

below. ROS = reactive oxygen species. 

 

ACBD3 expression was previously correlated with increased cancer stem cells 

and cancer stem cells effectively avoid the immune system for years after cancer 

treatments (Huang, Y., Yang et al. 2018). Mesothelin is a cell surface glycoprotein 

associated with immunogenicity and was downregulated in ACBD3 overexpressing 

cells at approximately half the level of control cells. ACBD3 overexpression also 

resulted in down regulation of CD54/ICAM1and IL6 (1.7-fold and 1.47-fold 

respectively), in addition to previously described IL-2, presenting an argument that 

ACBD3 overexpression reduces the immunogenicity of breast cancer cells, an 

important characteristic of CSCs which must evade the immune system.  
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Tenascin C was 5.1-fold downregulated in ACBD3 overexpressing cells and 

2.1-fold upregulated in the ACBD3(K381_R528del) expressing cells. Tenascin C is a 

glycoprotein expressed in the extracellular matrix and in neurodevelopment promotes 

differentiation of cells (Wiese, Karus et al. 2012, Guo, M., Jan et al. 1996, Verdi, 

Schmandt et al. 1996). Tenascin C positively regulates NOTCH and enhances 

expression of LGR5, a target of Wnt (Oskarsson, Acharyya et al. 2011). ACBD3 is 

known to inhibit NOTCH signalling during mitosis in embryonic development giving it 

an opposing action. If ACBD3 promotes stemness in cancer in the same way that it 

does in neurogenesis then positive regulators of NOTCH (such as Tenascin C) may 

need to be downregulated. The ACBD3(K381_R528del) mutant cannot bind the Golgi 

and therefore mimics cytosolic mitotic ACBD3. It is not therefore surprising to find 

that a positive regulator of NOTCH signalling has very different protein expression 

between control cells, cells overexpressing ACBD3, and cells expressing 

ACBD3(K381_R528del). ACBD3 overexpression was also previously reported to 

affect the beta-catenin/Wnt signalling pathway (Huang, Y., Yang et al. 2018). 

Snail (SNAI1) was 1.64-fold upregulated when ACBD3(K381_R528del) was 

expressed. SNAI1 is promoted by Wnt signalling and represses E-Cadherin to 

regulate EMT. c-MET was 2.07-fold increased when ACBD3(K381_R528del) was 

expressed. c-MET is usually only expressed by stem cells and progenitor cells, 

ACBD3 maintains stem cell pools by a signalling role it can perform during mitosis 

when the Golgi breaks down releasing ACBD3 into the cytosol. The 

ACBD3(K381_R528del) protein is lacking a Golgi dynamics (GOLD) domain and is 

therefore constitutively found in the cytosol and this may allow it to signal for 

stemness factors to a higher level than wildtype ACBD3. c-MET was upregulated to 

a lesser extent when ACBD3 was overexpressed (1.5-fold). 

Many of the oncogenic proteins that had 2-fold change or more in expression 

when wildtype ACBD3 was overexpressed were immunogenic proteins and/or 

involved in inflammation. There were also several changes to proteins that regulate 

the extracellular membrane or angiogenesis. These changes support a role for 

ACBD3 in both stemness (decreased detection by immune system and ability to 

migrate) and as a marker of progression as inflammation promotes a cancer 

microenvironment and angiogenesis is essential for tumour growth beyond the scale 

of millimetres (Hanahan, Weinberg 2011). 
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HIF1a is a transcription factor and master regulator of hypoxia response. 

HIF1a expression predicts poor response to primary chemotherapy in breast cancer 

(Generali, Berruti et al. 2006). Reactive oxygen species stabilise HIF-1a and lead to 

its accumulation (Quintero, Brennan et al. 2006, Bonello, Zähringer et al. 2007)  and 

in hepatocellular carcinoma HIF-1a promoted EMT and this was enhanced by Wnt/B-

catenin (Zhang, Q., Bai et al. 2013). ACBD3 overexpression has been shown to 

increase Wnt/B-catenin and its overexpression may confer an advantage when HIF-

1a is upregulated as HIF-1a enhances EMT. ACBD3 is also involved in redox stress 

and the related increased in reactive oxygen species (ROS) might stabilise HIF-1a 

(Gatliff, East et al. 2017, Liu, J., Rone et al. 2006, Shoshan-Barmatz, Krelin et al. 

2018). Increased ROS may account for the increased HIF1a protein levels in ACBD3 

overexpressing T47D cells. The ACBD3(K381_R528del) overexpressing cells had 

even higher levels of HIF-1a protein expression. This mutant form of ACBD3 cannot 

bind to the Golgi but ACBD3 mediates redox stress at the mitochondria by interaction 

with TSPO (Gatliff, East et al. 2017). The mechanism by which ACBD3 binds TSPO 

is not known but ACBD3 contains a C-terminal proline rich domain that is typical of 

protein-protein interaction sites and this domain is intact in the 

ACBD3(K381_R528del) mutant. The inability of ACBD3(K381_R528del) to be 

retained by the Golgi would also mean more protein is available to make interactions 

at the mitochondria. 

HIF1a is associated with PR negativity in breast cancer (Gruber, Greiner et al. 

