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Abstract 
Face shape and surface textures are two important cues that aid in the perception of facial 
expressions of emotion. Additionally, this perception is also influenced by high-level emotion 
concepts. Across two studies, we use representational similarity analysis to investigate the relative 
roles of shape, surface, and conceptual information in the perception, categorisation, and neural 
representation of facial expressions. In Study 1, 50 participants completed a perceptual task 
designed to measure the perceptual similarity of expression pairs, and a categorical task designed to 
measure the confusability between expression pairs when assigning emotion labels to a face. We 
used representational similarity analysis and constructed three models of the similarities between 
emotions using distinct information. Two models were based on stimulus-based cues (face shapes 
and surface textures) and one model was based on emotion concepts. Using multiple linear 
regression, we found that behaviour during both tasks was related with the similarity of emotion 
concepts. The model based on face shapes was more related with behaviour in the perceptual task 
than in the categorical, and the model based on surface textures was more related with behaviour in 
the categorical than the perceptual task. In Study 2, 30 participants viewed facial expressions while 
undergoing fMRI, allowing for the measurement of brain representational geometries of facial 
expressions of emotion in three core face-responsive regions (the Fusiform Face Area, Occipital Face 
Area, and Superior Temporal Sulcus), and a region involved in theory of mind (Medial Prefrontal 
Cortex). Across all four regions, the representational distances between facial expression pairs were 
related to the similarities of emotion concepts, but not to either of the stimulus-based cues. 
Together, these results highlight the important top-down influence of high-level emotion concepts 
both in behavioural tasks and in the neural representation of facial expressions. 

© 2021 Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in 
final form at https://doi.org/10.1016/j.cortex.2021.08.007
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Introduction 
Facial expressions are associated with specific musculature movements which physically change the 
appearance of the face and are consistent across individuals experiencing the same emotion (Ekman 
& Friesen, 1971). These movements allow for changes in the overall shape of the face, such that 
both the shape and position of individual features may vary. For example, a smile changes the shape 
of the mouth, whereas a surprised face may change the position the eyebrows. Muscular 
movements also create differences in what is referred to as surface information, i.e. the texture of 
the face (Bruce & Young, 1998). As the shape changes, the pattern of light reflectance and shadows 
across the face also changes due to differences in the protuberance of the shape. For example, an 
angry scowl is associated with a lowered brow which causes a darker shadow above the eyes than 
other expressions. Both shape and surface information play an important role in the perception of 
facial expressions. 

Evidence for the role of shape and texture cues in the perception of facial expressions of emotion 
comes from studies that assess differences in performance when a cue is disrupted or removed. For 
example, some studies have used contrast negation to disrupt surface cues, while keeping shape 
cues intact. This contrast negation had no effect on error rates during same/different judgement 
tasks (Harris, Young, & Andrews, 2014; White, 2001), nor on psychophysical thresholds at which an 
emotional face could be discriminated from a neutral one (Pallett & Meng, 2013), suggesting that 
the perception of facial expression relies little on surface/texture information and instead depends 
mostly on shape information. Similarly, other studies have shown that participants are able to 
recognise emotions from line drawings of facial expressions, which removes the surface cues and 
leaves only shape cues available (Etcoff & Magee, 1992; Katsikitis, 1997; Mckelvie, 1973). While 
these studies suggest that shape cues are the most important in the perception of facial expressions, 
there is some evidence that surface cues may also play some role. For example,  Sormaz, Young and 
Andrews (2016) created sets of stimuli in which either shape or surface information were removed, 
by warping faces to the average shape (removing shape information) or by applying the average 
surface texture to the original shapes (removing texture information). Recognition accuracy for both 
sets of stimuli was well above chance but was significantly improved for original unedited images 
(that varied in both shape and surface information). Additionally, Calder, Burton, Miller, Young, and 
Akamatsu (2001) showed that facial expressions could be classified from principle components 
derived from shape-free images (similar to those used by Sormaz, Young, and Andrews, 2016), 
suggesting that differences between facial expressions are conveyed by variation in surface 
information. These studies suggest that shape and surface cues play separate roles in the perception 
of facial expressions. 

Visual perception, however, is not solely a feed-forward stimulus-driven process; top-down 
knowledge and predictions facilitate visual perception and aid in the recognition of stimuli across 
multiple domains, including social categories (O’Callaghan, Kveraga, Shine, Adams, & Bar, 2017; 
Stolier & Freeman, 2016). For example, judgements of gender and race can be biased by 
expectations based on internal concepts of stereotypes (Levin & Banaji, 2006; Macrae & Martin, 
2007). Evidence for the role of top-down mechanisms in the processing of facial expressions of 
emotion comes from studies that manipulate access to internal concepts emotions via ‘semantic 
satiation’ (see Smith & Klein, 1990). Briefly, these studies rely on the assumption that when a word 
(e.g. an emotion label) is read aloud a high number of times, access to the meaning of the word 
becomes attenuated. After repeating emotion labels aloud (and thus disrupting access to the 
concept of the emotion), participants were less accurate at matching pairs of facial expressions 
(Lindquist, Barrett, Bliss-Moreau, & Russell, 2006), and experienced reduced effects of repetition 
priming (Gendron, Lindquist, Barsalou, & Barrett, 2012). Further evidence comes from studies 
showing that the presence of emotion labels can affect the perception of facial expressions. For 
example, some studies have shown that if an emotion label is presented alongside a facial 
expression, then participants’ memory of the expression they had just viewed is biased towards the 



 3 

emotion corresponding to the label (Halberstadt & Niedenthal, 2001; Nook, Lindquist, & Zaki, 2015). 
Additionally, participants were poorer at matching facial expressions to an emotion label than they 
were matching them to a prototypical facial expression (Fernández-Dols, Carrera, Barchard, & 
Gacitua, 2008). It has been argued that the presence of emotion labels activates concepts that guide 
the perception of emotions from facial expressions (Nook et al., 2015). 

