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Recursive Set-Membership State Estimation over
A FlexRay Network

Shuai Liu, Zidong Wang, Licheng Wang, and Guoliang Wei

Abstract—In this paper, we investigate the set-membership inherent restraint on the network resources (e.g. bandwidth
state estimation problem for a class of time-varying systems and bit rate) have posed great challenges to traditional control
with non-Gaussian noises over a FlexRay network. To mitigate or state estimation strategies.

the communication load and improve the flexibility of the data . . .
scheduling, the FlexRay protocol governed by both the time- The N_CS, IS how kn_own to be confr_onte_d with "m'tefj
and the event-triggered rules is exploited to regulate the signal Communication capacities that would give rise to unavoid-
transmission in a cyclic fashion. A new expression of the input able network-induced phenomena such as data collisions and
signal to the state estimator is formulated with intention to communication delays [5], [10], [35]. In this context, many
account for the effect of the FlexRay protocol. Accordingly, efficient schemes have been proposed to either mitigate the

a multi-rate model (orchestrating the sampling/updating rates . o .
of the target plant, the sensors and the state estimator) is network traffic (at the cost of sacrificing certain system

proposed and then transformed into a single-rate one with the Performance) or make full use of the incomplete data (to
help of the lifting technique and the vector augmentation method. achieve the locally optimal performance indices) [20], [38],
Subsequently, sufficient conditions are provided for the true states [41]. A well-recognized scheme that has been welcomed in
to always reside in an ellipsoid at each time instant in the presence 4 stry js the so-called communication protocol whose aim
of non-Gaussian noises, and such an ellipsoid is then minimized .
in the matrix-trace sense. An online optimization algorithm is 'S tp regulate the F’,ata_EXCha.”QeS over shared channels so as
deve|oped to parameterize the estimator gains by means of to |mpr0Ve the Ut|||Za.t|0n eff|C|ency Of the scarce network
the solution to certain recursive matrix inequalities. Numerical resource. So far, a variety of protocol-based control/estimation
results demonstrate the validity of the proposed protocol-based algorithms have been developed where the communication
set-membership state estimator design scheme. protocol has been skillfuly embedded into the networked
Index Terms—Set-membership state estimation; FlexRay net- systems, see e.g. [4], [15], [26], [36], [37], [47]. Several
work; Time-varying systems; Multi-rate mechanism; Non-  frequently employed protocols include the stochastic com-
Gaussian noises. munication protocol (SCP), the Try-Once-Discard protocol
(TODP), the Round-Robin protocol (RRP) and the FlexRay
|. INTRODUCTION protocol (FRP). Further research topics include the extension

) ] of our results to 1) other FRP-based state estimation problems,
Along with the recurring upgrade of the network technoly,ch as the/.. filtering and the Kalman filtering; and 2) more

ogy, the so-called networked control systems (NCSs) haygneral systems, such as complex networks, sensor networks
been gaining an ever-growing popularity in industry for theig,q multi-agent systems.

distinctive capabilities of remote operation, low cost, and Among the communication protocols, the RRP and the SCP
simple installation and maintenance. These prominent featufgge time-triggered strategies for selecting sensor nodes to
have merited the broad applications of NCSs in various arégsess the shared channel, while the selection strategy for the
including environment sensing, intelligent traffic and smaftopp s event-triggered. The FRP, on the other hand, is a
home, see [7], [9], [13], [14], [18], [27], [42]. Within the phyprig communication protocol that supports both the time-
academic communities, a great deal of research attention Ba§ the event-triggered communications. To be more specific,
been devoted towards the security, the reliability, the real-tilgge Frp provides a time-triggered transmission for the time-
implementation and the resource utilization of the NCS [23{jtical periodic data in a static segment and a priority-based
[24]. In particular, with the increase of the network scale, ”?cheduling rule for the event-triggered signals in a dynamic

segment, thereby greatly improving the flexibility and the
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the FRP has attracted particular research attention in a large mented online, is proposed to acquire a set of optimized
group of car manufacturers and automotive electronic suppliers ellipsoids containing all possible true states.
[31]. Note that, despite its obvious engineering potentials, The subsequent part of this paper is arranged as follows.
only some initial research effort has been made towards tBection 1l formulates the model of the target plant and gives
theoretical investigation on the FRP-based control/estimatiandetailed description of the FRP. By virtue of the lifting
issues. To name a few, in [43], the stabilization problemechnique and the vector augmentation method, a new FRP-
has been discussed for a class of continuous-time networkeed measurement model is described in Section Il and the
systems over the FlexRay network, and the main results dorresponding state estimator is designed in Section IV. In
[43] have been further extended in [44] to the state esection V, an optimization problem with certain inequali-
mation problem and in [39] for the tracking control issuety constraints is put forward for the sake of obtaining an
As exemplified above, most FRP-related results have besptimized ellipsoid containing all true states at each time
tailored to the continuous-time systems, and the correspondingtant. Section VI provides a simulation example to verify the
results on the discrete-time counterparts have been very feffectiveness of the proposed state estimator design scheme.
despite the prevalent trend of today’s digital communicatio8ection VII outlines the conclusions of this paper.
Consequently, it is of practical significance to look into the Notations. Throughout this paperR”, R™*" and N+
control/estimation issues faliscrete-time systems under the denote, respectively, the-dimensional Euclidean space, the
FRP scheduling, which constitutes one of the motivations sét of all m x n real-valued matrices and the set of al-
our current research. | non-negative integers. For a matrix/, M”, M~! and