2004, Laughner, Taghavi et al. 2001, Xu, Zhou et al. 2017), ACBD3 protein 

expression was significantly higher in PR- breast cancer patient samples compared 

to PR+++ patients (Chapter 4, Figure 4.10b), and ACBD3 was found to interact with 

the PR co-chaperone UNC45A (Chapter 3 – Figure 3.8). ACBD3 may negatively 

regulate the progesterone receptor and may regulate HIF-1a directly or via regulation 

of PR. Progesterone receptor expression was 1.63-fold less when ACBD3 was 

overexpressed (Table 6.2). HIF1a promotes metastasis in breast cancer and whilst 

ACBD3 expression has been reported to increase with more advanced cancer stage, 

the finding was not corroborated by ACBD3 immunohistochemical staining of patient 

samples (Huang, Y., Yang et al. 2018, Liu, Z. J., Semenza et al. 2015) . 

Interleukin-2 receptor α (IL-2) is associated with node invasion in breast cancer 

and was downregulated in T47D cells when ACBD3 was overexpressed (García-

Tuñón, Ricote et al. 2003). ACBD3 expression was not different between primary 
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breast cancer and lymph node breast cancer patient samples, and it is not surprising 

that ACBD3 expression does not upregulate proteins associated with invasiveness 

(Chapter 4, Figure 4.10a). Conversely, in cells expressing ACBD3(K381_R528del) IL-

2 was 1.67-fold upregulated compared to controls (3.69-fold upregulated compared 

to wildtype ACBD3 overexpressing cells) suggesting that downregulation of IL-2 may 

be linked to ACBD3 Golgi function as IL-2ra is post-translationally processed by the 

Golgi. 

   

Overall ACBD3 appeared to increase inflammatory potential and 

simultaneously decreased proteins associated with immunogenicity. Several proteins 

associated with CSCs also underwent changes in expression supporting evidence 

that ACBD3 promotes CSC formation. Other proteins with expression changes were 

involved in Wnt signalling which was the proposed mechanism by which ACBD3 

promotes CSC formation (Huang, Y., Yang et al. 2018). Whilst ACBD3 overexpression 

did not increase resistance to everolimus, it did cause cells to grow faster, suggesting 

it could be a proliferative marker. The oncoarray findings support the previously 

suggested role for ACBD3 as an activator of Wnt signalling and further found proteins 

related to stemness were altered when ACBD3 was overexpressed. Since the first 

publication concerning ACBD3 and breast cancer, I have hypothesised that ACBD3 

had a role beyond Wnt signalling so to find other cancer related pathways what have 

protein level changes when ACBD3 was overexpressed has been validating. The 

implications of these protein level changes and how they might fit in with results from 

other chapters are commented on further in Chapter 7 – Discussion. 
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Chapter 7 

Discussion 

 

7.1 Key Findings 

78% of female breast cancer patients survive for over ten years meaning that 

breast cancer has one of the best prognoses of all cancers, but new treatments are 

in decline and triple negative breast cancer patients have fewer therapy options with 

little improvement in patient outcomes for decades (Won, Spruck 2020).  Breast 

cancer incidence in the UK is increasing for females; it currently causes over 11,000 

deaths per year in the UK and without improved treatment there will be more deaths 

per year in the future (Cancer Research UK 2017). Understanding of breast cancer 

development and progression is better defined than most cancers with several 

receptors known to play key roles, several alleles known to be risk factors, and many 

oncoproteins known to drive the disease (National Institute for Health and Care 

Excellence 2017, Filippini, Vega 2013, Ngeow, Sesock et al. 2017, Ciriello, Gatza et 

al. 2015, Ross-Innes, Stark et al. 2012, Papa, Pezzino et al. 1990, Chi, Singhal et al. 

2019, Rostoker, Abelson et al. 2015, Lamb, Vanzulli et al. 2019, Deshmukh, 

Srivastava et al. 2019). The picture however is not complete and there may be many 

more factors and roles left to uncover that have differing degrees of importance in 

breast cancer progression and therefore treatment. Targeted treatments are essential 

for increasing efficacy of chemotherapies whilst simultaneously reducing off target 

effects and are the focus of a whole generation of drug development in cancer and 

elsewhere. 

This work sought to determine whether ACBD3 expression affected breast 

cancer cell behaviour. Through broad research using breast cancer cell lines and 

breast cancer patient data I can conclude that ACBD3 tumour expression did have an 

effect on breast cancer patient outcomes with high ACBD3 mRNA expression 

correlating with worse outcomes. ACBD3 mRNA and protein expression were higher 

in breast cancer cell lines compared to a normal like breast cell control and ACBD3 

protein expression was highest in oestrogen receptor positive (ER+) cell lines. Thi s 

suggested ACBD3 as a marker of poor prognosis and of ER positivity. Novel 



 
 

 

       176  
 
 

 

transcriptional effectors of ACBD3 were found that further suggest ACBD3 expression 

as a marker of ER reprogramming and differential signalling.  

ACBD3 was upregulated in an everolimus resistant cell line and it was 

hypothesised that ACBD3 facilitated this chemotherapeutic resistance. ACBD3 

overexpression in a naïve cell line did not result in increased resistance to everolimus, 

but the ACBD3 overexpressing cells did undergo phenotypical changes as well as 

fold level changes in expression of oncoproteins involved in extracellular matrix, 

immune presentation, inflammation and angiogenesis. From this it was hypothesised 

that high ACBD3 expression may promote tumorigenesis through increased 

inflammation and reduced immunogenicity of cells.  

