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Scalable Consensus Filtering for Uncertain Systems
over Sensor Networks with Round-Robin Protocol

Fei Han, Zidong Wang, Guanrong Chen and Hongli Dong

Abstract

This paper is concerned with the scalable distributed-consensus filtering problem for a class of discrete
time-varying systems over sensor networks with the Round-Robin protocol. The challenge comes from the fact
that the time-varying parameters of the network are subject to randomly occurring norm-bounded uncertainties and
the measurement outputs of the sensor nodes are saturated due to the sector nonlinearities. For preventing data
collisions and saving energy, the Round-Robin protocol determines which neighboring node can access the shared
network for information transmission at each time step. A performance index is proposed to characterize the
disturbance attenuation level of the resulting filtering error dynamics. By stochastic analysis in combination with the
recursive matrix inequality approach, a distributed filtering algorithm is developed for each individual sensor node
to ensure the pre-specified estimation performance. Finally, an illustrative simulation example is shown to verify the
effectiveness and applicability of the theoretical results.
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. INTRODUCTION

The past few decades have seen a popularity surge with sensor networks (SNs) for their wide range of applications
in engineering practice including environmental monitoring, fire detection, target tracking and vehicular ad-hoc
networks [5], [24], [38], [40]. One of the key SN-related research topiaisgibutedfiltering that has proven to
possess advantages in simplicity, efficiency, robustness and flexibility over the conventional centralized algorithms
[10], [21], [27], [41]. Distributed filtering methodologies have attracted a great deal of attention and some widely
investigated schemes include distributed Kalman filtering [3], [9], [15], [19], [28], [44], distribiifgdfiltering
[4], [11], [14], [33], [34], [36], [37], [39], distributed fusion filtering [2], [30], [31] and distributed set-membership
filtering [22], [26].
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An SN is comprised of a large number of sensor nodes for sgneomputing and communicating. In response
to the large-scale characteristics of SNs, a desired filjemigorithm should be scalable; that is, the filter gains can
be computed separately on each individual node and alsoaigtise and flexible to the changes of the network
topology. Notably, the scalability issue has attractedvimg research interest in the past two years or so [7].

One of the main challenges associated with distributedifijeover sensor networks is the complicated couplings
among the large number of nodes. A common technique foritarlduch a challenge is to pack the couplings
into a single system of larger scale that could then be deilit ly certain existing methods. However, in such
an augmentedramework, the desired filter gains can only dentrally calculated in an off-line manner by using
information collected from the entire network. This type a#ntralized technique is impractical because of the
lack of the desirable scalability. In view of this, a novek&loflocal design was proposed and implemented in
[11]-[13], [33], where each node can only use informatioceieed from its neighboring nodes. Since such local
design method is helpful for designing scalable distriduitiers, it was quickly recognized and implemented in
different scenarios. For instance, a distributed robusimnesion problem was investigated in [33] for continuous-
time systems, and a similar problem was studied in [11] fatesps with stochastic nonlinearities and multiple
missing measurements. In this paper, with the help from dochl design methodology, the scalability of the
distributed filtering problem is studied for uncertain $tastic sensor networks.

As is well known, network protocols play a predominant ratecommunication systems for regulating data
transmission to avoid congestion and collision. It is ofnffigance to examine the impact of protocols on various
filtering issues especially in the context of sensor netwavith respect to their topologies. To date, much effort
has been devoted to the investigation of filtering and compiroblems subject to different types of protocols such
as Round-Robin protocol (RRP) [6], [23], [34], [35], [48],aighted Try-Once-Discard protocol (WTODP) [6],
and stochastic communication protocol (SCP) [17], [44]pamticular, the well-known Round-Robin protocol (also
named as time-division multiple access protocol or tokag protocol) has been extensively used in various filter-
ing/estimation problems. Under this protocol, each nodessigned equitable access to the shared communication
channel according to a fixed circular order allotted by tHeesler. More specifically, a moving horizon estimation
problem was discussed in [47] for a class of networked timleaydsystems under the RRP, which was adopted to
determine the transmission order of sensor nodes. A dis¢abrobust estimation algorithm was proposed in [34],
where the RRP was utilized to schedule data transmissionratveork. Very recently, a so-called full-information
state estimator was designed in [48] for a class of lineae-ttarying systems with the RRP, where an effective
full-information estimator design framework has been ps®d for time-varying systems. It is worth mentioning
that the RRP is perhaps the most frequently applied protimedts easy deployability in engineering practice.

