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Measurement Outliers: The Single-Output Case
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Abstract—This paper is concerned with the energy-to-peak I. INTRODUCTION
state estimation problem for a class of linear discrete-time sys-
tems with energy-bounded noises and intermittent measurement  The past several decades have witnessed successful appli-
outliers (IMOs). In order to capture the intermittent nature, tWo  ~ations of a variety of state estimation strategies in a wide

sequences of step functions are introduced to model the occur- . . . . . L.
rence of the IMOs. Furthermore, two special indices (i.e. mini- '29€ of industrial systems including guidance and navigation

mum and maximum interval lengths) are adopted to describe the SyStems, target tracking systems and monitoring system. Such
“occurrence frequency” of IMOs. Different from the considered —applications are motivated by the fact that the state information
energy-bounded noises, the outliers are assumed to have theirof a system is oftempartially available only despite its great
magnitudes larger than certain thresholds. In order to achieve a importance in various commitments such as control and fault

satisfactory performance constraint on the energy-to-peak state . : . s
estimation under the addressed kind of measurement outliers. detection tasks. The essential purpose of the state estimation is

a novel parameter-dependent (PD) state estimation strategy is 0 @cquire the accurate estimates of the system states through
developed to guarantee that the measurements contaminated available but possibly partial/noisy measurement data [13],
by outliers would be removed in the estimation process. The [30], [48].

proposed PD state estimation method is essentially a wo-step | order to evaluate the estimation accuracy, different crite-
process, where the first step is to examine the appearing and

disappearing moments for each IMO by using a dedicatedly r'_a have been put fF’rward according to dlffer:e_nt t.ypes of the
constructed outlier detection scheme, and the second step is todisturbances and different performance specifications, thereby
implement the state estimation task according to the outlier leading to different state estimation approaches (&{g.
detection results. Sufficient conditions are obtained to ensure state estimation [20], [23], [44], minimum mean-squared error

the existence of the desired estimator, and the gain matrix of : ; tA.
the desired estimator is then derived by solving a constrained state estimation [14], [16], [32], [37], energy-to-peak state

optimization problem. Finally, a simulation example is presented estimation [331’ [36], mOY'ngfhor'zon estimation [49]'_ [50],

to illustrate the effectiveness of our developed PD state estimation SEt-membership state estimation [9], [18], [21] and ultimately

strategy. bounded state estimation [22], [24], [45]). For example, in
[15], the well-knownH.., performance index has been adopted

_ Index Terms—State estimation; Intermittent measurement out- to evaluate the estimation accuracy subject to the energy-

liers; Energy-to-peak performance; Parameter-dependent state po,nded noises and the corresponditg, state estimator

estimator. . X T .
has been developed by using the linear matrix inequality
technique. In [32], the error covariance has been employed
to characterize the estimation performance subject to the
Gaussian noises and a recursive filter has been designed by
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sions [38]. For example, in [36], a model-dependent estimatdnallenges: 1) how to establish a reasonable model for IMOs
has been developed to deal with the energy-to-peak statzording to engineering practice? 2) how to discriminate
estimation problem under high-rate communication chanrte measurements corrupted by IMOs from those normal
with Round-Robin protocol scheduling effects. Note that theeasurements? and 3) how to design the energy-to-peak state
energy-to-peak state estimation acquires satisfactory perfestimator that prevents the estimation performance from being
mance based on the assumption that the external disturbardegraded by IMOs? In this paper, we are set to overcome
areenergy-boundedn engineering practice, however, systenthe above-listed challengeEhe primary contributions of this
measurements may occasionally suffer from certain largeaper are highlighted as follows: 1) the energy-to-peak state
amplitude disturbances/perturbations, customarily referreddstimation problem is, for the first time, studied for linear
as themeasurement outlienghich, unfortunately, violate the systems subject to IMOs; 2) a novel parameter-dependent
energy-boundedness assumption. As such, the conventidiPd)) state estimator is designed within the active detection-
energy-to-peak state estimation methods are incapable of déalsed framework, where a novel outlier detection method is
ing with measurement outliers. developed to determine whether the received measurement

