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Abstract—This paper presents an energy arbitrage strategy 
of a lithium-ion Battery Storage System (BSS) in sequential 
Day-ahead and Intraday (DA+INT) markets, considering its 
Cycle Aging Cost (CAC). One of the critical queries of the BSS 
in such problems is how to tackle the risk of uncertain prices in 
both market floors. Towards this end, a financial risk 
management method, i.e., Second-Order Stochastic Dominance 
Constraints (SOSDCs), is used to control the risk of uncertain 
market prices. Despite the promising performance of the 
SOSDCs over a broad range of decision-making problems, the 
primary challenge for decision-makers taking advantage of this 
approach is the selection of the minimum profit threshold. To 
effectively overcome this obstacle, this paper proposes a new 
benchmark selection approach based on a fuzzy decision-
making manner over in-sample and out-of-sample analyses. 
The idea behind considering both in-sample and out-of-sample 
studies lies in an unforeseen change of the results by setting 
various benchmarks in SOSDCs. In this regard, to precisely 
formulate this problem, with an eye on the battery CAC, a 
linear two-stage stochastic framework is suggested. The 
numerical results show the applicability of the developed 
approach in benchmark selection for the SOSDCs. 

Keywords— Arbitrage, Battery Storage System (BSS), 
Benchmark Selection, Cycle Aging Cost (CAC), Stochastic 
Dominance Constraints. 

I. INTRODUCTION

Battery Storage Systems (BSSs), from grid-scale to 
small-scale home applications, have evolved into an 
indivisible sector of today’s electricity industry. Facilitating 
the operation of renewable energy sources, enhancing the 
total system’s flexibility, and postponing expansion planning 
can be named as the most tangible benefits of BSSs. From a 
different perspective, several batteries, especially 
electrochemical ones, sustain degradation issues [1]. The 
degradation process of batteries mainly arises from 
multifarious discharging/charging cycles, which ultimately 
limits their lifespan [2]. In such situations, adopting suitable 
strategies to restrict degradation is critical [3]. Two 
comprehensive surveys on the degradation and aging of 
lithium-ion batteries as one of the most well-known 
electrochemical batteries have been conducted in [3] and [4]. 

In view of the above, the scheduling problem of BSSs 
considering BSS’s degradation or Cycle Aging Costs 

(CACs) has received remarkable attention in recent years. In 
[5], the optimal scheduling of a typical microgrid considering 
the degradation of energy storage facilities by means of a 
model predictive control has been proposed. Ref. [6] has 
introduced a suitable energy management framework for 
plug-in electric vehicles while entering their degradation cost 
into the model. Similarly, the optimal energy management of 
a microgrid taking into account battery swapping stations has 
been developed in [7]. 

Next to these centralized models wherein BSSs are 
managed by a single agent, BSSs and other market players 
operating in competitive environments must design 
appropriate self-scheduling [8] or arbitrage strategies in 
electricity markets to get the highest possible profit. In [9], a 
stochastic optimization model has been established for a BSS 
paired with photovoltaic and thermal units participating in 
the energy market. In [10], the authors have proposed a data-
driven arbitrage strategy for a BSS in energy and reserve 
markets using a bi-level programming approach. In [11], a 
robust optimization model was developed for the operating 
strategy of a hybrid battery-thermal system. Authors in [12]-
[13] have suggested stochastic-interval architectures for the
self-scheduling of a BSS along with intermittent and
dispatchable generation units. In [14], the effect of the
battery life’s on the operating strategy of a BSS in day-ahead
energy and ancillary services markets has been investigated.
Ref. [15] has studied the impact of degradation costs on an
electric vehicle aggregator’s optimal offering and bidding
strategies in energy and reserve markets. Ref. [16] has
focused on elaborating on a precise CAC model for
electrochemical batteries taking part in energy and reserve
markets. In [17], the authors have extended the CAC model
suggested in [16] for the participation of BSSs and electric
vehicles in regulation markets. The bidding strategy of BSSs
in the regulation markets considering CAC based on a
chance-constrained stochastic programming framework has
been presented in [18]. In [19], the authors have suggested a
novel CAC function for modeling the degradation of a BSS
optimizing its scheduling in energy and reserve markets. The
authors of Ref. [20] have studied the impact of BSS
degradation cost on the coordinated operation strategy of a
wind-BSS system using a stochastic programming approach.
A proper degradation model for the lithium-ion batteries has
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been provided in [21], while its effectiveness has been tested 
on a typical BSS offering regulation services in the PJM 
electricity market. 