This paper investigates the scalable distributed filtepngblem for SNs with RRP. The task faces with two
challenges. On one hand, saturation phenomenon has longd&@segnized to be inevitably popular in engineering
systems because of the limited measuring capability ofageasd actuator devices. Note that sensor saturation
could result in nonlinear characteristics which, in turmud lead to performance degradation or even instability.
Accordingly, considerable effort has been dedicated taaded filter design strategies in the occurrence of sensor
saturations; see, e.qg. [25], [26], [43], for some recentipabons. On the other hand, in practice, almost all system
contain parameters that are inherently uncertain and blariewing primarily to the evolution of the systems or
the changes of the environments. Such parameter variatiters occur in a random way, especially in networked
systems where the network load is typically unpredictabie randomly occurring parameter uncertainties (ROPUS)
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have recently attracted a great deal of attention; see[®B4§.[29]. It should be emphasized that the scalability,
as discussed previously, requilesal design on each sensor node, which would become substardielllenging
due to the existence of thgdobal ROPUSs. In the current literature, the distributed filterprgblem has not been
fully addressed for systems suffering from the ROPUs, whiseeRRP has not been used for routing.

Summarizing the above discussions, it can be concluded jhatal design methodology can help with increasing
the scalability of the distributed filter; 2) deployment életRRP could enhance the utilization efficiency given
limited network resource; and 3) sensor saturations andoraty occurring parameter uncertainties (ROPUSs) are
two major factors contributing to the system complexityt tizould be taken into careful consideration in the design.
As such, it is both theoretically important and practicalgnificant to study the distributed filtering problem for
uncertain time-varying systems with the RRP, and the cpaeding technical questions are identified as follows:
1) how to schedule the neighboring information accordintht®® RRP in a distributed filtering scheme? 2) how to
deal with theglobal norm-bounded uncertainties in tisealabledesign for distributed consensus filters? 3) how
to establish a novel performance index corresponding toRIR®? and 4) how to achieve and further verify the
scalability of the distributed filtering algorithm? Thispex addresses these questions by a thorough investigation.

In brief, this paper studies the scalable design problemstfilbuted filters, to be implemented on each node, for
systems with ROPUs and saturated measurements with RRndihecontributions of this paper are highlighted as
follows:1) the scalability issue is, for the first time, investigatedtia framework of local design for the distributed
filtering problem with RRP2) inspired by the existing results concerning the RRP and i$teilnlited /., ,-consensus
filtering, a novelH.,-consensus performance index is proposed that reflectsrtpaat of RRP and also accounts
for the disturbance attenuation levels of both filteringoesr and consensus errors,) different from [14], the
randomly occurring norm-bounded uncertainties are dettidly handled so as to keep the design locality intact
with the distributed filters.

The remaining of this paper is organized as follows. In ®ectl, the target plant and the distributed filtering
problem are formulated. In Section lll, the scalable disited filtering with RRP is designed using the vector
dissipation theory. An illustrative example is presentedSection IV to demonstrate the effectiveness and the
applicability of the proposed filtering algorithm. Finallyp Section V, conclusions are drawn and a few future
research topics are outlined.

Notation. For two column vectors, y € R™, z >> y (respectivelyx << y) means that every element ofis
greater than or equal to (respectively, less than or eqlaht corresponding element gf 1 denotes a column
vector with every element being A nonnegative square matri¥’ is column substochastic f7W << 17,
l2]0,n — 1] represents the space of summable vector sequences/®@ver- 1]. For anm-dimensional vector
sequenceuy € 1[0,n — 1] and a weight matrixQ, € R™™, w3y, = wi Qrwy. diag{...} denotes a block
diagonal matrix. For an integerand a positive integdr, mod (a,b) represents the unique nonnegative remainder
from division of a by b.

[I. PROBLEM FORMULATION
Consider a sensor network &f nodes with topology represented by a digraph- (V, &, <) having the set
of nodesV = {i | i = 1,2,...,N} and the set of edgeS = {(7,7) | (4,7) € V x V}. In the adjacency matrix
o = [a;j] € RVN if (i,5) € € andi # j, thena;; = 1; otherwise,a;; = 0; a;; = 1 means that nodg can
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ey L

provide information to nodé. Moreover,p; = Zj.vzl a;; andg; = Zj.vzl aj; are, respectively, the in-degree and the
out-degree of node.