Compared with the widely studied norm-bounded anautputis contaminated by an outlier; and 3) a particle-swarm-
energy-bounded noises, measurement outliers have their vepyimization-based algorithm is put forward to calculate gain
own characteristics of 1) occasional/intermittent/probabilistmatrix of the desired state estimator.
occurrences and 2) unexpectedly large magnitudes. So farThe remainder of this paper is organized as follows. In
the estimation problem subject to measurement outliers t@ection Il, the linear systems with IMOs and the corresponding
stirred some initial research attention, see, e.g. [1], [7], [8PD state estimator structure are proposed. In Section lll, the
[17], [31]. Generally speaking, there are mainly two classes ofitlier detection strategy of IMOs is designed, and the desired
strategies (i.e., passive robustness-based strategies and aestienator gain matrix is calculated by using a particle-swarm-
detection-based strategies) that have been developed in dpgmization-based algorithm. A simulation example is given
literature. The passive robustness-based strategy is to reduac8ection IV to demonstrate the correctness and effectiveness
the sensitivity of the estimation performance to the outlieref our proposed PD state estimation scheme. Finally, we
and the representative works in this regard include the stubbpmnesent the conclusion of this work in Section V.
state estimation [2] and the outlier-robust Kalman filtering [7]. Notations: The notation used here is fairly standard except
Concerning the active detection-based strategies, the main idéere otherwise stated®”™ and R"*™ denote, respectively,
is to develop certain outlier detection schemes in order tioe n dimensional Euclidean space and set ofralt m real
remove “harmful” innovations (i.e. the innovations that mightnatrices.N (N, N~) denote, respectively, the set of integers
be corrupted by outliers) in the state estimators, see, e.g. thennegative integers, negative integers), and the set of all
leave-one-out moving-horizon estimation [3] and the attackennegative real numbers is denoted Ry. The notation
detector-based recursive filter [6]. Nevertheless, to the bestdf > YV (X > Y), where X and Y are real symmetric
the authors’ knowledge, the energy-to-peak state estimatiomtrices, means thaf — Y is positive semi-definite (positive
problem subject to measurement outliers has not yet gairdefinite).A/” represents the transpose of the maddxIf A is
adequate research attention despite its potential in practiga@quare matrix\ . {A} (Amin{A}) stands for the maximum
applications, and this gives rise to the main motivation of ogminimum) eigenvalue of4, tr{A} represents the trace of
research. A, and det(A) denotes the determinant of. O represents

In our previous research [51], the set-membership filterirgero matrix of compatible dimensions, represents aV
problem has been studied subjectit@pulsivemeasurement dimensional row vector with all ones. The-dimensional
outliers described by a sequence of impulsive signals whaddentity matrix is denoted ag, or simply I, if no confusion is
interval length/amplitude are greater than certain known cocaused. The shorthantag{- - -} stands for a block-diagonal
stants/thresholds. In this paper, we consider another kinthtrix and the notationliag,{e} is employed to stand for
of measurement outliers, namely, intermittent measuremelidg{e,--- ,o}. Given a generic vector, ||z|| describes the
outliers (IMOs). Different from the impulsive outliers, the T
IMOs investigated in this paper are defined as the abnornfalclidean norm ofx. I5([0,00),R™) is the space of square
signals with certain duration lengths and interval lengthsummabler-dimensional vector-valued functions. In symmet-
Such kind of IMOs can be found in numerous practicalc block matrices, «” is used as an ellipsis for terms induced
applications including the electronic systems, aerospace sgg-symmetry. Matrices, if they are not explicitly specified, are
tems, mechanical equipment and power systems [43], [4@dbsumed to have compatible dimensions. The step function
Unfortunately, up to now, the state estimation problem subjeicta) is a binary function that equalsif « > 0 and equal®
to IMOs has not been properly investigated yet, let aloreherwise.
the simultaneous consideration of energy-to-peak estimation
performance requirement. It is, therefore, the main motivation Il. PROBLEM FORMULATION AND
of this paper to shorten such a gap. PRELIMINARIES

Summarizing the above discussions made thus far, we aim to ] )
investigate the energy-to-peak state estimation issue for a clAsg Ntermittent measurement outliers
of discrete-time linear systems with IMOs. This is a nontrivial In this paper, we are concerned with the sensors measure-
problem as we are going to face the following three inevitabtaents that suffer from outlier-induced-effects. The outliers
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under consideration are a series of special signals with th&rbe estimatedy;, € I2([0,00), R") and vy, € 12([0, 00), R¥)

own appearing and disappearing moments, and the numbeard the process and measurement noises, respectively; and the

outliers is accountable. In this sense, dgtand #; denote the parametersA, B, C, D and M are real-valued matrices of

appearing moments and disappearing moments, respectiveppropriate dimensions. Here, the vectgre R is the IMO

which satisfyt, < ¢; <t . of the form (1). In this paper, it is assumed that the appearing
Based on the sequencés};>1 and {¢;}:>1, the measure- moment sequence and disappearing moment sequence of the

ment outliero, (i.e. the outlier occurring at the time instanbutliers arecompletely unknowander Assumption 1.

k) can be modeled by the following form of step signals: The following assumptions are quite standard on system
oo parameters and noises.
Op = Z (F(k —t)—T(k— {i))ojC (1) Assumption 2:The time-invariant system (2) is observable.
i—1 In other words, the rank of the following observability matrix
whereI'(-) is the step function and; is the magnitude (a cAr-t
vector to be defined later) of thieth outlier at time instant CAn—2
k. In this work, the measurement outliey modeled by (1) F£

is referred to as th@termittent measurement outli¢iMO). C

Furthermore, we define the interval length and duration
lengthT; as is equal ton.
N - , Assumption 3:The energy-bounded noiseg and vy sat-
T =t —tiq, ©2>2 : . e
L isfy the following condition:
T2t —t, i>1 . .
lwel <@, vwl <7,

with initial value T, = t,.

Next, let us introduce a justifiable assumption on the prd!herew and are two known positive scalars. ,
posed IMOs. Remark 2:In this paper, the noises under consideration are

energy-bounded. Obviously, the norm of the energy-bounded

duration Iengtr[f”- satisfy7; > T andT; < T, respectively noise is also bounded. In order to distinguish the outliers from
K3 1 = 1 = L] . . .