Motivated by these recent investigations [5]-[21], we 
concentrate on offering a new risk-aware scheduling model 
for the optimal arbitrage strategy of a large-scale lithium-ion 
battery in sequential Day-Ahead and Intraday (DA+INT) 
markets, taking into consideration the CACs. The proposed 
approach is built on Second-Order Stochastic Dominance 
Constraints (SOSDCs) with the goal of efficiently 
accounting for market uncertainties. The formulation of the 
proposed SOSDCs-based strategy is cast as two-stage mixed-
integer programming. Since selecting the minimum profit 
threshold (i.e., benchmark selection) in most SOSDCs-based 
problems is a challenging task, in this paper, we focus on 
presenting a new benchmark selection approach which built 
over in-sample and out-of-sample studies. Finally, to attain 
the final optimal benchmark, the fuzzy decision-making 
pattern is used. The fuzzy decision-making manner assists 
the BSS in ascertaining the best attainable strategy in light of 
in-sample and out-of-sample studies. Briefly, the 
contributions of this paper are twofold:  

• Presenting a SOSDCs-based arbitrage strategy for a
large-scale BSS in DA+INT markets considering
the CACs.

• Proposing a new benchmark selection approach
based on in-sample and out-of-sample studies in a
SOSDCs-based problem.

The remainder of this paper is organized as follows. The 
two-stage stochastic arbitrage strategy of the BSS 
considering CACs is presented in Section 2. Section 3 
provides the SOSDCs-based framework of the model 
proposed in Section 2. Section 4 introduces the suggested 
benchmark selection approach. In Section 5, the developed 
methodology is tested for a large-scale BSS acting in the 
Spanish markets, and lastly, Section 6 gives the conclusions 
and future efforts. 

II. TWO-STAGE ARBITRAGE STRATEGY OF THE BSS 
CONSIDERING ITS CACS 

The notation utilized throughout the paper is introduced 
below.  

Indices 

𝑏. 𝑏′ Benchmark scenarios in SOSDCs, from 1 to 𝐵. 

𝑠 Segments related to the linearized CAC function, 
from 1 to 𝑆. 

𝑡 Time periods, from 1 to 𝑇. 

𝜔 Scenarios of uncertain sources, from 1 to Ω. 

Parameters 

𝑘!. 𝑘!" 
BSS benchmark profit in SOSDCs for scenarios 𝑏 
and 𝑏′ [€]. 

𝛼 Coefficient limiting the intraday charge and 
discharge powers. 

𝜎#.%&' DA market price [€/MWh]. 

𝜎#.%()  Intraday market price [€/MWh]. 

𝜏*+, Maximum BSS energy state-of-charge [MWh]. 

ù-*+, Maximum BSS allowable energy state-of-charge in 
block 𝑠 of depth-of-discharge [MWh]. 

𝜏./- Maximum BSS discharge power [MW]. 

𝜏01 Maximum BSS charge power [MW]. 

Λ./- Discharge efficiency of the BSS. 

Λ01 Charge efficiency of the BSS. 

𝜓- 
Marginal CAC in segment 𝑠 of the linearized CAC 
function. 

𝜋% Scenario 𝜔 probability. 

𝜂!. 𝜂!" Scenario 𝑏 and 𝑏′ probabilities. 

Variables 

𝜌#&'../- BSS discharge power to the DA market [MW]. 

𝜌#&'.01 BSS charge power from the DA market [MW]. 

