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Scalable Consensus Filtering for Uncertain Systems

over Sensor Networks with Round-Robin Protocol
Fei Han, Zidong Wang, Guanrong Chen and Hongli Dong∗

Abstract

This paper is concerned with the scalable distributedH∞-consensus filtering problem for a class of discrete

time-varying systems over sensor networks with the Round-Robin protocol. The challenge comes from the fact

that the time-varying parameters of the network are subject to randomly occurring norm-bounded uncertainties and

the measurement outputs of the sensor nodes are saturated due to the sector nonlinearities. For preventing data

collisions and saving energy, the Round-Robin protocol determines which neighboring node can access the shared

network for information transmission at each time step. AnH∞ performance index is proposed to characterize the

disturbance attenuation level of the resulting filtering error dynamics. By stochastic analysis in combination with the

recursive matrix inequality approach, a distributed filtering algorithm is developed for each individual sensor node

to ensure the pre-specified estimation performance. Finally, an illustrative simulation example is shown to verify the

effectiveness and applicability of the theoretical results.
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I. INTRODUCTION

The past few decades have seen a popularity surge with sensor networks (SNs) for their wide range of applications

in engineering practice including environmental monitoring, fire detection, target tracking and vehicular ad-hoc

networks [5], [24], [38], [40]. One of the key SN-related research topics isdistributedfiltering that has proven to

possess advantages in simplicity, efficiency, robustness and flexibility over the conventional centralized algorithms

[10], [21], [27], [41]. Distributed filtering methodologies have attracted a great deal of attention and some widely

investigated schemes include distributed Kalman filtering [3], [9], [15], [19], [28], [44], distributedH∞ filtering

[4], [11], [14], [33], [34], [36], [37], [39], distributed fusion filtering [2], [30], [31] and distributed set-membership

filtering [22], [26].
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An SN is comprised of a large number of sensor nodes for sensing, computing and communicating. In response

to the large-scale characteristics of SNs, a desired filtering algorithm should be scalable; that is, the filter gains can

be computed separately on each individual node and also is adaptive and flexible to the changes of the network

topology. Notably, the scalability issue has attracted growing research interest in the past two years or so [7].

One of the main challenges associated with distributed filtering over sensor networks is the complicated couplings

among the large number of nodes. A common technique for tackling such a challenge is to pack the couplings

into a single system of larger scale that could then be dealt with by certain existing methods. However, in such

an augmentedframework, the desired filter gains can only becentrally calculated in an off-line manner by using

information collected from the entire network. This type ofcentralized technique is impractical because of the

lack of the desirable scalability. In view of this, a novel idea of local design was proposed and implemented in

[11]–[13], [33], where each node can only use information received from its neighboring nodes. Since such local

design method is helpful for designing scalable distributed filters, it was quickly recognized and implemented in

different scenarios. For instance, a distributed robust estimation problem was investigated in [33] for continuous-

time systems, and a similar problem was studied in [11] for systems with stochastic nonlinearities and multiple

missing measurements. In this paper, with the help from suchlocal design methodology, the scalability of the

distributed filtering problem is studied for uncertain stochastic sensor networks.

As is well known, network protocols play a predominant role in communication systems for regulating data

transmission to avoid congestion and collision. It is of significance to examine the impact of protocols on various

filtering issues especially in the context of sensor networks with respect to their topologies. To date, much effort

has been devoted to the investigation of filtering and control problems subject to different types of protocols such

as Round-Robin protocol (RRP) [6], [23], [34], [35], [48], Weighted Try-Once-Discard protocol (WTODP) [6],

and stochastic communication protocol (SCP) [17], [44]. Inparticular, the well-known Round-Robin protocol (also

named as time-division multiple access protocol or token ring protocol) has been extensively used in various filter-

ing/estimation problems. Under this protocol, each node isassigned equitable access to the shared communication

channel according to a fixed circular order allotted by the scheduler. More specifically, a moving horizon estimation

problem was discussed in [47] for a class of networked time-delay systems under the RRP, which was adopted to

determine the transmission order of sensor nodes. A distributed robust estimation algorithm was proposed in [34],

where the RRP was utilized to schedule data transmission on anetwork. Very recently, a so-called full-information

state estimator was designed in [48] for a class of linear time-varying systems with the RRP, where an effective

full-information estimator design framework has been proposed for time-varying systems. It is worth mentioning

that the RRP is perhaps the most frequently applied protocolfor its easy deployability in engineering practice.

This paper investigates the scalable distributed filteringproblem for SNs with RRP. The task faces with two

challenges. On one hand, saturation phenomenon has long been recognized to be inevitably popular in engineering

systems because of the limited measuring capability of sensor and actuator devices. Note that sensor saturation

could result in nonlinear characteristics which, in turn, would lead to performance degradation or even instability.

Accordingly, considerable effort has been dedicated to advanced filter design strategies in the occurrence of sensor

saturations; see, e.g. [25], [26], [43], for some recent publications. On the other hand, in practice, almost all systems

contain parameters that are inherently uncertain and variable owing primarily to the evolution of the systems or

the changes of the environments. Such parameter variationsoften occur in a random way, especially in networked

systems where the network load is typically unpredictable.The randomly occurring parameter uncertainties (ROPUs)
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have recently attracted a great deal of attention; see, e.g.[14], [29]. It should be emphasized that the scalability,

as discussed previously, requireslocal design on each sensor node, which would become substantially challenging

due to the existence of theglobal ROPUs. In the current literature, the distributed filteringproblem has not been

fully addressed for systems suffering from the ROPUs, wherethe RRP has not been used for routing.

