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Finite-time State Estimation for Delayed Neural
Networks with Redundant Delayed Channels

Zhongyi Zhao, Zidong Wang, Lei Zou and Ge Guo

~ Abstract—The finite-time state estimation issue is addressed many artificial NNs and the effects of time delays might give
in this work for discrete time-delayed neural networks. More rise to undesired oscillation and even the instability of the
than one communication channel is utilized to improve the NNs. Accordingly, the dynamic behaviors of delayed NNs

communication performance. The transmission delays of each h b tensivel idered and anifi i b
channel are modeled by a family of stochastic variables which ave been exiensively considered and a signiicant number

are independent and identically distributed. The main purpose of Of valuable research results have appeared in the literature,
the current work is to construct an appropriate state estimation see [7], [16], [23], [24], [31], [44]. Among others, a research
scheme under which the corresponding state estimation error topic that has been drawing particular research attention is
dynamics is finite-time bounded in the mean square. By employ- {he state estimationffiltering issue for NNs with various time

ing the stochastic analysis approach and introducing a special L . .
Lyapunov-like functional, we have developed certain sufficient delays (e.g. distributed, discrete and mixed delays).

conditions to achieve the prescribed estimation performance. AS @ hot rese.arCh_ tOp_iC i'_" signal proceSSir_‘g and_ CC_’U“'O'
Furthermore, the exact expressions of the achieved estimator areas, state estimation/filtering issue has gained significant

parameters are given by solving a special minimization problem research interest due primarily to their wide application in
subject to certain inequality constraints. Finally, we propose an industry [2], [29]. For NNs, the state information is always
illustrative simulation to examine the correctness as well as the f' deali ith ' tain tasks includi timizati
effectiveness of our proposed state estimation method. necessary for dealing with certain a§ S inc u. Ing op |m|za.1 on
and control. Unfortunately, the state information of NNs might
not be always fully available (or accessible) due to a number
of reasons (e.g. the large network size and the resource
constraints). As such, the state estimation problem from
. INTRODUCTION available network measurements becomes critically important
A tremendous amount of research interest have been V\];Rr suc_cessful ut|I|zat|on Of.NNS In engineering practice. By
, different state estimation schemes have been developed

nessed_ n .past seyeral decades in .neural_ .networks (Nw ich include, but are not limited to, the well-known Kalman
due primarily to their strong self-learning ability adapting t?iltering [13], [18], the H.. state estimation [9], [41] and

complex environment as well as their application potentials e set-membership state estimation [10], [42] approaches
multi-objective optimization and control issues. So far, plent.}l ' '

S : . 10 mention just a few, the Kalman filtering technique has
of successful applications of NNs have been found in varioys . : L
. . i : een recognized as a credible estimation method to deal
of practical areas including the automation control, pattern., . . . . o
. . ; R . ith linear systems with Gaussian noises, but it might lead
recognition, signal processing and optimization calculation [ . . .

unsatisfactory performance if the external noises are not

[11], [15], [27], [28], [35]. In recent several years, plenty_ . . . .
; . ~strictly Gaussian. For the system with energy-bounded noises,
of important research results have been derived on variqus T . L .
o . . e H.. state estimation is an ideal estimation scheme which
analysis issues of the dynamic behaviors for NNs (such as

stability, passivity analysis and synchronization), see e.g. [2 Ims (o prov!de a fixed disturbance attenuation level on the
[22], [30], [33]. Furthermore, It is worth pointing out that tate estimation error. Furthermore, the set-membership state

. L o estimation method is able to handle the estimation task for
time delays would always exist in signal transmission for . : )