Here,T andT are two known positive constants representirﬁe noises, we assume that the upper bounds of the noise

the minimum interval length and maximum duration lengtflorms are completely known. In what follows, we focus our

respectively. Furthermore, the magnituesatisfies|ot.|| > o attention on the relationship betweren the external inputs (i.e.
whereo is a known positive scalar. wk, Vx andog) and measurements (i.g,) and, with such an

Ranark 1: The outliers are defined as certain anomalo§Stablished relationship, we would be able to develop suitable

signals that might be caused by various reasons including sgHtlier detection strgtegy. i
sor faults, cyber-attacks or large non-Gaussian noises. In factNOW: let us consider the state estimator for the plant (2).
the so-called intermittent sensor faults belong to the categdfy©rder to restrain the estimation performance from being
of IMOs. These kinds of anomalous signals, as compared wifgraded by the IMOs, we adopt the following parameter-
the conventional disturbances/noises, are likely to occur on dgpendent (PD) state estimator:
intermittentbasis with relatively large magnitudes. A typical Tpgr = AZp + L(Ok) (yx — Cir)
example of such outliers is the system failure phenomenon. In L(0s) = (1 — 6K 3)
reliability engineering, two important indices, namely, the time ) .
between failures and the time to repair, are commonly utilized = My
to characterize the failure model of a repairable system [4fherei; andZ, denote, respectively, the estimatesrpfand
[5]. Obviously, such failure model falls within the scope of oug;. The binary functiond,, and the gain matrixx” are the
proposed IMO. In this paper, to model the intermittent naturestimator parameters to be designed. Note that the structure of
a sequence of “shifted gate functions” (i.e. the differences (8) is purposely designed to protect the estimation performance
two sequences of step functions) has been adopted to desciiibm the outlier by setting, = 1 when there is an outlier
the occurrences of the outliers. In this work, two importaniccurred at timek (i.e. >-7°, (D(k — t;) — T'(k — &;)) = 1).
concepts (i.e. the interval length and duration length) ahe other words, our main objective is to design the function
introduced to reflect the intermittency property. 0 such that the possible outliers in the innovatigps- Ciy,

are removed.
B. Problem formulation: plant and state estimator structure Remark 3:In this work, the outliers under consideration
are regarded as the abnormal signals whose magnitudes are
quite large. As such, such signals would significantly impact

Assumption 1:For any: > 1, the interval lengthZ; and

Consider a linear discrete-time system of the form

Tr41 = Az + Buwy the estimation performance by degrading the estimation accu-
yr = Cxy, + Duy, + 0y, (2) racy. The key point of removing the “harmful” innovations
o = May, (corrupted by outliers) is to “identify” the appearing and

disappearing moments for each IMO. This task is, however,
wherez, € R™, y;, € R andz, € R! denote, respectively, the difficult to accomplish by adopting the traditional model-based
system state, the measurement output and the output vetdoilt detector (MbFD) because the MbFD-based detection
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result at each time instant is based on the so-called residual, B2QB2 bl o] bﬂT.

whose value is largely affected by the historical external

inputs (including the historical outliers that are unfortunately Proposition 1: Consider the dynamical system (4). For any

unknown). In what follows, we focus our attention on the L
. L .. .7 >0, the output measurement sequefige}r>o satisfies the
detection method which is capable of accurately distinguishi . . =
. . lowing equality
the measurements with outliers from the normal measurements

According to (4), we have the following proposition.

based on a fixed number of past measurements. n—l ) ) ) ntj—1 )
We are now in a position to state the problem address#e; + Z%' Yk—nti = Vi T 05+ Z b1 Whk—n-+i;
=0 i=0

in this work as follows. This paper aims to design the binary
function 6, and the PD state estimator gaii such that the
following requirements are met simultaneously.

k=nn+1n+2--- (5)

where
a) The binary functiord;, is designed such that the condi-

n—1
tion 6, = 1 holds if and only ifo;, # 0. 79 A, (7) ,
1AS | . . 2 Dy + S aY D,
b) The state estimation error (i.@, £ z;, — i) with wy, = i ! ; ’ o
0 andy, = 0 is asymptotically stable. ‘ n-1
¢) Under the zero-initial condition, the output estimation 55542;‘ 2 Opyj + Zo‘z('”ak*"“’
error (i.e.z, = z — ;) satisfies i=0

5 and the parameters’) andb"’), are computed recursively b
12612 <22 S leoll? + 1]12) P " andb,, p y by

k=0 G o [alV —al Ve, 1<i<n—1 Lo
for all nonzeravy, andvy,, where||Z; || = sups>q || 2k || YTy L aY " Dy i=0 A
. . . = n— I
is the peak value of the output estimation error, and - - ,
; ; ; ; b= _ U=y, 1<i1<n—-1
~v > 0 is the givenls-I,, disturbance attenuation level i n—1 Yitl, L =% =
(or the energy-to-peak performance index). bgi)l £¢ - aﬁf__ll)bl, 1=0 ,J=12,---

n+j—-—1>i>n

)

pa—D
lIl. MAIN RESULTS '

