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Abstract: The hydrothermal performance of multiple semi-twisted tape inserts inside a heat ex-
changer pipe is numerically examined in three-dimensions. This study aims to find the optimum
case for having the highest heat transfer enhancement with the lowest friction factor using nanofluid
(Al2O3/water). A performance evaluation criterion (PEC) is defined to characterize the performance
based on both friction factor and heat transfer. It was found that increasing the number of semi-
twisted tapes increases the number of swirl flow streams and leads to an enhancement in the local
Nusselt number as well as the friction factor. The average Nusselt number increases from 15.13 to
28.42 and the average friction factor enhances from 0.022 to 0.052 by increasing the number of the
semi-twisted tapes from 0 to 4 for the Reynolds number of 1000 for the base fluid. By using four
semi-twisted tapes, the average Nusselt number increases from 12.5 to 28.5, while the friction factor
reduces from 0.155 to 0.052 when the Reynolds number increases from 250 to 1000 for the base fluid.
For the Reynolds number of 1000, the increase in nanofluid concentration from 0 to 3% improves the
average Nusselt number and friction factor by 6.41% and 2.29%, respectively. The highest PEC is
equal to 1.66 and belongs to the Reynolds number of 750 using four semi-twisted tape inserts with 3%
nanoparticles. This work offers instructions to model an advanced design of twisted tape integrated
with tubes using multiple semi-twisted tapes, which helps to provide a higher amount of energy
demand for solar applications.

Keywords: twisted tape inserts; nanofluid; performance evaluation criterion; heat exchanger pipe;
Nusselt number; friction factor

1. Introduction

The increasing energy demand will require improving the energy efficiency of heat
transfer applications [1,2]. Due to high energy demand, renewable energies, especially
solar energy, have been widely employed in recent decades [3,4]. Collectors are one of
the solar energy technologies that have been widely employed to convert solar energy
into useful thermal energy [5–7]. In the collector, the solar radiation is reelected to the
absorber tube and provides an almost uniform heat flux around the tube’s wall [8–10].
There are several techniques in the literature working on heat transfer enhancement into
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the heat transfer fluid (HTF) inside the tube, including the use of inserts and modifying the
characteristics of the HTF [11–13].

Inserts have been attracted lots of attention, though not regarding their effect on the
characteristics of the employing fluid [8,14]. There are different types of inserts inside the
tubes to increase the heat transfer to the working fluid, including fins, twisted tapes, porous
discs, turbulators, perforated plates, and dimples, etc. [15–19]. Twisted tapes have been
widely employed inside the tubes to increase the heat transfer performance in the tube and
have shown less effect on the pressure drop compared with other enhancement techniques
such as fins [20–23]. In a tube integrated with twisted tape inserts, swirl flow is generated
with higher axial fluid velocity along the tube, resulting in a higher heat transfer [24–27].
Furthermore, twisted tapes provide a mixing flow similar to a turbulator, which helps heat
transfer enhancement [27–30]. There are different studies in the literature to increase the
performance of twisted tapes inside the tubes that have been performed both numerically
and experimentally [31–34].

Lim et al. [35] investigated experimentally a twisted tape inserted tube in a laminar
flow regime using variable and constant pumping power. They showed a high contribution
of twisted tape inserts to the performance of the heat exchanger. The results showed that
the friction factor and Nusselt number were enhanced by factors of 10 and 3, respectively.
Jaramillo, et al. [20] assessed a parabolic through a collector equipped with twisted tape.
They claimed that the thermal performance of the collector increases as the twisted ratio
reduces at low Reynolds numbers. They proved the higher performance of the PTC
collector using a twisted tape insert in a passive way. Mwesigye et al. [36] studied a
parabolic through a collector with wall-detached twisted tape. They indicated that higher
values of twist ratio and lower values of width result in the enhancement of the optimal
Reynolds number. Sajadi et al. [37] performed an experimental study on the heat transfer
and pressure drop of R123yf condensation flow inside a tube with twisted tape inserts
compared with a plain tube. They showed that, in a twisted tape inserted tube compared
with a plain tube, 42% and 235% enhancement occurred in the heat transfer coefficient and
the pressure drop, respectively. They claimed the maximum heat transfer coefficient occurs
in a twist ratio of 6, and the maximum overall enhancement ratio happens in a twist ratio
of 9. Kurnia et al. [38] investigated numerically the twisted tape inserts in a helical tube.
They showed that the heat transfer enhances by up to four times in a twisted tape inserted
helical tube compared with the straight tube with a twisted tape insert. However, the
pressure drops also increase in a helical tube. Aliabadi et al. [39] studied the twisted tape
inserts in a twisted tube compared with a straight tube and showed that the combination
of twisted tape and twisted tubes has a significant influence on improving the performance
of the model. They showed the maximum performance efficiency coefficient of 3.21 for the
best scenario. Furthermore, a higher performance is achieved with a higher twisted pitch.