Summarizing the above discussions, it can be concluded that1) local design methodology can help with increasing

the scalability of the distributed filter; 2) deployment of the RRP could enhance the utilization efficiency given

limited network resource; and 3) sensor saturations and randomly occurring parameter uncertainties (ROPUs) are

two major factors contributing to the system complexity that should be taken into careful consideration in the design.

As such, it is both theoretically important and practicallysignificant to study the distributed filtering problem for

uncertain time-varying systems with the RRP, and the corresponding technical questions are identified as follows:

1) how to schedule the neighboring information according tothe RRP in a distributed filtering scheme? 2) how to

deal with theglobal norm-bounded uncertainties in thescalabledesign for distributed consensus filters? 3) how

to establish a novel performance index corresponding to theRRP? and 4) how to achieve and further verify the

scalability of the distributed filtering algorithm? This paper addresses these questions by a thorough investigation.

In brief, this paper studies the scalable design problem of distributed filters, to be implemented on each node, for

systems with ROPUs and saturated measurements with RRP. Themain contributions of this paper are highlighted as

follows:1) the scalability issue is, for the first time, investigated inthe framework of local design for the distributed

filtering problem with RRP;2) inspired by the existing results concerning the RRP and the distributedH∞-consensus

filtering, a novelH∞-consensus performance index is proposed that reflects the impact of RRP and also accounts

for the disturbance attenuation levels of both filtering errors and consensus errors;3) different from [14], the

randomly occurring norm-bounded uncertainties are dedicatedly handled so as to keep the design locality intact

with the distributed filters.

The remaining of this paper is organized as follows. In Section II, the target plant and the distributed filtering

problem are formulated. In Section III, the scalable distributed filtering with RRP is designed using the vector

dissipation theory. An illustrative example is presented in Section IV to demonstrate the effectiveness and the

applicability of the proposed filtering algorithm. Finally, in Section V, conclusions are drawn and a few future

research topics are outlined.

Notation. For two column vectorsx, y ∈ R
m, x ≥≥ y (respectively,x ≤≤ y) means that every element ofx is

greater than or equal to (respectively, less than or equal to) the corresponding element ofy. 1 denotes a column

vector with every element being1. A nonnegative square matrixW is column substochastic if1TW ≤≤ 1
T .

l2[0, n − 1] represents the space of summable vector sequences over[0, n − 1]. For anm-dimensional vector

sequencewk ∈ l2[0, n − 1] and a weight matrixQk ∈ R
m×m, ‖wk‖2Qk

= wT
k Qkwk. diag{. . .} denotes a block

diagonal matrix. For an integera and a positive integerb, mod (a, b) represents the unique nonnegative remainder

from division of a by b.

II. PROBLEM FORMULATION

Consider a sensor network ofN nodes with topology represented by a digraphG = (V, E ,A ) having the set

of nodesV = {i | i = 1, 2, . . . , N} and the set of edgesE = {(i, j) | (i, j) ∈ V × V}. In the adjacency matrix

A = [aij] ∈ R
N×N , if (i, j) ∈ E and i 6= j, thenaij = 1; otherwise,aij = 0; aij = 1 means that nodej can
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provide information to nodei. Moreover,pi ,
∑N

j=1 aij andqi ,
∑N

j=1 aji are, respectively, the in-degree and the

out-degree of nodei.

Consider the following discrete-time stochastic system with randomly occurring norm-bounded uncertainties

defined onk ∈ H , {0, 1, . . . , n− 1}:

xk+1 = (Ak + βk∆Ak)xk + (Bk + βk∆Bk)wk, (1)

with N saturated sensor measurements modeled by

yi,k = σi(Ci,kxk) +Di,kϑi,k, i ∈ V, (2)

wherexk ∈ R
nx is the state,yi,k ∈ R

ny is the measurement of nodei, wk ∈ R
nw andϑi,k ∈ R

nϑ are the external

disturbances belonging tol2[0, n− 1], andAk, Bk, Ci,k andDi,k are known time-varying matrices with compatible

dimensions.

Assume that the time-varying parameter uncertainties∆Ak and∆Bk satisfy

[∆Ak ∆Bk] = MkFk[N1k N2k], (3)

whereMk, N1k andN2k are known time-varying matrices with appropriate dimensions, andFk is an unknown

time-varying matrix satisfying the constraint

FkF
T
k ≤ I, k ∈ H. (4)

The random variableβk is a Bernoulli distributed sequence taking values either0 or 1 with the following

probabilities:

Prob{βk = 0} = 1− β̄k, Prob{βk = 1} = β̄k, (5)

whereβ̄k is a known constant belonging to[0, 1].

The saturation functionσi(·) : Rny → R
ny is defined as

σi(z) =
[

σT
i1(z1) σT

i2(z2) · · · σT
iny

(zny
)
]T

, (6)

with σT
i (zi) = sign(zi)min{zi,max, |zi|}, wherezi is the ith element of the vectorz and zi,max is the saturation

level of zi.