In the last few decades, the state estimation or filtering{ M} represent its transpose, inverse and trace, respectively.
problems have been paid an enduring research interest fromihstands for the identity matrix of compatible dimension.
signal processing and control areas. From a mathematical p¢iot symmetric matricesY and Y, the notationX > Y
of view, most of the filtering schemes (e.g. Kalman difid, (X > Y) means thaf{ —Y is non-negative definite (positive-
filtering strategies) are customarily referred to as the so-callddfinite). diag{ A1, As, ..., A, } represents a block diagonal
point estimation schemes that involve the use of measuremenmtatrix whose diagonal elements are matrides A, ..., A,.
data to calculate aingle estimation value of the true state, sedz|| describes the Euclidean norm of a vectow(-) denotes
e.g. [1], [3], [6], [28], [30], [33], [40], [49]. Nevertheless, inthe delta function, i.e.j(a) = 1 whena = 0; otherwise
many practical problems (e.qg. target tracking as well as systgi@a) = 0. “mod(a, b)” denotes the remainder on division of
guidance and navigation), the target plant is required to falle integera by the positive integeb.
within a safe region with 100% confidence, and this has led to
the proposal of the so-callestt-membership state estimation Il. PROBLEM FORMULATION
(SMSE) strategy. In contrast to the point estimation scherfe System model
that just obtains an exact estimate value, the SMSE strategy iThe target plant is modeled by the following system:
able to generate an ellipsoid region containing all true states.
Till now, a great many SMSE-relevant research results have 2(Tis1) = A(Ti)2(Ti) + B(Tr)w(T}) (1)
been found in the literature, see e.g. [19], [46], [48] for some y(Tr) = C(T)x(Tk) + D(Tr)w(Tk)
representative works. Nonetheless, when it comes to the Flg\ﬁlferex(Tk) € R" and y(T},) € R™ are, respectively, the
based ellipsoidal estimation, the corresponding results haéﬂﬂstem state to be estimated and the measurement output
been very limited (if not none) despite the potential applicatiqfeasured bym sensors.A(T},), B(Ty), C(T}) and D(T})

prospects of both FRP and SMSE in NCSs. are time-varying matrices with appropriate dimensions. Also,
Inspired by the aforementioned discussions, we endeavok,g denoteC(Ty) 2 [CT(Ty), CL(Ty),...,CL(T)" and

deal with the SMSE problem for a class of time-varying SY(T,) 2 [DT(T}), DT (1), ..., DL(Ti)]T with C;(Ty) €
tems under the FRP. In this sense, three inevitable difficultigsxn" 5nq D;(T;) € R™v (; *m1,2,...,m). Let h 2

emerge as follows: 1) how to define the transmission ru'%—ﬁ-l — T, (k € NT) with T, = 0 whereh is a positive

for both the static scheduling and the dynamic schedulingss|ar representing the evolution period of the target plant.

2) how to provide mathematically precise description of thz‘f:(Tk) € R” is the exogenous noise belonging to the following
discrete-time version of the FRP that not only embodies th@ipspidal set:

two kinds of switching rules but also facilitates the subsequent R T’ .
SMSE analysis/synthesis; and 3) how to quantify the impact W (Tk) = {w(Ty) - w” (Tr) W (T)w(Ty) <1} (2)

from the FRP on the estimation performance. To get over theggh 1 (T},) being a given positive-definite matrix sequence.
difficulties, we make the following contributions in this paper In practical applications, the communication capacity of a
as summarized below. network is usually limited. In this case, simultaneous trans-

o By combining the merits of both the RRP and thenission of large amounts of data would inevitably lead to
TODP, a new mathematical description is proposed tata collisions. In this paper, with hope to improve both the
characterize the discrete-time version of the FRP. reliability and the flexibility of data broadcast, the FRP is

« The impact of the FRP on the design of the state estimaintroduced to schedule the transmission of theneasurement
is examined in the light of the vector augmentatiosignals from the sensors to the state estimator where only one
approach and the multi-rate mechanism. sensor node is assigned to access the network resource at each

o A recursive optimization algorithm, which can be impletime instant.
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B. Discrete-time version of the FlexRay protocol dynamic segment. More specifically, as shown in Fig. 1, in a