𝜌#.%./-.() BSS discharge power to the intraday market [MW]. 

𝜌#.%01.() BSS charge power from the intraday market [MW]. 

𝜌-.#./-.&' BSS DA discharge power from segment 𝑠 of depth-
of-discharge [MW]. 

𝜌-.#01.&' BSS DA charge power from segment 𝑠 of depth-of-
discharge [MW]. 

𝜌-.#.%./-.() BSS discharge power from segment 𝑠 of depth-of-
discharge [MW]. 

𝜌-.#.%01.() BSS charge power from segment 𝑠  of depth-of-
discharge [MW]. 

Δ#.%*+, BSS energy state-of-charge [MWh]. 

𝛿-.#.%*+,  BSS energy state-of-charge in segment 𝑠 of depth-
of-discharge [MWh]. 

𝜀# 
Binary decision variable for modeling the 
discharging mode of the BSS. 

𝜁%.! Continiuous variable used in SOSDCs [€]. 

In this paper, the optimal arbitrage strategy of a lithium-
ion BSS in DA+INT markets is established. Lithium-ion 
batteries offer numerous benefits over other classes of 
battery technology, from grid-scale to small-scale home 
applications. The high energy density and relatively low self-
discharge rate are among its most substantial advantages, 
while aging issues can be identified as its most critical 
drawback. Accordingly, a broad range of scientific works has 
been devoted to addressing the aging problem of lithium-ion 
batteries, as expressed in the introduction. Amid all the 
models proposed in the literature, the architecture suggested 
in [16] is employed in this work to account for the CACs of 
the BSS. Based on [16], the CACs of a lithium-ion battery 
can be expressed as a near-quadratic function of the depth-
of-discharge. To keep the process linear, the CAC function is 
approximated by piecewise linear segments [16]. Based on 
this CAC modeling, the BSS arbitrage strategy in DA+INT 
markets can be efficiently modeled as a two-stage stochastic 
problem, whereas the day-ahead and intraday decisions are 
the first- and second-stage decisions [22]. Following the 
preceding, the objective function of the BSS in such 
framework can be expressed as (1): 
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where the terms in the first and second parentheses 
represent the lithium-ion battery’s revenue and expense 
emanating from discharge and charge processes in DA+INT 
markets, while the third term accounts for the CACs. Note 
that the CAC curve is monotonically increasing. The 
constraints associated with (1) are presented below [16], 
[23]-[24]: 
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Constraints (2)-(5) express that the discharge and charge 
powers of the BSS in DA+INT markets are equal to the sum 
of the discharge and charge powers in every segment of 
depth-of-discharge. Constraints (6)-(9) ensure that the 
discharge and charge powers in DA+INT markets are 
scheduled without violating their operating bounds. 
Constraints (10) and (11) limit intraday discharge and charge 
powers, respectively. Restriction (12) enforces that DA+INT 
discharge and charge powers in every segment of the depth-
of-discharge must take positive values. The energy state-of-
charge in every segment of the depth-of-discharge is 
computed by (13), while equation (14) expresses the final 
state-of-charge of the BSS. Constraints (15) and (16) are 

used to impose acceptable boundaries for energy state-of-
charge. The first-stage decisions are 𝜌-.')*.+,-, 𝜌-.')*../, 𝜌')*.+,-, 
𝜌')*../, and 𝜀', while the second-stage decisions are 𝜌-.'."01.+,-, 
𝜌-.'."01../, 𝜌'."01.+,-, 𝜌'."01../, 𝛿-.'."245 , and Δ'."245. 