A. Design of the functiofl,

Let us start by developing an effective algorithm on detect-
ing whether the received measurement contains an outlier&@m

with the initial variabIeSryEO) £ «; and bgi)l 2 big1.
Proof: First, let us consider the structure Af 1t follows
the definition ofA that

not. In doing so, we first introduce the input-output model of 1 — QA = [(214)T  (e24)7 (anA)T]T
the plant (2). Considering the characteristic polynomial of the s o o o
square matrix4 subject to the variable € R, we have 0 "1’1 a”’Q Of al CA™
n—1 3 2 n—1
n—l . 0 0 1 (a7} (%} c4a
det(zI — A) £ 2™ + Z ;z’ = : (6)
=0 : : : : A2
where {«a; }o<i<n—1 are the coefficients of the characteristic 8 8 8 (1) anl‘l CA

polynomial. Define the transformation matrix as follows:

By applying the Cayley-Hamilton theorem, we have

1 ap1 anp_o (e%) (e31
€1 0 1 Qp—1 asz Qg alA:C(A"—i—an_lA"*l+---+a1A+a01) — oC
A le2 0 0 1 Qs Q2 = —qpe
: : : : IR EQA:C’(A"_l—|—an,1A”_2+-~-+o¢2A+o¢1]) —a1C
En 0 0 0 R — e
=€&1 — &y
0 0 0 0 1

where the matrix is given in Assumption 2. Then, it follows
from the plant (2) that

EnflA = CA2 + O[nfch + O[n,QC — O[n,QC

fk-ﬁ-l = Efk + éwk = E&n—2 — Qn_2&n
Yk = C_"fk—i—DVk—i—ék enA=CA+an 10 —a,1C=¢cp1—an_16, @)
i o (4) Hence, it follows from (6) and (7) that
oK = L(k—t)—T(k—1%))o
Ok ; ( ( —z) ( ))Ok 0 0 0 —ap .
_ : hwg 1 0 0 — Q] 1
2z = My, HQ _lo 1 0 —an 5.2 @©
where : : : .

B2 Qu, C20Q7", A2QAQ7, 0 0 R
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Then, it is easy to conclude from (8) and the definition(df which is equivalent to (5). The proof is now complete. m

that
0 0 0 —ag
1 0 0 -
A-10 1 0 —ao 9)
00 -+ 1 —anp
Similarly, we can obtain thaC' = [0 0 0 1],

which implies thaty, = :z:,(C 2 + Dvy. + 0g Where:z:(") denotes

the n-th entry of the vectort;,. Then, one can |nfer from (4)

and (9) that

(1 o
l(c-zl = —aozzzggn) + bwy,
1 1
(2 o
;(CJZl = Z OéiI;(Cn_)lﬂ- + Z bit1wr—14i,
i=0 i=0
(3 K3 (10)
n—1
41(:’_)1 = Z alfl(cn)n+1+z + Z bit 1WEk—nt14i-
i=0

For notation simplicity, we Ieli-’,(c”)
from (10) that

= x%- Then, it follows

Xk+j T QUn—1Xk+j—1 + Qn-2Xk+j—2 T+ + QOXk+j—n
n—1
= Z bi+1wk+jfn+i-
1=0
Noting that

n—1 n—1

Xk+j—1 = — Z Qi Xk+j—1—n+i + Z Wh4j—1—n+is
1=0 i=0

we have

1 1 1
Xk+j + 0451)1Xk+j—2 + Oé,sl_)gxkﬁ-j—?) + -+ aé )Xk+j—1—n

n
E +1Wk+3 1—n+i-
i=0

where
oW s ) Gic1—anaa 1<i<n-1
t | —an—1ao0, 1=0 ’
bi —ap 1biy1, 1<i<n-—1
B 2 —ag, b =0
i+1 — n—1Y1, 1=
bi, ZZ n

Along the similar lines of the aforementioned calculations,

we finally arrive at

Xiti + 0 o1+ 0D oxea + -+ o xen
n+j—1

= Z b(Jr)lwlC n+i- (11)
=0

Sincey; = /f,(c") =y — Dy, — oy, it follows from (11) that
n+j—1
+ Z bz+1wk n+i

(12)

Yk+j + Z oy =7 +
1=0

Remark 4:By now, we have built up a special input-output
model (5) by using the observable canonical form of the plant
(2). The method developed in Proposition 1 can be extended
to deal with the multi-output case by using the observable
canonical form for multi-input-multi-output systems (e.g. the
well-known Wonham type canonical form [41]).

Next, let us consider the design problem of the binary
function g, on the detection of, ard ;. In the following, we
present a proposition to detect the appearing and disappearing
moments for IMOs.