systems with unknown-but-bounded noises, which guarantees
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of research attention [13], [34], [38]-[40]. Compared with thenotivation of our study.
well-investigated FTS, the aim of the FTB is to ensure that According to the above discussions, in this work, we shall
the state trajectory could reach a bounded set within certaionsider the FTSE problem for a type of delayed NNs with
given finite time. It is worth mentioning that, in practicalredundant delayed channels. This is a non-trivial task because
engineering, FTB is sometimes more reasonable since tifethe following two identified difficulties: 1) how to design
stability might be difficult to achieve due to various reasorthe state estimator for the considered neural networks under
such as persistently bounded disturbances. Up to now, varidlie effects of redundant delayed channels? and 2) how to
FTB control/estimation problems have started to attract soraehieve the desired estimator parameters to guarantee that the
initial research interest, see e.qg. [34], [36], [39]. For instancdesired finite-time performance requirement is satisfied? The
in [39], the finite-time state estimation (FTSE) problem fomain purpose of this paper to provide satisfactory answers to
recurrent delayed NNs subject to component-based evethiese two questiongollowing are the primary contributions
triggered communication has been examined. In order abthe current work. (1) The state estimation issue is, for the
quantify the estimation performance, a special performaniiest time, investigated for NNs subject to delayed redundant
named finite-time bounded in the mean square (FTBMS) helsannels. (2) A novel SE is developed for dealing with the
been proposed in [39] where the desired estimator paramédtsite-time state estimation (FTSE) issue. (3) An optimization
has been obtained through solving a constrained optimizatiproblem is addressed to achieve the desired estimator param-
problem. In [36], theH., control issue has been addresseeters by minimizing the settling-like time (SLT).
for a certain type of Markovian jump systems subject to The remaining parts of this work are summarized as follows.
the average dwell time switching, in which the time-varyinghe mathematical model of our considered problem is present-
transition probability is partly unknown. Sufficient conditionsd in Section Il including the mechanism of redundant delayed
for the FTB of the concerned Markovian jump system hawghannels. Then, in Section Ill, we achieve sufficient conditions
been derived under which the system trajectory is enforcedt@deal with the FTB problem for the state estimation error
stay within a prescribed bound. (SEE) in the mean square by solving a special constrained op-
In response to the rapid development of networked corimization issue. Section IV provide an illustrative simulation
munication, more and more signal transmissions are impkxample to confirm the correctness as well as the effectiveness
mented via the communication network. As such, increasing the developed estimation method. Section V is a summary
research efforts have been devoted to the analysis and synthekifis paper.
problems with different network-induced effects including Notation: The notation utilized in this work is quite stan-
network-induced delays, signal quantization, channel fadirdgrd. In this work,Z* stands for the set of all nonnegative
packet dropouts [1], [6], [14], [17], [43], [45]. For examplejntegersR™*™ denotes the set of all x m real-valued matri-
in [6], partly known distribution transmission delays havees.R" represents the-dimensional Euclidean space. If the
been considered and the corresponding filtering issue of dimension of a matrix is not specified, it means that the matrix
networked systems has been studied. For artificial NNs, ith&s compatible dimension. The superscript tienotes matrix
often the case that we are only able to acquire the observatidi@gsposition0 and I denotes, respectively, the zero matrix
(e.g. the measurement data) transmitted via network chanrail identity matrix with appropriate dimensions. The notation
(e.g. communication networks with limited bandwidth) withS < 0 (respectively,S < 0) denotes thab' is a real symmet-
certain communication constraints. As such, the state estinfig-and negative semi-definite (respectively, negative definite)
tion problems for NNs with network-based communicatiomatrix. The notation|F'|| denotes the usual Euclidean norm of
have recently gained particular research attention. In ordesctor F'. The asterisk ¥” is utilized to denote a term which
to enhance the reliability of transmitted information, a nové$ induced by symmetry in symmetric block matric&s{x}
network-based communication scheme called redundant ché@notes expectation af The block-diagonal matrix is denoted
nel communication has been employed in [14] to cope with thy diag{...}. diag, { X'} represents the special block-diagonal
H.. state estimation issue. In such a communication schem@gtrix with the same blockX (i.e. diag{X, X, ---,X}).
one more channel is adopted as a redundant one aiming to re- —
duce the possibi!ity of packe_;t Io_sses in the single-channel cagee,, { X;} denotes[XlT xI ... X,ﬂ T [.] denotes top
In [43], the distributedH. filtering problem with redundant integral functions denotes Kronecker delta function of which
channels has been addressed for a type of Markov jump Lure,. .. . _ . 1, i=0
systems subject to stochastic switching topologies over sengspn't'on iso(i) = { 0, i#0 °
networks. Generally speaking, communication over redundant Il PRELIMINARIES AND PROBLEM STATEMENT
channels is a good scheme to improve the communication . ] )
performance since more information could be employed for es-In this work, we consider a special type of delayed discrete-
timation tasks as compared with the signal channel. It is wordine€ NNs with noise disturbance of the following form:

mentioning that, current research works about the redundant x(k+1) =Ax(k) + Ff(z(k)) + Bw(k)
channels have only considered redundant channels with packet + Ggla(k — d(k))) + J(k)

dropouts. As far as the authors’ knowledge goes, the research ) — Ol 1
on the redundant channels with transmission delays has not y(k) =Cux(k) @
yet been fully studied despite its explicit practical insight in z(k) = Lx(k)

communication and control areas. This leads to the primary x(k) =¢(k), 0>k >—max{d(k)}
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where z(k) € R" is the neural state vectorf(z(k)) = " 1(k)

vecy,, { fi(z;(k))} andg(x(k)) = vec,, {g:(x;(k))} denote the 2w | Channel 1 —

nonlinear activation functiony(k) stands for a Gaussian noise o “ pom

satisfying the condition&{w?(k)} = 1 andE {w(k)} = 0; %) Delayed Y el 2 2%

J(k) € R™ is the external biasy(k) € R" represents NRs

the output of the neurons;(k) € R": means the signal (k) )

to be estimatedyp(k) represents the initial conditiomd = '

diag{ay,as,--- ,a,,} denotes the state feedback coefficient —uChannely

matrix; G and F' denote, respectively, the delayed connection

weight matrix and the connection weight matri#, ¢ and i 1: The estimation scheme with redundant delayed chan-
L are the known real-valued matrice&k) characterizes the gq.

time-varying discrete time delay.