Assuming that there exist diagonal matricesHi1 andHi2 such that0 ≤ Hi1 < I ≤ Hi2 < 2I, the saturation

function σi(Ci,kxk) in (2) can be decomposed into a linear part and a nonlinear part as

σi(Ci,kxk) = H̄iCi,kxk +Φi(Ci,kxk), (7)

whereΦi(Ci,kxk) is a nonlinear vector-valued function satisfying

ΦT
i (Ci,kxk)Φi(Ci,kxk) ≤ xTkC

T
i,kH

T
i HiCi,kxk (8)

with H̄i =
1
2(Hi1 +Hi2) andHi =

1
2(Hi2 −Hi1).

Considering the limited capacity of the communication channel, the RRP is adopted to schedule the data

transmission and make full utilization of the shared network resources. In the neighbor set of nodei, denoted

as Ni = {ji1, ji2, · · · , jipi
}, let the first transmission node beji1. Denote by~i,k = mod (k − 1, pi) + 1 the

subscript of the selected neighbor of nodei having access to the shared communication network. Thus,j~i,k
∈ Ni.
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In this paper, the following distributed filter is designed for nodei:

x̂i,k+1 =Akx̂i,k + Li,k(yi,k − H̄iCi,kx̂i,k) +Kij~i,k
,k(x̂j~i,k

,k − x̂i,k), (9)

wherex̂i,k and x̂j~i,k
,k are, respectively, the estimates ofxk by nodei and its neighboring nodej~i,k

∈ Ni. Here,

the filter gainsLi,k andKij~i,k
,k are to be determined later.

Assumption 1:If a node has no neighboring node, then it is uniformly observable. If a node has neighboring

nodes, then it is uniformly distributed observable under the RRP.

To further simplify the expressions, denoteKij~,k = Kij~i,k
,k and x̂j~i

,k = x̂j~i,k
,k. Let ei,k = xk − x̂i,k be the

filtering error of nodei. Then, combining (1), (2), (7) and (9), one has the followingfiltering error dynamics:

ei,k+1 =(Ak − Li,kH̄iCi,k −Kij~i
,k)ei,k − Li,k(Φi(Ci,kxk) +Di,kvi,k) +Bkwk

+Kij~i
,kej~i

,k + βk(∆Bkwk +∆Akxk).
(10)

Denotingηi,k = [xTk eTi,k]
T , ξi,k = [wT

k ϑT
i,k]

T , zi,k = [0 I]ηi,k , Eηi,k and β̃k = βk − β̄k, one has


















ηi,k+1 =(Ai,k + β̄k∆Ak)ηi,k +Kij~,kηj~i
,k + β̃k∆Akηi,k + Li,kΦ̄i(Ci,kηi,k)

+ (Bi,k + β̄k∆Bk)ξi,k + β̃k∆Bkξi,k,

zi,k =Eηi,k,

(11)

where

Ai,k =diag{Ak, Ak − Li,kH̄iCi,k −Kij~,k},
Ci,k =diag{Ci,k, 0}, Kij~,k = diag{0,Kij~ ,k},

Bi,k =

[

Bk 0

Bk −Li,kDi,k

]

, ∆Ak =

[

∆Ak 0

∆Ak 0

]

,

∆Bk =

[

∆Bk 0

∆Bk 0

]

, Li,k =

[

0 0

−Li,k 0

]

,

Φ̄i(Ci,kηi,k) =
[

ΦT
i (Ci,kxk) 0

]T

.

Also, (8) can be rewritten as

Φ̄T
i (Ci,kηi,k)Φ̄i(Ci,kηi,k) ≤ ηTi,kCT

i,kHT
i HiCi,kηi,k, (12)

whereHi = diag{Hi, 0}.

Before proceeding further, introduce the following performance index to characterize the disturbance attenuation

level of the filtering error dynamics (11) against external disturbances.

Definition 1: Let the disturbance attenuation levelγ > 0 and the weighting matricesUi, Ri,k, Qi,k andTi,k be

given. The filtering error system (11) is said to satisfy theH∞-consensus performance constraint over the finite

horizonH with the RRP, if the following inequality holds:

E

{ n−1
∑

k=0

N
∑

i=1

[

‖zj~i
,k − zi,k‖2Ri,k

+ ‖zi,k‖2Qi,k

]

}

≤ γ2
N
∑

i=1

(

‖ηi,0‖2Ui
+

n−1
∑

k=0

‖ξi,k‖2Ti,k

)

, (13)

whereUi = diag{U1i, U2i}, Ti,k = diag{T1i,k, T2i,k}, andU1i, U2i, Ri,k, Qi,k, T1i,k andT2i,k are all known positive

definite matrices.
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The main objective in this paper is to determine the filter gains Li,k and Kij~,k such that the filtering error

dynamics (11) satisfies the proposedH∞-consensus performance constraint over the finite horizon.

Remark 1:The consensus-based performance index defined in (13) distinguishes itself from those existing in the

literature through evaluating the effect from the RRP, which can be confirmed from the subscriptj~i
of the term

∑n−1
k=0

∑N
i=1 ‖zj~i

,k−zi,k‖2Ri,k
. Accordingly, in case that the RRP is not considered, the proposed performance index

is degenerated to the one in [34], which means that the performance measure here is more general. Furthermore,

from the engineering point of view, the proposed performance cost is essentially different from the existing ones for

the following four reasons: 1) it accounts for the dynamical change of neighboring sensors; 2) the introduction of

the weighted matricesQi,k andRi,k provides a desirable tradeoff between the consensus and thefiltering accuracy;

3) the performance cost enables one to only investigate the impacts on the filtering accuracy by settingQi,k = I and

Ri,k = 0 or the consensus withQi,k = 0 andRi,k = I; and 4) with the new cost function, the selected vector-type

storage functions and vector-type supply rate functions, to be discussed later, depend on a time-varying subset of

the neighbors of sensori.