Iron is one of few known regulators of ACBD3, but this has only been observed 

in duodenum cells of rats (Okazaki, Ma et al. 2012). Iron treatment of breast cancer 

cells was found to increase ACBD3 protein expression, the opposite of what was 

expected. Increased intracellular iron can increase redox stress, and ACBD3 also 

contributes to redox stress by participating in a complex with PKA to prevent calcium 

export from the mitochondria by VDAC1 (Li, H., Degenhardt et al. 2001, Gatliff, East 

et al. 2017, Shoshan-Barmatz, Krelin et al. 2018). ACBD3 facilitated iron import and 

subsequent ACBD3 upregulation in breast cells may form a positive feedback loop of 

escalating redox stress and inflammation in addition to the ACBD3 role in 

mitochondrial redox stress. The rationale for an ACBD3-iron redox causing feedback 

loop is supported by Huntington’s disease research and these findings support the 

hypothesis that ACBD3 promotes tumorigenesis by increasing inflammation (Rosas, 

Chen et al. 2012, Baiamonte, Lee et al. 2013, Sbodio, Paul et al. 2013) . 

Phosphatidylinositol 4-kinase beta (PI4Kβ) is dependent on ACBD3 interaction 

for its activity and was also studied throughout this work. ACBD3 protein expression 

positively correlated with PI4Kβ protein expression across breast cell lines and 

overexpression of ACBD3 protein also led to increased PI4Kβ protein expression. 

Treatment of breast cancer cells with the PI4Kβ enzymatic activity inhibitor BQR695 

did not result in changes to ACBD3 protein expression. in breast cancer cell lines, 

PI4Kβ mRNA expression was high in breast cancer cell lines derived from 

adenocarcinomas and low in cells derived from invasive ductal carcinomas.  
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7.2 Graphical Overview of ACBD3 Functions 

 

Figure 7.1 – Graphical overview of ACBD3 function. ACBD3 has functions at the Golgi, 

Mitochondria, cell membrane, transferrin containing endosomes, and in the cytoplasm during 

mitosis. 1. ACBD3 (blue) localises to the mitochondria by binding TPSO (purple coil), ACBD3 

can then recruit PKA via the PKAR1α subunit (grey) which phosphorylates VDAC to prevent 

calcium import into the mitochondria signalling redox stress and subsequent inflammation. 

PKA also phosphorylates StAR on the mitochondria which allows cholesterol import into the 

mitochondria for steroid synthesis. 2. ACBD3 binds TUG (green) at the Golgi and together 

they retain GLUT4 (pink) storage vesicles at the Golgi in the absence of insulin signalling.  

3. ACBD3 binds Golgin-160 which also binds TUG protein if TUG has been acetylated. 

Golgin-160 is cleaved by Caspases during apoptosis and ACBD3 has higher binding affinity 

for the caspase 3 generated Golgin-160 fragment over the full-length peptide. 4. ACBD3 

localises PI4Kβ to Golgi membranes increasing the rate of conversion of PI into PI(4)P by 

tethering PI4Kβ to the site of its substrate. GOLGB1 (maroon) also binds ACBD3 and 

stabilises it at the Golgi. 5. ACBD3 binds Golgin45 (pink) at the Golgi which binds GRASP55 

(yellow) and all play a structural role in the assembly, stacking and maintenance of the  Golgi. 

6. ACBD3 tethers Dexras1 (red) to DMT1 (orange) and stimulates DMT1 to import iron into 

the cell. Transferrin binds the transferrin receptor and is endocytosed into the cell with DMT1. 

Acidification causes release of iron from transferrin and the i ron is then imported to the 

cytoplasm by DMT1 stimulated by ACBD3 and Dexras1. 7. During mitosis the Golgi fragments 

and ACBD3 is released into the cytoplasm. In neural development ACBD3 binds NUMB 

(yellow) and they synergistically inhibit NOTCH signalling  to specify neuronal stem cell fate.  
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7.3 ACBD3 as a Marker in Breast Cancer 

ACBD3 mRNA and protein expression were higher in breast cancer cell lines 

compared to a normal like breast cell line (MCF12A). mRNA expression was highest 

in the HER2+ SKBR3 breast cancer cell line at 5.8-fold the level of the MCF12A cell 

line, with protein levels being the highest in the PMC42, T47D, and MDA-MB-361 cell 

lines which were all ER+. High ACBD3 mRNA expression was consistently detrimental 

to breast cancer patient outcomes across different tumour subtypes, receptor status 

and the cohort as a whole. There were no instances where high ACBD3 expression 

was associated with improved patient outcomes. In isolation, this suggests that 

ACBD3 expression is a marker of poor prognosis in patients and particularly a marker 

of distant metastasis risk in breast cancer. An increased risk of metastases 

subsequently decreases survival, as 90% of cancer deaths are caused my metastatic 

tumours (Peitzsch, Tyutyunnykova et al. 2017).  

Staining of breast cancer cores for ACBD3 protein expression showed tissue 

specific staining, particularly of breasts ducts, where ACBD3 expression was often 

higher than surrounding cells. A common feature of normal and cancerous tissue was 

high ACBD3 staining of luminal epithelial and myoepithelial basal cells of ducts. 

Ductal cells sometimes had a mosaic pattern where ACBD3 was high or very low in 

neighbouring cells of the same type (luminal/myoepithemial/basal). Luminal B 

intrinsic subtype breast cancer patients had the largest decrease in relapse free 

survival when ACBD3 was expressed above the median level. The luminal B intrinsic 

subtype has a similar gene expression profile to luminal breast cells and the subtype 

is associated with ER expression. Patients with luminal B breast cancers have a 

worse prognosis than those with luminal A with higher expression of proliferative 

markers but is otherwise similar to the luminal A subtype (Ciriello, Gatza et al. 2015, 

Cancer Research UK 2017). 