Research so far has therefore shown that both stimulus-based cues and conceptual information 
influence performance on tasks requiring the perceptual matching and categorisation of facial 
expressions of emotion. And what happens in the brain? One possibility is that different brain 
regions represent the different types of information that influence emotion processing. Research 
using functional magnetic resonance imaging (fMRI) with Multivariate Pattern Analysis (MVPA) has 
demonstrated that facial expressions are decodable from their patterns of activation (Harry, 
Williams, Davis, & Kim, 2013; Said, Moore, Engell, Todorov, & Haxby, 2010; Wegrzyn et al., 2015; 
Zhang et al., 2016) within each of the core face processing regions (the Fusiform Face Area (FFA), 
Occipital Face Area (OFA), and Superior Temporal Sulcus (STS); Haxby, Hoffman, & Gobbini, 2000). 
Furthermore, using an fMRI-adaptation paradigm, Andrews, Baseler, Jenkins, Burton, and Young 
(Andrews, Baseler, Jenkins, Burton, & Young, 2016) showed that the FFA and OFA are sensitive to 
changes in face shape and surface textures between different identities. It is possible, therefore, that 
these cues may influence how facial expressions are represented within these regions. In contrast, 
there is some evidence to suggest that regions typically involved in the processing of theory of mind 
may represent emotions in a way that is independent from any stimulus-properties. Machine 
learning classifiers trained to discriminate between patterns of activation in response different 
emotions within one stimulus modality (e.g. voices) can successfully decode different emotions 
within a different modality (e.g. faces), using voxels within the Medial Prefrontal Cortex (MPFC) and 
STS (Peelen, Atkinson, & Vuilleumier, 2010). Similar cross-modal classification of valence was found 
using activation patterns in the MPFC in response to positive/negative facial expressions and 
animations (Skerry & Saxe, 2014), suggesting supramodal mechanisms that are not dependent on 
stimulus properties. While the MPFC is not typically face-responsive, research using TMS has 
reported interference with a number of facial expression processing tasks (Gamond & Cattaneo, 
2016; Harmer, Thilo, Rothwell, & Goodwin, 2001; Mattavelli, Cattaneo, & Papagno, 2011; Wölwer et 
al., 2014), suggesting that this region may have some involvement in the perception of facial 
expressions. These lines of research could suggest that the MPFC offers some guidance to facial 
expression perception by representing modality-independent emotion concepts. 

Several studies have used Representational Similarity Analysis (RSA) to examine the roles of 
stimulus-based cues and emotion concepts in both behavioural tasks and neural representations of 
facial expressions. RSA allows the comparison of the structure or geometry of representations across 
different modalities, methods, or groups (Kriegeskorte, Mur, & Bandettini, 2008), which cannot be 
compared directly (such as comparing brain representations with computational models or with 
behaviour). In RSA, the similarities (or dissimilarities) between the responses to all pairs of stimuli or 
conditions in one modality are computed to construct a Representational Dissimilarity Matrix (RDM). 
RDMs can then be compared across modalities, typically by correlating the RDMs. RSA has been 
previously used to investigate the role of concepts in the perception of facial expressions (Brooks & 
Freeman, 2018), the similarity of emotion representations across sensory modalities (Kuhn, Wydell, 
Lavan, McGettigan, & Garrido, 2017) and the integration of high- and low-level representations in 
judgements of personality traits from faces (Stolier, Hehman, & Freeman, 2018; Stolier, Hehman, 
Freeman, Keller, & Walker, 2018). 

RSA has also been used to assess the relationship between perceptual similarity of facial expressions 
and the similarities of face shapes, surface textures, and emotion concepts. The perceptual similarity 
of pairs of facial expressions is often measured using subjective judgements on a seven-point scale 
(Said et al., 2010; Sormaz, Watson, Smith, Young, & Andrews, 2016). Sormaz, Watson, et al. (2016) 
computed the similarities of pairs of emotional face shapes (using Procrustes analysis) and 
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similarities of surface textures (using the correlation between pixel intensities) and found that the 
similarities of these stimulus properties predicted subjective ratings of perceptual similarity. 
Furthermore, this measure of perceptual similarity predicted representational similarity of 
expressions in the OFA, STS, but not the FFA. In another study, Said et al. (2010) also found that 
representational similarity of expressions in the posterior-STS was predicted by subjective ratings of 
perceptual similarity. Together, this research suggests a relationship between perceptual similarity 
and the similarity of shape and surface properties, and between perceptual similarity and 
representational similarity within the OFA and STS. Research has yet to examine whether shape and 
surface cues can directly explain the representational structures within the core face regions. 