III. M AIN RESULTS

In this section, several sufficient conditions are obtainedfor the filtering error dynamics (11) to satisfy the

H∞-consensus performance criterion (13).

For convenience, denote

Si(zi,k, zj~i
,k, ξi,k) , γ2‖ξi,k‖2Ti,k

− ‖zi,k‖2Qi,k
− ‖zj~i

,k − zi,k‖2Ri,k
. (14)

Definition 2: [16] The filtering error system (11) is said to be stochastically vector-dissipative over the finite hori-

zonH with respect to the vector of supply rate functionsS(ηk, ξk) = [S1(z1,k, zj~1
,k, ξ1,k), . . . , SN (zN,k, zj~N

,k, ξN,k)]
T ,

if there exists a vector of nonnegative definite storage functionsV(ηk) , [V1(η1,k), . . . , VN (ηN,k)]
T (with V(0) = 0)

and a sequence of nonsingular column substochastic dissipation matricesWk ∈ R
N×N such that the following vector

dissipation inequality is satisfied for allk ∈ H:

E{V(ηk+1)} ≤≤ WkE{V(ηk)}+ E{S(zk, ξk)}. (15)

Next, some local conditions are established for each node such that the filtering error dynamics (11) is stochas-

tically vector-dissipative over the finite horizonH. Define an interval functionIqi of the out-degreeqi as follows:

Iqi =

{

(

0, 1+qi
2qi

)

, if qi 6= 0;

(0, 1], if qi = 0.
(16)

Theorem 1:Let the disturbance attenuation levelγ > 0, the scalar sequenceαi,k ∈ Iqi, the matricesRi,k,

Qi,k, Ui, Ti,k, and the filter gain sequencesLi,k andKij,k be given. System (11) is stochastically vector-dissipative

over the finite horizonH with respect to the vector supply rateS(zk, ξk) and also satisfies theH∞-consensus

performance criterion (13), if there exist a sequence of positive scalarsλi,k and a vector of storage functionsV(ηk)

in the form Vi(ηi,k) = ηTi,kPi,kηi,k, where{Pi,k}k∈H∪{n} is a sequence of positive definite matrices with initial

conditionsPi,0 ≤ γ2Ui, such that the following conditions hold for allk ∈ H, i ∈ V:

Ξij~,k =













Ξ11
ij~,k

∗ ∗ ∗
Ξ21
ij~,k

Ξ22
ij~,k

∗ ∗
Ξ31
ij~,k

Ξ32
ij~,k

Ξ33
ij~,k

∗
Ξ41
ij~,k

Ξ42
ij~,k

Ξ43
ij~,k

Ξ44
ij~,k













≤ 0, (17)
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where

Ξ11
ij~,k

=(Ai,k + β̄k∆Ak)
TPi,k+1(Ai,k + β̄k∆Ak)− θi,kPi,k + ϕk∆AT

kPi,k+1∆Ak

+ ETRi,kE +ETQi,kE + λi,kCT
i,kHT

i HiCi,k,
Ξ21
ij~,k

=KT
ij~,k

Pi,k+1(Ai,k + β̄k∆Ak)− ETRi,kE,

Ξ22
ij~,k

=KT
ij~,k

Pi,k+1Kij~,k + ETRi,kE −
αj~i

,k

1 + qj~i

Pj~i
,k,

Ξ31
ij~,k

=LT
i,kPi,k+1(Ai,k + β̄k∆Ak),

Ξ32
ij~,k

=LT
i,kPi,k+1Kij~,k, Ξ33

ij~,k
= LT

i,kPi,k+1Li,k − λi,kI,

Ξ41
ij~,k

=(Bi,k + β̄k∆Bk)
TPi,k+1(Ai,k + β̄k∆Ak) + ϕk∆BT

k Pi,k+1∆Ak,

Ξ42
ij~,k

=(Bi,k + β̄k∆Bk)
TPi,k+1Kij~,k, Ξ43

ij~,k
= (Bi,k + β̄k∆Bk)

TPi,k+1Li,k,

Ξ44
ij~,k

=(Bi,k + β̄k∆Bk)
TPi,k+1(Bi,k + β̄k∆Bk)− γ2Ti,k + ϕk∆BT

k Pi,k+1∆Bk,

θi,k =
1 + qi(1− αi,k)

1 + qi
, ϕk = β̄k − β̄2

k .

Proof: Step 1) Proof of the stochastic vector-dissipativity over the finite horizonH.