There are limited studies in the literature incorporating a higher number of twisted
tape inserts in a tube in the forms of separated and joint twisted tapes [40]. Dalkilic
et al. [41] examined the effect of quad twisted tape inserts in a tube experimentally using
hybrid nanofluid for different lengths. They showed that a higher Nusselt number and
friction factor could be achieved by increasing the length of the tape inside the tube. He
et al. [42] examined the effects of using double separate twisted tapes in a tube compared
with a single tape under turbulent fluid flow conditions using nanofluid. They showed that
the maximum performance efficiency coefficient for the case of single twisted tape is almost
6.5% higher than that for a double twisted tape, which is defined based on the Nusselt
number over the friction factor. Bhuiya et al. [43] studied the hydrothermal characteristics
of a perforated twisted tape inserted tube experimentally using triple joint twisted tapes.
They showed that the rate of heat transfer enhances by 88–320%, while the friction factor
enhances by 112–355% for different porosities of the perforated tubes. The highest Nusselt
number and friction factor was achieved in the porosity of 4.6%.

Nanofluid has been recently widely employed in various heat transfer applications to
improve the thermophysical properties of the working fluid toward higher heat transfer



Nanomaterials 2021, 11, 1570 3 of 21

performance [19,22,44–47]. Regarding twisted tape inserted tubes, there are several studies
on the simultaneous usage of nanofluid and twisted tapes for a higher rate of heat trans-
fer [12,48–51]. Qi et al. [52] investigated the convective nanofluid heat transfer in a tube
using rotating and static built-in twisted tape elements, experimentally. They reported
101.6% enhancement in heat transfer by using rotating twisted tape inserts along with the
nanofluid. In another empirical study, Sunder et al. [53] examined the thermal performance
of a solar water heater employing nanofluid and twisted tape inserts as heat transfer en-
hancement techniques. They showed 49.75% improvement using the best configuration of
twisted-tape. Sheikholeslami et al. [54] examined the effect of CuO/water nanofluid in a
twisted tape inserted tube in a turbulent flow regime based on the first and second laws of
thermodynamics [55]. They showed a higher Bejan number for a higher twist pitch ratio.
Furthermore, higher entropy generation was gained for a lower Nusselt number.

According to the presented literature review, there are limited studies on the use of
multiple twisted tape inserts in a tube, especially in the presence of nanofluid. Furthermore,
there is a limited comparative investigation on the performance of multiple semi-twisted
tape inserts in a tube [56–58]. Therefore, in this study, the hydrothermal performance of
multiple semi-twisted tapes integrated inside a tube is examined to find the optimum
case for having the highest heat transfer enhancement with the lowest friction factor. An
Al2O3/water nanofluid is used to improve the properties of the working fluid toward a
higher heat transfer efficiency using a two-phase mixture model. Both the Nusselt number
and friction factor are studied to provide a comparative study on the advantages of heat
transfer enhancement and the disadvantages of pressure drop penalty. The effect of the
Reynolds number is also investigated. This study points out some hydrothermal aspects,
such as the tangential and radial velocities of the nanofluid, which has been rarely discussed
in the literature. It should also be mentioned that, in this study, the use of one semi-twisted
tape is introduced for the first time. This study provides guidelines to design an improved
configuration of twisted tape inserted tubes using multiple semi-twisted tapes. The more
efficient usage of twisted tape inserted tubes could help to provide a higher amount of
energy transmission suitable for application in parabolic trough solar collectors.