Generally speaking, the FlexRay network (i.e., the netwof@mmunication cycle, the RRP is first carried out in the time
scheduled by the FlexRay communication protocol) consid@gth R1, and the TODP is then executed in the time length
of a series of pre-set communication cycles. As shown {fe- Moreover, considering different real-time requirements for
Fig. 1, each communication cycle includes four parts: a stafiéfferent components of measurement signals, those compo-
segment, a dynamic segment, a symbol window and a netw&&ts with the high real-time requirement are scheduled b_ased
idle time. The time lengths of these four parts are, respective‘lg‘, the RRP, and other components are scheduled according to
denoted byR;, R., R; and Rs. Compared with the static (e TODP. Without loss of generality, we assume that the first
segment and the dynamic segment, the time lengths of {fneomponents,!)(T},) € R’ of y(T) are scheduled by the
symbol window and the network idle time are very short afdRP and the remaining: — I components*)(7},) € R
usually negligible, i.eRs = Ry = 0. Also, without loss of ©Of y(Tk) are orchestrated by the TODP. Accordingly, let
generality, we assume thdt, = Ih (I € {1,...,m}) and y(Ty) be the measurement outputs after network transmission
Ro — h. Besides, the transmission time of the data packdthere g (Ty,) and 3®(T,) denote the measurement value
which mainly depends on the transmission distance and féer the network transmission scheduled by the RRP and the
size of the packet, is also neglected. To this end, the tiMl@DP, respectively. More concretely, denote by, (or oz,)
length of a communication cycle i8; + Ry + Rs + Ry = the sensor node accessing the transmission right at Time
(I + 1)h. In the following, under the discrete-time settingaccording to the RRP (or the TODP), which can be determined
we shall provide a detailed description on how to elaboratedgcording to the following rules, separately.
allocate the time of?; and R». 1) Round-Robin protocol is a time-based static scheduling

Remark 1. As we know, the transmission time of a data algorithm where the transmission order is governed by
packet is mainly dependent on two factors: the transmission the following transmission rule:
distance and the size of the packet (i.e. the bits occupied by the T,
packet) [43]. Normally, the farther the transmission distance od (7,l> +1
(or the larger the packet size), the longer the transmission time.

However, it is worth emphasizing that the FRP is usually cus-  with Ay, € £; = {1,...,1}. It implies from (4) that,
at time 7, only the componeny,,, (%) of y(T}) is
updated and other componentsydf’;,) are set as 0 by

A
)\Tk = 1m

(4)

tomized for the data communication among vehicles’ interior
devices, where the transmission distance is quite short and thus

the resulted impact on the transmission time can be ignored.

On the other hand, under the FRP, the maximum data rate)

of each channel can be up tOM Bit/s, which is actually a

high-rate communication bus and almost no time delay during
the data transmission in a vehicle, that is, the transmission
time of the packet can also be neglected compared with an
entire communication period. Based on the above discussion,
we exclude the influence of the transmission time in this paper.

D D Data packets

Static
Segment

Network
Idle Time

Symbol
Window
Dynamic

means of the zero-input strategy.

Try-Once-Discard protocol is an event-based dynamic
scheduling algorithm that assigns priorities according to
the following specific event:

AP i @)} ©)

whereor, € Lo 2 {I+1,...,m} and Q:(T%) (i €
L) are given positive-definite matrices. L?gélz)(Tk) £
y§2) (Ty) — g§2> (Tx—1) and, in terms of the zero-order
holders (ZOHs)g;(T%) (i € L£2) can be represented as
the following form:

Segment X A

| o — 5 —nln

Fig. 1: A communication cycle of the FlexRay network.

For expression convenience, we denote
y(Tr) 2 [(y™M(T)", (2 (T)™"

y(Te) 2 (3™ (T)", @2 (Te)""
y I (Te) = [y (Th), - .o y(Te)] "
y(Te) 2 [ya(Th), - ym(T)]" ®3)
g (Te) = [(Th), - .. 5u(Te)] "
JTk) 2 41 (Th), - G (Ti)] "

(6)

— yl(Tk)7 lf Z = o’T
9i(Te) =<~ k
¥i(Tk—1) otherwise.

Having elaborated on the principle of the FRP, we shall
provide a detailed mathematical model of the discrete-time
version of the FlexRay communication protocol, and then
design the FRP-based state estimator.