Assumption 1:For any given positive constakt the time-
delayd(k) satisfies Then, denotingk, = k — ¢ and using the Kronecker delta
function, ys(k) can be reformulated as follows

dm < d(k) < dy () ,
in which d,,, andd,, are the known nonnegative integers. ys(k) = Z §(t — 75(k))C(ky) + Dsvs (k) (8)
Assumption 2: [25] For anyt, s € R, s # ¢ , the nonlinear t=0
functionsg and f in (1) satisfyg(0) =0, f(0) =0 and Obviously, the output signaj;(k) contains both the “dis-
tributed delays” and “random variables”, which gives rise to
I < fils) = fi(®) <UFi=1,2,- (3) the main difficulty in designing the estimator basTed on the
s—t received signalj(k) = [y (k) u3(k) - FF (k)] .
m; < 9i(s) —9i(t) <mtii=1,2,-- 0, Remark 2:1t is easy to see from the developed measure-
s—t ment model (4) and the probability distribution (7) that the

redundant channels could transmit more information than

wherel I ;m.,m] denote some known scalars. ; - _
vl L single channel. More specifically, it could be found that the

Remark 1:As is shown in [25], the scalars I}, m;,m} " i PR :
in Assumption 2 could be zero, negative or positive. As suchroPaPility of gs(k) = y(ki) + Davs(k) i ps. If only
;ﬁe communication channel is utilized (e.g. only channel

it is clear that the nonlinear activation functions are allowed . . . .
a8 employed), the probability thag(k) contains the in-

to be non-monotonic, and these functions are more gene i bouty(F ) i H it icati
compared with the usual sigmoid functions. ormation abouty(k:) is p1,. However, ifi communication
.channels are adopted to transmit data, the probability that

In order to enhance the communication reliability, in th|s( ) contains the information abowt( ) is Zl - \which
work, redundant communication channels are utilized to de%ll]C : L i=1Dit,
larger than the single-channel case. In other words, as

. o |
\évgh \B\r/]i?hgs:a}otéznsfmIsésr:g?aﬁew;{(e?snst:e 2‘3’: da?r?atthtzerrima?r% number of redundant delayed channels increases, the

' o g Y, bp lllglrobability ofy (k) including the information of delayed signal
[ communication channels adopted between the NN and o), vs(Fr) yi(k=),i = 1,2, ...,1 would increase, and
i\v0 )y Yi\lvl )y = =0 5 Yi\lvr )y 0 — Ly 25 .00y ’

estimator, which are specifically shown in the Fig.1. Wﬁnis enables us to retrieve more useful information. In other

consider the case that the transmission delay would occur in
o g : Wgrds, redundant channels could largely enhance the commu-

each communication channel. Let the output signal transm|ttr(?lca,[i0n erformance between the NN and the remote SE

via the s-th channel be denoted hy (k) (s € {1,2,---,1}). P '

Obviously, . (k) could be written as follows: To achieve the estimates of the states for the NNs (1), we
Y+Ys ' develop a SE with the following form:

(k) = y(k = 7a(k)) + Diva (k) @ ok +1) = s (k) + F(2(0) + Gy (2(k - d(v)) )
in which vs(k) represents a Gaussian white noise of ¢k ! T
channel satisfying + (k) + (Ks (ﬂs(k) = 6(t— (k)
s=1 t=0
E{v;} = 0,2122.1_,2]? el (5) y C:E(l%g))
Ts(k) (k € ZT,s = 1,2,...,1) denotes the transmission 2(k) =o(k), 0=k =—dy
delay of thes-th channel which is assumed to be a sequence ©)

of independent identically distributed random variables. Leiherei(k) € R+ stands for the estimate of the staté)

7s(k) € S £{0,1,...,7} for all the k ands. Furthermore, the and (k) means the corresponding estimate of the sighé);

occurrence probability of (k) =t (t € S) is given by #(k) is the initial condition; andk, K, ..., K; stand for the
estimator gain matrices that need to be determined. Then,