2. Problem Statement

The schematic of the proposed system under investigation is presented in Figure 1.
The combination of a tube integrated with multiple semi-twisted tapes is investigated
using different numbers of one, two, three, and four tape strips named as Cases 2 to 5
(Figure 1a). Case 1 is the tube without any twisted tape inserts. The diameter (D) and
length (L) of the tube, as well as the thickness (ε) and height (H) of the twisted tape are
20 mm, 400 mm, 0.4 mm, and 19 mm, respectively, shown in Figure 1b. The flow enters the
tube at the temperature of 300 K with different Reynolds numbers, while constant heat flux
is applied around the tube.

Figure 1 schematically shows the counter flow double-pipe system equipped with
overlapped twisted tapes in inner and outer tubes. The inner and outer tube diameters
are 10 and 29 mm, respectively, and the thickness of the twisted tape is 0.4 mm with
equivalent pitches of 100 mm. Two models for embedding the overlapped twisted tapes are
considered; in the first model, the inner and outer twisted tapes swirl in the same angular
direction (Co-STT as an abbreviation of co-swirling twisted tapes) and in the second model,
the inner and outer twisted tapes swirl in the opposite angular direction (Counter-STT
as an abbreviation of counter-swirling twisted tapes). The plain heat exchanger (PHE)
is also studied, compared with the twisted tape cases. Al2O3-water nanofluid enters the
inner and outer tubes at a temperature of 300 K, considering four different Reynolds
numbers. Alumina (Al2O3) is among the more common and cheaper nanoparticles utilized
in different commercial and experimental applications and has been well reported by a
number of researchers. The alumina/water nanofluid shows strong enhancement on the
thermophysical properties of the base fluid [59]. Moreover, Al2O3 nanoparticles have other
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advantages, such as chemical and thermal stability and excellent dispersion properties in
the base fluid [60].
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3. Mathematical Model

The present work will investigate a 3D steady-state laminar flow of incompressible
Al2O3-water nanofluid, neglecting the effects of radiation and viscosity losses. The two-
phase mixture model [61] is employed to model Al2O3 nanoparticles dispersed in water.
The governing equations are defined as follows [62]:

• Continuity equation:

∇.(ρm
→
Vm) = 0 (1)

• Momentum equation:

→
∇.(ρm

→
Vm
→
Vm) = −

→
∇p +

→
∇ · [µm(

→
∇
→
Vm +

→
∇
→
V

T

m)] + ρm
→
g +

→
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→
V · (∑ n

k=1φkρk
→
Vdr,k

→
Vdr,k) (2)

where the secondary phase drift velocity is obtained from [27]:

→
Vdr,k =

→
Vk −

→
Vm (3)

• Energy equation:

→
∇ ·

[
n
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ρkcpk
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where Vm and ρm are given as:

→
Vm =

∑ n
k=1φkρk

→
Vk

ρm
(5)

ρm = ∑ n
k=1φkρk (6)
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In Equation (5), the subscription k is related to the kth phase of the mixture.
→
V p f and

µm are given as [34]:
→
V p f =

→
V p −

→
V f (7)

µm =
n

∑
k=1

φkµk (8)

The equation developed by Manninen [63] and Shiller–Newman’s drag function [64]
is employed for the relative velocity as [62]:

→
V p f =

ρpd2
p
(
ρp − ρm

)
18µ f fdragρp

(g− (
→
Vm.

→
∇)
→
Vm) (9)

fdrag =

{
1 + 0.15Re0.687(Re ≤ 1000)
0.0183Re(Re > 1000)

(10)

Therefore, the drift velocity is given as:

→
Vdr,p =

→
Vp f −

n

∑
k=1

(
φkρk
ρm

→
V f k

)
(11)

3.1. Nanofluid Thermo-Physical Properties

The properties of water-Al2O3 nanofluid i.e., density [10,65], heat capacity [66], effec-
tive dynamic viscosity [67], and effective thermal conductivity [67] are given as:

ρnf = (1− φ)ρ f + φρs (12)(
ρcp
)

nf = (1− φ)
(
ρcp
)

f + φ
(
ρcp
)

s (13)

µnf =
µ f

(1− φ)2.5 (14)

knf = 1 + 2.72φ + 4.97φ2 (15)

A water-Al2O3 nanofluid with three values of volume concentrations is used in the
present study, as listed in Table 1. The properties of the nanofluid are calculated based on
the concentration of nanoparticles according to Equations (12)–(15).

Table 1. Water-Al2O3 nanofluid thermo-physical properties.