Consider the following discrete-time stochastic systerthwandomly occurring norm-bounded uncertainties
defined onk € H £ {0,1,...,n —1}:

Tp1 = (A + BeAAg)zk + (B + B ABg)wy, 1)
with NV saturated sensor measurements modeled by
Yik = 0i(Ciprr) + DipVi, 1€V, 2

wherex;, € R" is the statey; , € R" is the measurement of nodew;, € R™» andv;; € R" are the external
disturbances belonging 18(0, n — 1], and A, By, C; ;. and D; ;, are known time-varying matrices with compatible
dimensions.

Assume that the time-varying parameter uncertainfie, and A B;, satisfy

[AAy ABy] = My Fy[N1x, Nagl, ©)

where M, Ny, and Ny, are known time-varying matrices with appropriate dimensjcandF}, is an unknown
time-varying matrix satisfying the constraint

FFI <I keH. (4)

The random variabled;, is a Bernoulli distributed sequence taking values eithesr 1 with the following
probabilities:

Prob{; = 0} =1— B, Prob{, =1} = s, )

where 3, is a known constant belonging {0, 1].

The saturation functiow;(-) : R™ — R™ is defined as
T

0i(2) = | ohi(er) oB(z) o of (o) | ()
with UZ-T(zi) = SigN(z;) min{z; max, |2i|}, Wherez; is theith element of the vector and z; ,,.x is the saturation
level of z;.
Assuming that there exist diagonal matricHs, and H;» such that0 < H;; < I < H;y < 21, the saturation
function o;(C; xz) in (2) can be decomposed into a linear part and a nonlinearagar

0i(Cikzr) = HiC pxp, + ®;(Cy gy, (7)
where ®;(C; ;1) is a nonlinear vector-valued function satisfying
7 (C; p21)®i(Cy pay) < wf CF HI HiC g (8)

with H; = 1(Hyy + Hip) and H; = 3(His — Hyy).

Considering the limited capacity of the communication cteinthe RRP is adopted to schedule the data
transmission and make full utilization of the shared nekwvasources. In the neighbor set of nogdedenoted
asN; = {ji1,Ji2, -, Jip: }, let the first transmission node bg. Denote byh;, = mod (k — 1,p;) + 1 the
subscript of the selected neighbor of nadeaving access to the shared communication network. TRus.c N;.
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In this paper, the following distributed filter is designext hodei:

Zikr1 =ApZik + Lig(yir — HiCixZi ) + Kij, k&g, ke — Tik) )
wherez; , andz;,  are, respectively, the estimateszf by node: and its neighboring nodg;, , € N;. Here,
the filter gainsL; ;, and Kij, .k areto be determined later.

Assumption 1:If a node has no neighboring node, then it is uniformly obakle. If a node has neighboring
nodes, then it is uniformly distributed observable under RRP.
To further simplify the expressions, dendi;, ;. = Kij,, ok andsicj,_%,,C = Tj, k- Letejr =xp — Ty be the
filtering error of nodei. Then, combining (1), (2), (7) and (9), one has the followiitigring error dynamics:
eikr1 =(Ax — Li e HiCi — Kij, 1)eir — Lig(®i(Cipar) + Digvik) + Brwy

(10)
+ Kijni,kejnﬁk + Bk(ABkwk + AAkwk).

Denotingn; i = [z} el ", &k = [w] 91,7, 2k = [0 In; g 2 Eng s, and By = By — By, one has

i1 =(Aik + BeAAR)Dk + Kijy ki ke + BrAAR; gk + Lo x®i(Cigig)
+ (Bik + BrABy)&ik + BrABiEi i, (11)
zik =Em; ks
where
A; e =diag{ Ay, Ax — L; 1 HiCi jp — Kij, 1}
Cir =diag{C;x,0}, Kjj, r = diag{0, K;j, i},
By, 0

Bir =
By —L; D

)

) AAk:

T
@, (Cikmik) = [ L (C; pr) 0 } )

Also, (8) can be rewritten as
ST (Cixnin)®i(Cignig) < nfkcfk%f%ci,km,k, (12)

whereH; = diag{ H;,0}.

Before proceeding further, introduce the following penfiance index to characterize the disturbance attenuation
level of the filtering error dynamics (11) against externgtidbances.

Definition 1: Let the disturbance attenuation levet> 0 and the weighting matrices;, R; ., Q;, and7;; be
given. The filtering error system (11) is said to satisfy #tig,-consensus performance constraint over the finite
horizonH with the RRP, if the following inequality holds:

N

n—1 N
B{ Y3 (I = sl + Daialfy ] <272 (Mo
=1

k=0 1=1

n—1
&+ Z 1€,k 27k>, (13)
k=0

whereld; = diag{Ui;, Uz}, Tip, = diag{ T4, T2 }, andUy;, Usi, R; iy Qi gy T1i i @andTy; g, are all known positive
definite matrices.
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The main objective in this paper is to determine the filtemgdi; ;, and K;;, , such that the filtering error
dynamics (11) satisfies the proposHd,-consensus performance constraint over the finite horizon.