First of all, calculate the storage function concerningi-th node along the trajectory of system (11) as follows:

E{Vi,k+1|ηi,k}
=ηTi,k+1Pi,k+1ηi,k+1

=ηTj~i
,kKT

ij~,k
Pi,k+1Kij~,kηj~i

,k + ϕkη
T
i,k∆AT

kPi,k+1∆Akηi,k

+ 2ϕkξ
T
i,k∆BT

k Pi,k+1∆Akηi,k + 2ηTj~i
,kKT

ij~,k
Pi,k+1Li,kΦ̄i(Ci,kηi,k)

+ Φ̄T
i (Ci,kηi,k)LT

i,kPi,k+1Li,kΦ̄i(Ci,kηi,k) + 2ηTi,k(Ai,k + β̄k∆Ak)
TPi,k+1Kij~,kηj~i

,k

+ 2ξTi,k(Bi,k + β̄k∆Bk)
TPi,k+1Kij~,kηj~i

,k + 2ξTi,k(Bi,k + β̄k∆Bk)
TPi,k+1Li,kΦ̄i(Ci,kηi,k)

+ 2ηTi,k(Ai,k + β̄k∆Ak)
TPi,k+1Li,kΦ̄i(Ci,kηi,k) + ηTi,k(Ai,k + β̄k∆Ak)

TPi,k+1(Ai,k + β̄k∆Ak)ηi,k

+ 2ξTi,k(Bi,k + β̄k∆Bk)
TPi,k+1(Ai,k + β̄k∆Ak)ηi,k + ξTi,k(Bi,k + β̄k∆Bk)

TPi,k+1(Bi,k + β̄k∆Bk)ξi,k

+ ξi,k
(

ϕk∆BT
k Pi,k+1∆Bk − γ2Ti,k

)

ξi,k + γ2ξTi,kTi,kξi,k
,ζTij~,kΩij~,kζij~,k + γ2ξTi,kTi,kξi,k, (18)

where

ζij~,k =
[

ηTi,k ηTj~i
,k Φ̄T

i (Ci,kηi,k) ξTi,k

]T

,

Ωij~,k =













Ω11
ij~,k

∗ ∗ ∗
Ω21
ij~,k

Ω22
ij~,k

∗ ∗
Ω31
ij~,k

Ω32
ij~,k

Ω33
ij~,k

∗
Ω41
ij~,k

Ω42
ij~,k

Ω43
ij~,k

Ω44
ij~,k













,

Ω11
ij~,k

=(Ai,k + β̄k∆Ak)
TPi,k+1(Ai,k + β̄k∆Ak) + ϕk∆AT

kPi,k+1∆Ak,

Ω21
ij~,k

=KT
ij~,k

Pi,k+1(Ai,k + β̄k∆Ak), Ω22
ij~,k

= KT
ij~,k

Pi,k+1Kij~,k,

Ω31
ij~,k

=LT
i,kPi,k+1(Ai,k + β̄k∆Ak), Ω32

ij~,k
= LT

i,kPi,k+1Kij~,k,

Ω41
ij~,k

=(Bi,k + β̄k∆Bk)
TPi,k+1(Ai,k + β̄k∆Ak) + ϕk∆BT

k Pi,k+1∆Ak,
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Ω42
ij~,k

=(Bi,k + β̄k∆Bk)
TPi,k+1Kij~,k, Ω33

ij~,k
= LT

i,kPi,k+1Li,k,

Ω43
ij~,k

=(Bi,k + β̄k∆Bk)
TPi,k+1Li,k,

Ω44
ij~,k

=(Bi,k + β̄k∆Bk)
TPi,k+1(Bi,k + β̄k∆Bk) + ϕk∆BT

k Pi,k+1∆Bk − γ2Ti,k.

Taking into account (12) and (17), one has

ζTij~,kΩij~,kζij~,k + ‖zi,k‖2Qi,k
+ ‖zj~i,k

− zi,k‖2Ri,k
−

αj~i
,k

1 + qj~i

ηTj~i
,kPj~i

,kηj~i
,k

− θi,kη
T
i,kPi,kηi,k − λi,k

(

Φ̄T
i (Ci,kηi,k)Φ̄i(Ci,kηi,k)− ηTi,kCT

i,kHT
i HiCi,kηi,k

)

=ζTij~,kΞij~,kζij~,k ≤ 0.

On the other hand, it follows from (17) that

E{Vi,k+1|ηi,k}
≤ζTij~,kΩij~,kζij~,k + γ2ξTi,kTi,kξi,k − λi,k

(

Φ̄T
i (Ci,kηi,k)Φ̄i(Ci,kηi,k)− ηTi,kCT

i,kHT
i HiCi,kηi,k

)

≤
αj~i

,k

1 + qj~i

ηTj~i
,kPj~i

,kηj~i
,k + θi,kη

T
i,kPi,kηi,k + Si(zi,k, zj~i

,k, ξi,k)

=

[

0, . . . , θi,k, . . . ,
αj~i

,k

1 + qj~i

, . . . , 0

]

V(ηk) + Si(zi,k, zj~i
,k, ξi,k).

Then, defining a new matrixWk with the i-th row being[0, . . . , θi,k, . . . ,
αj

~i
,k

1+qj
~i

, . . . , 0], it follows from [11] that

Wk is the desired dissipation matrix. Consequently,

E{Vi,k+1|ηi,k} ≤ [WkV(ηk)]i + Si(zi,k, zj~i
,k, ξi,k),

where[WkV(ηk)]i is the i-th element of vectorWkV(ηk).

