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Abstract—This paper addresses the simultaneous state and
unknown input estimation problem for a class of discrete time-
varying complex networks (CNs) under redundant channels and
dynamic event-triggered mechanisms (ETMs). The redundant
channels, modeled by an array of mutually independent Bernoulli
distributed stochastic variables, are exploited to enhance the
transmission reliability. For energy-saving purposes, a dynamic
event-triggered transmission scheme is enforced to ensure that
every sensor node sends its measurement to the corresponding
estimator only when a certain condition holds. The primary
objective of the investigation carried out is to construct a
recursive estimator for both the state and the unknown input such
that certain upper bounds on the estimation error covariances
are first guaranteed and then minimized at each time instant in
the presence of dynamic event-triggered strategies and redundant
channels. By solving two series of recursive difference equations,
the desired estimator gains are computed. Finally, an illustrative
example is presented to show the usefulness of the developed
estimator design method.

Index Terms—Complex networks; dynamic event-triggered
mechanisms; state and input estimation; redundant channels;
recursive algorithm.

I. INTRODUCTION

The state estimation (SE) or filtering problem has always
been an active research topic because of its wide applications
in signal processing and systems science, see e.g. [6], [7],
[13], [23], [32], [33]. In order to deal with different types of
exogenous disturbances, a variety of SE techniques have been
developed with examples including Kalman estimation ap-
proach [4], [18], [37], variance-constrained estimation method
[16], [17], [23], H∞ estimation scheme [38], [40], [46] and
set-membership estimation technique [28], [41], [43], [48].
In these SE strategies, it is typically required that all inputs
(e.g. fault or unmodeled dynamics) of the underlying system
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should be known. However, in many practical situations,
certain inputs are inevitably unknown owing probably to the
expensive/unbearable cost of acquiring the information of the
inputs. For instance, in a machine tool system, the cutting force
exerted by the tool is generally difficult to measure, which
can be regarded as an unknown input estimated based on the
available measurements [10]. As such, it is of great importance
to propose a new SE scheme that is capable of estimating the
unknown input and system state simultaneously. Accordingly,
over the past few decades, a large amount of effort has been
devoted to the investigation of joint input and SE problem, see
[14], [49] for some representative works.
Complex networks (CNs) have recently received a rapidly

growing research interest because of its capability of de-
scribing various kinds of real-world systems such as social
networks, neural networks, World Wide Web and scientific
collaboration networks [1], [2], [31]. Typically, a CN consists
of large numbers of nodes with highly interconnected rela-
tionships, by which every node can be treated as a subsystem
whose dynamical behavior is affected by other nodes. In the
past years, in order to better understand the internal character-
istic of CNs, the SE problem for CNs has become a primary
research focus and a great number of excellent results have
been available in the literature, see e.g. [8], [24], [35], [39]
and the reference therein. As for the problem of simultaneous
state and input estimation, the relevant results have been
quite few despite the initial effort made in [44], where the
problem of joint SE and unknown input reconstruction has
been handled for uncertain time-invariant CNs. As a matter of
fact, almost all practical systems possess certain time-varying
characteristics and, consequently, there is a practical need
to design joint state and unknown input estimation (SUIE)
schemes for time-varying CNs.
In many applications, due primarily to the bandwidth restric-

tion and random fluctuation of network channels, those signals
transmitted from the system to the sensor node through only
one channel would inevitably suffer from the random packet
losses, and this might lead to severe degradations of the overall
system performance [9], [16]. In the past few years, many re-
searchers have attempted to remedy the undesired effects from
the random packet losses [3], [5]. For example, the scheme
of redundant transmission channels, which contains two or
more available communication accesses, has been developed
in [29] whose main advantage lies in the extra guarantee of
successful data transmission if certain channel fails to operate,
thereby effectively improving the communication reliability.
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Recently, the redundant channel schemes have been widely
applied in networked systems [40], [47], sensor networks and
multiagent systems [42] to deal with the sliding mode control,
the distributed filtering and the H∞ consensus problems,
respectively. Regarding CNs, the generalized SE method has
been presented in [36], where both the redundant channels and
Round-Robin protocol have been taken into consideration.
As an effective means of saving energy, the event-triggered

transmission strategy has attracted much research attention
from the control community because of its capability of
reducing unnecessary transmissions [22], [45]. By employing
this transmission mechanism, a signal is transmitted only after
the occurrence of a certain pre-defined event. In recent years,
considerable progress has been made on the event-triggered
SE problems for different types of systems, see e.g. [11], [12],
[15], [21], [34]. Particularly, in [15], a dynamic event-triggered
mechanism (ETM), which introduces an auxiliary dynamical
equation into the traditional ETM, has been proposed to
save resource even further without significantly degrading
the system performance. In fact, the dynamic event-triggered
transmission scheme has recently become more and more
popular, and much work has been done along this line, see
e.g. [20], [50] for some latest literature. It is noticeable that
there have been very few results on the joint SUIE problem
for time-varying CNs under dynamic ETMs yet, and this gives
rise to the main motivation of the current investigation.
In view of the above discussions, we endeavor to handle

the joint SUIE problem for a class of time-varying CNs with
redundant channels and dynamic ETMs. In particular, the
redundant channels are introduced to increase the commu-
nication reliability and the dynamic ETMs are employed to
determine when sensors transmit their own measurements to
the corresponding estimators. There are three main difficulties
for the considered research issue, namely, 1) the establishment
of certain criterion for deriving certain upper bounds on the
error covariances of input and SE; 2) the design of suitable
estimators for both the input and state such that the derived
upper bounds can be optimized at each time instant; and 3)
the examination of the impacts from unknown input, dynamic
ETMs and redundant channels on the estimation performance.
The main contributions are summarized as follows: 1) a new
joint SUIE scheme is presented for time-varying CNs subject
to redundant channels and dynamic ETMs; 2) a recursive
induction approach is developed to guarantee the existence of
upper bounds on the error covariances of input and SE; and
3) the desired estimator gains are determined in the sense of
minimizing the obtained upper bounds (on the estimation error
covariances) that are parameterized by means of the solutions
to certain recursive difference equations. Furthermore, the
primary differences of the results developed for CNs in this
paper from [19] include: 1) the problem of state and input
estimation is investigated simultaneously; and 2) the effects of
unknown input, dynamic ETMs as well as redundant channels
are concurrently considered in the estimator design.
Notations: Rn denotes the n-dimensional Euclidean space.