Remark 1: The consensus-based performance index defined in (13 glisthes itself from those existing in the
literature through evaluating the effect from the RRP, whian be confirmed from the subscrifpt of the term
Zz;é iNzl szm,k_zi,kH%%i,k' Accordingly, in case that the RRP is not considered, thegsed performance index
is degenerated to the one in [34], which means that the padaoce measure here is more general. Furthermore,
from the engineering point of view, the proposed perforneacmst is essentially different from the existing ones for
the following four reasons: 1) it accounts for the dynamical change of neighp@ensors; 2) the introduction of
the weighted matrice®; , and R; , provides a desirable tradeoff between the consensus arfit¢hieg accuracy;

3) the performance cost enables one to only investigatertbadts on the filtering accuracy by setti@g;, = I and

R; , = 0 or the consensus with; , = 0 and R; ,, = I; and 4) with the new cost function, the selected vector-type
storage functions and vector-type supply rate functiomde discussed later, depend on a time-varying subset of
the neighbors of senser

I11. M AIN RESULTS

In this section, several sufficient conditions are obtaif@dthe filtering error dynamics (11) to satisfy the
H.,-consensus performance criterion (13).
For convenience, denote

Si(zi,hzjni,hgi,k) £ ’Yz”fzkHsz - ”sz”QQk - ”Zjni,k - szH%zk (14)
Definition 2: [16] The filtering error system (11) is said to be stocha#ificeector-dissipative over the finite hori-
zonH with respect to the vector of supply rate functi® (s, &) = [S1(21.%5 25, b E1,k), - - - SN (2N k5 Zjp ks 5N,k)]T,
if there exists a vector of nonnegative definite storagetfans V() = [Vi(nix), - .-, Vo (nv k)] T (with V(0) = 0)
and a sequence of nonsingular column substochastic dissipaatricesdV;, € RYV*Y such that the following vector
dissipation inequality is satisfied for alle H:

E{V(ne+1)} << WeE{V ()} + E{S (2, &) }- (15)

Next, some local conditions are established for each node tat the filtering error dynamics (11) is stochas-
tically vector-dissipative over the finite horizad. Define an interval function?,, of the out-degreg; as follows:

o= { O &, waro (16)
(0,1], if ¢ =0.

Theorem 1:Let the disturbance attenuation level> 0, the scalar sequence; , € .7, the matricesR; ,
Qi Ui, Ti i, and the filter gain sequencés;, and K;; ;. be given. System (11) is stochastically vector-dissigativ
over the finite horizor{ with respect to the vector supply ra8sz;,&;) and also satisfies thél,,-consensus
performance criterion (13), if there exist a sequence oitpesscalars); , and a vector of storage functioNs(r;,)
in the form V;(n; 1) = nngi,kni,k, where {Pi,k}ke;{u{n} is a sequence of positive definite matrices with initial
conditionsP; o < v%U;, such that the following conditions hold for alle H,i € V:

=11

Eijnk * * *
=21 i =22 i * *
=.. = | Tunk Tijn, <0 17
L = = . | (17
“ijn,k Tignk Tijnk
—41 =42 —43 =44

“ijn,k  Tign.k Tignk Tijnk
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where
Eleln,k =(Aig + BrAA) TPy s 1 (Ai g + BeAAR) — 0 1 Pig + o AAL P 1 AAR
+ ETR; yE + ETQ; kE + N jyCL HI HiCi i,
=21 ZIC;‘Q-FL W Piks1(Aik + BrAAL) — ETR; 4 E,

iJn,k
(67T
—22 Jhis
=ijn.k ICZ]FL kPZ k+1ICZ]h kTt E RZ kE B 1+ qi Ing ko
Ih;

2k =LL Pk (Aik + BuAA),

2 e =LhPiriiKijnrs  E0 p =L PigiLin — ikl

Ei x =Bik + BrABe) Piks1(Aik + BrAAL) + 0k ABL Py 1 A A,
'_‘;4]2)5 r =Bik + BeABR) Pigi1Kijy ko fj’h v = (Big + B AB) Pi g1 Li g,

)P
Eit x =Bik + BrABL) Piks1(Bik + BeAB) — V2 Ti e + o ABL Py i1 ABy,
1+ QZ( —Qy k)
1+¢
Proof: Step 1) Proof of the stochastic vector-dissipativity over finite horizon?.