Prirs(k) =t} = pst;s = 1,2,--- Lt =0,1,--- .7 (7)) Jetting 2(k) = 2(k) — 2(k) ande(k) = z(k) — 2(k), we could
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obtain the estimation dynamics according to (1) and (9) as LTL<P

follows: 0 < (1—7)e,

where7; = 7+ and

s=1 t:lO (10)
+ Bw(k) = Y KDy (k)
- =1 o0 Por - Dor
Z(k) = Le(k) « Dy - Dys
in which Q= . N
Q(e(k)) £ g(z(k)) — g(& (k)), £ % % D
fle(k)) £ fz(k)) — f(& (k). Oy = [fljlo ?Io <I_>lo

Definition 1: [34] Assume that there exist a time-based
function £, satisfying the following condition:

E{||2(k)||2} < &x, Yk 2 ki (11) Qo = * Qryrs iy
where k, = k.(e(0),e,) is the SLT function anct. > 0 * * Onn
is a given upper bound. Then, the dynamical system (10) is L
FTBMS. Ooo = ATPA+Y 7R; —yP — AL —T'M,
The purpose of our research is to handle the FTSE issue i=1

for a type of discrete time-delayed NNs (1). Specifically, our
main attention would be focused on the design issue of the

estimator parameter gaii§;, K>, - - -, K; such that the SEE i:ll
dynamics (10) is FTBMS with minimized SLE.. N ZpiOOTK;rPKiC
i=1

IIl. MAIN RESULTS

We firstly achieve the sufficient condition in this Section to
ensure that the SEE dynamics (10) is FTBMS. Before giving

1<i<j<l
l l

-[i,f'-ﬁ-j = VeC{—{(I)i,{—j}, ] = 1, 2, 3,
(1)771,?1 (I)‘T'l-fz (1)771,?3

+2 Z piopjoCT K] PK;C

l l
=Y pA"PK,C =Y piC K] PA

the main results of our work, let us introduce some necessar;
b= vRi+ Y piCTKI PE,C

lemmas.
Lemma 1: [4] Letting the matricesyy, Y, Y3 be given in
whichY; = Y/ andY, = Yy > 0, thenY; +Y{ Y, 'Y < 0

i=1 i=1

if and only if lsi<ysl
T s=te{l,2,---,7}
i Y =Y, Y3
Ve _Y <0, or vI vy, < 0. l
3 2 3 ! by = Z pispjtCT K PK;C — ZpitATPKiC
Lemma 2: [25] Let n = [n1,7m2, - 77771]T € R™ and 1<i<j<l i=1
T n -

fm) = [fi(m), fa(n2),---, fu(n,)]” € R™ be a continuous + Y pupCTK PEC,
nonlinear function satisfying, < fT(E) < L;;,e # 0,¢e € 1<i<j<l
R,1 <p <n with ¢, and L; being known scalars. Suppose s=0,t=1,2,--

that A = diag(A1, A2, -+, \,) is positive semi-definite. Then

oy = Y. pippCT K] PK;C

+2 > pipiCTK] PK,C,

[ n } { AM; =AM, } { n } <0 1<i<j<l

f(n) —AM; A fm) | = + Y pupisCTKTPKC,
where M, = diag(ty, 2, - -+ ,in), Mo = diag(t1, 72, -+ ,Tn), 1<i<j<l
Z’izbjbi_andlizL;—i—L?‘. 1<s<t<7

Theorem 1:Consider the estimator error dynamics (10) and
let the positive scalaf)h < v < 1, estimator gain matrices
Ky, Ko, ..., K; and the desired upper bound of SEE be —1
given. Then, the dynamical system (10) is FTBMS if thereq)“1 - l
exist [ + 4 positive definite matrices (PDMs) > 0, P > 0,
R >0 (@G =1,2--.,0), A= diag(\, Ao, -+, A\, ) > 0, s=1
r diag(%ﬁz, T 7'7nm) >0 SatiSfying {FMQ, 1=0

1,72

b <0 (12) '

— > puCTKIPF, i=1,2,--

Q12

Qoo |’

l
ATPF = " piCT"KIPF + ALy, i=0

ll

(13)
(14)
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l
ATPG =Y paCTKIPG,i=0
s=1
®i,‘7'3 = 1
=Y pC'EIPG, 1<i<~
s=1
(1)7"1,7"1 =-A + FTPFv (1)7"1,7"2 = Oa