R
n×m stands the set of all n×m real matrices. AT represents

the transposition of the matrix A and ‖ · ‖ is the Euclidean
norm. I denotes the identity matrix and diag{· · · } refers

to a block-diagonal matrix. E{a} is the expectation of the
stochastic variable a. Let R(·) be the rank of a matrix. P{·}
denotes the probabilities of “ · ”. For a real symmetric matrix
P, P � 0 (P ≻ 0) means that the matrix P is positive semi-
definite (positive definite).

II. PROBLEM FORMULATION

Consider a class of discrete time-varying CNs defined on a
finite horizon k ∈ [0, N ]:

xi,k+1 = fk(xi,k) +
n
∑

j=1

ωijΥxj,k +Ai,kdi,k

+Bi,kwk, (i = 1, 2, . . . , n)

(1)

where xi,k ∈ R
nx and di,k ∈ R

nd are the state vector and
the unknown input vector of the ith node, respectively. W =
(ωij)n×n is the outer-coupling matrix whose non-diagonal
elements satisfy ωij ≥ 0 but not all zeros and the diagonal
elements satisfy ωii = −

∑n

j=1,j 6=i ωij with W = WT .
Υ = diag{ι1, ι2, . . . , ιnx

} is an inner-coupling matrix. Ai,k

and Bi,k are known time-varying matrices. wk ∈ R
nw is the

process noise with zero-mean and covariance Rk > 0. The
initial value of the unknown input is set as di,0 = d̄i.
Assumption 1: [30] The nonlinear function fk(·) in (1)

satisfies fk(0) = 0 and

‖fk(ı)− fk()− Ek(ı− )‖ ≤ ℓk ‖ı− ‖ (2)

for all ı,  ∈ R
nx , where ℓk is a known nonnegative scalar and

Ek is a known matrix.
The measurement output with redundant channels is ex-

pressed as

yi,k =π1
i,kC

1
i,kxi,k + Fi,kdi,k +Di,kvk

+

z
∑

p=2

{

p−1
∏

q=1

(

1− πq
i,k

)

πp
i,kC

p
i,k

}

xi,k,

(i = 1, 2, . . . , n)

(3)

where yi,k ∈ R
ny is the measurement output of the ith node,

Cp
i,k (p = 1, 2, . . . , z), Di,k and Fi,k are known matrices

with R(Fi,k) = nd, vk ∈ R
nv is the measurement noise with

mean being zero and covariance being Qk > 0. The stochastic
variable πp

i,k, which describes the packet dropout phenomenon
in the pth channel, satisfies

P{πp
i,k = 0} = 1− π̄p

i ,

P{πp
i,k = 1} = π̄p

i

(4)

with π̄p
i ∈ [0, 1] being a known scalar.

Remark 1: By restoring to the Bernoulli distributed s-
tochastic variables πp

i,k (p = 1, 2, . . . , z), the measurement
model (3) for node i is capable of depicting the phenomenon
of z-channel packet dropouts, where the priority of these z
channels is ranked in a descending order from channel 1
to channel z. Furthermore, in order to save communication
resources and avoid data collisions, it is assumed that, at each
time instant, only one (or none) channel among the z-channels
would be activated to transmit the measurement output. Ac-
cordingly, the values of πp

i,k can fall into the following three
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cases: 1) if π1
i,k = 1, then the measurement is delivered via

the first channel; 2) for any given integer s (s = 2, . . . , z),
if πs

i,k = 1 and πl
i,k = 0 for all l = 1, 2, . . . , s − 1, then

the measurement is delivered via the sth channel and the
packet dropouts occur at all previous s− 1 channels; and 3) if
πp
i,k = 0 for all p = 1, 2, . . . , z, then all channels are useless

and the packet dropouts for node i occur. Compared to the
traditional one-channel case, it is obvious that the redundant
channel communication strategy could reduce the occurrence
probability of packet dropouts, thereby effectively improving
the network reliability. Note that such a measurement model
with z redundant channels has been widely used in the existing
literature, see e.g. [42].
Assumption 2: xi,0 is a stochastic variable with mean x̄i,0

and covariance P x
i,0 > 0. Furthermore, all the stochastic

variables π1
i,k, . . . , π

z
i,k, xi,0, wk and vk in this paper are

mutually independent.
For energy-saving purposes, a dynamic ETM is used for

each node to decide when to transmit the measurement. Denote
by 0 ≤ κi

0 < κi
1 < · · · < κi

l < · · · the triggering instant
sequence with κi

l+1 determined by

κi
l+1 = min

{

k|k > κi
l,

1

µi

ξi,k + σi − ‖ψi,k‖ ≤ 0
}

. (5)

Here, σi and µi are given positive scalars, ψi,k is defined by
ψi,k , yi,k − yi,κi

l
with the latest transmitted measurement

yi,κi
l
, and ξi,k is a dynamic variable satisfying

ξi,k+1 = γiξi,k + σi − ‖ψi,k‖, ξi,0 = ξi0 (6)

where ξi0 ≥ 0 is the given initial condition and γi is a suitable
positive scalar. Letting the parameters γi and µi satisfy γiµi ≥
1, the variable ξi,k satisfies ξi,k ≥ 0 for all k ∈ [0, N ].
Remark 2: It is easily seen from (5) and (6) that the

dynamic variable ξi,k could regulate the threshold value of
the dynamic triggering condition according to the event error
‖ψi,k‖. Specifically, if ‖ψi,k‖ is increasing, then ξi,k+1 would
start decreasing and vise verse, which is reasonable in both
theory and practice. Moreover, another introduced parameter
µi in (5) is a given positive scalar that influences the transmis-
sion frequency and the transmission frequency would increase
as µi increases. Note that the static ETMs considered in [23]
can be seen as special cases of the dynamic ETMs utilized in
this paper when µi tends to infinity.
Remark 3: The idea of dynamic ETM was first proposed in

[15] for the control problems, which recently has been adopted
in the literature to tackle with various control/filtering issues,
see e.g. [20]. Note that this paper represents the first attempt
to introduce a dynamic event-triggering strategy into the SUIE
problem for CNs. By employing the dynamic ETM (5), the
needless data transmissions could be effectively reduced and
hence the resource consumption is alleviated.
Based on the dynamic event-triggered measurement, the

estimators for node i (i = 1, 2, . . . , n) are constructed as
follows:

x̂i,k+1|k =fk(x̂i,k|k) +

n
∑

j=1

ωijΥx̂j,k|k +Ai,k d̂i,k,

x̂i,k+1|k+1 =x̂i,k+1|k +Ki,k+1

(

yi,κi
s
− π̄1

iC
1
i,k+1x̂i,k+1|k

−

z
∑

p=2

{

p−1
∏

q=1

(

1− π̄q
i

)