IIl. A NEW MEASUREMENT MODEL

Because of the cyclic characteristic of the FRP, we are
interested in exploring the impact of the FRP on the estimator
design in one communication period. In this sense, the dif-
ficulties caused by two kinds of switching rules of the FRP
can be obviated by setting the update periog (@) (i.e. the
measurement outputs after network transmission) as the length
of one communication cycle (i.€l + 1)h). Accordingly, for

It should be pointed out that, in this paper, the RRP and thiee purpose of facilitating the design of the state estimator,
TODP are, respectively, applied to the static segment and the update period of the state estimator is also sét-ad)h.
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In addition, it is worth noting that the node selected by thend, therefore,
TODP might be different, so there should be— [ different

communication cycles. o(tr+1) ~
In what follows, the lifting technique [32] is employed to = A(tk+1 — R)2(tes1 — h) + B(tip1 — h)w(ty)
unify the update period of the target plant to (@er 1)h._ — Altpsr — h) (qu(tk) (tr) + B(z) () _(tk)) (11)
Lemma 1. The target plant (1) can be transformed into the .
following form: + B(tr+1 — h)w(ty)
B = Ag(tr)z(tr) + B (tr)w(te).
T(ter) = A(te)Z(tr) + B(tr)w(tr) ()
From the definition oft(7}), one obtains the compact form
wheret; 1 —t = (I + 1)h = gh, to = 0 and (7), which completes the proof of the lemma. [ |
Remark 2: Three observations can be made so far as fol-
T(ty) 2 col{x(tp_1 +h), z(ty_1 +2h), ..., x(ty)} lows: 1) the sampling period and the transmission period of
_ 2 the measurement output are still2) the update period of the
() = col{w(t), w (ik +h) fu(tk Flo—Dr} state estimator (to be devised later) is se{/as 1)h, which
Aty) 2 ¢ {Al(tk) As(tg), ... ,Ag(tk)} is the same as the time length of one communication cycle of
2 (9) (—1) ) the FlexRay network; and 3) the lifting technique has turned
B(ty) = { (k) By (tx), -, By (tk)} out to be an effective approach to addressing the asynchronous
ffi(b‘k) N colT{O, L0, AT, i=1,.. g sampling/update issue, see e.g. [11].
Hq_/l—’ Due to the introduction of the FRP, at each communication

p instant, only one sensor node is able to access the network and,
Agopir(te) 2 HA(thrl —ih), b=1,....9 accord_mgly, only one c.omponen_t of the measyrement ou_tput
y(Tx) is updated. In view of this, the following lemma is

B N = introduced to derive an update formula of the measurement
b (k) = output (i.e.y(tr)) after the FlexRay network.
[B(tg) 0,...,0], b=1, r=g Lemma 2: Considering the RRP rule (4) and the TODP rule
g1 (5), y(tx) can be expressed as
5(r) 5(r)
By (tx) ... B tr) B(tx +(b—1)h) 0,...,0 _ A _ < _
B Bulle) B+ 0200 G0 (1) = C(t)R() + D) (1) W
g—b _
b=2,...,9, r=g—b+1 + (I = Do, )7 (trr)
() 9-J where, fori =1+1,....,m,j=2,...,landr=1,...,1,
() £ T Altesr — i) Bt + (5 — 1)h) .
i=r T1 £ [lixt, 0fm—ryxt) "
j=1.b=1 Iy £ [OITX(mfl)vI(m—l)x(m—l)]T
. A A )
Proof: First, according to (1), one has C:(t’“) - Il(’j(tk) +I?q(tk)
D(t) £ Ti D(ty) + ZoD(ty,)
oty +h) = Ar (te)a(te) + B (b)w(tx) (8)  C(ty) 2 Ciltr) + Coltr)A(tr)
. -
and then P(tk) N Cao(tr)B(tx) + D1 (tr)
C(tr) = @, +MO(tk +1h)A(ty,)
a(ty, + 2h) D(tr) £ @, ., C(tx + 1h)B(tx) + O, ., D(tx + 1)
= Alta+ )zt + 1)+ Blte + h)o(te ()) (tk +1h) £ [CL (e +1R), ..., Ch (tk + lh)]?m 1)x(gn)
= Aty + h)Ax(tr)(tr) + Atk + h)By” (te)w(te)  (9) ) W
1) x gw

+ Bty + hy(ty)

(g-1) Oty +lh dlag{5(l +1- Gtk+lh)7 cee 5(m - Uthrlh)}
= As(tr)z(tr) + By (tr)w(ts)

C
D(t, +1h) & (D] (ts + lh) DI (tx +1h
P,
Cz(tk +h) £ [0,...,0,C;(ty + Lh), 0]1><(gn)
——

where, fori =1,...,9 — 1, 9-2
) Di(ty +1h) £10,...,0,D;(tx + 1h)] 1 (gu)
B(ty, +ih) £ 0,...,0, B(ty +ih),0,...,0]. —
H(—’ H/—/ ~ . 9g—
‘ g1 Ci(tr) 2 [ClT(tk)v 0,..., O]lTx(qn)
N—— :
Along the similar line, one further has =1

02( k) £ [0’ ég(tk + h) : '7éf(tk + (1= 1)h)]l><(gn)

ot =) = Ay ()a(t) + B 0)0(t) A0 bty & (B 1+ h),.., D (1 + (= DI g

(1>
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Ci(ty) 210,...,0,Cy(tr)]
g—1
C_:J (tk + (] - 1)h)
£100,...,0,C(tk + (j — 1)h),0,. .., 0l1x(gn)
Jj=2 g+1—j
D, (tx + (r — 1)h)
£100,...,0,Dp(t + (r —1)h),0,..., 01 (gu)-

Proof: According to the RRP (4)7")(tx1) can be
computed as

5

wherez (t;) € Rt~ is the estimate of (¢;) and L(t;) €
Rgn+m=l)xm is the time-varying state estimator parameter to
be determined.