O 7, = F'PG, @7, 7, = (dy —dp +1)Q — T,
@%g,fg = 07 @77'3,‘7'3 = GTPG - Q?
. P A B
lp =51y by = Py, = mifmy
ml +m;
mP: p2 pﬂp:1727"'7n17
Ll = diag(ilviQa' o 5an)5M1 = dia’g(mlvaa' o amnz)a
L2 = dlag(z\la/l\Qu c 7z\nz)7M2 = diag(fl\’bl,’fflg,' o ,’fl\’an),

l
0 =B"PB+Y DIK!IPK,D..
s=1

In addition, if the condition mentioned above is satisfied, the

SLT k, can be calculated by
0 > EVO)

k. = (-o)ens 7 B{V(O)} (15)

[log,, v oy |-

l1-0o
whereo € (0,1) is a scalar satisfying

A S

=E

l
1
—— (> _DI'KIPK,D; + B"PB) = 0e.  (16)
1—y i=1
Proof: Choose a Lyapunov-like functional candidate of
the following form:

=~
A
=
—
I
| |
Ms
)
i
<

where
Vi (k) =eT (k) Pe(k)
—1+k
Vo) = > AT (e()Qd(e (7))
j=—d(k)+k
dy—1 —1+4k

=Y D AENE))Qie (7))
i=dpm j=—it+k
T —1+4k

SXY X AR

s=1t=1j=—t+k

From (10), one obtains that

E{(1 =)Vi(k) + AVi(k)}
=E{Vi(k+1) —Vi(k)}
=E{eT(k +1)Pe(k + 1) — ve' (k) Pe(k)}
:E{eT(k)(ATPA —yP)e(k)

+ 2T (k)ATPF f(e (K))

+2¢T (k) AT PGi(e (k — d(k)))

l

- 222?51&6

s=1t=

+ff&mk»FTPFf<<m>

Rl

k)AT PK,Ce(ky)

pst e (k) FTPK Ce(k,)

— d(k)))GT PGg(e (k — d(k)))

-2 Pstd” —d(k)))GTPK ,Ce(k,)
s=1t=0
l T
+ 3N e (k) CT KT PE,Celk)
s=1 t=0

+2 ) Z Zpispjt

1<i<j<l s=0 t=0
x el (ks)CT KT PK;Ce(kt)

l
+B"PB+Y DIK! PKSDS}

s=1

E{(1 = y)Va(k) + AVa(k)}

k

> A (e)Qile))

j=——d(k+1)+k

—1+k
Y AT () Qe o»}

Jj=k—d(k)

97 (e(7))Qd(e(7)) — §" (e(k — d(k))Q

E{(1- )V3(/€)+AV3(k)}
—tda

> Z g7 (e(7)Qg(e (4))
i=dy, j=—i+k+1
—14+dn —14k

— Z Z ,7—J+k1T

i=dy, j=—1i+k

& 3 {i" e

=d,,

—vg<<%»Qme@nﬁ

(1)) Qe <»}

g(e (k)

ﬂ@W—%W@WWW@»
dy—1 -
- Z 7" (e(k:)Qq(e (ki))}
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k—dm

j=k—dn+1

E{(1 =7)Va(k) + AVa(k)}

l T k
‘E{ D> D> AMeT()Rsels)
s=1t=1 j=—t+k+1
l T =14k .
— > 7"’+k_leT(j)Rse(j)}
s=1t=1 j=—t+k
l T
—E{ Z el (k) Rge(k
s=1t=1
l T
- ZZ’}/ I{t R € kt)}
s=1t=1
l
:E{ Z%eT(k)R e(k
l T
=33 " yteT (kr) Rae( kt)}
s=1t=1

Moreover, it could be obtained from Lemma 2 and Assump-

tion 2 that
w (k)T [ _/iLl /iLAQ }w(k) >0 (17)
sy | M a0 as)
where w(k) = [eT (k) fT(e(k:))]T. As such, it can be

obtained according to inequalities (17)-(18) that
E{(l— NV(E) + AV(k)}

_ZE{ 1—v
<ZIE{ (1—~

H

(k) + AVi(k)}

(k) + AVi(k)}

ALy }w(k)}

—ALy

*

{ T[ —TM, I‘Mg]w(k)}
<E{n" (k)®n(k)} + B'PB + Z DTKTPK,.D,
where )
ah i)
g(e ( d(k))) e(ks)

Based on the condition (12), we have

l
E{(1—y)V(k)+AV(k)} < B"PB+ Y DIK!IPK.D,
s=1

which implies that
E{V(k)} <E{yV(k1) + 0}
<E{y*V(k2) + 6 + 6}
<E{y’V(k3) +7°0 +~6 + 6}

— Ak
< SEOVO0) + -0

1
<E{~* —
<E{y"V(0) + 1 _79}
Let e, be a prescribed upper bound B{||z(k)||*}. Then,
according to (14), there must existla< o < 1 satisfying
0=oce.(1—7) (19)
Noticing Definition 1 and (13), we have
E{[|IZ(k)|I"} =E{e" (k)L" Le(k)}
<E{V(k)}
<E{y*V(0) + oe.}

which means that the SLT functioh, can be derived as

follows:
. { 0,e, > EVOL
* = 1—0)es E{V(0
[log, 1%{\/(25}17 ex < A

The proof is complete now. |

By now, we have accomplished the analysis task in Theorem
1. Next, we are going to move onto the design issue of the
estimator parametel®; (i =1,2,--- ).