π̄p
iC

p
i,k+1

}

x̂i,k+1|k

− Fi,k+1d̂i,k+1

)

,

d̂i,k+1 =Gi,k+1

(

yi,κi
s
− π̄1

iC
1
i,k+1x̂i,k+1|k

−
z

∑

p=2

{

p−1
∏

q=1

(

1− π̄q
i

)

π̄p
iC

p
i,k+1

}

x̂i,k+1|k

)

(7)

for k + 1 ∈ [κi
s, κ

i
s+1) (s ≥ 0). Here, x̂i,k+1|k is the one-

step prediction, x̂i,k|k is the estimate of state xi,k, d̂i,k is the
estimate of the unknown input di,k at time k, and Ki,k+1 and
Gi,k+1 are estimator gains to be designed.
By the definition of ψi,k, (7) is transformed into

x̂i,k+1|k =fk(x̂i,k|k) +

n
∑

j=1

ωijΥx̂j,k|k +Ai,kd̂i,k,

x̂i,k+1|k+1 =x̂i,k+1|k +Ki,k+1

[

yi,k+1 − π̄1
iC

1
i,k+1x̂i,k+1|k

−

z
∑

p=2

{

p−1
∏

q=1

(

1− π̄q
i

)

π̄p
i C

p
i,k+1

}

x̂i,k+1|k

− ψi,k+1 − Fi,k+1d̂i,k+1

]

,

d̂i,k+1 =Gi,k+1

[

yi,k+1 − ψi,k+1 − π̄1
iC

1
i,k+1x̂i,k+1|k

−

z
∑

p=2

{

p−1
∏

q=1

(

1− π̄q
i

)

π̄p
i C

p
i,k+1

}

x̂i,k+1|k

]

. (8)

To proceed, let x̃i,k+1|k , xi,k+1 − x̂i,k+1|k be the predic-
tion error, x̃i,k+1|k+1 , xi,k+1 − x̂i,k+1|k+1 be the SE error
and d̃i,k+1 , di,k+1 − d̂i,k+1 be the estimation error of the
unknown input. Then, in view of (1) and (8), we obtain

x̃i,k+1|k =f̃k(x̃i,k|k) +

n
∑

j=1

ωijΥx̃j,k|k +Ai,kd̃i,k

+ Bi,kwk,

x̃i,k+1|k+1 =
(

I −Ki,k+1C̄i,k+1

)

x̃i,k+1|k +Ki,k+1ψi,k+1

−Ki,k+1Ci,k+1xi,k+1 −Ki,k+1Fi,k+1

× d̃i,k+1 −Ki,k+1Di,k+1vk+1,

d̃i,k+1 =
(

I −Gi,k+1Fi,k+1

)

di,k+1 +Gi,k+1ψi,k+1

−Gi,k+1Di,k+1vk+1 −Gi,k+1Ci,k+1

× xi,k+1 −Gi,k+1C̄i,k+1x̃i,k+1|k, (9)

where

f̃k(x̃i,k|k) , fk(xi,k)− fk(x̂i,k|k),

~
1
i,k+1 , π1

i,k+1 − π̄1
i , ~̄

1
i , π̄1

i ,

~
p
i,k+1

,

p−1
∏

q=1

(

1− πq
i,k+1

)

πp
i,k+1

−

p−1
∏

q=1

(

1− π̄q
i

)

π̄p
i ,

C̄i,k+1 ,

z
∑

p=1

~̄
p
iC

p
i,k+1

, Ci,k+1 ,

z
∑

p=1

~
p
i,k+1

Cp
i,k+1

,
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~̄
p
i ,

p−1
∏

q=1

(

1− π̄q
i

)

π̄p
i , p = 2, 3, . . . z.

If the following constraint

Gi,k+1Fi,k+1 = I (10)

holds, then the estimation error dynamics of the unknown input
reduces to

d̃i,k+1 =Gi,k+1ψi,k+1 −Gi,k+1Di,k+1vk+1 −Gi,k+1

× Ci,k+1xi,k+1 −Gi,k+1C̄i,k+1x̃i,k+1|k. (11)

Remark 4: The condition R(Fi,k+1) = nd imposed on
Fi,k+1 can guarantee that there exists a matrix Gi,k+1 such
that (10) is satisfied. Note that the constraint (10) is required
to be met so as to eliminate the influence of the unknown input
in (9). Such kind of constraints has been commonly utilized
in the literature, see e.g. [14].
The major objective of this paper is to construct the state

and input estimators of form (7) such that the following
requirements are simultaneously satisfied.
1) The SE error covariance

P x
i,k+1|k+1 , E

{

x̃i,k+1|k+1x̃
T
i,k+1|k+1

}

and the input estimation error covariance

P d
i,k+1 , E

{

d̃i,k+1d̃
T
i,k+1

}

have upper bounds in the presence of both dynamic ETMs
and redundant channels.

2) The estimator gains are parameterized to minimize the
obtained upper bounds at every time step.

III. MAIN RESULTS

In this section, we will first derive the upper bounds of the
error covariances for both the state and input estimation, and
the gain matrices Ki,k and Gi,k are then parameterized to
minimize such upper bounds at time instant k.
To proceed, the following two lemmas are given which are

helpful for further theoretical developments.
Lemma 1: For any matrices H1 and H2 of compatible

dimensions, the following inequality

H1H
T
2 + H2H

T
1 ≤ aH1H

T
1 + a

−1
H2H

T
2

holds for any scalar a > 0.
Lemma 2: Let the positive scalars ai,k and bi,k (i =

1, 2, . . . , n) be given. Assume that there exists a set of matrix
sequence Ȳi,k satisfying

Ȳi,k+1 ,

[

(1 + ai,k)(1 + bi,k)γ
2
i + (1 + µi)

× (1 + a−1

i,k )/µ
2
i

]

Ȳi,k +
[

(1 + ai,k)(1 + b−1

i,k )

+ (1 + a−1

i,k )(1 + µ−1

i )
]

σ2
i

(12)
with initial condition Ȳi,0 = (ξi0)

2. Then, an upper bound of
Yi,k is Ȳi,k , where Yi,k , E

{

ξ2i,k

}

.