By using properties of the conditional expectation, the following inequality can be obtained:

E{Vi,k+1} ≤ E{[WkV(ηk)]i}+ E{Si(zi,k, zj~i
,k, ξi,k)},

which indicates that

E{V(ηk+1)} ≤≤ WkE{V(ηk)}+ E{S(zk, ξk)}. (19)

Therefore, by Definition 2, the filtering error system (11) isstochastically vector-dissipative.

Step 2) Proof of the guaranteedH∞-consensus performance index.

Left-multiplying 1
T to both sides of (19) yields

1
T
E{V(ηk+1)} ≤ 1

T
E{S(zk, ξk)}+ 1

TWkE{V(ηk)}.

Denotev(ηk) , 1
T
E{V(ηk)}. FromSi(zi,k, zj~i

,k, ξi,k), it follows that

N
∑

i=1

E{‖zi,k‖2Qi,k
+ ‖zj~i

,k − zi,k‖2Ri,k
} ≤ −v(ηk+1) + v(ηk) + γ2

N
∑

i=1

‖ξi,k‖2Ti,k
,

which further implies that

n−1
∑

k=0

N
∑

i=1

E{‖zi,k‖2Qi,k
+ ‖zj~i

,k − zi,k‖2Ri,k
} ≤ −v(ηn) + v(η0) + γ2

n−1
∑

k=0

N
∑

i=1

‖ξi,k‖2Ti,k
.
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Therefore,

N
∑

i=1

n−1
∑

k=0

E{‖zi,k‖2Qi,k
+ ‖zj~i

,k − zi,k‖2Ri,k
} ≤

N
∑

i=1

(

ηTi,0Pi,0ηi,0 + γ2
n−1
∑

k=0

‖ξi,k‖2Ti,k

)

.

Taking the initial conditionPi,0 ≤ γ2Ui into consideration, theH∞-consensus performance constraint (13) is

satisfied, which completes the proof.

Remark 2: In the vector dissipation theory proposed in [16], the dissipation matrix has been used to formulate

the coupling relationship among the nodes in sensor network. In fact, the construction of the dissipation matrix

plays a critical role in achieving the scalable design of thedistributed filtering. The novelty of constructing the

dissipation matrix in this paper is clarified as follows. Note that, in a representative publication [34], the dissipation

matrix W has been constructed as a negative diagonally dominant matrix with the i-th row being
[

2α1ai1

1 + q1
− δ̂, · · · ,− 2qiαi

1 + qi
− δ̂, · · · , 2αNaiN

1 + qN
− δ̂

]

,

whereδ̂ guarantees thatW is negative diagonally dominant and1TW ≪ −ǫ1 (ǫ > 0). In this paper, a substochastic

matrix Wk is constructed, with thei-th row being
[

0, . . . ,
1 + qi(1− αi,k)

1 + qi
, . . . ,

αj~i
,k

1 + qj~i

, . . . , 0

]

.

It can be seen that the new structure reflects the distinctivescheduling of the RRP, i.e., every row of this matrix

has only two nonzero elements: one is the diagonal element1+qi(1−αi,k)
1+qi

, and the other is
αj

~i
,k

1+qj
~i

, wherej~i
is the

chosen neighboring node ofi according to the RRP. Moreover, it can be easily found that1TWk ≪ 1 andWk is

positive diagonally dominant, i.e.,

1 + qi(1− αi,k)

1 + qi
>

N
∑

j=1

aji

1 + qi
=

qi

1 + qi
≥

N
∑

j=1

Wji,k,

since0 < αi,k < 1+qi
2qi

, whereWji,k is the(j, i)-th element ofWk. From the above comparisons, one can conclude

that the dissipation matrices constructed in this paper areessentially different from the existing ones and are easier

to use.

In the following, the distributed filter gainsLi,k andKij,k are designed based on Theorem 1.

Theorem 2:Given scalarsαi,k ∈ Iqi and matricesU1i, U2i, Ri,k, Qi,k andTi,k, the filtering error system (11)

satisfies theH∞-consensus performance constraint (13) with the pre-specified disturbance attenuation levelγ > 0,

if there exist matricesEij~,k andFi,k, positive scalarsλi,k andµi,k, and sequences of positive definite matrices

{P 1
i,k}k∈H∪{n} and{P 2

i,k}k∈H∪{n} with initial conditionsP 1
i,0 ≤ γ2U1i andP 2

i,0 ≤ γ2U2i, such that the following

conditions hold for allk ∈ H, i ∈ V:
[

Υa
ij~,k

∗
Ῡb

ij~,k
Ῡc

ij~,k

]

< 0, (20)

where

Ῡb
ij~,k

=









Āi,k K̄ij~,k L̄i,k B̄i,k

0 0 0 0

0 0 0 0









,
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Υa
ij~,k

=













Υ11
ij~,k

∗ ∗ ∗
Υ21

ij~,k
Υ22

ij~,k
∗ ∗

0 0 −λi,kI ∗
0 0 0 Υ44

ij~,k













,

Ῡc
ij~,k

=









−Pi,k+1 ∗ ∗
0 −Pi,k+1 ∗

β̄kM̄T
k

√
ϕkM̄T

k −µi,k

2 I









,

Υ11
ij~,k

=ETQi,kE + ETRi,kE − θi,kPi,k + µi,kN T
1kN1k + λi,kCT

i,kHT
i HiCi,k,

Υ21
ij~,k

=− ETRi,kE, Υ22
ij~,k

= ETRi,kE −
αj~i

,k

1 + qj~i

Pj~i
,k,

Υ44
ij~,k

=− γ2Ti,k + µi,kN T
2kN2k,

Āi,k =diag{P 1
i,k+1Ak, P

2
i,k+1Ak − Fi,kH̄iCi,k − Eij~,k},

K̄ij~,k =diag{0, Eij~,k}, N1k = [N1k N1k],

N2k =[N2k N2k], Pi,k = diag{P 1
i,k, P

2
i,k},

B̄i,k =

[

P 1
i,k+1Bk 0

P 2
i,k+1Bk −Fi,kDi,k

]