Theorem 2:Consider the estimator error dynamics (10).
Let the positive scalad < v < 1 and the desired upper
bounde, of SEE be given. Then, the dynamical system (10)
is FTBMS if there existl + 4 PDMs @ > 0, P > 0,

R >0 (1 <i<1),T 2 diag(y,72,- - ,m,) > 0, A £

diag(A, A2, -, An,) > 0, and ! matrices 7y, Zs,--- , 7
satisfying
=<0 (20)
LTL<P (21)
Q<0 (22)
where
= = » *
E—_p ==|Z1 =, = |21
[:21 =22 TS B
. - . . T
=, — |=T =T =T = =
Z1 = [~ =0 =F S “l—l,l] )
Eao :diag{hﬁéfh aé‘?aélla aél—l,l} )
[Joo = * * * %
Jio In * * * *
- Joo 0 Joo x ok o«
Yn = :130 0 0 333 * x |
: . *
[I70 O 0 0 3;;_
_ _377'1,0 j77'1,1 J‘17'1,77'
221 - 3%2,0 j77'2,1 J72,77' )
73,0 73,1 J‘7'3.,7'
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~ j77'17‘7'1 * *
Yoo = |Inm  dnm * )

jf’sfl jfsf2 jfsf3

—yP+ Y _ 7R, — AL, —TM,

Jij = :
! Y YR, i=jij=12...,7
S puCTZTA, j=0,i=1,2,..
— S puFTZ,C+ ALy, i=0
Imi=9 =Y puFTZ,Ci=1,2,...,7
—A, i=T+1
M, i=0
Ji=14 0, 1<i<h
(dM_dm""l)Q_Fu Z':77_2
> paGTZ0, 1<i<T
j?g,i: O, 'L':7_'1,7_’2
_Qu 7’:77—3
E=[PA 0 -~ 0 PF 0 PG]
[\/P10Z:C 0 0 0 0 0]
~ \/P20ZQC O --- 0 0 0 O
20 = . L ,
L vPi0ZiC 0 -~ 0 0 0 0f
EO = dlagl{_P}a
0 /p1iZ:C -~ 0 0 0 0]
~ 0 p212:C --- 0 0 0 O
== 1. . . A
0 piZiC -+ 0 0 0 0f
El = dlagl{_P}a
00 - pzz1C 0 0 0
0 0

VparZsC 0 0 0

00 - prZilC 0 0 0

_p(iJrl)OZi-i-lC p(i+1)1Zi+IC
pioZiC pinZ;C
P(i+2)0Zi+2C  Pit2)1Zip2C

=, = pinZiC pi1 ZiC
pZiC pinZiC
pinZiC pinZiC
pi+1)7Zit1C 0 0 0]
piz Z;C 0 0 0
P(i+2)7Zi+2C 0 0 0
pifZiC 0O 0 O , 121,2,
plelC 0O 0 0
pifZiC 0 0 O_
Eu = diagy_y{—-P}, i=1,2,---,1-1,

S P ATZ,C =Y pCTZ A =0

T

BTPB — (1 —7)e, x ¥ ok %

Z1Dq —P % * *

O = ZQDQ 0 —P * *
21Dy 0 0O 0 -P

Furthermore, if (P,Q, R1, Ra, -+ , R, AT, Z1,Z2,- -+ , 7))

is a feasible solution of (20)-(22), then the parameters of the
admissible finite-time SE can be acquired through matrices
Zi(t=1,2,---,1) as follows:

K, =P 'Z.,i=1,2,---,1 (23)

Proof: First, we denote

@0 = [ PioK:C 0 -+ 0 0 0 0]
061‘1:[0 VoanK;C --- 0 0 0 O]
iz =[0 0 - VPFK,C 0 0 0]
i=1,2, .1
T
w=laf f - of]
7=0,1,..,7
B = | PalGC P GO prlC 00000
Y piok;C panK;C - piK;C 0 0 0
1<i<j<l
T .
Bi:[ﬁfm Bliza -+ BZI] , 1<i<i—1
o=[2 of o of S - 5]

o=11-1)+F+1)i+1
T = diag {P, P,--- , P}

Using Lemma 1 and applying the change of variables
throughZ;, = PK, (j = 1,2,---,1), it can be seen that
O ==,+0T7T0 ==; —(YO)T(-T)"1(TYO) < 0 is guar-
anteed by the LMI (20). Note also that (14) can be rewritten
asY'_, DTKTPK,D; + BTPB — (1 — y)e. < 0, which
is guaranteed by the LMI (22) from Lemma 1. According to
Theorem 1, the SEE dynamics is FTBMS. The proof of this
theorem is now complete. [ |

Having designed the finite-time estimator, we are now
going to aim at solving an optimization problem for the SEE
dynamics (10), that is, we would like to minimize the SLT.