Proof: By using Lemma 1, one has

ψT
i,kψi,k ≤

(

1

µi

ξi,k + σi

)2

≤(1 + µi)ξ
2
i,k/µ

2
i + (1 + µi

−1)σ2
i . (13)

Then, according to the analysis in [20], it is easy to obtain
that Yi,k ≤ Ȳi,k.
In the following theorem, for state and unknown input

estimation, certain upper bounds on the error covariances are
obtained, respectively.
Theorem 1: For given positive scalars cui,k+1, rui,k+1 and

evi,k+1 (u = 1, 2, 3, 4; v = 1, 2, 3), assume that there exist two
sets of matrix sequences P̄ x

i,k+1|k+1
and P̄ d

i,k+1
satisfying

P̄ x
i,k+1|k+1

,Ξi
k+1(P̄

x
i,k+1|k, P̄

d
i,k+1)

=(1 + c2i,k+1)(1 + e2i,k+1)(I −Ki,k+1C̄i,k+1)P̄
x
i,k+1|k

× (I −Ki,k+1C̄i,k+1)
T + (1 + c2i,k+1)(1 + e−1

2i,k+1
)

×
[

(1 + µi)Ȳi,k+1/µ
2
i + (1 + µi

−1)σ2
i

]

Ki,k+1K
T
i,k+1

+ (1 + c−1

2i,k+1
)(1 + c3i,k+1)(1 + r3i,k+1)

z
∑

p=1

z
∑

h=1

~̄
ph
i

×Ki,k+1C
p
i,k+1

x̂i,k+1|kx̂
T
i,k+1|k

(

Ki,k+1C
h
i,k+1

)T

+ (1 + c−1

2i,k+1
)(1 + c3i,k+1)(1 + r−1

3i,k+1
)

z
∑

p=1

z
∑

h=1

~̄
ph
i

×Ki,k+1C
p
i,k+1

P̄ x
i,k+1|k

(

Ki,k+1C
h
i,k+1

)T
+
[

r−1

2i,k+1

+ (1 + c−1

2i,k+1
)(1 + c−1

3i,k+1
)
]

Ki,k+1Fi,k+1P̄
d
i,k+1

× FT
i,k+1K

T
i,k+1 + (1 + r2i,k+1 − 2̺i,k+1)

×Ki,k+1Di,k+1Qk+1D
T
i,k+1K

T
i,k+1 (14)

and

P̄ d
i,k+1

=(1 + c4i,k+1)(1 + r4i,k+1)Gi,k+1C̄i,k+1P̄
x
i,k+1|kC̄

T
i,k+1

×GT
i,k+1 +

[

(1 + µi)Ȳi,k+1/µ
2
i + (1 + µi

−1)σ2
i

]

× (1 + c4i,k+1)(1 + r−1

4i,k+1
)Gi,k+1G

T
i,k+1 + (1 + c−1

4i,k+1
)

× (1 + e3i,k+1)

z
∑

p=1

z
∑

h=1

~̄
ph
i Gi,k+1C

p
i,k+1

x̂i,k+1|kx̂
T
i,k+1|k

×
(

Gi,k+1C
h
i,k+1

)T
+ (1 + c−1

4i,k+1
)(1 + e−1

3i,k+1
)

×

z
∑

p=1

z
∑

h=1

~̄
ph
i Gi,k+1C

p
i,k+1

P̄ x
i,k+1|k

(

Gi,k+1C
h
i,k+1

)T

+ (1− 2̺i,k+1)Gi,k+1Di,k+1Qk+1D
T
i,k+1G

T
i,k+1 (15)

with initial conditions P̄ x
i,0 = P x

i,0 and P̄ d
i,0 = d̄2i and

P̄ x
i,k+1|k ,(1 + c1i,k)(1 + r1i,k)ℓ

2
ktr{P̄

x
i,k|k}I + (1 + c1i,k)

× (1 + r−1

1i,k)EkP̄
x
i,k|kE

T
k + (1 + c−1

i,k )(1 + e1i,k)

× ω̄i

n
∑

j=1

|ωij |ΥP̄j,k|kΥ
T + (1 + c−1

1i,k)

× (1 + e−1

i,k )Ai,kP̄
d
i,kA

T
i,k +Bi,kRkB

T
i,k,
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ω̄i ,

n
∑

j=1

|ωij |, ~̄
ph
i ,

{

~̄
p
i (1− ~̄

p
i ), p = h,

− ~̄
p
i ~̄

h
i , p 6= h,

̺i,k+1 ,

{

0, the condition in (5) is satisfied,
1, otherwise.

(16)

Then, P̄ x
i,k+1|k+1

and P̄ d
i,k+1

are, respectively, the upper
bounds on the estimation error covariances P x

i,k+1|k+1
and

P d
i,k+1, i.e.,

P x
i,k+1|k+1 ≤ P̄ x

i,k+1|k+1, P d
i,k+1 ≤ P̄ d

i,k+1.

Proof: This proof is conducted via mathematical induc-
tion. Assume that P x

i,k|k ≤ P̄ x
i,k|k and P d

i,k ≤ P̄ d
i,k are true.

Then, we need to prove that P x
i,k+1|k+1

≤ P̄ x
i,k+1|k+1

and
P d
i,k+1

≤ P̄ d
i,k+1

.
First, since P x

i,k+1|k is defined as the prediction error
covariance, it follows from Lemma 1 and (9) that

P x
i,k+1|k , E

{

x̃i,k+1|kx̃
T
i,k+1|k

}

=E

{

(

f̃k(x̃i,k|k) +

n
∑

j=1

ωijΥx̃j,k|k +Ai,kd̃i,k

+Bi,kwk

)(

f̃k(x̃i,k|k) +

n
∑

j=1

ωijΥx̃j,k|k

+Ai,kd̃i,k +Bi,kwk

)T
}

≤E

{

(1 + c1i,k)(1 + r1i,k)‖f̃k(x̃i,k|k)− Ekx̃i,k|k‖
2I

+ (1 + c1i,k)(1 + r−1

1i,k)Ekx̃i,k|kx̃
T
i,k|kE

T
k

+ (1 + c−1

1i,k)(1 + e1i,k)ω̄i

n
∑

j=1

|ωij |ΥP x
j,k|kΥ

T

+ (1 + c−1

1i,k)(1 + e−1

1i,k)Ai,k d̃i,kd̃
T
i,kA

T
i,k

}

+Bi,kRkB
T
i,k, (17)

where c1i,k, r1i,k and e1i,k are positive scalars. From Assump-
tion 1, we further have