, Mk =

[

Mk

Mk

]

,

L̄i,k =

[

0 0

−Fi,k 0

]

, M̄k =

[

P 1
i,k+1Mk

P 2
i,k+1Mk

]

. (21)

Moreover, the filter gainsLi,k andKij,k are given as follows:

Li,k = (P 2
i,k+1)

−1Fi,k, Kij~,k = (P 2
i,k+1)

−1Eij~,k.

Proof: First, according to (3), one has

[∆Ak ∆Bk] = MkFk[N1k N2k],

whereFk = diag{Fk, Fk}.

To cope with the uncertainties, (17) is rewritten as

Ξij~,k = Πij~,k + M̃kF̃kÑk + Ñ T
k F̃kM̃T

k , (22)

where

Πij~,k =

[

Πa
ij~,k

∗
Πb

ij~,k
Πc

ij~,k

]

,

Πa
ij~,k

=













Π11
ij~,k

∗ ∗ ∗
Π21

ij~,k
Π22

ij~,k
∗ ∗

0 0 −λi,kI ∗
0 0 0 −γ2Ti,k













,

Πb
ij~,k

=

[

Ai,k Kij~,k Li,k Bi,k

0 0 0 0

]

, Πc
ij~,k

=

[

−P−1
i,k+1 ∗
0 −P−1

i,k+1

]

,

Π11
ij~,k

=ETQi,kE + ETRi,kE − θi,kPi,k + λi,kCT
i,kHT

i HiCi,k,

Π21
ij~,k

=− ETRi,kE, Π22
ij~,k

= ETRi,kE −
αj~i

,k

1 + qj~i

Pj~i
,k,
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M̃k =

























0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗

β̄kMk 0 0 β̄kMk 0 ∗
√
ϕkMk 0 0

√
ϕkMk 0 0

























,

F̃k =diag{Fk, 0, 0,Fk , 0, 0}, Ñk = diag{N1k, 0, 0,N2k, 0, 0}.
SinceFkFT

k ≤ I, it is inferred from S-procedure that inequality (17) holdsif and only if there exists a positive

constantµi,k such that the following inequality holds:

Πij~,k + µ−1
i,kM̃kM̃T

k + µi,kÑ T
k Ñk < 0, (23)

which, by the Schur Complement Lemma, is equivalent to
[

Υa
ij~,k

∗
Υb

ij~,k
Υc

ij~,k

]

< 0, (24)

where

Υa
ij~,k

=













Υ11
ij~,k

∗ ∗ ∗
Υ21

ij~,k
Υ22

ij~,k
∗ ∗

0 0 −λi,kI ∗
0 0 0 Υ44

ij~,k













,

Υb
ij~,k

=









Ai,k Kij~,k Li,k Bi,k

0 0 0 0

0 0 0 0









, Υc
ij~,k

=









−P−1
i,k+1 ∗ ∗
0 −P−1

i,k+1 ∗
β̄kMT

k

√
ϕkMT

k −µi,k

2 I









.

Then, one arrives at (20) by performing congruent transformation diag{I, I, I, I,Pi,k+1,Pi,k+1, I} on (24). To this

end, according to Theorem 1, the filtering error system meetsthe requiredH∞-consensus performance criterion

and the proof is thus complete.

Remark 3:To show the design flexibility of the proposed scheme, Theorem 2 is now compared with the

corresponding results (without the RRP) in [11]. If the RRP is not implemented, it can be seen from Theorem 2

that only the second row and the second column of (20) includethe information from neighbors of nodei, i.e.,

Υ21
ij~,k

, Υ22
ij~,k

, and K̄ij~,k. That is, only the second row and the second column of (20) canbe locally adjusted

to adapt to the changes of the neighboring nodes. Furthermore, it is observed from Theorem 2 that a distinctive

feature of the proposed filter design algorithm is its flexible structure. Owing to the framework of the local design,

Theorem 2 implies that there is no globally unknown information. As such, the filtering scheme proposed here can

be executed distributedly by each node, thereby meriting the scalability of the proposed scheme.

Remark 4:Compared with the existing results, the distinctive features of the proposed algorithm include: 1) at

each time step, only one neighboring node propagates its estimate for consensus thanks to the implementation of

the RRP, and this can effectively avoid data collision and reduce communication burden; 2) a new performance

index is proposed to characterize the noise attenuation level of filtering errors against external disturbances; and 3)

the designed algorithm achieves the desired scalability and possesses high flexibility to the dynamical changes of

the network topology. This investigation represents the first of the few attempts to develop local design methods

for the distributedH∞-consensus filtering problem with RRP.
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IV. A N ILLUSTRATIVE EXAMPLE

In this section, a simulation example is presented to illustrate the effectiveness of the proposed design scheme.