III. SOSDCS-BASED ARBITRAGE STRATEGY OF THE BSS
The DA+INT market prices are volatile and uncertain

and should not be treated as deterministic parameters. 
Consequently, to elaborate a proper strategy for the 
involvement of the BSS in the DA+INT markets, a fitting 
uncertainty characterization method must be adopted [25]. In 
this work, stochastic scenarios are utilized to deal with these 
uncertainties [22], [26]. However, mere characterization of 
uncertainties does not suffice decision-makers. They need to 
assess the risk of uncertainties for efficient decision-making. 
Various risk assessment methods have been suggested to 
cope with the risk of stochastic scenarios in the literature. 
Among them, stochastic dominance is an engaging risk 
controlling method that aims for satisfactory solutions (by 
imposing pre-given benchmark) instead of directly seeking 
the best solution (profit) [27]. Accordingly, the stochastic 
dominance approach assures that the resultant solution is 
greater than the pre-specified benchmark. Stochastic 
dominance encompasses various models such as first- and 
second-order stochastic dominance approaches, while the 
first-order one has received less attention due to its non-
convexity. The SOSDCs are thus utilized in this paper to 
handle the existing risk. The SOSDCs-based formulation of 
the BSS arbitrage problem is formulated as follows: 
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Constraints				(2) − (16) (21) 

The SOSDCs constraints are enforced by means of (18)-
(20). In SOSDCs, we can consider different scenarios 𝑏 for 
benchmark profit 𝑘7  while each of them has a specific 
probability 𝜂7 . Note that 𝜁".7  is a continuous variable 
computing the profit deficit below the pre-given benchmark 
[27]. 

IV. PROPOSED BENCHMARK SELECTION APPROACH IN
SOSDCS 

Despite the extensive benefits mentioned for the 
SOSDCs in related works, the greatest challenge in this risk 
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assessment method is proper benchmark selection. While a 
broad spectrum of relevant studies has chosen benchmarks 
based on empirical analyses, in this work, we focus on 
benchmark selection from a more informed perspective. This 
paper concentrates on presenting a new benchmark selection 
approach founded on in-sample and out-of-sample studies. 
The reason behind proposing such a framework lies in the 
fact that each input benchmark in optimization problem (17)-
(21) leads to a solution with different in-sample and out-of-
sample results. Note that in-sample results are not sufficient
to judge the performance of each entry benchmark.
Consequently, an out-of-sample analysis is crucial to
evaluate the performance of the chosen benchmark over a
large number of scenarios. Having different in-sample and
out-of-sample results concerning various entry benchmarks
reveals the necessity of adopting a suitable pattern to find the
final optimal strategy. To this end, the fuzzy decision-
making pattern is applied. The algorithm of the proposed
benchmark selection approach is given in Algorithm 1.

Algorithm 1 Benchmark Selection Approach 

1: Derive in-sample scenarios for DA+INT prices following 
a scenario generation and reduction approach [28]. 

2: Derive out-of-sample scenarios for DA+INT prices 
following a scenario generation approach. 

3: Solve problem (1)-(16) using obtained scenarios in step 
1. 

4: Select an initial benchmark 𝑘7  based on the obtained 
cumulative distribution function of the objective 
function in the previous step. 

5: Solve SOSDCs-based problem (17)-(21) using obtained 
scenarios in step 1 and the selected benchmark. The 
results obtained in this step are called in-sample results. 

6: Perform an out-of-sample study using generated 
scenarios in step 2 and the results obtained from step 5 
[29]. The results obtained in this step are called out-of-
sample results. 

7: Update the entry benchmark using equation (22) and go 
back to step 5. 

𝑘7 = 𝑘7 + 𝜃 (22) 

where 𝜃 represents the benchmark increment value. In 
fact, parameter 𝜃  controls the number of benchmarks 
that are going to be evaluated.   

8: Iterate steps 5 to 7 until the desired number of 
benchmarks are evaluated. 

9: Calculate membership functions of the in-sample and 
out-of-sample results for all entry benchmarks using 
equation (23). 

𝜇!"/$%&' =

⎝

⎜
⎜
⎛
0 𝑓!"/$%&' ≤ 𝑓!"/$%&(!"

𝑓!"/$%&' − 𝑓!"/$%&(!"