Nanoparticle Properties (dp = 25 nm)

ρ (kg/m3) cp (J/kgK) k (W/mK) µ (kg/ms)
3880 733 36 -

Nanofluid properties
φ = 0% 998.200 4182.00 0.600000 0.001000
φ = 1% 1027.018 4147.51 0.616618 0.001089
φ = 2% 1055.836 4113.02 0.633833 0.001199
φ = 3% 1084.654 4078.53 0.651644 0.001334

3.2. Boundary Conditions and Data Reduction

Constant temperature and velocity are used at the tube inlet, while zero relative gauge
pressure is used at the outlet for the fluid. The channel wall is exposed to a uniform heat
flux of 5000 W/m2. The twisted tape rotates at three different angular velocities of Vinlet/r
(named RTT1), 2Vinlet/r (named RTT2), and 3Vinlet/r (named RTT3) with an adiabatic
surrounded wall.
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The hydrothermal parameters investigated, along with the performance evaluation
criterion (PEC), are defined as follows [23,62]:

Dh =
4A
P

(16)

fave =
2∆P
ρU2

Dh
L

(17)

hx =
q′′

Tw − Tb
(18)

Nux =
hxDh

k
(19)

Nuave =
1
L

∫ L

0
Nuxdx (20)

PEC =

Nu
Nup(
f
fp

) 1
3

(21)

4. Numerical Procedure

ANSYS FLUENT software (version 18.0) is employed to resolve the conventional
governed equations using a coupled algorithm to solve the velocity–pressure coupling, and
a second-order upwind scheme is used to discretize the convection terms. The convergence
criteria are set to 10-6 for both, whereas it is 10-11 for the energy equation.

4.1. Grid Study

An overview of the computational grid is illustrated in Figure 2 for Case 5 in Figure 1.
Considering the advantages of structured mesh over unstructured mesh, such as higher
quality of results, higher convergence speed, and convergence ease, and also the use of
fewer cells, a structured mesh was generated in this study. ANSYS Meshing software was
used to create the current mesh.
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To ensure the non-dependence behavior of the results from the computational grid, the
average Nusselt number for various numbers of elements was examined. Figure 3 displays
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the variation of the average Nusselt number for a different number of cells for the Reynolds
number of 1000 for Case 5 for the volume concentration of 3%. As shown, after reducing
the cell size four times, the change in the average Nusselt number is negligible (almost
0.4%), and therefore an optimal mesh size of 395,000 was selected for further analysis.
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4.2. Code Validation with Experimental Data

To obtain a reliable result, the experimental results of Qi et al. [52] for the average
Nusselt number for laminar fluid flow in a heat exchanger using stationary twisted tape
were used for comparison. They experimentally examined pure water and nanofluid fluid
flow for different Reynolds numbers for a twisted tape length of 1600 mm and pitch size
of 100 mm, with a width and thickness of 16 and 2 mm, respectively. Figure 4 displays
the average Nusselt number for the cases of pure water for the cases of stationary twisted
tapes for different Reynolds numbers. As shown, the results are in excellent agreement
with the experimental data of Qi et al. [52], where the maximum difference is less than 2%.
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5. Result and Discussion

The numerical simulations are conducted to evaluate the thermo-hydraulic perfor-
mance of laminar swirl flow through the circular tube equipped with multiple semi-twisted
tapes. The importance of the number of twisted tapes, Re numbers, and nanofluid concen-
trations are evaluated in this research.

5.1. Effect of Number of Semi-Twisted Tapes

Figure 5 shows the variation of local Nu number along the tube length for both the
plain tube and the different multiple semi-twisted tape cases shown in Figure 1. As seen in
this figure, the addition of a semi-twisted tape (i.e., Case 1) increases the local Nu number
along the length of the tube. This is attributed to the twisted tape inducing a secondary
flow, which provides better flow mixing patterns and a higher heat transfer rate. Increasing
the number of semi-twisted tapes from N = 1 to N = 4 implies more disturbance in the
flow pattern as a result of a larger perturbing surface and higher numbers of swirling flow,
leading to an improvement in the local Nu number, especially within the first half of the
tube length.
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Figure 5. Local Nusselt number along the dimensionless tube length for the captured cases at
Re = 250 ϕ = 0%.