Proposition 2: Let Assumptions 1-3 hold and suppose that
I > n. Define the sequences dfr,;};>1 and {7;};>1 as
follows:

T, —mln{k|/€>7'Z 1+, fo(k) > f}
) (13)

T _mm{j—l-T l7>0, f(z;) < f}

where
n—1
Fi(k) £ lypss + ;%(-J)yk—nw , a= Jnax ajt,
fEalD|(n+1)v+bn+Tw, 7920, b= max {b;},
0<;<T

N
a; = max{1, max

() 7oA
ogr?gaf—l{lai [} bj 0<iSnrio1

{12}
if o > 2f, then the conditiong; = r, and #; = 7; hold for all
> 1.
Proof: The proof of this proposition is performed by
mathematical induction.
The initial step.Fori = 1, it is easy to see that

folk) 2 |7+ + Z b\ Wt (14)
Noting that
7] < GIDI Y ve-nts| < &l DlI(n+ 1)
=0
and
n—1 n+j—1 B -
Z bg?r)lwk—n-ﬂ > Z bz+1wk nti| < 0(n+T)w,
1=0
we have from (14) that
folk) <a||D||(n+ Vo +bn+Tw=f, k<t
n+j—1
fO(k) > |6’< 0) + Z bz-l-lwk n-l—z‘a k= ﬁl
(15)
Since&é?) =04, = o, We have that
fO(Il) > .f_7
which implies that
T, £ mkin{k|k >n, fo(k) > f} =t,. (16)
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Similarly, for any0 < j < T, one can infer from (5) that through simply setting the upper bound of the duration length

ntj—1 asl (ie. T =1).
() & ﬁéﬁﬂ + 5<1?+j + 3 b wr ‘Based on the derived sequenc{gs}izl' ard {7;};>1, the
=0 binary functiondy, is designed as follows:
_(5) _ _
77451 < alDll(n+1)w (17 a1 i {iln <k<n}£0 1)
ntj—1 - - 71 0, otherwise
Z bfi)lwr._nﬂ <bn+T)w
=0 - Then, it is seen from Proposition 2 that
Noticing thatr; = ¢, and = ~
gmam =L o O = (T(k—t;) —T(k—1)). (22)
6(.7) A Oti+j = Ot 45, t1 <14 +_j <t i=1
ity 01 T +.7 = tl

) According to (22), it is easy to see that
we obtain from (17) that

n+j—1 _ = - _
(i i 1—0g)or=11-— I'(k—t;,)—T(k—1t Ok .
120 = oyl =+ 3 Wb, e (IR
=0
> [ L<T,+j<h Noting that
) n+j—1 . - o .
Fa) <P+ 3 b, | < Fom+i=1 SOk =)~ Tk =) S (D(k — 1) — Tk — £))
i=0 P P
which implies that s _
N , AT =) (Tk—t,) Tk —t)),
= mjm{J +1407 >0, fi(zy) < f} =t (18) i=1

As such, it is immediately known from (13) that the condition®hich implies that
t, =7, and ¢; = 7; hold fori = 1. - -

The inductive stepWe know that the assertion of this (1 = Ok)or = 0, — o = 0.
proposition is true fori = 1. Now, letting this assertion is
true fori = N (i.e.ty = 7 and ty = 7v), it remains to
ShX\IN thaththe _sa_:ne I'.;tsserti]?nhis true 7|f@f N +1. ded L(63) (yr, — Ciy,)

ong the similar lines of the initial step, it is conclude — (1 — 00)K (Ca + Do — Cing) + (1 — 6) Ko

that
= (1 — ek)K(CIk + Dy, — Ci?k)

Hence, we have

folk) < f, tn+n<k <ty
folk) > f, k= tniq Obviously, according to the PD state estimator (3), it is easy
. to find that the rejection of the outliers has been ensured based
which means that on our designed binary functiof),.
Ty =min{klk > 7n +n, fo(k) > f} =ty (19) Remark 6:In Proposition 2, we have established a method
g to derive the appearing moment sequence and disappearing
Similar to the proof in the initial step, it follows from (19) oment sequence of the outliers based on the input-output

that model (5). It is easy to find that the method proposed in
filmni) > fo tnar <147 <tnp Proposition 2 is effective for “large outliers” (i.e. the outliers
f-(T y<Ff. T =T satisfying o > 2f). In practical applications, the “small
JIN+1) =)y IN41 =

outliers” can be regarded as a class of norm-bounded noises.
which indicates that Obviously, the corresponding measurements contaminated by
_ A . M T such small outliers would not dramatically deteriorate the es-
= 0, f; < fl=t T ; )
TN+ Injln{j tInali > 0. filonn) < fE =tvn timation performance even if these measurements are involved
(20) in the estimation process, which implies that the constructed

To this end, by the induction, it is concluded that conditiondate estimator (3) is still effective to guarantee the desired
t. =1, and #; = 7 hold for all i > 1. The proof is now estimation performance by selecting the suitable estimation
-1 - .

Ezomplete. m Parameter.
Remark 5:In this paper, the outliers under consideration
are assumed to take place on an intermittent basis for whigh
the duration length is not more than a certain given constant.
It is worth noting that, the “detection” method proposed Now, we are ready to consider the error dynamics of the
in Proposition 2 can be easily applied to the case whestate estimation. Let the state estimation error and output

the measurement outputs are corrupted by impulsive outli@stimation error be;, £ z;, — &, andz, £ z, — 2. According

Design of the estimator parametér
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. . k—1 2
to the proposed PD state estimator (3) and Proposition 2, the 9 k—1—j || |wj
estimation error dynamics is described as follows: <0 =pm)Vi2+ ‘;2(1 — ) vj
=k
ep+1 = Aeg + Bwy, — (1 — 0,) K (yi, — C2y)
{ (A— KQ)ep + Bwy, — KDy, if 0, =0 1 )
o Aey, + Bwy, if 0, =1 k7 k 1- w‘:|
’ 1—p Vi + (1- J J
21@ = Mek ( 1) bi _]Zt Vj
(23) K1 2
. Wi