P x
i,k+1|k

≤(1 + c1i,k)(1 + r1i,k)ℓ
2
ktr{P

x
i,k|k}I + (1 + c1i,k)

× (1 + r−1

1i,k)EkP
x
i,k|kE

T
k + (1 + c−1

1i,k)(1 + e1i,k)

× ω̄i

n
∑

j=1

|ωij |ΥP x
j,k|kΥ

T + (1 + c−1

1i,k)

× (1 + e−1

1i,k)Ai,kP
d
i,k|kA

T
i,k +Bi,kRkB

T
i,k. (18)

Based on P x
i,k|k ≤ P̄ x

i,k|k and P d
i,k|k ≤ P̄ d

i,k|k , one has

P x
i,k+1|k ≤ P̄ x

i,k+1|k. (19)

From (9), the covariance of the SE error P x
i,k+1|k+1

is
calculated as

P x
i,k+1|k+1

=E

{[

(I −Ki,k+1C̄i,k+1)x̃i,k+1|k +Ki,k+1ψi,k+1

−Ki,k+1Ci,k+1xi,k+1 −Ki,k+1Fi,k+1d̃i,k+1

−Ki,k+1Di,k+1vk+1

][

(I −Ki,k+1C̄i,k+1)x̃i,k+1|k

+Ki,k+1ψi,k+1 −Ki,k+1Ci,k+1xi,k+1

−Ki,k+1Fi,k+1d̃i,k+1 −Ki,k+1Di,k+1vk+1

]T}

=E

{[

(I −Ki,k+1C̄i,k+1)x̃i,k+1|k +Ki,k+1ψi,k+1

−Ki,k+1Ci,k+1xi,k+1 −Ki,k+1Fi,k+1d̃i,k+1

]

×
[

(I −Ki,k+1C̄i,k+1)x̃i,k+1|k +Ki,k+1ψi,k+1

−Ki,k+1Ci,k+1xi,k+1 −Ki,k+1Fi,k+1d̃i,k+1

]T}

+Ki,k+1Di,k+1E

{

vk+1v
T
k+1

}

DT
i,k+1

×KT
i,k+1 + Ei,k+1 + E

T
i,k+1 + Hi,k+1 + H

T
i,k+1, (20)

where

Ei,k+1 ,− E

{

Ki,k+1ψi,k+1v
T
k+1D

T
i,k+1K

T
i,k+1

}

,

Hi,k+1 ,E

{

Ki,k+1Di,k+1vk+1d̃
T
i,k+1F

T
i,k+1K

T
i,k+1

}

.

With the help of Lemma 1, we have

P x
i,k+1|k+1

≤(1 + c2i,k+1)E
{

[

(I −Ki,k+1C̄i,k+1)x̃i,k+1|k

+Ki,k+1ψi,k+1

][

(I −Ki,k+1C̄i,k+1)x̃i,k+1|k

+Ki,k+1ψi,k+1

]T
}

+ (1 + c−1

2i,k+1
)E

{

(

Ki,k+1Ci,k+1

× xi,k+1 +Ki,k+1Fi,k+1d̃i,k+1

)(

Ki,k+1Ci,k+1xi,k+1

+Ki,k+1Fi,k+1d̃i,k+1

)T
}

+ (1 + r2i,k+1)Ki,k+1

×Di,k+1E

{

vk+1v
T
k+1

}

DT
i,k+1K

T
i,k+1

+ r−1

2i,k+1
Ki,k+1Fi,k+1E

{

d̃i,k+1d̃
T
i,k+1

}

× FT
i,k+1K

T
i,k+1 + Ei,k+1 + ET

i,k+1

≤(1 + c2i,k+1)(1 + e−1

2i,k+1
)Ki,k+1E

{

ψi,k+1ψ
T
i,k+1

}

KT
i,k+1

+ (1 + c−1

2i,k+1
)(1 + c3i,k+1)E

{

Ki,k+1Ci,k+1xi,k+1x
T
i,k+1

× CT
i,k+1K

T
i,k+1

}

+ (1 + c2i,k+1)(1 + e2i,k+1)(I −Ki,k+1

× C̄i,k+1)E
{

x̃i,k+1|kx̃
T
i,k+1|k

}

(I −Ki,k+1C̄i,k+1)
T

+
[

(1 + c−1

2i,k+1
)(1 + c−1

3i,k+1
) + r−1

2i,k+1

]

Ki,k+1Fi,k+1

× E

{

d̃i,k+1d̃
T
i,k+1

}

FT
i,k+1K

T
i,k+1 + (1 + r2i,k+1)Ki,k+1

×Di,k+1Qk+1D
T
i,k+1K

T
i,k+1 + Ei,k+1 + E

T
i,k+1 (21)

with c2i,k+1, c3i,k+1, e2i,k+1 and r2i,k+1 being positive s-
calars.
Since E

{

(~pi,k+1
)2
}

= ~̄
p
i (1 − ~̄

p
i ) and E

{

~
p
i,k+1

~
h
i,k+1

}

=

−~̄
p
i ~̄

h
i (p 6= h), it is obtained that

E

{

Ki,k+1Ci,k+1xi,k+1x
T
i,k+1C

T
i,k+1K

T
i,k+1

}

=

z
∑

p=1

~̄
p
i (1− ~̄

p
i )Ki,k+1C

p
i,k+1

E
{

xi,k+1x
T
i,k+1

}

×
(

Ki,k+1C
p
i,k+1

)T
−

∑

1≤p,h≤z,p6=h

~̄
p
i ~̄

h
i Ki,k+1
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× Cp
i,k+1

E
{

xi,k+1x
T
i,k+1

}(

Ki,k+1C
h
i,k+1

)T
. (22)