0; ) = ., ok =B — B

First of all, calculate the storage function concernirth node along the trajectory of system (11) as follows:

E{Vixs1[nix}
=07 ji1 Pisk+ 17 1
:7737';1,,klcg;‘mkpi,k-l—llcijh,knjhi,k + O R AAL P k1 AARD; &
+ 204 L ABLP; e AAgn; s + 27737';Li,klcg;‘ﬁ,klpi,k+1£i,k(i)i(Ci,kni,k)
+ O (Ciknie) L7k Pisk 41 Lige®i(Ci i) + 200 1 (A + BeDAR) TPy k1 Kijp ki,
+ 261 (Bik + BeABR) Pises1 Kig i, ke + 260 (Bige + BrABe) Py i1 L35 ®4 (Ci e )
+20] L (Aik + BrAAR) P g1 L@ (Coemige) + 0 g (A + BeAAR) P (Aik + BrAAR)i g
+ 260 (B g+ BrABR) Pigir (Aik + BAAR) Mk + &L (Bi + BrAB) T Pyga (B + BrABy)Ei
+ & (PR ABL Py o1 AB — VT i) i + V2 E L Tinie
200k QjnkCiinke + YV E LT ki (18)
where

T

— T T B T
Cijh,k - [ 772'7k njhi,k q)z (Cz,knz,k) g@k )
11

ignk ¥ ¥
21 22
Qijh,k Ql]h, * *

Quj i =
Jnk 31 32 33 ’
ijn.k QZJh k Qljh,k *
a1 42 43 44
ik Sk Yk ik

Qi) =(Aig + BeDAR) Pijer1 (Aig + BrAAL) + @ AAL P 1 A Ay,
Q7w =K5, 1 Pirri(Aik + Bl AL, QF =KL 1 PikeiKijn ks
szh k ﬁz’,kpi,kH(Ai,k + BrAA), Q?fn,k = ‘Ci,kpi,k—l—llcijn,ka

QY & =Big + BrABR) Py g1 (Aig + BudAL) + @ ABLP; 1 A Ay,
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V7 ke =Bik + BrABY) Pig1Kiju ks 5, 1 = LkPiktaLig,

QP 1 =Bik + BrABR) Py k1 Li ks

Ok =Bk + BuABR) P ki1 (Bi g + BrABE) + or ABL Py 1 ABy — 7T g
Taking into account (12) and (17), one has

Q. k
L+ gjy,

- ei,kngkpi,kni,k — Nk (@ (Cigemi ) @i (Cipmige) — U;FkC;FkH;‘FHzCzkmk)
= kZin kg ke < 0.
On the other hand, it follows from (17) that

T T
itk ijnkCinke + 1 20kllD0 o + 1230, 0 = 20kl — Wi,k Ping kMin,

E{Viks11mik}
Sﬁgh,injkag‘h,k + 7253;k7;,k£i,k - Ai,k (i)zr(cz‘,k%k)i)i(Ci,km‘,k) - U?kC?kH?erczkmk)
Qg K
1+ Qjp,

T T
Wi ok Ping ki ke + Ok Pikige + Si(Zider Zjn, o> Eiske)

Qg k
1+ djp,

- 07 cee 70i,k7 ey PR 70 V(T]k) + Si(zi,lm Zjhi ks gl,k:)

Xip, b
R 1+qjhi e

Then, defining a new matrix/’;, with the i-th row being0,...,6; , ... ,0], it follows from [11] that

Wy is the desired dissipation matrix. Consequently,

E{Viks1mix} < Wi V(ne)li + Si(Zi ke, 2j, k> Eik)s

where [V, V (n)]; is thei-th element of vectoi?, V (ny).
By using properties of the conditional expectation, thdofeing inequality can be obtained:

E{Vigs1} S E{WiV ()i} + E{Si(zik; 2jn, k> &ik) }
which indicates that
E{V(ne1)} << WRE{V ()} + E{S(2, &)} (19)

Therefore, by Definition 2, the filtering error system (11)stechastically vector-dissipative.
Step 2) Proof of the guaranteédl,.-consensus performance index.

Left-multiplying 17 to both sides of (19) yields
TTE{V (r41)} < 1TE{S (21, &)} + 1T WRE{V () }.