𝑓!"/$%&()* − 𝑓!"/$%&(!" 𝑓!"/$%&(!" ≤ 𝑓!"/$%&' ≤ 𝑓!"/$%&()*

1 𝑓!"/$%&' ≥ 𝑓!"/$%&()*

 (23) 

where 𝑖𝑛/𝑜𝑢𝑡 refers to the in-sample or out-of-sample 
analysis and 𝑓,3/4;'7  refers to the values of in-sample or 
out-of-sample profit in 𝑏 th benchmark. 𝑓,3/4;'<=>  and 

𝑓,3/4;'<,3  stand for the maximum and minimum values of 
in-sample or out-of-sample profit among all considered 
benchmarks. The higher the value of the membership 
function in each benchmark 𝑏, the higher the optimality 
degree. 

10: Calculate the total optimality level of each considered 
benchmark with respect to the comparative significance 
of in-sample or out-of-sample profit (𝑤,3/4;' ) using 
equation (24). 

𝜇'4'=?7 =
𝑤,3𝜇,37 +𝑤4;'𝜇4;'7

𝑤,3 +𝑤4;'
 (24) 

where 𝜇'4'=?7  is the total level of the optimally of each 
entry benchmark (total membership value). The greater 
values of this parameter reflect a higher level of 
optimality. 

11: Eventually, the solution (benchmark) with the greatest 
quantity of 𝜇'4'=?7  is selected as the most desired 
solution. 

V. CASE STUDIES

In this section, the suggested SOSDCs-based arbitrage 
strategy is tested on a large-scale BSS with specifications 
listed in Table 1. All in-sample and out-of-sample scenarios 
of DA+INT prices are generated for the Spanish market on 
November 18th, 2019. For in-sample analysis, twenty 
scenarios are considered for each of DA+INT market prices, 
while one thousand scenarios are taken into account for the 
out-of-sample analysis. The scenario generation and 
reduction processes have been explained in [23], [28]. All 
data relating to the CAC of the considered lithium-ion BSS 
can be found in [16], while the CAC function is linearized 
using twenty segments. In this paper, we focus on the one-
scenario benchmark in the proposed SOSDCs framework, so 
the probability of each considered benchmark is equal to 1. 
The established model was formulated as a mixed-integer 
programming problem and implemented in the General 
Algebraic Modeling System (GAMS) and solved with 
CPLEX. It has to be noted that in all simulations, the 
weighting factors of the in-sample and out-of-sample profits 
(𝑤,3/4;') are chosen as 𝑤,3 = 1 and 𝑤4;' = 1, respectively, 
implying that both analyses have the same degree of 
importance to the decision-maker. 

TABLE I. DATA ON THE CONSIDERED BSS. 

Parameter Value Unit 
𝜏*+,  175  MWh 

𝜏./-  35  MW 

𝜏01  35  MW 

Λ./-  0.95  Constant 

Λ01  0.95  Constant 

According to Algorithm 4, we first solve the optimization 
problem (1)-(16). Based on the obtained cumulative 
distribution profit function, we, therefore, set 𝑘7 =
1.416.23€ as the initial benchmark in the SOSDCs-based 
problem. Next, we set 𝜃 = 50€ to thoroughly analyze the 
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impact of different benchmarks on the developed risk-based 
model. Note that Algorithm 4 is terminated after reaching 10 
different solutions. Table 2 displays the obtained solution 
sets for the SOSDCs-based scheduling of the BSS in the 
DA+INT markets. In Table 2, the first column shows the 
considered benchmarks. The next two columns represent the 
in-sample and out-of-sample profits, while the next two 
columns refer to in-sample and out-of-sample CACs. Finally, 
the last three columns describe the membership value of the 
in-sample and out-of-sample profits and the total 
membership value, respectively. Following the developed 
methodology, the seventh row of Table 2, which possesses 
the greatest quantity of 𝜇'4'=?7 , is chosen as the most favored 
strategy. It can be seen that the most favored benchmark 
among all considered ones is €1,666.23, yielding €2,770.66 
and €2,841.05 in-sample and out-of-sample profits, 
respectively. According to Table 2, it is observed that the 
greater the benchmark, the lower the in-sample profit, as 
expected. In other words, the decision-maker reduces the 
associated risk by picking a greater benchmark and, as a 
result, achieving a lower in-sample profit. On the other hand, 
the performance of out-of-sample analysis is not a function 
of entry benchmarks. As observed, those scenarios with a 
lower in-sample profit result in greater out-of-sample profits. 
This reveals that the risk-averse solutions have a more solid 
performance in out-of-sample analysis, which is a reliable 
study to the decision-makers. Another critical point is the 
pretty close range of CACs in both in-sample and out-of-
sample analyses. 