ACBD3 may be another proliferative marker that distinguishes the luminal B 

subtype from luminal A. Differentiating luminal A from luminal B is largely dependent 

on tumour grade and proliferation rate where luminal B breast cancers are higher in 

both aspects (Inic, Zegarac et al. 2014). High ACBD3 mRNA expression was 

associated with worse prognosis, just as patient with luminal B cancers have worse 

prognosis than those with luminal A. The T47D cell line is a model for luminal A breast 

cancer and T47D cells that overexpressed ACBD3 grew faster than controls certain ly 

suggesting that it increased proliferation in Luminal A-type cells. There were also 
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increases in inflammatory proteins when ACBD3 was overexpressed which can be 

promotive of a tumour microenvironment and therefore progressive. ACBD3 protein 

levels were high in ER+ breast cell lines further associating its expression with luminal 

breast cancer subtypes.  

As an essential protein in Golgi structure and function, it would be expected to 

find high protein expression of ACBD3 in secretory cells (Xihua, Mengjing et al. 2017, 

Liao, J., Guan et al. 2019, Shinoda, Fujita et al. 2012, Yue, Qian et al. 2019, Truschel, 

Zhang et al. 2012, Xiang, Wang 2010, Sohda, Misumi et al. 2001) . Myoepithelial cells 

have secretory properties and are responsible for milk ejection as well as the other 

secretory proteins including Serpin B5 (Tamazato Longhi, Magalhães et al. 2016). 

ACBD3 overexpression in T47D cells, or expression of the ACBD3(K381_R528) 

GOLD domain deletion mutant, resulted in a 1.6-fold increase in Serpin B5 

expression, supporting a role for ACBD3 in epithelial breast cell secretion, and a 

possible explanation for its high expression in the epithelial cells of the ducts.  

 70-80% of breast cancers are invasive ductal carcinomas that derive from 

epithelial cells (Cancer Research UK 2017), ACBD3 staining was noted to be 

particularly high in epithelial ductal cells and cells that infiltrated ducts of breast 

cancer cores. This may explain ACBD3 staining was scored lower overall in adjacent 

breast tissue cores compared to cancerous tissue cores but did not appear high when 

viewed in the context of whole breast cores. When cores were viewed as a whole 

(including connective tissue, adipose tissue, and non-cancerous tissue), ACBD3 was 

not higher overall but the cells that formed the IDCs were. High ACBD3 protein 

staining in luminal epithelial cells is also a concern in the context of Luminal B type 

breast cancer patients who were found to have the largest decrease in RFS when  

ACBD3 mRNA expression was high. ACBD3 may be a driver of luminal type breast 

cancers or a marker of aggressiveness.  

When breast cancer cores were stained for ACBD3 protein, there was no 

significant difference in ACBD3 staining between non-metastatic breast cancer cores 

and cores from metastatic breast cancer of the lymph node suggesting that ACBD3 

expression at the protein level does not correlate with metastasis. It was also 

observed with invasive ductal carcinomas that there were often many invasive cell s 

in the lobules that had low staining for ACBD3, but some cells embedded in them had 

very high staining. ACBD3 overexpression in breast cancer cell lines was previously 

found to increase side populations of breast cancer stem cells in culture that 
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resembled CSCs (Huang, Y., Yang et al. 2018). CSCs are often slower growing more 

dormant cells (Peitzsch, Tyutyunnykova et al. 2017), so an association between 

ACBD3 expression and lymph node invasion was not necessarily expected . Selective 

staining of only some invasive cells in lobules could be, in effect, staining cancer stem 

cells or cells that may become them as the heterogenous tumour evolves. Supporting 

evidence for ACBD3 in CSC formation and maintenance are discussed further in later 

sections and ACBD3 expression cannot be ruled out as a marker for CSCs.  

 

7.3.1 ACBD3 and the Human Epidermal Growth Factor Receptor 2 (HER2)  

In breast cancer cell lines, ACBD3 mRNA expression was highest in the 

HER2+ SKBR3 breast cancer cell line (Also ER+). Both mRNA and protein expression 

of ACBD3 were high in the HER2+ MDA-MB-361 cell line. HER2 protein was 1.36-

fold upregulated when ACBD3 was overexpressed in T47D cells and 1.46-fold 

upregulated when ACBD3(K381_R528) (ACBD3 GOLD domain deletion mutant) was 

expressed (. The T47D breast cancer cell line is not considered HER2 positive, 

increased HER2 expression in ACBD3 overexpressing T47D cel ls therefore supports 

a potential interplay between ACBD3 expression and HER2 expression. In breast 

cancer patients, tumour ACBD3 mRNA expression above the median resulted in lower 

relapse free survival, lower overall survival, and lower distant metastasis  free survival 

for HER2- breast cancer patients which matched the trend for patient outcomes 

overall when ACBD3 was expressed above the median level.  

ACBD3 mRNA levels were also found to be statistically higher in tumours that 

were non-responsive to anti-HER2 therapies. Currently only patients with HER2 3+ 

tumours are offered anti HER2 therapies, so looking at response to anti -HER2 therapy 

is already selecting for patients with high HER2-expressing tumours. Patients with 

HER--low breast cancer are not currently offered anti HER2 therapy but there is a 

growing consensus of preclinical data that new generation trastuzumab derivatives 

(such as trastuzumab-duocarmazine) and novel anti-HER2 drugs may be effective in 

killing HER2-low breast cancer cells (van der Lee, Groothuis et al. 2015, Eiger, 

Agostinetto et al. 2021).  