Next, it follows from Lemma 1 that

E
{

xi,k+1x
T
i,k+1

}

=E

{

(

x̂i,k+1 + x̃T
i,k+1|k

)(

x̂i,k+1 + x̃T
i,k+1|k

)T
}

≤(1 + r3i,k+1)x̂i,k+1|kx̂
T
i,k+1|k + (1 + r−1

3i,k+1
)P x

i,k+1|k,

(23)

where r3i,k+1 are positive scalars.
Recalling the definitions of ψi,k+1 and ̺i,k+1, it is obvious

that

E
{

ψi,k+1v
T
k+1

}

=E
{

(yi,k+1 − yi,κi
l
)vTk+1

}

=̺i,k+1Di,k+1Qk+1 (24)

holds for all k + 1 ∈ [κi
l , κ

i
l+1

). Hence,

Ei,k+1 = −̺i,k+1Ki,k+1Di,k+1Qk+1D
T
i,k+1K

T
i,k+1. (25)

In addition, it is not difficult to see that

ψi,k+1ψ
T
i,k+1 ≤ ψT

i,k+1ψi,k+1I (26)

always holds. Then, it is known from (13) that

E{ψi,k+1ψ
T
i,k+1}

≤
[

(1 + µi)Ȳi,k+1/µ
2
i + (1 + µi

−1)σ2
i

]

I. (27)

Substituting (22)-(23), (25) and (27) into (21) leads to

P x
i,k+1|k+1

≤(1 + c2i,k+1)(1 + e2i,k+1)(I −Ki,k+1C̄i,k+1)P
x
i,k+1|k

× (I −Ki,k+1C̄i,k+1)
T + (1 + c2i,k+1)(1 + e−1

2i,k+1
)

×
[

(1 + µi)Ȳi,k+1/µ
2
i + (1 + µi

−1)σ2
i

]

Ki,k+1K
T
i,k+1

+ (1 + c−1

2i,k+1
)(1 + c3i,k+1)(1 + r3i,k+1)

z
∑

p=1

z
∑

h=1

~̄
ph
i

×Ki,k+1C
p
i,k+1

x̂i,k+1|kx̂
T
i,k+1|k

(

Ki,k+1C
h
i,k+1

)T

+ (1 + c−1

2i,k+1
)(1 + c3i,k+1)(1 + r−1

3i,k+1
)

z
∑

p=1

z
∑

h=1

~̄
ph
i

×Ki,k+1C
p
i,k+1

P x
i,k+1|k

(

Ki,k+1C
h
i,k+1

)T
+
[

r−1

2i,k+1

+ (1 + c−1

2i,k+1
)(1 + c−1

3i,k+1
)
]

Ki,k+1Fi,k+1P
d
i,k+1

× FT
i,k+1K

T
i,k+1 + (1 + r2i,k+1 − 2̺i,k+1)Ki,k+1

×Di,k+1Qk+1D
T
i,k+1K

T
i,k+1 (28)

which, together with (19), implies

P x
i,k+1|k+1 ≤ Ξi

k+1(P̄
x
i,k+1|k, P

d
i,k+1). (29)

Subsequently, we are in a position to show that P d
i,k+1 ≤

P̄ d
i,k+1

. From (11), the input estimation error covariance is
deduced as follows:

P d
i,k+1 = E{d̃i,k+1d̃

T
i,k+1}

=E

{(

Gi,k+1ψi,k+1 −Gi,k+1Ci,k+1xi,k+1

−Gi,k+1C̄i,k+1x̃i,k+1|k −Gi,k+1Di,k+1vk+1

)

×
(

Gi,k+1ψi,k+1 −Gi,k+1Di,k+1vk+1 −Gi,k+1

× Ci,k+1xi,k+1 −Gi,k+1C̄i,k+1x̃i,k+1|k

)T}

=E

{(

Gi,k+1ψi,k+1 −Gi,k+1Ci,k+1xi,k+1

−Gi,k+1C̄i,k+1x̃i,k+1|k

)(

Gi,k+1ψi,k+1

−Gi,k+1Ci,k+1xi,k+1 −Gi,k+1C̄i,k+1x̃i,k+1|k

)T}

+Gi,k+1Di,k+1E

{

vk+1v
T
k+1

}

DT
i,k+1G

T
i,k+1

+ Ji,k+1 + JTi,k+1, (30)

where

Ji,k+1 ,−Gi,k+1E

{

ψi,k+1v
T
k+1

}

DT
i,k+1G

T
i,k+1.

Repeating the derivation process as in (20)-(29), one obtains

P d
i,k+1

≤(1 + c4i,k+1)(1 + r4i,k+1)Gi,k+1C̄i,k+1P̄
x
i,k+1|kC̄

T
i,k+1

×GT
i,k+1 +

[

(1 + µi)Ȳi,k+1/µ
2
i + (1 + µi

−1)σ2
i

]

× (1 + c4i,k+1)(1 + r−1

4i,k+1
)Gi,k+1G

T
i,k+1 + (1 + c−1

4i,k+1
)

× (1 + e3i,k+1)
z

∑

p=1

z
∑

h=1

~̄
ph
i Gi,k+1C

p
i,k+1

x̂i,k+1|kx̂
T
i,k+1|k

×
(

Gi,k+1C
h
i,k+1

)T
+ (1 + c−1

4i,k+1
)(1 + e−1

3i,k+1
)

×

z
∑

p=1

z
∑

h=1

~̄
ph
i Gi,k+1C

p
i,k+1

P̄ x
i,k+1|k

(

Gi,k+1C
h
i,k+1

)T

+ (1− 2̺i,k+1)Gi,k+1Di,k+1Qk+1D
T
i,k+1G

T
i,k+1

=P̄ d
i,k+1 (31)

with c4i,k+1, r4i,k+1 and e3i,k+1 being positive scalars, which
further indicates

P x
i,k+1|k+1 ≤ P̄ x

i,k+1|k+1. (32)

The proof is now complete.
According to the above results, we are now going to

minimize the obtained upper bounds P̄ x
i,k+1|k+1

and P̄ d
i,k+1

by designing the estimator gains Ki,k+1 and Gi,k+1.
Theorem 2: The upper bounds on the estimation error

covariances given by the recursions (14) and (15) can be
minimized by adopting the following estimator gains

Gi,k+1 =
(

FT
i,k+1Ω

−1

i,k+1
Fi,k+1

)−1
FT
i,k+1Ω

−1

i,k+1
(33)

and
Ki,k+1 = Φi,k+1Θ

−1

i,k+1
, (34)

where

Ωi,k+1 ,(1 + c4i,k+1)(1 + r4i,k+1)C̄i,k+1P̄
x
i,k+1|k C̄

T
i,k+1

+ (1 + c4i,k+1)(1 + r−1

4i,k+1
)
[

(1 + µi)Ȳi,k+1/µ
2
i

+ (1 + µi
−1)σ2

i

]