A recent study by Brooks and Freeman (2018) used RSA to assess the relationship between the 
perceptual similarity of facial expressions and pairwise similarities of emotion concepts. Perceptual 
similarity of the images was measured using two approaches. The first was the deviation in mouse-
tracking trajectory during a two-choice categorisation task, where participants categorised facial 
expressions into one of two categories using a mouse to drag the face towards one of the category 
labels. The size of the deviation in trajectory towards the non-target category label is argued to 
reflect the degree to which that category was activated by the perception of the face (Freeman, 
2018). The second approach used a reverse-correlation paradigm (Dotsch & Todorov, 2012), where 
participants chose which of two identical neutral faces, overlaid with different patterns of noise, 
displayed more of a target emotion. Patterns of noise that were chosen to display more of a given 
emotion were then averaged (for each emotion) and were rated by independent samples to provide 
the measure of perceptual similarity for each emotion pair. Conceptual similarity was measured 
using subjective ratings of the similarity of emotion categories, and the Euclidean distance between 
vectors of ratings of each emotion category on its association with a set of traits. Across all 
experiments, each measure of conceptual similarity predicted each measure of perceptual similarity, 
even when controlling for the similarities of several image properties. These results suggest that 
emotion concepts may influence the perception of facial expressions. 

In a subsequent study, Brooks, Chikazoe, Sadato and Freeman (2019) found that conceptual 
similarity predicted representational similarity of facial expressions in the brain. Using a whole-brain 
searchlight, results showed that the representational structure of expressions within a region of the 
right fusiform gyrus was explained by the similarity of emotion concepts, after controlling for three 
measures of visual similarity of the stimuli (the similarity of face silhouettes, similarity of pixel 
intensity maps, and similarity of ‘higher-level visual features’ output from a computational model of 
object recognition). The searchlight analysis showed no other regions that survived correction for 
multiple comparisons. These results suggest that representations of facial expressions in the right 
fusiform gyrus may be structured according to the similarity of emotion concepts. Together, these 
studies show that the perceptual similarity of facial expressions can be predicted by the similarities 
of face shapes, surface textures, and emotion concepts, suggesting that these cues may influence 
the perception of facial expressions. Furthermore, they suggest that the representation of facial 
expressions within the core face regions may reflect the perceptual similarity of expressions (Said et 
al., 2010; Sormaz, Watson, et al., 2016) and the conceptual similarity of emotions (Brooks et al., 
2019). 

While these studies provide an understanding of the independent roles of stimulus-based cues and 
conceptual information in the perception of facial expressions, there are several unanswered 
questions. The first is whether the conceptual similarity of emotions still explains perceptual 
similarity when emotion labels are not present in the perceptual task. The explicit use of emotion 
labels in tasks designed to measure perceptual similarity could have led participants to rely more on, 
or make explicit use of, conceptual information (Fernández-Dols et al., 2008; Halberstadt & 
Niedenthal, 2001; Nook et al., 2015). For example, in the mouse tracking task from Brooks and 
Freeman (2018), the changes in mouse trajectories could be affected by the conceptual similarity of 
the emotion labels. As perception likely involves the interaction between multiple bottom-up and 
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top-down processes, it is unlikely that any perceptual task (e.g. a 3AFC task) will fully isolate the use 
of perceptual processes from any higher-level cognition. Despite this, ideally a perceptual task 
designed to assess the ability to discriminate between facial expressions using perceptual processes 
would avoid the use of any emotion labels. Such a task would provide a more rigorous test of 
whether emotion concepts influence the perception of facial expressions. 

The second question that remains unanswered concerns the roles of these cues in the explicit 
categorisation of facial expressions. The research outlined above has mostly measured perceptual 
similarity using ‘perceptual tasks’, although commonly used tasks in emotion processing research are 
categorisation tasks. Palermo, O’Connor, Davis, Irons and McKone (2013) distinguish between 
perceptual tasks (e.g. same/different, 3 alternate forced choice, etc.) and labelling tasks, by 
suggesting that labelling tasks require initial perception plus additional cognitive processes needed 
to assign an emotion label. Palermo et al. (2013) reported that performance on a perceptual 
matching task was correlated with performance on a labelling task. Furthermore, performance on 
the labelling task was correlated with performance on a vocal emotion labelling task, whereas 
performance on the perceptual matching task was not. Together, this suggests that the perceptual 
and labelling tasks share perceptual processes, whereas the labelling task also taps into a cognitive 
process used to assign emotion labels to a stimulus, regardless of the stimulus modality. These 
results suggest that perceptual tasks and labelling tasks may recruit different processes, or rely to 
different extents on different processes. It may therefore be of interest to examine the role of 
conceptual and stimulus-based cues in a task in which participants are required to explicitly assign 
an emotion label to the stimulus. 

Finally, a further question that research has yet to address is the roles of these cues in explaining 
how facial expressions are represented in the brain. While previous research shows that perceptual 
similarity of expressions can be explained by the similarity of stimulus-properties (Sormaz, Watson, 
et al., 2016), and that representational similarity in the OFA and STS can be explained by perceptual 
similarity (Said et al., 2010; Sormaz, Watson, et al., 2016), research has yet to examine the direct role 
of the stimulus-properties in explaining representational similarity. Furthermore, as conceptual cues 
also play a role in explaining representations of facial expressions in the FFA (Brooks et al., 2019), we 
do not know the relative roles of these different sources of information, in different regions of the 
brain.  