For the considered SMSE problem, in this paper, we devote
to achieving the following two objectives.

1) Design appropriate time-varying state estimator param-
etersL(t;) in (17) such that, for non-Gaussian noises
w(ty) € # (tx) and the FRP (12), all possible true states
fall within an ellipsoid, that is, there exists a sequence
of positive-definite matrice®(¢;41) satisfying

Etrsn) 2 {F(tnsr) € ROV
(F(trs1) = 2(tr0)) P (tisr) (18)

7V (t) = C(tr)2(tx) + D(t)w(ty). (13)
(t — 2t <1
Subsequently, based on the TODP (5), one has X (@(tk41) = 2(tern)) < }
7 (1) = ‘I)atwhy@) (tx + IR) under the initial condition
=y )5 () £(0) 2 {2(0) e R | ((0) - #(0))”
. wrin (14) (19)
= C(t)(te) + D(te)w(te) x PH0)(#(0) - #(0)) < 1}
— 7(2)
(= o, )7 (te)- wherez(0) and P(0) are, respectively, the given initial
It is obvious from (13)—(14) that state and initial positive-definite matrix. Especially, for
_ _(1) _(2) the ellipsoid&’(t;41), Z(tx+1) denotes its center where-
y(t) = Ty (te) + L2y~ (t), (15)

as P(ty+1) determines its radius.
which implies that (12) holds, thereby ending the proof of this 2) At each time instant, minimiz&(¢;1) in the sense of
lemma. ] the matrix trace so as to obtain an optimized ellipsoid.
Remark 3: It can be observed from (12) that the mea- Remark 4: It can be found that the main difficulties caused
surement output (after being transmitted via a FRP-basegl the FRP lie in the joint appearance of 1) two kinds of
network) can be reduced to that for 1) the RRP case whesmmunication mechanisms (i.e. time- and event-triggering
Z, = Lyxm andZy = 0 and 2) the TODP case whel) =0 mechanisms) and 2) two kinds of time scales (tg.and
andZ; = I,xm- We conclude here that the mathematicaf}), which would largely increase the complexity of the state
description of the FRP proposed in this paper is more genegatimator design. To get rid of the difficulty, in the sequel,
than the individual RRP or TODP, both of which have beewe propose to use a unified measurement model to enforce
widely deployed in industry. these two kinds communication mechanisms, and then adopt
the lifting technique to transform the multi-rate model to a

IV. FLEXRAY-PROTOCOL-BASED ESTIMATOR DESIGN single-rate one.

In this section, in order to deal with the tergé? (¢,_1)
caused by the ZOH strategy in (12), the augmented system, V. MAIN RESULTS
which aggregates the system statg,) and the holding term  This section is mainly devoted to the establishment of suffi-
y@(tr—1), is obtained as follows: cient conditions ensuring that the augmented system dynamics
(7) achieves the objective (18) under the initial condition

{I(tk“) - %(tk)gf(tk) +l?(tk)l?(tk) (16) (19). At the same time, an explicit parameterization of the
Y(trt1) = C(te)Z(te) + D(te)w(tr) state estimator gains is obtained in light of the solution

to certain recursive matrix inequality. Then, an optimized
ellipsoid confining all possible true states is derived in the

where

E(tk) 2 27 (1), (1 (te—1)"1" sense of the matrix trace by solving an optimization problem

y ~ [Altr) 0 with certain constraint conditions.

Altr) = Ctr) I-— ®,, HJ Theorem 1. Consider the augmented system (7), the

y :B(tk) e FlexRay communication protocol (12) and the time-varying

B(ty) & D(t )] state estimator (17). The ellipsoidal constraint (18) is satisfied
LAk under the initial condition (19) if there exist positive-definite

Cltr) 2 |Cte) To(I — ‘I’atkm,)} . matricesP(t;+1), real-valued matrice& (), positive scalars

) o _&ilty) (1=1,2) andg,(tx) (j =1+ 1,...,m) such that the
Next, according to (12) and (16), the following tlme—varymgouowing recursive matrix inequality

state estimator is constructed:
Q(tk) — E(tk) *

L(tx) —P(try1)

v

E(thy) = A(tr)&(tr) + L(ty) <0 (20)

(g(tk) _ C‘(tk):%(tk)) 17)
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holds, where