The reason for the behavior of Nu is connected to the flow behavior under different
circumstances. Figure 6 illustrates the velocity contours for the captured configurations at
an Re number of 250. It is evident from this figure that only axial flow is detected in the
plain tube, whereas both swirl and axial flows are recognized in the multi-channel twisted
tape cases. A case with a higher number of semi-twisted tape experiences a decrease in
the cross-sectional area, which improves the flow velocity. By proceeding along the tube
length, more swirl flow streams are induced when the number of semi-twisted tapes is
varied from N = 1 to N = 4. Multiple semi-twisted tapes generate multi-swirling flows in
core and near-wall zones, causing a better fluid mixing between the core and near tube
wall regions. As a result, velocity increase in the near-wall region and decreases in the
core region.
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Figure 6. Velocity vectors for the captured cases at Re = 250 and ϕ = 0%.

Figure 7 shows how increasing the number of semi-twisted tapes influences the cooling
performance of the tube wall at an Re of 250. As seen in the plain tube case, there is a
gradient increase in the temperature along the axial direction of the tube due to the growth
in the thermal boundary layer thickness. For other cases, the presence of semi-twisted
tapes has disturbed the boundary layer due to the secondary flows created in the tube.
With single semi-twisted tape, although the temperature distribution on the heated wall
has become more uniform, there are still some regions with local hot spots, mainly located
in the middle and end of the tube. Moving from single to four semi-twisted tapes seems
to be a promising trajectory towards preventing the local hot spots and providing a more
uniform temperature profile along the tube.
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Figure 8 illustrates the temperature contour plots at different cross-sections for the
considered configurations at an Re of 250. For the case of twisted tape with N = 1, the
thermal boundary layer thickness is slightly decreased due to the better flow mixing, as
opposed to the plain tube with a thick thermal boundary layer on the tube wall. However,
there are some regions with rather higher thermal boundary layer thickness. The high
intensity of swirl flow in cases with a higher number of semi-twisted tape (see Figure 6)
results in the temperature field becoming more disordered and the temperature difference
between the core and near-wall region becoming smaller as compared to a plain tube. As
such, the boundary layer becomes thinner as the semi-twisted tape number increases from
N = 2 to N = 4.
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The analysis of radial and tangential velocity provides details about the role of multiple
semi-twisted tape addition on the intensity of secondary flow. As seen in Figure 9, negative
radial velocity is found in the vicinity of the twisted tape, while positive radial velocity is
observed in the regions far from the twisted tape. Two low and two high radial velocity
regions are detected in the case of N = 1, while four low and four high radial velocity
regions are found in the case of N = 4. This indicates that there is a continuous movement in
the fluid from the wall to the core and conversely from the core to the wall. It is also inferred
that the value of radial velocity is higher in the case of higher numbers of semi-twisted tape
(N = 4) as compared to that of a single semi-twisted tape case. This is the result of higher
rotational movement, more centrifugal action, more efficient interruption in the thermal
boundary layer, and a higher amount of swirl motion in the flow.
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Figure 10 shows the cross-sectional tangential velocity contours for different cases at an
Re of 250. The multiple semi-twisted tapes with N = 4 generate a higher tangential velocity
and enhances the heat and mass transfer between the central fluid and near-wall regions.
This improves the synergy degree between the velocity fields and temperature gradient.
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5.2. Effect of the Re Number

To assess the thermal performance of multiple semi-twisted tapes at different Re
numbers, the friction coefficient and average Nu number as a function of Re number is
depicted in Figures 11 and 12 for the captured cases. It is found that the friction coefficient
drops by increasing the Re number, as shown in Figure 11. Another observation from
this figure is that the higher average friction factor is achieved when a higher number
of semi-twisted tape is employed in the tube. The installation of multiple semi-twisted
tapes blocks the passage of fluid flow, imposes a longer fluid flow path, and causes further
friction at the tape surface. This is associated with more pumping power consumed in
these cases relative to the plain tube case. The presence of flow mixing and secondary flow
in addition to the primary flow is another source of larger fluid flow resistance created by
multiple twisted tapes. This frictional loss enlarges by increasing the number of twisted
tapes. It is evident from Figure 12 that an increase in Re number is accompanied by a rise
in the Nu number for all the captured cases. This is due to the fact that moving towards a
higher Re number is followed by an increase in the fluid flow velocity and swirl intensity
transmitted to the flow adjacent to the tube wall, which is beneficial for effective heat
dissipation. Furthermore, heat transfer enhancement in multiple twisted tapes is superior
to that of single twisted tape. This is attributed to the multiple swirl flows generated by
the multiple twisted tapes, leading to stronger multiple swirl intensities as well as better
fluid mixing between the core fluid and the fluid near the tube wall compared to the
single twisted tape case. This intense swirl flow helps the fluid washing the tube wall
continuously as well as taking heat away more effectively and, as a result, increasing the
average Nu number.
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Figure 11. Friction coefficient for the captured cases at different Re numbers for ϕ = 0%.
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Figure 12. Average Nusselt number for the captured cases at different Re numbers for ϕ = 0%.