The aim of the current research is therefore to address these three questions. We conducted a 
behavioural experiment (Study 1) and an fMRI experiment (Study 2), using RSA in both. Model RDMs 
were constructed measuring the similarities of face shapes, surface textures, and emotion concepts, 
and were used to predict perceptual similarity, patterns of categorisation, and the similarity of 
neural representations of facial expressions. In Study 1 we addressed the first two research 
questions, assessing the role of these cues in explaining perceptual similarity of facial expressions 
(measured using a task with no emotion labels), and patterns of categorisation in an emotion 
labelling task. As shape, surface, and conceptual cues have all been shown to play a role in the 
perception and recognition of emotions, we expect all three of these cues to explain behaviour in 
the perceptual and categorisation tasks. Given that the presence of emotion labels may activate 
emotion concepts, we expect that conceptual cues may play more of a role in the categorical task 
than in the perceptual task. In Study 2, we addressed the third research question, using RSA and 
fMRI to examine the ability of these three models to explain the representational structure of facial 
expressions in different brain regions. We have chosen to examine three core face regions (the FFA, 
OFA, and STS), and a region that may represent stimulus-independent emotion concepts (the MPFC). 
Given the research showing that representational similarities within the core face regions is 
explained by perceptual similarity (which is itself explained by the similarity of stimulus properties; 
Said, Moore, Engell, et al., 2010; Sormaz, Watson, et al., 2016), we expect that the shape and surface 
models can predict representational similarities within these regions. As representations of 
emotions in  the MPFC are likely modality independent (Peelen et al., 2010; Skerry & Saxe, 2014), we 
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expect that the similarities of emotion concepts will explain representational similarities in this 
region. We report how we determined our sample size, all data exclusions, all inclusion/exclusion 
criteria, whether inclusion/exclusion criteria were established prior to data analysis, all 
manipulations, and all measures in the study. 

 

Study 1 

Methods 

Participants 
Fifty participants (40 women, mean age: 19.02 years, S.D: 1.70, range: 18-27) were recruited using 
the Brunel University London Psychology’s Participant Pool, and by word of mouth. Sample size was 
determined based on previous studies with similar participant sizes, although no formal power 
analyses were conducted. All participants reported normal or corrected-to-normal vision, no history 
of stroke, other neurological conditions, or diagnosed emotion processing disorders. Ethical approval 
to conduct the research was granted by the College of Health and Life Sciences Research Ethics 
Committee at Brunel University London. 

 

Design 
This study used a within-subjects design, so all participants completed both the Perceptual and the 
Categorical Tasks. The Perceptual Task was conducted first, so that the participants were only 
exposed to the emotion labels during the Categorical task.  

 

Perceptual task 

Materials 

We selected pictures of facial expressions of emotion from the Radboud Faces Database (Langner et 
al., 2010). Legal copyright restrictions prevent public archiving of the stimuli used in this study, which 
can be obtained from the Radboud Faces database: http://www.socsci.ru.nl:8180/RaFD2/RaFD. 
Three male identities and three female identities were chosen based on mean ratings on 
genuineness and intensity for the 6 basic emotions (using validation data from Langner et al., 2010). 
Identities with above average means (across all 6 emotions) and below average standard deviations 
for both genuineness and intensity ratings across the 6 expressions were selected. Only Caucasian 
adult identities were used (RaFD model numbers = 1, 8, 9, 23, 30, 58). In total, there were 36 
different pictures (6 identities x 6 expressions). 

For each identity, we created morphed continua between each pair of six emotions. Each face was 
marked with 112 fiducial points (using the positions in the FantaMorph software; 
www.fantamorph.com) to allow for linear interpolation between every pair of expressions, within 
identity (Figure 1A). Although FantaMorph was used to position the points, custom MATLAB scripts 
were used to create the continuum, which contained 100 discrete steps. Each face image was 
tessellated using Delaunay Triangulation to maximise the internal angles across triangles. Morphing 
between images was achieved by weighting the triangular mesh coordinates of the two images and 
determining, by interpolation, the colour values of the source images. Images were cropped to a 
square containing the whole face. All images were presented in full colour. 

 

http://www.socsci.ru.nl:8180/RaFD2/RaFD
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Procedure  

During each trial, participants simultaneously viewed 3 faces aligned horizontally (Height/Width = 
8.0°, Width of 3 images = 28.4°, with an average viewing distance of 60cm), each displaying one of 
two expressions. Beneath each face were numbers 1 to 3, and participants were required to indicate 
which one displayed a different expression from the other two (odd one out), by pressing the 
corresponding key (1-3) on a standard QWERTY keyboard (Figure 1B). The faces were presented for a 
maximum of 5 seconds, or until the participant made a response. There was an ITI of 300ms. All 
faces in each trial were of different identities, and the position of the target was random.  

To measure the perceptual similarity of pairs of expressions, we calculated discrimination thresholds 
using a psychophysical method. Psychophysical methods have been used in previous research to 
calculate sensitivity at which emotions can be detected in warped neutral-expressive pairs (Calvo, 
Avero, Fernández-Martín, & Recio, 2016; Marneweck, Loftus, & Hammond, 2013; Suzuki, Hoshino, & 
Shigemasu, 2006). Each trial was used in the threshold estimation for one of 15 possible pairs of 
emotions.  The emotion in each pair that was the odd-one-out was selected randomly for each trial 
(for example, a trial in the Happy-Disgust threshold estimation might contain two examples of Happy 
and one of Disgust, or two of Disgust and one of Happy). Each of the three pictures in each trial 
came from continua between the same pair of emotions (but with different identities), but two were 
from one end of the continua and one was from the other end. The first trial for each pair of 
emotions started with the 100% versions of stimuli (the end points of the continua). For example, in 
the first trial of the Happy-Disgust threshold estimation, two faces displayed 100% Disgust (and 0% 
Happy), and the other face displayed 100% Happy (and 0% Disgust). A staircase procedure 
(Cornsweet, 1962) was used to adjust the weighting of the expressions in each image by 10% of the 
remaining distance in each step. For example, faces presented in the next step of the Happy-Disgust 
staircase contained 90% Happy (and 10% Disgust) and 90% Disgust (and 10% Happy). This meant 
that the fiducial points of one expression were moved towards the corresponding points of the other 
expression (by 10% of the distance) for correct responses, and were moved away from the points of 
the other expression for incorrect responses (Figure 1C).  