Q(ty) = diag{—1+¢e1(tx) + gea(tr), —e1(tr)I,

—ea(tr) W ()}
E(t) £ ) 0i(te)S" (k)
j=1+1
% Qi+ 1h) = Qo (b + 1)) (1)
Q(tx) £ diag{Qiy1(tr), . -, Qum(te)}
Q;(te) £ Qtr)®j, j=1+1,...,m
S(te) £ [Clte)2(t), Ctr)R(tx), D(ty)]
Clty) 2 [Clty, + Ih)Aty), — I
D(t) 2 C(ty +1h)B(t,) + D(ty + Ih)
W(ty) £ diag{W (tx), W (tx +h),...,W(t, +1h)}
D(tk) 210, (A(tr) — L(tx)C(t)) R(t),
B(t) — L(tx)D(ty)] -

Proof: The mathematical induction is applied to provg .- implies that

this theorem.

First, we need to verify that the ellipsoidal constraintis true 7' (¢, )% (#;,) (Qj(tk +lh) — Qatk“h (ty + lh))

at the initial instanty = 0, and this is evident from (19).

Second, assume that the condition (18) holds at time instant
tx. It remains to confirm that, at time instamj.,, the

condition (18) also holds.

It is easy to see fronk(ty) € &(tx) that there exists a

vectoru(ty) satisfying||u(tx)|| < 1 such that

e(ty) £ Z(ty) — &(te) = R(tx)u(ty) (21)
where R(t) is the factorization ofP(t;) = R(tx)RT (tx).
It is derived from (7) and (17) that
e(ter) = (A(te) — L(te)C(t) R(tx)ultr) (22)
+ (B(tr) — L(tr) D(tx))o(ty).
Defining
t) 2 [1 W (k) @ (k)] (23)
one has
e(tre1) = L(te)0(tr). (24)

6
for j € L5, and therefore one derives
(y(2) (t + lh) - §(2) (tk))TQatth (tk +1h)
x () (b + 1) = 5 (1)) 8)
> (YOt + 1h) — g ()T Q;(tr + 1h)
x (y® (b, + 1h) — g ().
Then, it is not difficult to see that
y Dt +1h) — 1P (1)
= O(tk + lh)A( k) (tk) + é(tk =+ lh)B(tk)’LD(tk) (29)
+ D(tg + Ih)w(ty) — @ (ty).
By some simple manipulations, one further has
(C(t + Th) A(tr)Z(t) + D(tr)w(t) — g3 (t))"
x( J( k) — QUtk+lh (ti +1h)) (30)
x (C(tk + ) A(ti)Z(t) + D(tr) @ (te) — 5@ (1))
<0,
(31)

X E(tk)e(tk) <0.

By virtue of the S-procedure [2], the ellipsoidal constraint
(18) is true at time instant,,; if there exist positive scalars
gi(ty) (i =1,2) and;(tx) (j =1+ 1,...,m) such that the
following inequality constraint is met:

0" ()T (te) P~ "t 1)T (1) 0 (tr)
— 07 (t},)diag{1,0,0}0(ts)
— e1(tr)07 (t)diag{—1,1,0}0(t)
— e2(tx)07 (ty)diag{—g, 0, W~ (t1) }0(tx)

Z 0j tk 9T tk ET(tk)
+1

x (Q (ts -+ 10) = Qo (b + 1) ) S(t4)6(11)
<0.

(32)

It is easily confirmed that the condition (32) is guaranteed
by the following inequality:

According to the boundedness condition (2) of non-

Gaussian noises, it is easy to see that

@' (te)W ™ (tr)w(ts) < g. (25)

Based on the constraint conditiofia(¢x)|| < 1 and (25),

we have

{ 07 (tx)diag{—1,1,0}0(tx) <0 (26)

0" (tx)diag{—g,0, W~ (t)}6(t) < 0.

In the following, we shall handle the selection condition of

the TODP. First, the condition (5) can be rewritten as
(G5, (1)) Qo (b1 + 1D)
2
X y((Tt) in (tx +Lh)

> (3 (tx + 10)7Q; (b + 1) (81, + 1h)

(27)

FT (tk)P_l (tk+1)r(tk) - diag{l, 0, 0}

— &1 (tg)diag{—1, 1,0}

— eo(ty)diag{—g,0, W1 (t)}

Y ot (33)
J=l+1

% (@t + 1) = Qo+ 1)) (k)

<0.