Denotev(ny,) = 1TE{V (1)}. From Si(zi x, 2, &, &ix), it follows that

N N
Y E{llzikld,, + Nz ke = ziklR, } < —olmen) +olm) +92 ) €kl
i=1 i=1

which further implies that
n—1 N n—1 N

YD E{lznld,, + 12k — zinllE, < —v0m) +00m0) +47 Y D €kl -

k=0 i=1 k=0 i=1
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Therefore,

N n—1 N n—1
S Bzl + zin, bk — zikllR, <D <77;{07)i,077i70 +92) H&,kll%k)

i=1 k=0 i=1 k=0

Taking the initial conditionP; o < +2U4; into consideration, the{.,-consensus performance constraint (13) is
satisfied, which completes the proof. |

Remark 2:In the vector dissipation theory proposed in [16], the gia8on matrix has been used to formulate
the coupling relationship among the nodes in sensor netwarkact, the construction of the dissipation matrix
plays a critical role in achieving the scalable design of disributed filtering. The novelty of constructing the
dissipation matrix in this paper is clarified as follows. Bl¢hat, in a representative publication [34], the dissgati
matrix W has been constructed as a negative diagonally dominanixmath the i-th row being

[2041%1 26y b 2ana;N _5}
1 + ql ) 1 + qZ ) ) 1 + qN )
whered guarantees thal’ is negative diagonally dominant addW < —el (e > 0). In this paper, a substochastic
matrix W, is constructed, with thé-th row being

[0 14 qi(1 — o) X,k 0]

ey o T Y

It can be seen that the new structure reflects the distinstieduling of the RRP, i.e., every row of this matrix
has only two nonzero elements: one is the diagonal elelﬁéﬂé&%”) and the other '51— wherejy, is the

chosen neighboring node oéfaccording to the RRP. Moreover, it can be easily found anaaVk < land Wy is
positive diagonally dominant, i.e.,

N
1+qi(1—aik) aji
: > - Wk7
1+g ;qu 1+qz ; "

sincel < a; j, < 1+q , WhereWj; . is the(j,7)-th element ofiV,.. From the above comparisons, one can conclude
that the d|SS|pat|on matrices constructed in this papeessentially different from the existing ones and are easier
to use.

In the following, the distributed filter gaink; ;, and K;; ;. are designed based on Theorem 1.

Theorem 2:Given scalarsy; ,, € .%,, and matriced/y;, Us;, R;j, Qi and 7, the filtering error system (11)
satisfies theH ,-consensus performance constraint (13) with the pre-Bpédisturbance attenuation level> 0,
if there exist matriced?;;, , and F; , positive scalars\; ;, and y; 5, and sequences of positive definite matrices
{P k}keHU{n} and{P, k}keHU{n} with initial cond|t|onsPZl0 < ~%Uy; and Pfo < +2Us;, such that the following
conditions hold for allk € H,i € V:

Ta
nk ]<o, (20)
Tl]n, Tijmk

where
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Z]n,k >k k k
T = Tfjlmk Tffhk * * ,
’ 0 0 =ikl *
. 0 0 0 Tf;lm
—Fik+1 * *
ngh,k = 0 —Pik+1 * ;
AL Ml e

i

=
ol

|

D =E"QixE+ E"RixE — 0, 1Py i + 11k NTuNwk + NisClH! HiCie,
12 =—ETR; E, Y%

Jh,

T Jh;>
ijnk — =F R%kE - 1+ 4 ,Pjhmk’
h

T;l;lh,k = — v ik + ik NGNog,
A =diag{ P} | Ay, Py Ak — FieHiCi k. — Eij, 1}
Kijux =diag(0, Eij, 1}, Nk = [Nix Nixl,

Nog =[Nog Nag], Py = diag{ Py, P2},

1,k — ) - )
Pl 1B —FixDik Mj,
1
Zz‘ L= 0 0 -/\;lk _ F; k+1Mk
’ —Fir 0 Pz k+1Mk

Moreover, the filter gaing; ;, and K;; ;. are given as follows:
Lig = (Phyr) " Foks Kijow = (Phi)  Eiju ke
Proof: First, according to (3), one has
[AA ABg] = My Fi N1 Nagl,

where F;, = diag{ F}, F} }.
To cope with the uncertainties, (17) is rewritten as

Sijnk = i, 1+ ./\;(kﬁk./\N/k + ./\N/';?./fk./\;(T,

where
i a
I L
iJr,k — Hb IIe )
L Lign .k ijn,k
Hiljlhk * * ¥
21 22
mo = | Wank Hgie ¥
iJr,k ’
0 0 —Aixl *
2
0 0 0 v Tik
- —1
o Ai Kijuk Lir Bik ¢ = [ _Pi,k—l-l *
ijn.k T ’ Wk ! 7
|0 0 0 0 0 =Pt