A 1-up-2-down design was used such that the participants were required to consecutively respond 
correctly 2 times for the weight to be adjusted downwards. No exaggerations were shown during 
the task (e.g. if a participant responded incorrectly on the first trial of one threshold estimation, 
weighting did not increase above 100%). The threshold estimation for each pair of emotions was 
terminated after 8 reversals in performance, and the discrimination threshold for a given pair of 
emotions was taken as the mean weighting at the last 7 reversal points. A perceptual matrix for each 
participant was constructed from the discrimination thresholds for each pair of emotions. Emotion 
pairs were intermixed and presented in a random order. After all pairs had been presented, the 
weighting was adjusted, and all (remaining) emotion pairs were presented again in a random order. 
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Figure 1: (A) Examples from the Happy-Disgusted continua, for three identities. Faces with red 
borders show an example of a trial at 75% weight. (B) An example trial at 75% weight. The odd-face-
out in this trial is indicated with a green border. (C) An example of the staircase adjustment for the 
weighting of trials. Weight (as a percentage of the distance between the two prototype faces) is 
shown on the y-axis, trial number is shown on the x-axis. Red markers indicate reversals in 
performance. The dashed red line indicates the threshold, calculated as the mean weighting at the 
last 7 reversals. 

 

Categorical task 

Materials 

We selected pictures of facial expressions of emotion from the Radboud Faces Database (Langner et 
al., 2010). Ratings of genuineness (using validation data from Langner et al., 2010) were used to 
select the top 40 most genuine examples of each emotion. In total, there were 240 images (40 x 6 
emotions). 28 of these images were used to create the morphs in the Perceptual Task. Images were 
cropped to a square containing the whole face. All images were presented in full colour. 
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Procedure 

During each trial participants were presented with a single picture of a facial expression in the centre 
of the screen (Height/Width = 9.6°, with an average viewing distance of 60cm). To avoid ceiling 
effects and ensure that the task was sufficiently challenging, each stimulus was presented for 
200ms. This ensured that participants did not study the image in too much detail. Brief presentation 
times have been used in validated facial expression recognition tests to reduce ceiling effects 
(Ekman & Friesen, 1974; Matsumoto et al., 2000). After the image, participants were presented with 
6 emotional labels with numbers 1-6 and were required to label the facial expression using the 
corresponding number keys on a keyboard. We recorded the number of correct responses to each 
emotion, as well as the number of instances each emotion was mislabelled with another.  

The categorical RDM was constructed from the raw confusion matrix generated by each participant. 
Although this RDM does not measure ‘categorical similarity’ of emotions, each subject’s pattern of 
categorisation encodes the similarity of emotions as reflected by the behavioural confusions 
between a facial expression and an emotion label. Raw confusion matrices have previously been 
used with RSA (Skerry & Saxe, 2015). As the confusion matrix is not necessarily symmetrical along 
the diagonal, mirroring cells in the upper and lower triangles were averaged, to produce a 
categorical matrix for each participant (e.g. the sad-anger cell in the categorical matrix contains the 
average number of instances a participant mislabelled sad faces as angry, and angry faces as sad). 

 

Model construction 
We constructed three models of the types of information that could explain the participants’ pattern 
of categorisations in the Categorical Task and perceptual discrimination sensitivity in the Perceptual 
Task. A similarity matrix was constructed for each model, where each cell of the matrix represented 
the discrimination between the corresponding pair of emotions, using a different source of 
information for each model. Two models showed the similarity between pairs of expressions using 
stimulus-based cues (Shape and Surface information), whereas another model showed the similarity 
between the emotion concepts (Conceptual).  

 

Shape 

Similarity of face shape was measured by performing Procrustes analysis on the fiducial points of the 
faces used in the Perceptual Task, as this allowed for the measurement of within-identity changes in 
face shape. This analysis allows for the comparison of any two shapes, and has previously been used 
to calculate the similarity of facial expression shapes (Kuhn et al., 2017; Sormaz, Watson, et al., 
2016). We used 112 fiducial points corresponding to the x and y coordinates of 112 landmarks in the 
face. Procrustes analysis computes the average squared distance between each pair of 
corresponding fiducial points, after correcting for size and position in 2D space by allowing shape 
translation, rotation, and scaling without morphing or non-linear distortion. The distance measure is 
then scaled such that the value of the output lies between 0 and 1. This analysis was performed 
between every within-identity pair of facial expressions as used in the Perceptual Task, to construct 
a shape dissimilarity matrix for every identity. To construct the Shape Model used in this 
experiment, we averaged these identity-level matrices. The resulting matrix was subtracted from 1 
to keep the direction consistent with the other matrices: as such, higher values indicate greater 
similarity between the shapes of the corresponding facial expressions.  
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Surface 

To measure surface similarity between the pictures used in the perceptual task, we computed the 
Fisher’s Z-transformed Pearson’s correlation coefficient between the pixel intensities for within-
identity pairs of greyscale facial expressions. Previous studies have used similar measures of the 
similarity of surface textures to explain the perceived similarity of facial expressions (Kuhn et al., 
2017; Sormaz, Watson, et al., 2016). First, we found the average face shape across all facial 
expressions, by averaging the locations of the corresponding fiducial points. Then, we warped all 
face stimuli to this average face shape using Psychomorph (Tiddeman, Stirrat, & Perrett, 2005) to 
remove shape cues and converted all images to greyscale. We then calculated the correlation 
coefficient of the pixel intensities, for pixels falling within a mask that excluded all non-face pixels, 
and transformed them using Fisher’s Z-transformation. A matrix was constructed for each identity, 
then averaged across identities to create the Surface Model.  