By means of the Schur Complement Lemma [2], (33) can
be ensured by (20), which verifies the constraint condition (18)
at time instant;_ ;. According to the mathematical induction,
we conclude that the constraint condition (18) holds for any
k e Nt. [
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Having obtained a sufficient condition to ensure all possibidternatively, thus combining the advantages of both schemes.
true states entering into the ellipsoid (18), we are now inAso, to comply with today’s digital communication way, the
position to propose an optimization problem to minimize sudiscrete-time version of the FRP is put forward, and the SMSE
an ellipsoid in the sense of the matrix trace. strategy is adopted to ensure that all possible true states are

Corollary 1: Consider the augmented system (7) with theonfined within an optimized ellipsoid. It should be noted that
FlexRay communication protocol (12) and the time-varyinglgorithm 1 involves several important factors that complicate
state estimator (17). The ellipsoidal s#t(¢x+1) is mini- the estimator design, which cover 1) the time-varying system
mized if there exist positive-definite matricé¥t,1), real- parameters; 2) the time length of one communication cycle of
valued matriced.(t;), positive scalarg;(t;) (i = 1,2) and the FRP; and 3) the bound of non-Gaussian noises.
0i(ty) (j =1+1,...,m) such that the following optimization ~Remark 7: In this paper, we have made much effort in
problem handling the SMSE problem for a class of time-varying

. systems over a FlexRay network. Our main results distinguish
OP: min tr{P(t41)} (34) themselves in the following two aspects: 1) the transmission
is solvable subject to the inequality constraint (20). rules for both static and dynamic scheduling have been es-

Now, in order to show the realizability of the proposedablished through the mathematical description of the FRP in
SMSE scheme, the following algorithmAlgorithm 1) is the discrete-time setting; and 2) the impact from the FRP on
developed. the estimation performance has been closely examined in a

guantitative way.
Algorithm 1 : FlexRay-Protocol-Based Ellipsoidal State Es-

timator Design Algorithm VI. AN ILLUSTRATIVE EXAMPLE
Step 1. Initialize the parameter#(0), z(0) and £(0) such | this section, the usefulness of the proposed FlexRay-
that the initial constraint condition (19) is satisfiedpased state estimator design scheme is validated via a sim-
Setk = 0 and the maximum stepy. ulation example.
Sep 2. Based onP(ty) = R(ty)R"(tx), calculate matrix  consider the discrete time-varying system (1) with the
factorizationsR(ty,). following parameters:
Sep 3. Solve optimization problem (34) according to the _
FlexRay scheduling protocol (12). Then, the state ar(Ty)  0.25 0 0
estimator parametef(t;) and the positive-definite A(Ty) = —01  ax(Tx) O 0
matrix P(t,,1) can be obtained, respectively. Sub- 0.2 0 —0.8 a3(Tk)
sequently;i (¢, 1) is computed by (17). L 0 0 0.1 1
Sep 4. Setk =k + 1. If £ > N stop, else go back t8tep 2. [0.13 4 0.2 8in(10T})
0.15 — 0.2 cos(2T})
B(Ty) =
Remark 5: Over the past sixty years or so, the SMSE has T 0.2
received considerable research interests, and a great number L —0.15
of achievements have been reported in the literature, see, c1(Ty) 0 00
e.g. [34], and the references therein. Particularly, in the last C(Ty) = 0 c2(Tyy) 0 0
thirty years, with the rise of networked control systems, 0 0 6 0
the traditional SMSE has been extended to the networked | 0 0 0 8
framework and some network-induced phenomena (e.g. packet [ 0.12
dropouts, time-delay) have been considered in the SMSE, see, 0.17 4+ 0.27 cos(T%)
e.g. [21], [45]. It is notable that, to cope with those network- D(Ti) = 0.2
induced phenomena caused by limited network bandwidths, —0.2

some transmission protocols have been applied to the SMSE

that include the event-triggering protocol, the RRP and ﬂ){ghere

TODI?, see [8], [25]. It should be pointed out that, almost a1(Ty) = 1.19 + 0.2sin(10T}),

all existing works on the protocol-based SMSE problem have

exclusively concerned with only the single-protocol-based az(Tk) = 0.16 — 0.2 cos(2T}),

transmission manner, which is not always competent for a a3(Ty) = —0.1sin(4T%),

rather complicate communication schedule task in certain c1(Ty) = 9 + 0.3 cos(—2T}),

practical scenarios. In this paper, tQ fully abs_or_b the merits co(Ty) = 1.8 — 0.1 cos(3T}).

of those existing protocols, we combine the existing protocols

(RRP and TODP) into a unified framework and make the first The initial state and its initial estimation are, respectively

attempt to investigate the FRP-based SMSE problem. taken asz(0) = [0.15 0.16 0.1 —0.2]7 and[0 0 0 0]7.
Remark 6: Unlike the existing results which are dependernthe non-Gaussian noise is setw@€l};) = 0.3sin(—7}). Let

on either the time-triggering pattern or the event-triggerirthe initial value ofP(¢;) be P(0) = I. The weighting matrices

pattern, the employed FRP follows a hybrid communicaticare chosen al/(T},) = 10, Q3(T}) = 2 andQ4(T%) = 1. The

style under which these two kinds of triggering schemes worklationship oft;, and 7T}, satisfiest, 11 — tx = 3(Tk+1 — Tk)-
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The step-size iV = 39. The obtained state estimator gain:
at timet,, t2 andts are listed in Tables I-lll, respectively.