ACBD3 staining of a breast cancer core array found that ACBD3 protein was 

significantly higher in HER2 negative cores compared to HER2 1+ cores. Breast 

cancer patients with tumours graded 2+ or 3+ had higher mean expression of ACBD3 
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compared to patients with HER2 1+ graded tumours but this did not reach statistical 

significance. If a comparison can one day be made between responders and non-

responders to trastuzumab-duocarmazine when patients have low HER2 expression 

(1+), a larger difference in ACBD3 expression may be seen as I found the base level 

of ACBD3 to be lower in HER2 1+ tumours. 

IGFIR can phosphorylate and activate the HER2 receptor to negate the effects 

of anti-HER2 therapies in breast cancer cell lines and anti-IGFIR drugs re-sensitize 

trastuzumab resistant cell lines to trastuzumab (Lu, Y., Zi et al. 2001, Lu, Y., Zi et al. 

2004, Nahta, Yuan et al. 2005). HER2 heterodimerisation is one of the most common 

mechanisms of anti-HER2 resistance in cancers (Pohlmann, Mayer et al. 2009). 

ACBD3 transcription was found to be induced by X10, an insulin analogue that 

activates the IGF and insulin receptors. ACBD3 is involved in glucose transporter 4 

vesicle cycling and subsequent glucose import in response to insulin, so it is logical 

that the insulin signalling pathway could regulate ACBD3 expression (Belman, Bian 

et al. 2015, Bogan, Rubin et al. 2012).  

Higher expression of ACBD3 in non-responders to trastuzumab may be an 

indicator of the increased IGF signalling that sustains HER2 activation and signalling 

in the presence of trastuzumab. It is conceivable that upregulation of ACBD3, induced 

by IGF1R signalling, would subsequently increase the pool of available GLUT4 

containing vesicles and therefore increase glucose import and energy for the 

proliferating cancer cells.  

Lapatinib (anti-HER2 therapy) leads to downregulation of GLUT4 in HER2+ 

breast cancers (Acharya, Xu et al. 2016). This lends evidence to a hypothesis that 

there is interplay between insulin signalling, HER2+ breast cancers, and ACBD3 

expression. This also supports an argument that overexpression of ACBD3 increases 

resistance to anti-HER2 therapies through increases in expression and activity of 

insulin related pathways. 

 

7.3.2 ACBD3 and the Oestrogen Receptor (ER) 

 ACBD3 protein levels were highest in the PMC42, T47D, and MDA-MB-361 cell 

lines which were all ER+ but GNST and 17βE2 (activators of ER signalling pathway) 

were found to repress ACBD3 transcription by at least 2-fold. FOXA1 was found to 

be a positive ACBD3 transcription factor in normal breast tissue and FOXA1 is 
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associated with ER expression in breast cancer and ER signal reprogramming 

(Thorat, Marchio et al. 2008). It is conceivable that ER signalling negatively regulates 

ACBD3 expression in healthy breast tissue, but that in breast cancer FOXA1 

expression contributes to the reprogramming of ER binding and signalling in breast 

cancer (Ross-Innes, Stark et al. 2012), cancelling out the negative impact of  GNST 

and 17βE2-mediated ER transcriptional repression of ACBD3. This would explain why 

distant metastasis-free survival was worse for ER+ patients when ACBD3 expression 

was high. 

Differential responses to oestrogen have been reported in breast cancer to the 

extent where normal and cancerous breast cells could be differentiated between 

depending on their cistrome (Chi, Singhal et al. 2019). The oestrogen induced tumour 

suppressor Rho GTPase-activating protein 7 is induced by oestrogen in normal breast 

tissue but not in ER+ breast cancer cells and ACBD3 may follow the inverse to this 

pattern, repressed by oestrogen normally but not in ER+ breast cancers (Chi, Singhal 

et al. 2019). This further suggests ACBD3 expression could be a marker of a 

reprogrammed oestrogen receptor signalling pathway that no longer represses 

ACBD3 transcription. ER reprogramming is associated with breast cancer metastasis 

and therapy resistance (Ross-Innes, Stark et al. 2012, Achinger-Kawecka, Valdes-

Mora et al. 2020), ACBD3 expression was also found to be associated with increased 

risk of metastasis and small but significant increases in resistance to some 

chemotherapies. 

In the T47D breast cancer cell line, ERα protein was upregulated 1.35 -fold 

when ACBD3 was overexpressed and 1.61-fold when ACBD3(K381_R528) was 

expressed. There is possibly cross-regulation between ACBD3 and ER; certainly 

increased ACBD3 has the potential to increase output from the Golgi, either by 

increasing Golgi size or activity, and as a nuclear receptor, the ER is post 

translationally processed by the Golgi. Bisphenol A was also discovered as a positive  

ACBD3 transcriptional regulator, it is an oestrogen mimic found in plastic bottles, 

receipts, and other common products and has been associated with breast cancer 

and other cancers (Wang, Z., Liu et al. 2016, Jalal, Surendranath et al. 2017, 

Sengupta, Obiorah et al. 2013, Acconcia, Pallottini et al. 2015) . 

Breast cancer core staining for ACBD3 found that the highest mean ACBD3 

protein scoring was found in ER+, PR-, HER2-, breast cancer patients, but this 

difference did not reach statistical significance compared to patients with other 
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combinations of receptor status. A larger dataset may find that this observation 

reaches statistical significance. The potential interplay between ACBD3 and ER is 

also supported when survival in ER negative patients is considered. Overall survival 

and distant metastasis free survival were not significantly different in ER- breast 

cancer patients when divided by ACBD3 expression (Appendix – Figure 9.3), ACBD3 

overexpression had more influence on relapse free survival and overall survival in 

patients whose tumours expressed ER.  