0 . =ETQi1E + E"R; kB — 0,k Pik + Ni kCoi My HiCie,

o
= ETR B — 2k p

2! 0k
in,k T ) 1+qjhi Jni ko

= R;  E, 1122

iJr,k

10

(21)

(22)



FINAL REVISION 11

0 * % * * %

0 0 = * * %

~ 0 0 0 * * %
Mk,’_ )

0 0 0 0 * %

M 0 0 BMi 0 x
i \/@kMk 0 0 erMgr 0 0O |
Fi, =diag{ ,,0,0, Fj,, 0,0}, N, = diag{N1,0,0, Naz,0,0}.

Sincefkfg < I, it is inferred from S-procedure that inequality (17) hoifland only if there exists a positive

constanty; ;, such that the following inequality holds:

Wijy ke + pi g MM + pi o NiF N3 <0, (23)
which, by the Schur Complement Lemma, is equivalent to
To *
Zyn,k ) ] <0, (24)
Tijh,k Tijmk
where
iljln,k * * *
T P = leiln,k lejzmk * * ’
v 0 0 —Nixl  x
0 0 0 T;‘;‘mk
Air Kijuk Lix Big —P;,CIH * *
b _
Tijue=1] 0 0 0 0 v Yok = 0 _Pz',k1+1 *
0 0 0 0 BeML oML T

Then, one arrives at_(20) by performing congruent transétion diad !, I, I, I, P; k+1, Pik+1,1} on (24). To this
end, according to Theorem 1, the filtering error system meetsequiredH.-consensus performance criterion
and the proof is thus complete. |
Remark 3:To show the design flexibility of the proposed scheme, Theo& is now compared with the
corresponding results (without the RRP) in [11]. If the RRPot implemented, it can be seen from Theorem 2
that only the second row and the second column of (20) inctbdeinformation from neighbors of node i.e.,

21 22
Yoink Lo

and K;;, . That is, only the second row and the second column of (20)beatocally adjusted

to adapt to the changes of the neighboring nodes. Furthernitois observed from Theorem 2 that a distinctive

feature of the proposed filter design algorithm is its flexibiructure. Owing to the framework of the local design,

Theorem 2 implies that there is no globally unknown inforimrat As such, the filtering scheme proposed here can
be executed distributedly by each node, thereby meritiegsttalability of the proposed scheme.

Remark 4: Compared with the existing results, the distinctive feeguof the proposed algorithm include: 1) at
each time step, only one neighboring node propagates itaastfor consensus thanks to the implementation of
the RRP, and this can effectively avoid data collision andlioe communication burden; 2) a new performance
index is proposed to characterize the noise attenuatiai @hfiltering errors against external disturbances; and 3)
the designed algorithm achieves the desired scalabilitypossesses high flexibility to the dynamical changes of
the network topology. This investigation represents th&t fif the few attempts to develop local design methods

for the distributedH .-consensus filtering problem with RRP.
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IV. AN ILLUSTRATIVE EXAMPLE

In this section, a simulation example is presented to ilaistthe effectiveness of the proposed design scheme.
Consider an SN with topology represented by a digréph (V, £, <) having the set of nodas = {1, 2, 3,4, 5},
and the set of edges = {(2,1),(3,2),(4,3),(5,4), (5,1),(2,4),(5,3)}, as shown in Fig. 1. Obviously); =
0,p20 = 2,p3 =ps = 1,ps =3, andq; = q3 = ¢4 = 2,q2 = 1,q5 = 0. Clearly, node 2 can receive information
from nodes 1 and 4 in turn; node 5 can receive information friodes 1, 3 and 4 in turn. With the RRP, for a
certain time stegk, if mod(k — 1,2) = 0, then node 2 can receive information from node 1, otherwism fnode
4; if mod(k — 1,3) = 0, then node 5 can receive information from node 1, else if fhedl,3) = 1, then node 5
can receive information from node 3, otherwise from node 4.

N

>

>

W — N
A — O

Fig. 1: Topology of a sensor network.