 

Conceptual 

The conceptual model was computed based on data form Skerry and Saxe (2015), which was 
generously provided by the authors. In that study, online participants rated 200 short stories 
describing an emotional event that happened to a character (2-3 sentences each, mean length = 
50.68 words) on the extent to which the character was experiencing each of the six basic emotions, 
on a scale from 1 to 10. In each story, the character experienced one of 20 ‘fine-grained’ emotions 
(e.g. a story about a character experiencing the emotion loneliness was about them finding it 
difficult to make friends after moving to a new city). Other examples of these fine-grained emotions 
included ‘disappointment’, ‘nostalgia’, and ‘embarrassment’, although these labels were never 
shown to participants. Ten stories were written for each of the 20 ‘fine-grained’ emotions. Full 
details of stimuli and procedure can be found in Skerry and Saxe (2015). A total of 1556 responses 
were provided (for this task) by 250 participants, (with each response providing one rating for each 
of the six emotion dimensions, for one story). From this data, we calculated the mean ratings for the 
six basic emotions for each of the 20 fine-grained emotion categories (i.e., we found the mean 
ratings for ‘anger’, ‘disgust’, etc. across all stories in which a character was feeling ‘nostalgic’, 
‘disappointed’ etc.), resulting in six vectors (one vector for each of the six basic emotions) of 20 
mean ratings.  

To generate Conceptual Model, we calculated the pairwise Pearson correlation coefficients between 
the vectors for the six basic emotions, then transformed them using Fisher Z-transformation. Pairs of 
the six basic emotions with higher correlations showed then higher similarity. As such, cells with 
higher values suggest a greater conceptual overlap between the corresponding emotions than cells 
with lower values. 

 

Data Analysis 
For each task, we first assessed the relationship between the behaviour and each of the three 
models using Spearman’s correlations. The correlation was performed between the behavioural 
matrices and each of the three models separately, for each participant. The array of coefficients for 
each model was then tested against 0 using a one-sided Wilcoxon signed rank test. Noise ceilings 
were computed in a similar manner to Nili et al. (2014), for both the Perceptual and Categorical 
tasks. The upper bound of the noise ceiling was calculated as the average Spearman’s correlation 
coefficient between each participant’s matrix and the average of all participants’ matrices (e.g. the 
average coefficient between each participant’s perceptual matrix, and the average of perceptual 
matrices across all participants), after rank transforming all matrices. The lower bound of the noise 
ceiling was calculated as the average Spearman’s correlation coefficient between each participant’s 
matrix and the average of all other participants’ matrices (e.g. the average coefficient between each 
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participant’s perceptual matrix and the average perceptual matrix across all other participants), after 
rank transforming all matrices. 

To assess the relative contribution of each model in explaining the behavioural tasks, we used 
multiple linear regression. The three models were entered into a multiple linear regression model 
(with a constant of ones) to explain each behavioural task, for each participant. The behavioural 
measures and the models were z-scored to calculate the standardised beta weights, allowing us to 
examine the relative contribution of each model. The arrays of standardised beta weights were 
tested against 0 using a one-sample t-test. All analyses were conducted using only the lower triangle 
(15 off-diagonal cells) of each matrix. 

To investigate whether the association of each cue with the behavioural tasks differed between each 
task, we compared the percentage of variance that was accounted for by each predictor between 
the two tasks, following analysis from Mur et al. (2013). In that study, the researchers compared the 
proportion of variance of behavioural and brain RDMs that was accounted for by several object 
category models. Similarly, in this study, for each regression model for each participant, we 
estimated the percentage of variance accounted for by each predictor, by calculating the squared 
standardised beta weight as a percentage of the sum of squared standardised betas for all 
predictors. Doing so provided us with a normalised measure of the variance that each predictor 
accounted for. These percentages were then compared between the two tasks across subjects, using 
a paired samples t-test for each predictor. 

 

Results 

Behavioural matrices 
For each participant, we constructed a confusion matrix from their choice of labels in the 
categorisation task, and a perceptual similarity matrix from the pairwise discrimination thresholds in 
the perceptual task. Figure 2A shows the categorical matrix and the perceptual matrix, averaged 
across all participants (just for visualisation). Calculation and results of the inter-subject reliability 
are presented in the supplementary material (Figure S1). 

 

Models 
Figure 2B shows the matrices for the three models used in the analysis. We then investigated the 
correlations between the different models. Pairwise Spearman’s correlations showed no significant 
correlation between Conceptual and Shape (rho(13) = .043, p = .883), a small non-significant 
correlation between Conceptual and Surface (rho(13) = .354, p = .196), and a large and significant 
correlation between Shape and Surface (rho(13) = .707, p = .004). 