 

7.3.3 ACBD3 and the Progesterone Receptor (PR) 

ACBD3 protein staining was significantly higher in PR- breast cancer cores 

compared to PR 3+ cores. ACBD3 interacts with the progesterone receptor chaperone 

UNC45A, a regulatory component of the progesterone receptor/heat shock protein 90 

chaperoning complex which functions in the assembly and folding of the progesterone 

receptor (Chadli, Graham et al. 2006a). UNC45A expression limits PR chaperoning 

and an ACBD3-UNC45A interaction could have a negative effect on PR nuclear 

expression. As ACBD3 is known to regulate the expression of the GLUT4 receptor by 

retaining it at the Golgi, it could contribute to PR nuclear localisation regulation in a 

similar way (Belman, Bian et al. 2015, Bogan, Rubin et al. 2012). It is possible that 

PR signalling-dependent breast cancers may be under selection pressure to 

downregulate ACBD3 protein relative to PR- breast cancers. 

 

7.4 ACBD3 and Breast Cancer Therapy 

ACBD3 mRNA expression varied between different breast cancer cell lines and 

was 2.1-fold to 5.8-fold higher in breast cancer cell lines compared to the MCF12A 

cell line, mRNA expression did not correlate with protein expression. This suggests 

that ACBD3 protein levels are regulated post transcriptional and/or post translation 

and this is supported by the finding that the ACBD3 reading frame is hypomethylated 

and not regulated by methylation at the stage of transcription in normal breast or 

breast cancer. Any targeting of ACBD3 may be reliant on finding protein level 

regulators. 

ACBD3 is directly involved in iron transport into the cell where it binds DMT1 

iron transporter and the positive regulator Dexras1, and ACBD3 protein expression is 
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downregulated by high levels of iron in the duodenum via negative feedback to 

maintain iron homeostasis (Okazaki, Ma et al. 2012, Okazaki, Glass 2017). There is 

no direct evidence for negative feedback in other tissues but isoforms of DMT1 are 

present in most tissues and it was expected that  ACBD3 would have a similar role in 

all tissues and therefore be similarly regulated by iron (Lis, Barone et al. 2004). It 

was unexpected then to find that supplementing iron in cell culture medium as ferric 

ammonium citrate increased ACBD3 protein expression at 179nM and 89.53μM ferric 

ammonium citrate concentration in the MDA-MB-231 cell line. This means that 

intracellular iron was not found to negatively regulate ACBD3 in this breast cancer 

cell line. 

 Whilst changes in ACBD3 expression varied between the T47D parental and 

everolimus resistant cell lines, ACBD3 expression was either higher or not different 

at the mRNA level in the T47D-EveR cells at all seeding densities and higher in the 

T47D-EveR cells at the protein level at all time points after seeding. Increased 

expression of ACBD3 in the T47D-EveR cell line suggested that it could have a role 

in promoting or maintaining everolimus resistance in the cells.  

Direct upregulation of ACBD3 by everolimus treatment was ruled out by 

treating T47D cells with everolimus and this led to the hypothesis that ACBD3 

upregulation caused the everolimus resistance. Work by a previous student who 

engineered the T47D-EveR cell line found that β-catenin protein was upregulated in 

that cell line (Hare 2018) combined with the knowledge that ACBD3 overexpression 

in breast cancer has been shown to increase β-catenin activity (Huang, Yang et al. 

2018), provides a further possible link between ACBD3 and everolimus resistance in 

breast cancer. 

ACBD3 overexpression did not increase cell number at any concentration of 

everolimus treatment relative to cell transfected with an empty vector control. 

Expression of the ACBD3(KQ117AA) mutant in the same cell line also resulted in no 

increased resistance to everolimus. Based on this, the hypothesis that ACBD3 is 

causative of everolimus resistance must be rejected. ACBD3 may still have a role in 

everolimus resistance in the T47D-EveR cell line or may be a marker of other changes 

that are causative of resistance. One possibility is that ACBD3 upregulation is a 

marker of stemness in the T47D-EveR cells. Hare (2018) found that Wnt signalling 

and ALDH signalling were upregulated in the T47D-EveR, both markers of stemness 

(Hare 2018, Ginestier, Hur et al. 2007, Reya, Clevers 2005) . 
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 Another possible candidate for the mechanism of everolimus resistance is 

PI4Kβ which was also upregulated at the mRNA and protein level in the  T47D-EveR 

cell line, and mRNA expression was induced by everolimus treatment.  

 

7.5 PI4KB, and its Interaction with ACBD3 

 PI4Kβ is the main binding partner of ACBD3 and like ACBD3 it is located on 

chromosome 1q (1q21.3). PI4Kβ expression was previously found to be a marker for 

breast cancer recurrence and is upregulated in 20% of breast tumours (Goh, Feng et 

al. 2017, Tan, Brill 2014, Morrow, Alipour et al. 2014). These two factors informed the 

decision to measure PI4Kβ expression simultaneously to ACBD3 expression in most 

instances but discussion around results from PI4Kβ have remained brief until now to 

focus on ACBD3. 

At the mRNA level there was a clear and statistically significant difference in 

PI4Kβ expression between cell lines derived from adenocarcinomas (high expression) 

and cell lines derived from invasive ductal carcinomas (low expression). Only the 

MDA-MB-231 cell line (triple negative, adenocarcinoma derived) had higher PI4Kβ 

expression than the MCF12A control cells to a statistically significant level. PI4Kβ 

protein expression was higher in breast cancer cell lines compared to the normal -like 

control, with the exception of the MDA-MB-436 cell line which had lower PI4Kβ  

protein expression. The MDA-MB-436 cell line also had the lowest PI4Kβ mRNA 

expression.  