In light of the estimation error dynamics (23), sufficient < (1= )"V, L;] (29)
conditions are derived in the following theorem to ensure the '
desired estimation performance specified in this paper. On the other hand, for any+1 < k < i1, we have

Theorem 1:Consider the estimation error dynamics (23), , — 1, which means that '
Let Assumptions 1-3 and > n hold. For a given estimator
gain matrix K, if there exist a positive definite matriR ¢ AV =V — Vi
R™ "™ and two positive constanis; (i = 1,2) satisfying _ (Aek,l + Bwk,l)TP(Aek,l + Bwk,l) — el Pey,

orE g err]” oy [e
T2 |« T2 YB| <0 (24) = [wi—ﬂ T, { ]Z_ ] + p2 Vi1 + (1 + pz)Jwp—a |2
’r33
T’; T’; ! < p2Vior + (1+ pro) wi—1 |
A 2 2
T2 = [ * T%Q} <0 (25) Similarly, it follows that
VP> (14 p2) " MTM (26) Vi < (14 p2)Vier + (1 + o) lwn—1])* <
(T+u)"(1—m)E<1 (27) k=1 _
S (L) eV Y (U ) w2
where J=ti
k—1
Y22 (A-KC)TPB, T{¥2 —(A- KC)'PKD, - et

22 A T _ 33 & BT T _
Yw=BPB-1 Ty =D KO PKD -1, Hence, for any,  , < k < ;41, it follows from (29) and (30)

>

T2 2 _BTPKD, Ti'2 ATPA— (14 uy)P, that
T £ A"PB, Y3?2£B"PB—(1+ )l k-1
. I < Ftisay, (1
then the dynamics of the estimation error system (23) is ks (14 p2) Lisa +pa) Z { }

asymptotically stable with a prescribed energy-to-peak per- b

formance indexy. T

Proof: First, we consider the asymptotic stability of the <4 p)" | (1= m)E Vi, Z
estimation error system (23) under the conditions in Theorem =t
1. Construct the Lyapunov function as follows: kz:l [ }

(1+ p2)
where 8 £ (1 + p2)T(1 — ul)z < 1. Then, it is seen from

g

2

Vk e e;‘gPek J=t;,
Then, for anyt; < k < t,,, (i € Nt), we havef,_, = 0, k 2

which indicates that (31)

< BVE + (L+ po)”

AV =V, = Vi

— (A= KC)ej_1 + Bwy1 — KDuj_1)" P((A (29) and (31) that the inequality
— KCO)ej—1 + Bwy_1 — KDvy_1) — ei_1 Pej_1 ke 2

er1]l’ Tewa RRE Vi < BV, + (1 + p2) Z [} (32)
= fwp—1| Trjwr—1| —pu1Ve—1+ { k_l} Lk:l] =t

Vk—1 Vk—1 holds for allt; < k < t;41 (1 € N*). As such, when assuming

T zero disturbances (i.ewy, = 0 andv, = 0 for all £ > 0), we
Wr—1 WE—1 =
< — Vi , 28
< —prVig—1+ {ij {Vkl] (28) have that
from which we have Vi, < B'Vi,

Vi < (1 _ )V + Wk—1 WEk—1 which I_mp“es th%ﬂlmzﬁfo ‘/{-i+1 =0. NOtIng thath S ﬂ‘/{l
e PO e Vk—1 wheret; £ max{#;|k > ;}, it follows thatlimj_,., V} = 0.
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Therefore, we conclude that the estimation error system (23)In Theorem 1, sufficient conditions have been obtained to
is asymptotically stable with zero disturbances. guarantee the asymptotic stability and the prescribed energy-
Next, let us consider the energy-to-peak performance of tliepeak performance of the estimation error dynamics subject
estimation error system (23). Similarly, we can obtain that to the disturbances and the IMOs. Note that the derived
conditions in Theorem 1 are described by several nonlinear

v Vo+ (1 . matrix inequalities, which are quite hard to solve. In what
e <BVo+ (1+p2) Z v; follows, we are going to develop an algorithm to deal with
7=0

the design of the estimator gais.
for all 0 < k < #;. This, together with (32), implies that the Before presenting the algorithm, let us first give the follow-

following is true for allk > 0: ing corollary which will be employed in the algorithm.
Corollary 1: Consider the estimation error dynamics (23).
k-1 2 Suppose that Assumptions 1-3 hold daAd> n. Let two given
Vi < Vo + (1 + po) Z [ } (33) scalars0 < py < 1 and s > 0 satisfy the constraint (27).
J=0 Assume that there exist a positive definite matfixa matrix

s " o :
Consider the zero initial condition, it follows from (26) thatK € R™X™ and a positive scalaf satisfying the consraint
122 < A2(1 + p2)~ T, which implies that (25) and the following matrix inequalities