As described in [34], the parameter matrices for the cootisttime system are given as

—-3.2 10 0 —0.1246
A= 1 -1 1], Be=| —0.4461
0 —1487 0 0.3350

The nominal part of the above system represents the wellskr©hua electronic circuit. By setting the sampling
period A = 0.2, the parameter matrices of the corresponding discretersyate obtained as:

0.6472 1.2598  0.1492 —0.0825
A= 01260 0.7025 0.1737 |, B= | —0.0732
—0.2219 —2.5834 0.7270 0.1845

To reflect the frequently occurred parameter fluctuatiores,alow certain time-varying variations and modify
the parameter matrices as follows:

0.6472 + 0.1sin(k) 1.2598  0.1492 —0.0825 + 0.01 sin(k)
A = 0.1260 0.7025 0.1737 |, Bp= —0.0732
—0.2219 —2.5834 0.7270 0.1845

The other parameters are set as follows;;, = [0.0032 — 0.0047 0.001], Cy = [0.01 — 0.1 — 0.013],
O3 = [0.02 —0.020.03], Cy , = [0.03 —0.03 0.03], C5 . = [0.1 0 0], D; . = 0.025, A Ay, = diag{0.04sin(k), 0,0},
ABy, = [0.4sin(k) 0 0], F, = sin(k), My, = [0.2 0], Ny = [0.2 0], Noj, = 0.2, 2 max = 0.3, Hy1 = 0.95, Hyy =
0.8, Hs; = 0.75, Hy1 = 0.65, Hy1 = 0.7, Hio = 1.65, Hyy = 1.5, H3y = 1.45, Hyo = 1.35, Hso = 1.4, n = 51,
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Br=0.9,v=03, a; =09, Pio =diag{l,5I}, R, = 0.5, Q; = 0.5, U; = 100P; o, and T; , = diag{1, 1}.
The disturbances are set ag = 0.1cos(5k) and&; ;, = 0.1cos(5k). By resorting to the YALMIP toolbox in
MATLAB, all the desired filter gains are recursively compiteased on Theorem 2.

The simulation results are presented in Figs. 2-6, where Figlots the norms of the disagreement functions,
Fig. 3 depicts the norms of the filtering errors, and Figs.shéw the elements af;, and their estimations. Thgth
element ofz; and its estimation from nodeare denoted aslgj) and :cgj,g j=1,2,3;i=1,---,5), respectively.
From the simulation results, it can be observed that theqmeg distributed filtering algorithm is indeed effective.

T
—+—Nod
—&— No

——Nod

ocoo®
(SaFERVN ]
T

A S’ ! Wé%&,én&AwM TR
10 15 20 25 30 3!

0 5 5 40 5 50
k

Fig. 2: The norms of disagreement functions.

—
—_—
—4— Nod
——

oo 0@
OO
I T

lleil®

&

IA M\,/‘Q%"?%%%m AN e b s 1 DA b
k

Fig. 3: The norms of filtering errors.

5 20 25 '30 35 40 45 50

V. CONCLUSION

In this paper, the distributeé ..-consensus filtering problem has been investigated for ss dadiscrete time-
varying systems subject to randomly occurring norm-bodnalecertainties and sensor saturations with the RRP
over sensor networks. Typical norm-bounded uncertairiieage been considered to enter into the network in a
random manner. Sensor saturations are involved, reflettimdimited measurement capacity of nodes in SNs. In
order to reduce the usage of network resources and senggyetiee RRP has been employed to allow every node
to receive information from only one neighboring node atretime step. Then, to establish the vector dissipativity
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v; ““‘
b N ,ﬁ\( i
6} \\ -
8l .
-10 1 1 1 1 1 1 1 1 1
0 5 0 15 2 2 30 3 4 45 50
k
. 1 . . .
Fig. 4: w,(f) and its estimations.
5 T T
—*—mf )
4t —+—Node 1
—2— Node 2
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3r —#—Node 4 |
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2b “,n\ ; / \ [
2 [ IS {
* | ) |
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& v 'Q‘-y;“[ X / Voo T
- : o/ b | R P
- 7
-2 L A “ 1
“o 5 10 15 20 25 30 3 40 45 50
k

Fig. 5: :cff) and its estimations.

of the filtering error dynamics, the supply rate functionsehéeen chosen according to the desired performance
index. To that end, the vector dissipation inequality haantieansformed to the desiréfl,,-consensus performance
index utilizing some properties of the dissipation matBxfficient conditions have been established for the filgerin
error dynamics to achieve pre-specified disturbance at@rmin the H,, measure. Finally, a simulation example
has been given to illustrate the effectiveness of the pregakstributed filtering scheme. In the future, these main
results will be extended to more complicated systems withensomprehensive performance indices, similarly to
the studies in e.g. [1], [8], [18], [20], [32], [42], [45], &}
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