ACBD3 and PI4Kβ protein expression positively correlated but this was absent 

at the mRNA level. ACBD3 mRNA levels also did not correlate well with ACBD3 

protein levels: T47D and MDA-MB-361 cells had high levels of ACBD3 protein 

expression but second and third lowest expression of ACBD3 mRNA respectively, 

(not including the normal like MCF12A line). In contrast, PI4Kβ mRNA and pro tein 

levels did positively correlate between cell lines.  

 PI4Kβ mRNA expression was increased in the T47D-EveR cell line compared 

to parental cells and by a larger fold change than for ACBD3 expression. PI4Kβ mRNA 

was induced by 100μM everolimus treatment and PI4Kβ protein expression also 

increased following 72 hours of everolimus treatment. This suggests that it may in 

fact be PI4Kβ that contributes to everolimus resistance in the T47D -EveR cell line, 



 
 

 

       186  
 
 

 

and as ACBD3 and PI4Kβ protein expression positively correlate than upregulated 

ACBD3 may simply be a marker of upregulated PI4Kβ.  

 PI4Kβ has previously been found to have a role in breast cancer but treating 

MDA-MB-231 cells with the reported IC50 of a PI4Kβ specific inhibitor had no 

statistical effect on cell growth, it took a much larger dose of the treatment to cause 

significant cell number decrease (50-100μM). The 0nM treatment had large variance 

making it hard to perform statistical analysis against it. It’s  possible that as a 

combined therapy that BQR695 could have a value in breast cancer treatment but 

would appear to be a poor candidate as a single treatment due to the high dose 

required to reach the GI50 in the MDA-MB-231 breast cancer cell line. 

 PI4Kβ activity is dependent on the presence of ACBD3 in vitro, was pulled 

down by ACBD3 in 293T cells and recruited by ACBD3 in Vero cells (Klima, Tóth et 

al. 2016, Sasaki, Ishikawa et al. 2012). It was hypothesised that this relationship 

could be reciprocal with PI4Kβ activity affecting ACBD3 expression. The PI4Kβ 

inhibitor BQR695 did not consistently affect the protein expression of ACBD3 in the 

MDA-MB-231 cell line suggesting that PI4Kβ activity is no t a regulator of ACBD3 

protein expression. Inhibition of PI4Kβ was assayed as an inhibitor of MDA -MB-231 

cell growth and treatment only resulted in a statistical reduction in cell number at 

50μM and 100μM (555-fold and 1111-fold the reported IC50 respectively). 

PI4Kβ was overexpressed in ACBD3 overexpressing T47D cells relative to the 

empty vector control. This is in agreement  with previous findings where there was 

positive correlation between ACBD3 and PI4Kβ  protein expression across breast 

cancer cell lines.  A mutant to abolish ACBD3-PI4Kβ interactions was unsuccessful 

so the effect of a non PI4Kβ binding ACBD3 mutant could not be determined. The 

Acyl-CoA binding inhibiting mutant (KQ117AA) expressing cells had less PI4Kβ 

protein expression than WT or K381-R528del ACBD3 expressing cells. 

In summary, PI4Kβ may have a role in resistance to everolimus and the 

expression of ACBD3 protein appears to affect the expression of PI4Kβ protein, which 

may be reciprocal. 
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7.6 Future Work 

I believe There is still much research to be done concerning ACBD3 and breast 

cancer. Results in this work indicate that ACBD3 may be a reliable biomarker for 

relapse risk and for stemness, and I hypothesised that ACBD3 expression may be a 

marker of oestrogen receptor reprogramming which is itself associated with drug 

resistance and metastasis (Achinger-Kawecka, Valdes-Mora et al. 2020).  

ACBD3 overexpression in normal like breast cell lines and analysis of 

secretions from ACBD3 overexpressing cells were two experiments that unfortunately 

could not be carried out. Based on the upregulation of several extracellular and 

secretory proteins when ACBD3 was overexpressed I would expect to find similar 

changes in media secretions and a global increase in total secreted proteins due to 

the role of ACBD3 in the functioning of the Golgi. ACBD3 protein expression in luminal 

B cell models could not be obtained and this may be important in determining if 

ACBD3 is a marker of or contributor to the Luminal B subtype. Assessing luminal B 

specific markers when ACBD3 is overexpressed in Luminal A cells (such as Ki67) 

would provide valuable evidence to determine if this is the case (As was carried out 

on T47D Luminal A model cells in this project). 

ACBD3 can induce redox stress by promoting phosphorylation of VDAC1 at 

the mitochondria which prevents mitochondrial calcium import (Gatliff, East et al. 

2017). The level of reactive oxygen species (ROS) in a cell can be measured and it 

would be interesting to determine what happens to these levels when ACBD3 is 

overexpressed in normal and cancerous breast cells (Wu, D., Yotnda 2011). HIF-1a 

protein expression was higher when ACBD3 was overexpressed and measuring ROS 

may help to determine if ACBD3 directly upregulates HIF-1a or if it is stabilised by 

ROS generated by ACBD3 overexpression. Similarly, specific research on ACBD3 

expression and inflammation in breast tissue may have a high value for breast cancer 

insight or even be translational to Huntington’s disease research and therapy.  

In the background of this work, PI4Kβ expression has also been examined in 

cell lines and in everolimus resistant cells and may have a causative role in the latter. 