I + (1 + c−1

4i,k+1
)(1 + e3i,k+1)

×

z
∑

p=1

z
∑

h=1

~̄
ph
i Cp

i,k+1
x̂i,k+1|kx̂

T
i,k+1|k

(

Ch
i,k+1

)T

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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+ (1 + c−1

4i,k+1
)(1 + e−1

3i,k+1
)

z
∑

p=1

z
∑

h=1

~̄
ph
i Cp

i,k+1

× P̄ x
i,k+1|k

(

Ch
i,k+1

)T
+ (1− 2̺i,k+1)

×Di,k+1Qk+1D
T
i,k+1,

Φi,k+1 ,(1 + c2i,k+1)(1 + e2i,k+1)P̄
x
i,k+1|k C̄

T
i,k+1,

Θi,k+1 ,(1 + c2i,k+1)(1 + e2i,k+1)C̄i,k+1P̄
x
i,k+1|k C̄

T
i,k+1

+ (1 + c2i,k+1)(1 + e−1

2i,k+1
)
[

(1 + µi)Ȳi,k+1/µ
2
i

+ (1 + µi
−1)σ2

i

]

I + (1 + c−1

2i,k+1
)(1 + c3i,k+1)

× (1 + r3i,k+1)

z
∑

p=1

z
∑

h=1

~̄
ph
i Cp

i,k+1
x̂i,k+1|kx̂

T
i,k+1|k

×
(

Ch
i,k+1

)T
+ (1 + c−1

2i,k+1
)(1 + c3i,k+1)(1+

+ r−1

3i,k+1
)

z
∑

p=1

z
∑

h=1

~̄
ph
i Cp

i,k+1
P̄ x
i,k+1|k

(

Ch
i,k+1

)T

+
[

r−1

2i,k+1
+ (1 + c−1

2i,k+1
)(1 + c−1

3i,k+1
)
]

Fi,k+1

× P̄ d
i,k+1F

T
i,k+1 + (1 + r2i,k+1 − 2̺i,k+1)

×Di,k+1Qk+1D
T
i,k+1. (35)

Moreover, the minimal upper bounds P̄ d
i,k+1 and P̄ x

i,k+1|k+1

can be given by:

P̄ d
i,k+1 =

(

FT
i,k+1Ω

−1

i,k+1
Fi,k+1

)−1 (36)

and
P̄ x
i,k+1|k+1 =(1 + c2i,k+1)(1 + e2i,k+1)P̄

x
i,k+1|k

− Φi,k+1Θ
−1

i,k+1
ΦT

i,k+1.
(37)

Proof: From (15), the upper bound P̄ d
i,k+1

can be ex-
pressed of the following form:

P̄ d
i,k+1 = Gi,k+1Ωi,k+1G

T
i,k+1. (38)

It is desirable to design Gi,k+1 satisfying the constraint (10)
such that P̄ d

i,k+1
is minimum. We will utilize the Lagrange

multiplier method to solve this issue. A Lagrange function is
constructed as follows:

Hi,k+1 =Gi,k+1Ωi,k+1G
T
i,k+1 +

(

Gi,k+1Fi,k+1 − I
)

×∆T
i,k+1 +∆i,k+1

(

Gi,k+1Fi,k+1 − I
)T (39)

where ∆i,k+1 is the Lagrange factor which is a symmetric
matrix with appropriate dimension.
By using the completing-the-square method, (39) can be

further obtained as
Hi,k+1 =Gi,k+1Ωi,k+1G

T
i,k+1 +Gi,k+1Fi,k+1∆

T
i,k+1

−∆T
i,k+1 +∆i,k+1F

T
i,k+1G

T
i,k+1 −∆i,k+1

=
[

Gi,k+1 −∆T
i,k+1F

T
i,k+1Ω

−1

i,k+1

]

Ωi,k+1

×
[

Gi,k+1 −∆T
i,k+1F

T
i,k+1Ω

−1

i,k+1

]T

−
[

∆i,k+1 −
(

FT
i,k+1Ω

−1

i,k+1
Fi,k+1

)−1]

×
(

FT
i,k+1Ω

−1

i,k+1
Fi,k+1

)[

∆i,k+1

−
(

FT
i,k+1Ω

−1

i,k+1
Fi,k+1

)−1]T

+
(

FT
i,k+1Ω

−1

i,k+1
Fi,k+1

)−1
.

(40)

In order to achieve minimum Hi,k+1, the estimator gain
Gi,k+1 should be given by

Gi,k+1 = ∆T
i,k+1F

T
i,k+1Ω

−1

i,k+1
. (41)

Submitting (41) into the constraint (10) leads to

∆i,k+1 =
(

FT
i,k+1Ω

−1

i,k+1
Fi,k+1

)−1
. (42)

Therefore, it is easy to see that the minimum of the upper
bound P̄ d

i,k+1
satisfying constraint (10) can be achieved if (33)

holds and the minimal value of P̄ d
i,k+1 is obtained by (36).

Next, bearing in mind the notations in (35), it is obtained
from (14) that

P̄ x
i,k+1|k+1

=(1 + c2i,k+1)(1 + e2i,k+1)P̄
x
i,k+1|k −Ki,k+1Φ

T
i,k+1

− Φi,k+1K
T
i,k+1 +Ki,k+1Θi,k+1K

T
i,k+1

=(1 + c2i,k+1)(1 + e2i,k+1)P̄
x
i,k+1|k − Φi,k+1Θ

−1

i,k+1

× ΦT
i,k+1 +

(

Ki,k+1 − Φi,k+1Θ
−1

i,k+1

)

Θi,k+1

×
(

Ki,k+1 − Φi,k+1Θ
−1

i,k+1

)T
. (43)