Yoo o TH

k—1 2 e’} 2 Y22 24
- W, w; - * 0o T
<2 3| )] <22 [ = T S Th<o e
Finally, taking the supremum ofz||? over time k gives F(+ po) " MM < P (35)

rise to || 2|2, < 72> peo(lwk||? + [lvx]|?) for any non-zero
wr € 12([0,00),R") and vy, € I2([0,00),R?). The proof is
now complete. [ | T = —(1—p)P, TH=ATP-CTKT, Y22 = ],
Remark 7:So fgr, we hg\(e desngngd the binary function Tf‘* BTP, ng 1 T34 DTRT, 7114 __p
0, and also obtained sufficient conditions that guarantee the
asymptotic stability as well as the prescribed energy-to-pe@ken, the estimation error dynamics (23) is asymptotically
performance of the estimation error dynamics. Based on ts@ble with a prescribed energy-to-peak performance index
derived input-output model (5), we can identify the appearing = 5~%°. Furthermore, the minimum energy-to-peak per-
and disappearing moments for each IMO exactly via a fixddrmance index can be derived by solving the following
number of past measurements. Apparently, it can be fouagtimization problem:
from Proposition 2 and Theorem 1 that all the important _
factors contributing to the system complexity have been re- max{7} (36)
flected in the main results. These factors include the syst&bject to the matrix inequality constraints (25), (34) and (35).
parameters, noise information (upper bounds), energy-to-pgak admissible estimator in the form of (3) is determined by
performance indexi4-l., disturbance attenuation level) andhe following gain matrix:
the outlier information (the upper bound of the duration length, 1=
the lower bound of the interval length, the smallest magnitude K=P"K (37)

of the outliers). In addition, when it comes to the algorithm  Proof: The proof is straightforward based on Theorem 1
implementation, we make the following observations accordnd Schur complement lemma, and is therefore omitted here

where

ing to Theorem 1. for space saving. -
1) u; > 0 should be selected to satisfy the conditior: By means of Corollary 1, we propose a Particle-Swarm-
11 < 1in order to guarantee the feasibility of the matri¥Optimization-based Estimator Parameter Design (PSObEPD)
inequality (24). algorithm as follows.

2) The feasibility of the matrix inequality constraints (24)- Remark 8:In this paper, we have investigated the energy-
(27) is affected by the values & and 7. Obviously, to-peak state estimation problem for time-invariant systems
decreasing the value of’ and increasing the value ofwith the measurements corrupted by intermittent outliers. The
T would enhance the feasibility of the constraints ifistinctive novelty of this work lies on the following three
Theorem 1, which means that a small upper bound 8spects: 1) a special detection approach has been developed,
the duration length and a large lower bound of the if2ased on the observable canonical form of the plant, to
terval length would help improve the desired estimatiofiistinguish the measurement outputs corrupted by outliers
performance. from the normal measurements; 2) a PD state estimator has

3) Note that the designed algorithm fér and the obtained been designed to ensure the “rejection” of the IMOs; and
sufficient conditions in Theorem 1 are independent & the energy-to-peak state estimation performance has been
the magnitude of the outlier,. As such, our developed achieved by selecting the estimator gain matrix according

estimation scheme is applicable in handling unboundé@ @ special algorithm (the particle-swarm-optimization-based
measurement outliers. estimator parameter design algorithm).
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Algorithm PSObEPD:

Step 1 Initialization: let X& £ [u1 ug]T be the location of the at the
i-th particle initial step. Generate particles under which the
matrix inequalities (25), (27), (34) and (35) are feasible. The
velocity of thei-th particle is set to bé(’g. Let the maximum
number of iterations bé&ax.

Step 2 Let the local best location of thieth particle and the global best
location at stepi be P} = X and PE = 0, respectively. Let
the iteration stegs be 0.

Step 3 Update the values oPi' and Pg: for the i-th particle, solve the
optimization problem (36) subject to (25), (34) and (35), and let
the solution to the optimization problem (36) beX;i)- Then,
update the values oP} and P} by P} = max;, {n(X})}
and P% = max; { P} }, respectively. If| Pf — Pg’_ll\ <¢
where¢ is a given small positive scalar representing the
computation accuracy, go tep 7

Step 4 Update the values of} and X} as follows:
S}i+1 = @S} +uiri (P — X1) + varg (PE —
Xppr =X + Si+1
wherep, v1 andwvy are the given inertia parameter and two
momentum parameters, respectively.andr, are the random
numbers betwee(0, 1). Letk = k + 1.

Step 5 Based on the values (pﬁ and M; according to the-th particle
Xy if the matrix inequalities (25), (27), (34) and (35) are
infeasible, letX; = X; _, andS;, =S}, _,.

Step 6 If k < kmax, go back toStep 3 else update the values 61‘2'
and PL by P} = maxy, {n(X})} and Pt = max; { P} },
respectively, and turn to the next step.

Step 7 Solve the optimization problem (36) subject to (25), (34) and (35)
according toPg. Calculate the desired estimator parameter by
K =P~ 'K. Stop.

X

)

IV. AN ILLUSTRATIVE EXAMPLE

In order to verify the effectiveness and correctness of the 0

“threshold” f is given as follows:
f=a|D|(n+ 1) +b(n+T)w=3.616.

Let the lower bound of the measurement outlier doe-
2.1f. Then, based on the design approach of the binary
function 6, described in Proposition 2, the values{®¥, } >0
are shown in Fig. 1. It is easy to see that our designed
“detection” strategy is capable of exactly “identifying” the
appearing and disappearing moments of each IMO.