To check whether the estimation of regression coefficients would be substantially affected by any 
multicollinearity among the models we calculated the Variance Inflation Factor (VIF) for each model. 
The VIF for a predictor in a multiple linear regression model is an estimation of the factor by which 
the variance of the coefficient of the predictor has increased due to multicollinearity between the 
predictors (Thompson, Kim, Aloe, & Becker, 2017), where a large VIF (exceeding a recommended 
threshold of 5) indicates that the multicollinearity among the predictors may have substantially 
affected the estimation of the associated regression coefficients (Montgomery, Peck, & Vining, 
2012). VIFs have been calculated to assess the degree of multicollinearity in a similar study using 
multiple linear regression with RSA (Sormaz, Watson, et al., 2016). The VIF for the Conceptual model 
was 1.22, for the Shape model was 1.97, and for the Surface model was 2.20. None of the VIFs 
exceed the recommended threshold of 5 (Montgomery et al., 2012), suggesting that the estimated 
regression coefficients have not been substantially affected by multicollinearity among the 
predictors.  
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Figure 2: (A) The mean categorical matrix (left), which displays the mean number of instances pairs 
of emotions were confused with each other. The mean perceptual matrix (right), which displays the 
perceptual discrimination thresholds for each pair of expressions in the perceptual task. The colour 
bars are scaled to the minimum and maximum values in the off-diagonal triangles. (B) Conceptual 
(Fisher Z-transformed correlation coefficients; left), Shape (1-Procrustes distance; centre), and 
Surface (Fisher Z-transformed correlation coefficients; right) models. 

 

Explaining perceived similarities in the Perceptual Task 
To investigate the role of the Conceptual, Shape, and Surface cues on the Perceptual Task, we first 
computed the Spearman’s correlation coefficient between each participant’s perceptual matrix, and 
each of the three models. The correlation coefficients across all participants were significantly higher 
than zero for all models (Conceptual: mean rho = .361, Z = 1258.5, p < .001; Shape: mean rho = .373, 
Z = 1273, p < .001; Surface: mean rho = .430, Z = 1275, p < .001), after correcting for multiple 
comparisons with the Bonferroni adjustment (α = .0167). These results show that the perceptual 
discriminations of facial expressions were significantly correlated with each of the models that we 
used here.  

Figure 3A shows the correlation coefficients, and the estimated noise ceiling. The proximity of the 
upper and lower bounds of the noise ceiling suggest that all participants were behaving very 
similarly in the perceptual task. These results also show that, while the correlations were 
significantly above zero for each model, none of the correlations reached the lower bound of the 
noise ceiling, so no individual model could explain most of the variance in participants’ perceptual 
dissimilarities. Pairwise comparisons (using Wilcoxon rank-sum tests) revealed no significant 
differences between the distributions of correlation coefficients (Conceptual-Shape: Z = -0.141, p = 
0.888; Shape-Surface: Z = 1.565, p = 0.118; Conceptual-Shape: Z = 1.534, p = 0.125). 
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We then used multiple linear regression to estimate the relative contribution of each model for the 
similarities in the Perceptual judgments. The beta weights for each model were significantly higher 
than zero (Conceptual: t(49) = 11.72, p < .001; Shape: t(49) = 8.72, p < .001; Surface: t(49) = 3.40, p = 
.001), after correcting for multiple comparisons with the Bonferroni adjustment (α = .0167). The 
mean R2 value across participants was 0.386 (S.D. = 0.158), so approximately 38.6% of the variance 
was explained by all three models. Pairwise comparisons between the arrays of standardised 
regression coefficients revealed greater contribution of conceptual than surface (t(49) = 2.96, p = 
.005, d = 0.74), no significant difference between the contributions of Shape and Surface (t(49) = 
2.23, p = .030, d = 0.60), and no significant difference between the contributions of Conceptual and 
Shape (t(49) = 0.67, p = .504, d = 0.10), after correcting for multiple comparisons with Bonferroni 
adjustment (α = .0167). Distributions of standardised beta-weights are presented in Figure 3B. 

 

Explaining judgments in the Categorical Task 
To investigate the role of the conceptual, shape, and surface cues on the confusions between 
emotion pairs in the Categorical Task, we first computed the Spearman’s correlation coefficient 
between each participant’s categorical matrix, and each of the three models to evaluate their 
individual contribution. The arrays of correlation coefficients were significantly higher than zero for 
all three models (Conceptual: mean rho = .508, Z = 1275, p < .001; Shape: mean rho = .379, Z = 1274, 
p < .001; Surface: mean rho = .557, Z = 1275, p < .001), after correcting for multiple comparisons 
with the Bonferroni adjustment (α = .0167). These results show that judgments in the Categorical 
Task could be explained by each of the models that we used here. Figure 3C shows the correlation 
coefficients, and the estimated noise ceiling. These results show that, while the correlations were 
significantly above zero for each model, none of the correlations reached the noise ceiling, and so 
none of the models could fully explain the variance in the confusion matrices in the Categorical Task. 
Pairwise comparisons (using Wilcoxon rank-sum tests) revealed higher correlation coefficients for 
the Conceptual Model than the Shape Model (Z = 4.009, p < .001), higher coefficients for the Surface 
Model than the Shape Model (Z = 5.636, p < .001, but no difference between the coefficients for the 
Conceptual and Surface Models (Z = 1.610, p = .107). 