Theorem 3:Let the prescribed positive scalar< ~ < 1,
the desired upper bound. of SEE and the upper bound of
le(i)]|* and||g(e(i))|* (@ = 0,~1, -, —du), & and g(e;),
be given. The SEE dynamics (10) is FTBMS if there exist
2046 PDMs@ >0, P >0, R, >0(1 <:i<]),TI =
diag(y1,7v2,+ ,Vn,) > 0, A = diag(A1, Aa, -+ , A, ) > 0,
Sp>0,59>0,5g >0(1<i<]I)andl matricesZ;, Z,

-+, Z; such that the optimization problem

1
min trace{Sp + S¢g + Sy 24
X,8%,AT, 21,22, 2 {9p +5¢ ; r}  (24)
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with constraints (20), (21), (22) and constraints proposed theorem. Consider the NNs (1) and the output model
_Sp PT e So QT . (4) with th_e following parameters:
p 1<% o —r|=% 1 0 0 0.1 0.05 0.03
_Sn RT (25) A=10 028 0 |,F=1]006 01 005 ],
[ I jj]<0,i—1,2,~--,l 0 0 01 0.05 0.1 0.08
_ . . [ 0.03 0.07 0.1 0.05
has feasible solution, whereX and Sg3 denote, G=1|002 003 004 |,B=1 002 |,
respectively, —set {P,Q Ry, Ry,---, R} and set 0.06 0.02 0.04 0.01
{Sp,5¢, SR, SRy, -+ ,Sr, }. Furthermore, when (24) T 02 04 03 15 1 05
is feasible, the estimator parameters can be given by (23) and C = : ' |, L= ' N
. = 0.25 0.3 0.2 09 1 2
the upper bound of minimum SL%,, k., can be calculated L
by po_[001] , _[oo01] o _[o001
L0020 002 0P 002 |0
1-— " r
k. =log, ( E o)e (26) 0.08 cos(k) k
{v} J(k) = | 0.05sin(k) | ,d(k) = mod(5).
where | 0.06 cos(k)
v =E{||P||F - € The activation function is chosen as
—1
1 L f(z(k)) = |tanh (0.3z1(k tanh (0.1zo(k
£ Il — o D@ - 3() (a(k)) = [tonh (0.321(8) tanh (0.12, (k)
j=—du (27) tanh ( — 0.2173(]{3))}
ioF -1 _
_ . g(z(k)) = [tanh (0.2z1(k)) tanh (— 0.7z2(k))
+ > T R )

T
= tanh (0.5z5(k))]
Proof: According to Theorem 2, it can be proved that
the dynamical system (10) is FTBMS and (23) is the explicitnd it can then be calculated that
expression of the desired estimator parameters. Moreover, by
using Lemma 1, constraint (25) is equivalent®d P < Sp,

QTQ < So, R'R, < S, (1 < i < I). Noticing the fact 11 = diag{=1, =1, =1}, My = diag{~1, ~1, -1},

that, for a positive-definite matri® and a vector, z7 Pz < 0 00 0 0 0
| P||F-||z]|? = \/trace(PT P)-||z||? and the form ofE{V(0)}, Ly=100 0} ,My=10 00
we can gain the conclusion that the optimization problem 0 00 0 00

(24) could achieve the optimization &{)(0)}. According  Assume that there are three communication channels be-
to Theorem 1, the SLT functioh. can be calculated by (15) tween the NN and estimator. The corresponding stochastic
and one can find that the smaller t8¢)(0)}, the minimum transmission delay- (k) (i = 1,2,3) satisfy the following
the SLT k.. This completes the proof of this theorem. B probability distribution:

Remark 3:In the above theorem, we have proposed suf-
ficient conditions to achieve the FTB of the SEE dynamics Pr{ri(k) = 0} = 0.85, Pr{m(k) =1} = 0.1,
in the mean square with the optimized SLT function through Pr{ri(k) =2} =0.05
an optimization problem with particular solution matrices. Let v = 0.6 ande, = 0.5. According to the results in