As a case in point, Figures 13–15 show the effect of Re number on the velocity contours,
cross-sectional temperature contours, and temperature contours on the heated wall for Case
5, respectively. As seen in Figure 13, as the Reynolds number increases, the fluid velocity
increases throughout the length of the tube, which intensifies the swirling disturbance
created by the twisted tape and the higher heat transfer rate. Moreover, the stronger
flow mixing between the central and near-wall regions at higher velocity enables more
effective heat dissipation from the wall and more uniform temperature distribution on
the heated wall as compared to the lower Re number (Figure 14). To better understand
this, the cross-sectional temperature for Case 5 is depicted for different Re numbers. As
seen in this figure, the larger boundary layer thickness is induced at an Re number of 250,
and switching to higher Re numbers tends to make the thermal boundary layer thickness
thinner. This, together with the presence of multiple semi-twisted tapes with N = 4, is
more appealing in terms of decreasing the temperature difference between the core and the
near-wall region.
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Figure 13. Velocity vector for Case 5 at different Re numbers and ϕ = 0%.
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5.3. Effect of Nanofluid Concentration

The effect of the number of semi-twisted tapes and Re number is investigated on
the thermo-hydraulic performance of laminar swirl flow through the circular tube. This
section is devoted to the importance of nanofluid addition in the considered configurations.
Figure 16 shows the variation of average Nu and friction coefficient for Case 5 at different
Re numbers and nanofluid concentrations. It is found that the average Nu number and
friction coefficient increases by employing nanofluid in the base fluid. The reason for the
higher Nu number can be justified by the higher thermal conductivity of the nanofluid
compared with the base fluid. The increase in nanofluid concentration from 0 to 3%
improves the Nu number by 11.31%, 12.09%, 12.45%, and 13.24% for the Re number of
250, 500, 750, and 1000, respectively. However, this comes at the expense of a higher
resistance coefficient, which is a result of high viscosity caused by increasing the nanofluid
volume fraction.
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Figure 16. Variation of average Nu number and friction coefficient for Case 5 at different Re numbers
and nanofluid volume concentrations.

As shown in Figure 16, the obtained results reveal that, although adding nanoparticles
to the base fluid is beneficial in terms of enhancing the heat transfer rate, this is associated
with a higher frictional resistance coefficient and pressure drop. Therefore, the performance
evaluation criterion (PEC) is introduced as a quantifiable metric to assess the trade-off
between the heat transfer and pressure drop. Figure 17 illustrates the variation of PEC
number in terms of Re number and nanofluid volume fraction for the captured cases. As
seen in this figure, PEC increases by increasing the Re number until the Re number of 750
and then reduces. Furthermore, PEC enhances using a higher volume concentration of
nanoparticles. Based on the definition of PEC, the variation of PEC depends on the variation
of both heat transfer and also pressure drop by adding inserts in the pipe. Depending on
the operating conditions of the studied problem and also the dimensions of the system,
the PEC can be reduced or enhanced at different Reynolds number, as also shown in the
literature [57]. In the proposed system, the amount of increase in heat transfer compared
with the increase in the pressure drop using multiple twisted tape inserts reduces in the
high Reynolds number of 1000. The Maximum PEC occurs at the Reynolds number 750.
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Figure 17. Variation of PEC with Re for Case 5 at different nanofluid volume concentrations.