By noting Θi,k+1 > 0, it is easy to see that P̄ x
i,k+1|k+1

is
minimized by selecting Ki,k+1 = Φi,k+1Θ

−1

i,k+1
, and then the

minimum of P̄ x
i,k+1|k+1

is expressed by (37).
Remark 5: So far, we have made one of the first attempts

to tackle the simultaneous SUIE problem for time-varying
CNs subject to dynamic ETMs and redundant channels. In
Theorem 1, the upper bounds on the error covariances of
the state and input estimation have been obtained at each
time instant. Subsequently, such obtained upper bounds have
been minimized by appropriately constructing the estimators
in Theorem 2 via solving two sets of recursions. It is worth
mentioning that the analysis method developed in our paper is
absolutely applicable in the case that the network topology is
not strongly connected and the corresponding results could be
derived accordingly. In comparison to the existing literature
on SE problem for time-varying CNs, the major features of
the proposed main results lie in the following two aspects:
1) the influences of dynamic ETMs and redundant channels
have been taken into account for addressed simultaneous SUIE
problem of time-varying CNs; and 2) the newly developed es-
timation scheme possesses a recursive manner without dimen-
sion augmentation, hence applicable for online computations.
Remark 6: In the past decade or so, the simultaneous SUIE

problem has stirred much attention and a great many results
have been available in the literature. Comparing to existing
results, the research carried out in this paper exhibits the
following distinctive novelties: 1) the simultaneous SUIE
problem is, for the first time, investigated for time-varying
CNs subject to redundant channels and dynamic ETMs; 2)
the proposed induction-based recursive approach ensures the
existence of certain upper bounds on the error covariances of
the unknown input and the SE; and 3) a completing-the-square
approach is developed to determine the desired estimator gains
so as to minimize the obtained upper bounds by solving certain
recursive difference equations.
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IV. AN ILLUSTRATIVE EXAMPLE

The CNs (1) with three nodes defined on k ∈ [0, 60] are
considered with

A1,k =

[

0.15 + 0.01cos(2k)
0.14

]

, B1,k =

[

0.2
0.18 + 0.01cos(2k)

]

,

A2,k =

[

−0.2
0.12 + 0.01sin(2k)

]

, B2,k =

[

0.15 + 0.02cos(2k)
0.1

]

,

A3,k =

[

0.1
0.1− 0.01cos(2k)

]

, B3,k =

[

0.3
0.12 + 0.01sin(2k)

]

,

ωij =

{

− 0.2, i = j,

0.1, i 6= j,
Υ = diag{0.1, 0.1}

and nonlinear function

fk(xi,k) = Ekxi,k + f̄k(xi,k),

where

Ek =

[

0.1 0.01 + 0.01cos(k)
0.15 0.2

]

, f̄k(xi,k) = 0.01sin(xi,k).

Then, it is easy to testify that fk(·) satisfies (2) with ℓk = 0.01.
The unknown input di,k (i = 1, 2, 3) that needs to be

estimated in (1) is given by

di,k =

{

1, 0 ≤ k ≤ 30,

− 1, 31 < k ≤ 60.

The number of redundant channels is z = 2. The probabil-
ities of the packet arrival are, respectively, set as π̄1

i = 0.7
and π̄2

i = 0.6 (i = 1, 2, 3). The other parameters of the
measurement output (3) are given by

C1
1,k =

[

0.12 0.12 + 0.01 cos(2k)
]

, D1,k = 0.15,

C1
2,k =

[

0.1 + 0.01 sin(2k) 0.18
]

, D2,k = 0.3,

C1
3,k =

[

0.14 + 0.01 cos(2k) 0.16− 0.01 cos(2k)
]

,

C2
1,k =

[

0.16 0.16− sin(2k)
]

, D3,k = 0.2,

C2
2,k =

[

0.18− 0.01 sin(2k) 0.16
]

, F1,k = 0.5,

C2
3,k =

[

0.17 0.14 + 0.01 cos(2k)
]

, F2,k = 0.5.

For the dynamic event-triggered condition in (5)-(6), we
choose γ1 = γ2 = γ3 = 0.2, σ1 = σ2 = σ3 = 0.1, µ1 =
µ2 = µ3 = 10 and ξ10 = ξ20 = ξ30 = 0. The covariances of
the measurement and process noises are, respectively, taken
as Qk = 0.1 and Rk = 0.1. The initial value xi,0 obeys
the Gaussian distribution with the mean being zero and the
covariance P x

i,0 = diag{0.1, 0.1}.
With the above given parameters, according to Theorem

2, at each time instant, the estimator parameters Ki,k+1 and
Gi,k+1 (i = 1, 2, 3) are calculated. Moreover, Figs. 1-7 present
the simulation results. Figs. 1-3 depict the state trajectories
and their corresponding estimates for xi,k (i = 1, 2, 3),
respectively. The real value of the unknown input di,k and
its estimate are plotted in Fig. 4. Figs. 5-6 show the trace of
the minimal upper bound and the mean square error (MSE)
(see [16] for its definition) for the state and the unknown
input, respectively. The triggering instants of each node with
the dynamic ETMs are depicted in Fig. 7. It is easily seen
from Fig. 7 that the transmission frequency of measurement
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Fig. 1. State x1,k and its estimate x̂1,k|k
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Fig. 2. State x2,k and its estimate x̂2,k|k

outputs for nodes 1, 2 and 3 is calculated as 30%, 41.7% and
43.3%, respectively. Therefore, compared with transmitting the
measurement outputs at every time instant, the dynamic ETM
is capable of reducing the frequency of event releasing, thereby
alleviating the energy consumption effectively. This verifies
the superiority of dynamic ETMs utilized in this paper. All
the simulation results have confirmed the validity of algorithm
presented in this paper.

V. CONCLUSIONS

In this paper, the simultaneous state and input estimation
issue has been discussed for discrete time-varying CNs un-
der redundant channels and dynamic ETMs. The redundant
channels have been employed to increase the transmission
reliability and the dynamic event-triggered communication
protocol has been introduced to save the energy cost. By
using the mathematical induction, certain upper bounds on the
error covariances for both the state and input estimation have
been obtained and then optimized by selecting the appropriate
estimator gains. The usefulness of the proposed estimation
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Fig. 4. Input di,k (i = 1, 2, 3) and its estimate d̂i,k

0 10 20 30 40 50 60
Time (k)

-20
-10

0
10

0 10 20 30 40 50 60
Time (k)

-20

-10

0

10

0 10 20 30 40 50 60
Time (k)

-20

-10

0

10

Fig. 5. Trace of SE error variance and its upper bound for nodes 1, 2 and
3.
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Fig. 7. The triggering instants.

scheme has been illustrated by a simulation example. Further
research topics include 1) improving the estimation problem
by using some novel optimization methods [26], [27] and 2)
the partial-nodes-based state estimation problem of complex
networks [25].
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