Moreover, the explicit expressions of estimator parameters tﬂtueorem 3, we adopt the MATLAB LMI toolbox to cope with
(9)Rand tr:(e 4c.)f)t|rl1r:zed Slt_'I;jhavz beefn glltvzn tm E-he mezn}/vhllk%.e optimization problem (24) whose solution matrices have
emark =.1n the past decades, faull detection an aulﬁrescribed particular structure with the LMI constraints (20),

:joler?nttrc]:o_ntro; have g_aln_?d more f;dl mtzfe research mr:e fﬁ) and (22). Then, the estimator gain matrié¢és K- and
ue to their obvious significance [19].In this paper, we ha . can be achieved as follows:

investigated the case that the probability distribution of trans-

mission delay existing in each channel is known. Note that, —1.8618 2.7192
the delay step considered is bounded, which means that the Ky=| 0.0326 0.0298
channel failure and sensor faults have not been considered [ —0.0471 0.0789 |
here. One of our future research topics is to extended our [ —1.8618 2.7192 ]
main results to the finite-time state estimation problem subject Ky = 0.0326  0.0298
to sensor faults or channel failure by adopting some adequate —0.0471 0.0789
fault detection methods. T _1.8618 2.7192 |
K3 = 0.0326  0.0298
IV. NUMERICAL EXAMPLE | —0.0471 0.0789 |

We shall give an illustrative numerical simulation in this The corresponding simulation results are given in Figs. 2-
section to confirm the correctness and effectiveness of thein which Figs. 2-3 plot the state trajectories of(k)
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(z = 1,2) and their estimations; (k) (i = 1, 2) with the initial
condition z(0) = [3 —5 1.6]", #0) = [0 0 0],

¢(i) = ¢(i) = 0 (i < 0). Fig. 4 shows the dynamical
evolution of the SEE (k). Fig. 5 shows the Euclidean norm

of the SEEZ(k) and the prescribed upper bouad The SLT
function k. can be computed ak. = 16, and it is easy to
see that the square of Euclidean norm of the SEE stays
below its upper bound. in Fig. 5. For comparison purposes,
the influence of redundant delayed channels on estimation
performance have been observed in TABLE |, wh&rstands

for the number of delayed channels dadrepresents the SLT
function. It could be found from this simulation that increasing
the number of redundant delayed channels would help lead to
the reduction of the SLE,, which proves the effectiveness of
our proposed estimator design algorithm. The impact of the
communication channel parameters on estimation performance
is given in TABLE Il, where

1 N M
A -\ (12
aveL=—= "% el
N-M= j=1
1 N
fé—_, ti
2>

i=1

with N, M andt; being respectively the number of the
simulation trials, the step size and the running time of the
i-th simulation trial. The transmission delay(k) (i = 1,2, 3)
of three cases are shown as follows:
o case 1.Pr{r;(k) = 0} = 0.85, Pr{m(k) = 1} = 0.1,
Pr{r(k) =2} =0.05
o case 2:Pr{r(k) = 0} = 0.9, Pr{r(k) = 1} = 0.1,
Pr{ri(k)=2}=0
o case 3:Pr{r;(k) = 0} = 0.95, Pr{r(k) = 1} = 0.025,
Pr{r(k) =2} =0.025
Through TABLE I, the effectiveness of our proposed design
method has been further proved.

TABLE I: The relationship between the numhar of redun-
dant delayed channels and the upper bokindf SLT function
k.

N ks«

3 | 16.4847
4 | 13.8552
5 | 13.6816

TABLE II: The influence of the communication channels’
paameters on estimation performance

25

20

Amplitude
N
(4

=
o
T

. . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Time (k)

Fig. 2: The state evolutions afi (k) and (k).

15

=

o
T

o

Amplitude

. . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Time (k)

Fig. 3: The state evolutions ah(k) and 25 (k).

1.4

Amplitude
o o o =
5 o ® e~ N
T

o
N

o
T

-0.2

04 . . . . . . . i .
0 10 20 30 40 50 60 70 80 90 100
Time (k)

Fig. 4: The component§;(k) (i = 1, 2).

performance index ks ave t
case 1 16.4847| 0.0642 | 8.1180
case 2 13.7452 | 0.0543 | 1.7856
case 3 13.2471 | 0.0465| 3.1821

V. CONCLUSION

To improve communication performance, redundant channels
have been used to design the finite-time SE with novel

structure and the time delay phenomena existing in redun-
dant channels have been concerned. By introducing a special
Lyapunov-like functional corresponding to SEE dynamics and

using the stochastic analysis technology, we have achieved
sufficient conditions ensuring that the SEE dynamics actualizes

The FTSE problem has been addressed in this work foF@BMS. Then, the desired estimator gains have been given by
type of delayed NNs subject to redundant delayed channedslving a special constrained optimization problem. Finally, a
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