12 —
[ X (P —t)-T(k - 1) |
I- ® ¢ WM® e ® ¢ ® ¢ WH o MWW WEIH W Wew g
2 o8 i b
= osf 2 4
g i
< 041 B 4
0.2~ FE : B
oo e
50 100 150
Time (k)
e 0,
I- ® ¢ WM® e ® ¢ ® ¢ PP O WW W REE W W W
L o8 o E B
Z osf s i - 4
B i -
< 04 - S B
02 FE B 7
s e
50 100 150
Time (k)

Fig. 1: The appearing moments and disappearing moments of IMOs
as well as the values off }r>0

Next, we shall deal with the design of the gain matkixof
ttrﬁe PD state estimator by applying the developed Algorithm

developed PD state estimation design scheme, in this sectibr OPEPD- Set the inertia parameter and two momentum

we shall provide a numerical example.
To render our simulation convincing, we adopt @amstable
linear system of the form (2) with the following parameters

0.67 0.42 04 0.6
A_[0.33 0.62}’ B‘[O.? 0.3

M = 0.351.

] L o=[09 0],

D=1,

According to the above matrices, it is observed that (2)
is observable. The process noise and measurement noise are

chosen as follows:

w sin(lOrl(k))] .
— | . , i 0<k <150
wr =<4 V2 [5111(107“2(/6)) HU=F=
0 , otherwise
vcos(brs(k)), if 0 <k <150
Vi =
0 , otherwise

parameters ag = 0.6, v; = 0.7 and vy = 0.7, respectively.
Then, the global best location derived by the algorithm is given
as follows:

1 = 0.635, o = 0.573.

The corresponding minimum energy-to-peak performance
index is calculated as = 0.95, and the estimator gain matrix
K is given by

Based on the developed estimator parameter and the binary
functioné,,, numerical simulation results are shown in Figs. 2-
3. All the simulation results confirm that the performance of
our developed PD state estimator is well achieved.

In order to show the superiority of our developed PD
state estimation scheme, let us now compare it with the
traditional Luenberger-observer-based estimation method. In

(38)

0.623
K= {0.525

where{r;(k)}i=1,2,3 are three random numbers at time instanhjs simulation example, the gain matrix of the Luenberger

k satisfyingr;(k) € [0,1], @ = 0.4 ando = 0.3. Obviously,

we have|lwg]|? < @? and ||vx]|? < »?, which means that
the energy-bounded noises andv;, satisfy the condition in
Assumption 2.

observer is set to b&’, which is exactly the same parameter
of our PD estimator wheid;, = 0. The trajectories of|Z||
under different estimation schemes are shown in Fig. 4. It is
confirmed from Fig. 4 that our developed PD state estimation

In this example, the lower bound of the interval length anstheme outperforms the traditional Luenberger-observer-based

upper bound of the duration length for each IMO are set

@8timation, which is simply because our developed state es-

T = 2 and T = 3, respectively. Based on the results iRimation algorithm caters for the “rejection” of the IMOs in

Proposition 2, the values of") (i = 0,1, j = 0,1,2,3)

andbl(.i)1 (j=0,1,2,3,0 <i<j+1) are calculated and the

the estimation process. Table | shows the valued| &f|2,
subject to different estimation schemes (our PD estimation
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TABLE I: The values off| 2, ||2, subject to different estimation
m schemes

T},

(1) 4
Tk

[EAES
, PD estimation 0.13728
Luenberger-observer-based estimation 8.74303

b 0 o N ®

subject to IMOs. In order to illustrate the intermittent nmatof

] the outliers, the occurrences of the measurement outliers have
been characterized by a sequence of shifted gate functions.
Furthermore, the norm of the outlier is assumed to be larger
than certain known scalar. A novel PD state estimator has
been constructed to deal with the estimation task based on an

Amplitude
3
;
.

% ) o active detection-based framework, under which the “harmful”
Time (k . N
“) measurements (i.e. the measurements corrupted by outliers)
Fig. 2: The state trajectories of." and " would be discarded. A special outlier detection strategy has

been developed to distinguish the measurements corrupted
by outliers from those normal measurements. Then, sufficient
conditions have been derived to guarantee the asymptotic
stability and energy-to-peak performance requirement of the
estimation error dynamics. A Particle-Swarm-Optimization-
based algorithm has been utilized to compute the desired esti-
mator parameter. Finally, a numerical simulation example has
been used to demonstrate the effectiveness of our developed
PD state estimation scheme. Further research topics include
the extension of the main results to 1) the distributed state
estimation problem for discrete-time systems with IMOs [11];
2) the set-membership state estimation problem for linear time-
varying systems subject to IMOs [39], [42]; 3) state estimation

Amplitude

- . for time-delayed systems with gain variations subject to IMOs
fime () [12]; 4) state estimation for neural networks subject to IMOs
Fig. 3: The state trajectories of> and [27]-[29]; and 5) the improvement of the state estimation
performance by using some latest optimization algorithms
L . [25], [26].
and the Luenberger-observer-based estimation), respec'uvgiy.] [26]
Obviously, our developed PD estimation scheme performs
better by achieving a much smaller peak valug| &f||. REFERENCES
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