The optimization problem is solved by the MATLAB-
R2018B software performed on a 3.60GHz quad-core deski
computer with 16GB RAM using 64bit. Under this experimen
tal setup, the solution of the addressed optimization proble
takes nearly 4.0866s, which mainly causes by the use of 1
lifting technique and the vector augmentation method. Tt
simulation results are shown in Figs. 2—7. More specificall
the curves of the true states and their estimates are depic
in Figs. 2-5. The curves of the estimation errors and the
upper bounds are plotted in Figs. 6—7. It can be concluded tl
the simulation results show the usefulness of the develog
protocol-based estimator design scheme.
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TABLE I: The state estimator parameter at timhe Time step

k] _ L{tr) _ Fig. 2: Stater; and its estimation

0.1268 —0.1483 —0.0043 —0.0213

—0.0105 0.0560  0.0025  0.0088
0.0269 —0.0011 —0.0581 —0.0302
0.0065  0.4176  0.0047  0.1192
0.1358 —0.0864 —0.0044 —0.0220
0.0000  0.6882 —0.0024 —0.0081 E——

P 0.0169 0.5686 0.0430 0.0183 Estimation of 2

0.0000 —0.0069  0.0011 0.1241
0.1839  —0.0325  0.0070  —0.0432

—0.0159  0.1314  0.0120 —0.0100
0.0122 —0.5265 —0.0267 —0.0383
0.0026  0.0913 —0.0011  0.1312
0.0000  0.0000 1.0000  0.0000

| 0.0000  0.0000  0.0000 1.0000 |

TABLE II: The state estimator parameter at tirhe

xy and its estimation

k] L(tx)

[ 0.1539 1.509 —0.0022 —0.0379]

0.0000 0.6249 0.0000  —0.0025 -4 . : . . . . .
—0.0630 —2.4464 —0.0471  0.0291 0 5 oo 0B 0 ®m W
0.0213 1.9819 0.0000 0.0174 !

0.2325 5.4709  —0.0109 —0.2396 . . . .

0.0016 1.9455 —0.0049 —0.1175 Flg 3: Staterg and its estimation

k=9 0.1007 4.5693 0.0316 —0.1652

0.0000 0.0685 0.0000 0.1215

0.2674 6.9222 —0.0150 —0.3128

—0.0123  0.9621 —0.0064 —0.0593

—0.0276 —2.0192 —0.0311 0.0450 5 ; ; ; ;

0.0060 0.1142 0.0055 0.1261 o mation of s
0.0000 0.0000 1.0000 0.0000 1

| 0.0000 0.0000 0.0000 1.0000 | 4 1

w

VII. CONCLUSIONS

In this paper, the SMSE issue has been dealt with for
class of discrete-time networked systems under the FRP.
slowing the update rate of the state estimator, a multi-re
model has been put forward to characterize the effect of t

3 and its estimation
N
T
.

i
T
L

FRP on the estimation performance. By virtue of the liftini oA 1
technique combined with the vector augmentation method, t
multi-rate system has been transformed into a single rate ¢ 15 s 5w x m = w

Time step

where the update rate is the same with one communicati
period of the FRP. By means of the convex optimization
approach, an optimized ellipsoid has been obtained by solving
an optimization problem with certain inequality constraints.

Fig. 4: Staters and its estimation
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TABLE lll: The state estimator parameter at timg

- == . k | L(tk)
Estimation of x4 — —
0.1211 —0.2321 0.0061  —0.0670
—0.0116  0.0122  0.0038  0.0073
0.0174  0.4863 —0.1212  0.0383
0.0067  0.3423  0.0095  0.1154
E 0.1764  0.4361  0.0038  —0.0986
E —0.0066  0.3458  —0.0024  0.0032
% b3 0.0217  0.0786  0.0941  —0.0544
z 0.0000  —0.0016  0.0000  0.1246
g 0.1737  0.5230  0.0027  —0.0959
2 —0.0225  0.0565  0.0012  0.0058
; 0.0164  0.0119 —0.0731  0.0139
0.0031  0.0157  0.0085  0.1215
0.0000  0.0000  1.0000  0.0000
| 0.0000  0.0000  0.0000  1.0000 |
05 A ‘ ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35 40
Time step
An illustrative example has been provided to show the effec-
Fig. 5: Stater, and its estimation tiveness of the proposed protocol-based state estimator design

scheme. Further research topics include the extension of our
results to 1) other FRP-based state estimation problems, such
as the H, filtering, the Kalman filtering and the extended

IN

w
T

N
T

Estimate error
L — — —Upper bound ||

Kalman filtering [12], [22], [29]; and 2) more general systems,
such as complex networks, sensor networks and multi-agent

systems [16], [17].
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Fig. 6: The estimate errors; and e; as well as their upper
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bounds
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