The ACBD3-PI4Kβ interaction should not be ignored in future work concerning 

ACBD3 and breast cancer. PI4Kβ functional inhibition was not found to influence 

ACBD3 expression in this work but they were found to be co-expressed across cell 

lines at the protein level, and PI4Kβ was upregulated when ACBD3 was 
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overexpressed. I hope that oncoprotein expression change data when ACBD3 was 

overexpressed will aid in asking more specific questions and designing more targeted 

experiments concerning ACBD3 in breast cancer and help elucidate any addition role 

for ACBD3 in breast cancer cell behaviour. 

 

7.6 Concluding Remarks 

There were a very limited number of publications relating to ACBD3 at the start 

of this project (42 research articles primarily concerning ACBD3 and 3 review articles, 

as of October 1st 2017), of which only one paper made a correlation between ACBD3 

and cancer (Liu, Jun, Matyakhina et al. 2003), and none made a specific link between 

ACBD3 and breast cancer or normal breast tissue. The inception of this project was 

based on unpublished data showing increased ACBD3 protein expression in breast 

cancer cell lines and upon assessing the literature ACBD3 became an appealing 

protein to study with contextual roles in the cell and roles that could be applicable to 

multiple hallmarks of cancer.  

 In this thesis, higher ACBD3 expression has been associated with breast 

cancer, worse prognosis for breast cancer patients, and increased inflammatory 

markers. An important next step will be in repeating this methodology for ACBD3 

protein expression with a large dataset as mRNA and protein expression did not 

correlate in breast cancer cell lines. ER+ breast cancer patient cores were found to 

have the highest ACBD3 protein staining, matching cell line data, but the IHC core 

data did not reach statistical significance. Other evidence highlighting a relationship 

between ACBD3 and ER positivity suggests that a larger dataset may reach statistical 

significance. 

When viewing breast cancer cores stained for ACBD3 at high magnification it 

was apparent that ACBD3 expression was highest in luminal epithelial cells and cells 

surrounding ducts in breast core samples. The association between ACBD3 and 

epithelial breast cells that may be based on the requirement of ACBD3 expression for 

Golgi function and therefore secretion. Patients with Luminal B type cancers had the 

largest decrease in relapse free survival when ACBD3 was high and like Luminal type 

cancers ACBD3 expression was found to be associated with ER positivity.  

I have hypothesised that ACBD3 overexpression in breast cancer contributes 

to an inflammatory microenvironment whilst simultaneously supressing detection by 
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the immune system. In Huntington’s disease, ACBD3 protein is overexpressed in the 

corpus striatum and iron levels are also dysregulated suggesting that ACBD3 is not 

negatively regulated by iron in the brain either (Sbodio, Paul et al. 2013, Rosas, Chen 

et al. 2012). ACBD3 overexpression has been shown to increase iron import, and 

resultant redox stress may even form a positive feedback loop that exacerbates 

Huntington’s disease (Rosas, Chen et al. 2012, Sbodio, Paul et al. 2013, Falk, 

Pierfrancesco et al. 1999). Any feedback loop that increases redox stress has 

implications in cancer as redox stress can cause inflammation which can promote a 

tumour microenvironment (Hanahan, Weinberg 2011). Overexpression of ACBD3-

GFP also led to increased endogenous ACBD3 protein supporting a positive feedback 

loop for ACBD3 expression in breast cancer. 

The effect of ACBD3 on breast cancer behaviour has been both interesting and 

fruitful. I can conclude that ACBD3 affects cancer related pathways in a breast cell 

line and has clinical relevance for patients. More work is necessary to elucidate the 

mechanisms by which ACBD3 expression affects breast cancer patients, and I was 

limited, largely, by the small base of knowledge from which to start.  I hope that the 

breast core staining and oncoprotein array data, in particular, will help in informing 

future experiments into ACBD3 and breast cancer behaviour.  
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Chapter 9 

Appendix 

 

 

Figure 9.1 - ACBD3 protein did not change over time following everolimus treatment in 

the T47D cell line but did increase over time in the DMSO only controls. PI4Kβ protein 

expression increased at 72 hours everolimus treatment but also increased over time in the 

controls. β-actin protein staining was used as a loading control in addition to cell counting 

before lysis. β-actin exposure = 10 seconds, ACBD3 exposure = 2 minutes, PI4Kβ exposure 

= 1 minute. Representative blot from n=2. Un cropped version of Figure 5.9.  
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Figure 9.2 – T47D cells were successfully transfected with ACBD3 constructs and 

protein expression was maintained until the end of experimentation. Uncropped blot 

from Figure 6.12. All samples on this blot were loaded into one gel and transferred to one 

nitrocellulose membrane. After blocking the membrane was divided into 4 sections (a -d) for 

staining with different antibodies. samples were loaded in duplicate (same biological 

replicate) as follows: lanes 1 and 5 – T47D cells transfected with eGFP-C3 empty vector, 

lanes 2 and 6 – T47D cells transfected with eGFP-C3-ACBD3 vector, lanes 3 and 7 – T47D 

cells transfected with eGFP-C3-ACBD3(KQ117AA) vector, lanes 4 and 8 – T47D cells 

transfected with eGFP-C3-ACBD3(K381_R528delinsXX) vector. 

Staining was then carried out as follows: section a. anti-ACBD3 antibody, b. anti-GFP 

antibody, c. anti- β-actin antibody, d. anti GFP-antibody. 

note: there is a blank lane between samples 4 and 5.  
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Figure 9.3 – KMplotter results for ER- breast cancer patients when ACBD3 mRNA 

expression was above the median (high, red line) or below the median (low, black line) . 

a. Overall survival, and b. Distant metastasis free survival. 