Figure 18 illustrates the relation between average Nu with Re at different nanoparticles
concentration and for all the cases. Generally, the figure shows that Nu is proportional to
the Re, ϕ, and the number of the twisted tape. As mentioned, Nu enhances using a higher
Re number and nanoparticle concentration. The highest values of the average Nu is 30.2
and belongs to Case 5 for Re = 1000, ϕ = 0.3%, while the minimum value of average Nu is
8.8 for Case 1, where Re = 250 for the pure water.
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Figure 19 shows the relation between the average friction value for different values
of Re at different concentrations of nanoparticles for different cases. The friction factor
is inversely proportional to Re; however, it increases proportionally with the number of
twisted tapes. The effect of the nanoparticles is negligible for reducing the friction value.
The maximum friction factor is 0.155 and belongs to Case 5 for Re = 250, ϕ = 3%, while the
minimum value of the friction factor is 0.02 for Case 1 where Re = 1000 and ϕ = 0%.
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Figure 19. The relation between the average friction and Re at different nanoparticles concentration
for Cases 1, 2, 3, 4, and 5.

It should be noted that because the variation of PEC is not linear, as shown in Figure 5
for Case 5, all the values of Nusselt number and friction factor are presented in this study
in Figures 18 and 19 to provide better understanding of the PEC behavior for all the
proposed systems.

Figure 20 illustrates the effect of Re, ϕ, and the number of twisted tapes on the PEC.
The maximum value of PEC occurs in nanoparticles concentration of 2% for the Re of 1000.
The PEC shows a proportional relationship with the Re because Nu increases and friction
factor decreases for a higher Re and results in a higher PEC factor. Both Nu and friction
factor increase for a higher number of twisted tape inserts. As shown, the PEC also shows
a proportional relationship with the number of semi-twisted tape inserts. This means that
the effect of increasing the number of twisted tape inserts on the Nusselt number is higher
than that for the friction factor.
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6. Conclusions

Heat transfer improvement and friction factor characteristics of laminar nanofluid
(Al2O3/water) flow in a 3D circular tube integrated with multiple semi-twisted tapes were
investigated numerically. The range of nanoparticle volume fractions of 0, 1, 2, and 3%; the
range of Reynolds numbers of 250, 500, 750 and 1000; and the number of the semi-twisted
tapes of 0, 1, 2, 3, 4 were examined comprehensively. The computational results conclude
that increasing the twisted tape number enhance both heat transfer and pressure drop;
however, its effect on the heat transfer enhancement is more pronounced. The following
key outcomes were achieved:

• The higher average friction factor is reached when a higher number of semi-twisted
tapes are applied in the tube. The average Nusselt number, x, increases from 15 to 28.5
and the average friction factor enhances from 0.155 to 0.052 by increasing the number
of the semi-twisted tapes from 0 to 4 for the Reynolds number of 1000 for the base
fluid.

• Increasing the Reynolds number enhances heat transfer performance while it reduces
the friction factor. By using 4 semi-twisted tapes, the average Nusselt number increases
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from 12.5 to 28.5, while the friction factor reduces from 0.155 to 0.052 when the
Reynolds number increases from 250 to 1000 for the base fluid.

• Increasing the nanoparticle concentration results in a higher Nusselt number and
friction factor. For this case at the Reynolds number of 1000, the increase in nanofluid
concentration from 0 to 3% improves the average Nusselt number and friction factor
by 13.24% and 3%, respectively.

• The highest PEC is 1.66 and belongs to the Reynolds number of 750 for the system
using four semi-twisted tape inserts where the volume fraction of nanoparticles is 3%.
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Nomenclature

A area [m2] Greek symbols
cp specific heat transfer [J/kg.K] ϑ kinematic viscosity [m2/s]
f friction coefficient µ dynamic viscosity [kg/m.s]
f0 friction coefficient of plain channel ρ density [kg/m3]
F body force [N] φ nanofluid concentration
g gravitational acceleration [m/s2] θ dimensionless temperature
h heat transfer coefficient [W/m2K] Subscripts
k thermal conductivity [W/m.K] ave average
n number of phases b bulk
p pressure [Pa] m mixture
q” heat flux [w/m2] f fluid
Re Reynolds number i inner tube
T temperature [K] o outer tube
V velocity vector [m/s] nf nanofuid
Vdr drift velocity Abbreviations
Vf fluid velocity Co-STT co-swirling twisted tapes
Vp particle velocity Counter-STT counter-swirlingtwisted tapes

PHE plain heat exchanger
IT inner tube
OT outer tube
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