Figs. 1 and 2 show DA+INT decisions of the BSS for the 
most favored solution designated in Table 2 ( 𝑘7 =
1,666.23 €). From Figs. 1 and 2, it can be seen that 
discharging happens at hours 9, 17-21, while charging occurs 
at hours 1-6, 12. The greatest discharge powers in DA+INT 
markets take place at hours 21 and 19, respectively, as a 
consequence of having the highest market prices. 

VI. CONCLUSION AND FUTURE WORKS

With the ever-increasing attention on lithium-ion 
batteries, proposing a suitable methodology for addressing 
their arbitrage strategy considering degradation issues is still 
one of the research priorities. In this regard, to target the 
arbitrage strategy of a large-scale lithium-ion battery in the 
DA+INT markets considering its CAC, a new SOSDCs-
based technique was suggested in this paper. To fully take 
advantage of the promising characteristics of the SOSDCs 
model, we offered a new benchmark selection approach 
based on in-sample and out-of-sample studies, and 
consequently, the fuzzy decision-making pattern was 
exploited to attain the most favored strategy. The 
effectiveness of the suggested arbitrage model was validated 
by simulations. The simulation results revealed that: 1) the 
proposed method can find the most favored benchmark in 
SOSDCs among all considered benchmarks, and 2) a fair 
trade-off between in-sample and out-of-sample results aids 
decision-makers against the challenging benchmark selection 
task in SOSDCs-based problems. Future work focuses on the 
performance of the suggested approach versus deterministic, 
risk-neutral stochastic, and CVaR-based frameworks with a 
more advanced and detailed decision-making pattern. 

Fig. 1. DA charge and discharge powers in the most favored strategy. 

Fig. 2. INT charge and discharge powers in the most favored strategy. 
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TABLE II. RESULTS OF THE DEVELOPED ALGORITHM FOR 10 DIFFERENT BENCHMARKS.. 

𝐤𝐛 [€] 
In-Sample 

Analysis Profit 
[€] 

Out-of-Sample Analysis 
Profit [€]  

In-Sample Analysis 
CAC [€]  

Out-of-Sample 
Analysis CAC [€] 𝝁𝐢𝐧𝐛  𝝁𝐨𝐮𝐭𝐛  𝝁𝐭𝐨𝐭𝐚𝐥𝐛  

1,416.23 2,779.48 2,804.36 112.55 111.83 1.000 0.811 0.905 
1,466.23 2,779.29 2,808.68 112.57 111.38 0.999 0.833 0.916 
1,516.23 2,779.29 2,808.68 112.59 111.91 0.998 0.845 0.921 
1,566.23 2,778.59 2,821.35 111.97 111.43 0.996 0.898 0.947 
1,616.23 2,777.17 2,829.91 111.81 111.04 0.990 0.942 0.966 
1,666.23 2,770.66 2,841.05 111.89 111.04 0.961 1.000 0.980 
1,716.23 2,755.84 2,839.64 111.85 110.99 0.897 0.992 0.945 
1,766.23 2,707.62 2,810.65 113.19 112.31 0.689 0.843 0.766 
1,816.23 2,632.57 2,723.67 113.88 113.00 0.365 0.395 0.380 
1,866.23 2,548.06 2,646.92 115.72 114.24 0.000 0.000 0.000 
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