Consider an SN with topology represented by a digraphG = (V, E ,A ) having the set of nodesV = {1, 2, 3, 4, 5},

and the set of edgesE = {(2, 1), (3, 2), (4, 3), (5, 4), (5, 1), (2, 4), (5, 3)}, as shown in Fig. 1. Obviously,p1 =

0, p2 = 2, p3 = p4 = 1, p5 = 3, and q1 = q3 = q4 = 2, q2 = 1, q5 = 0. Clearly, node 2 can receive information

from nodes 1 and 4 in turn; node 5 can receive information fromnodes 1, 3 and 4 in turn. With the RRP, for a

certain time stepk, if mod(k − 1, 2) = 0, then node 2 can receive information from node 1, otherwise from node

4; if mod(k − 1, 3) = 0, then node 5 can receive information from node 1, else if mod(k − 1, 3) = 1, then node 5

can receive information from node 3, otherwise from node 4.

Fig. 1: Topology of a sensor network.

As described in [34], the parameter matrices for the continuous-time system are given as

Ac =









−3.2 10 0

1 −1 1

0 −14.87 0









, Bc =









−0.1246

−0.4461

0.3350









.

The nominal part of the above system represents the well-known Chua electronic circuit. By setting the sampling

period∆ = 0.2, the parameter matrices of the corresponding discrete system are obtained as:

A =









0.6472 1.2598 0.1492

0.1260 0.7025 0.1737

−0.2219 −2.5834 0.7270









, B =









−0.0825

−0.0732

0.1845









.

To reflect the frequently occurred parameter fluctuations, we allow certain time-varying variations and modify

the parameter matrices as follows:

Ak =









0.6472 + 0.1 sin(k) 1.2598 0.1492

0.1260 0.7025 0.1737

−0.2219 −2.5834 0.7270









, Bk =









−0.0825 + 0.01 sin(k)

−0.0732

0.1845









.

The other parameters are set as follows:C1,k = [0.0032 − 0.0047 0.001], C2,k = [0.01 − 0.1 − 0.013],

C3,k = [0.02 −0.02 0.03], C4,k = [0.03 −0.03 0.03], C5,k = [0.1 0 0], Di,k = 0.025, ∆Ak = diag{0.04 sin(k), 0, 0},

∆Bk = [0.4 sin(k) 0 0]T , Fk = sin(k), Mk = [0.2 0]T , N1k = [0.2 0], N2k = 0.2, zi,max = 0.3, H11 = 0.95,H21 =

0.8,H31 = 0.75,H41 = 0.65,H51 = 0.7, H12 = 1.65,H22 = 1.5,H32 = 1.45,H42 = 1.35,H52 = 1.4, n = 51,
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β̄k ≡ 0.9, γ = 0.3, αi,k ≡ 0.9, Pi,0 = diag{I, 5I}, Ri,k ≡ 0.5I, Qi,k ≡ 0.5I, Ui = 100Pi,0, andTi,k ≡ diag{1, 1}.

The disturbances are set aswk = 0.1 cos(5k) and ξi,k = 0.1 cos(5k). By resorting to the YALMIP toolbox in

MATLAB, all the desired filter gains are recursively computed based on Theorem 2.

The simulation results are presented in Figs. 2-6, where Fig. 2 plots the norms of the disagreement functions,

Fig. 3 depicts the norms of the filtering errors, and Figs. 3-5show the elements ofxk and their estimations. Thej-th

element ofxk and its estimation from nodei are denoted asx(j)k and x̂(j)i,k (j = 1, 2, 3; i = 1, · · · , 5), respectively.

From the simulation results, it can be observed that the proposed distributed filtering algorithm is indeed effective.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

k

‖e
j
h̄
i
,k
−
e
i,
k
‖2
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Node 3
Node 4
Node 5

Fig. 2: The norms of disagreement functions.
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Fig. 3: The norms of filtering errors.

V. CONCLUSION

In this paper, the distributedH∞-consensus filtering problem has been investigated for a class of discrete time-

varying systems subject to randomly occurring norm-bounded uncertainties and sensor saturations with the RRP

over sensor networks. Typical norm-bounded uncertaintieshave been considered to enter into the network in a

random manner. Sensor saturations are involved, reflectingthe limited measurement capacity of nodes in SNs. In

order to reduce the usage of network resources and sensor energy, the RRP has been employed to allow every node

to receive information from only one neighboring node at each time step. Then, to establish the vector dissipativity
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Fig. 4: x(1)k and its estimations.
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Fig. 5: x(2)k and its estimations.

of the filtering error dynamics, the supply rate functions have been chosen according to the desired performance

index. To that end, the vector dissipation inequality has been transformed to the desiredH∞-consensus performance

index utilizing some properties of the dissipation matrix.Sufficient conditions have been established for the filtering

error dynamics to achieve pre-specified disturbance attenuation in theH∞ measure. Finally, a simulation example

has been given to illustrate the effectiveness of the proposed distributed filtering scheme. In the future, these main

results will be extended to more complicated systems with more comprehensive performance indices, similarly to

the studies in e.g. [1], [8], [18], [20], [32], [42], [45], [46].



FINAL REVISION 15

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15

20

k

x
k(3

)

 

 

x
(3)
k

Node 1
Node 2
Node 3
Node 4
Node 5

Fig. 6: x(3)k and its estimations.
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