We used multiple linear regression to estimate the unique contribution of each model, in order to 
predict each participant’s Categorical matrix. All arrays of standardised betas were significantly 
higher than 0 (Conceptual: t(49) = 18.23, p < .001; Shape: t(49) = 7.54, p < .001; Surface: t(49) = 
12.18, p < .001), after correcting for multiple comparisons with the Bonferroni adjustment (α = 
.0167). The mean R2 value across subjects was 0.418 (S.D. = 0.125), so approximately 41.8% of the 
variance was explained by all three models. Pairwise comparisons between the arrays of 
standardised regression coefficients revealed a greater contribution of Conceptual than Shape (t(49) 
= 10.50, p < .001, d = 1.66), greater contribution of Surface than Shape (t(49) = 4.50, p < .001, d = 
1.17), but no significant differences between the contributions of Conceptual and Surface cues (t(49) 
= 0.838, p = .406, d = 0.21) after correcting for multiple comparisons with the Bonferroni adjustment 
(α = .0167). Distributions of standardised beta-weights are presented in Figure 3D. 
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Figure 3: (A) Distributions of Spearman’s correlation coefficients between each participant’s 
perceptual matrix and each of the models. Red bars show the mean coefficient. Grey bar shows the 
upper and lower bounds of the noise ceiling. (B) Distributions of standardised beta weights for each 
model as a predictor of each participant’s perceptual matrix. Red bars show the mean standardised 
beta. (C) Correlation coefficients between each participant’s categorical matrix and each of the 
models. Red bars show the mean coefficient. Grey bar shows the upper and lower bounds of the 
noise ceiling. (D) Standardised beta weights for each model as a predictor of each participant’s 
categorical matrix. Red bars show the mean standardised beta. Horizontal black bars indicate a 
significant difference for the pairwise comparison, and asterisks indicate the array is significantly 
larger than 0, accounting for an FDR of .05. 

 

Differences between categorical and perceptual regression coefficients 
After correcting for multiple comparisons with the Bonferroni adjustment (α = 0.0167), there was no 
difference between the percentage of variance that the Conceptual Model accounted for between 
the Perceptual (Mean = 36.1%) and Categorical (Mean = 45.0%) tasks (t(49) = 1.730, p = .090). The 
Shape Model accounted for more variance within the Perceptual (Mean = 37.5%) task than the 
Categorical (Mean = 10.6%) task (t(49) = 6.710, p < .001), whereas the Surface Model accounted for 
more variance within the Categorical (Mean = 44.4%) task than the Perceptual (Mean = 26.5%) task 
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(t(49) = 2.975, p = .005). Percentages of variance accounted for are presented in the supplementary 
material (Figure S2). 

 

Discussion 
In Study 1, we aimed to explore the relative roles of conceptual, shape, and surface cues in the 
perceptual discrimination and explicit categorisation of facial expressions of emotion. First, as 
expected, we found that all three cues play some role in explaining behaviour during the two tasks. 
This is consistent with previous research showing that these cues might influence facial expression 
perception and recognition (Brooks & Freeman, 2018; Sormaz, Watson, et al., 2016; Sormaz, Young, 
& Andrews, 2016), but we furthered the research by using multiple linear regression to show that 
each cue plays a role even when controlling for the other cues.  

A second main finding is that we found that conceptual information explains a similar amount of 
variance in both tasks. In fact, the current results suggest that emotion concepts seem to be as 
readily available when performing a perceptual discrimination task that required no explicit labelling 
of emotions as they are during a categorisation task that does require explicit labelling. These 
findings are not consistent with our predictions that conceptual information would explain the 
behaviour in the categorical task better than the perceptual. Previous research suggests that 
conceptual information influences both the perception and explicit labelling of emotions from facial 
expressions (Brooks & Freeman, 2018; Fernández-Dols et al., 2008; Gendron et al., 2012; Halberstadt 
& Niedenthal, 2001; Lindquist et al., 2006; Nook et al., 2015). However, the perceptual tasks in 
previous studies tended to still use verbal labels that we thought would be more likely to engage 
conceptual processing. We thus designed a measure of the perceptual similarity of facial expressions 
that attempted to reduce top-down influences during the task and tap ‘solely’ into perceptual 
discrimination processes. Despite this, we still found that conceptual information could explain 
perceptual discrimination well above chance, even when controlling for the similarity of stimulus-
based cues, supporting the conclusions of previous research (Brooks & Freeman, 2018). The result 
that conceptual information can explain patterns of perceptual discrimination better than surface 
information is surprising, as we expected that processes involved in perceptual discrimination would 
rely more on stimulus-based cues than emotion concepts. 

Finally, we found a dissociation between the role of shape and surface cues, in that shape cues 
explained more variance of the perceived similarities in the Perceptual Task than the confusions in 
the Categorical Task, and surface cues could explain more variance in the Categorical than 
Perceptual Task. Taking the view that perceptual processes occur before processes involved in the 
labelling of emotions (Palermo et al., 2013), this suggests that initial perceptual processes place 
greater weight on shape information, while surface information is required more so in the explicit 
categorisation of emotions. 

 

Study 2 

Methods 

Participants 
Thirty participants (19 women, mean age: 26.10 years, S.D: 6.45, range: 18-46) were recruited via 
posters, advertisements on the university participant pool, and word of mouth. Sample size was 
determined based on previous studies with similar participant sizes, although no formal power 
analyses were conducted. All participants had normal or corrected-to-normal vision, no history of 
stroke, other neurological conditions, or diagnosed emotion processing disorders. Seven participants 



 16 

for Study 2 also participated in Study 1. Ethical approval to conduct the research was granted by the 
College of Health and Life Sciences Research Ethics Committee at Brunel University London. 

 

Multiple choice task 

Materials 

Pictures of facial expressions of anger, disgust, fear, happiness, sadness and surprise were selected 
from the Radboud face database (Langner et al., 2010). We used the validation data from Langner et 
al. (2010) to rank the front facing images for each emotion by genuineness of expression, then 
selected the top five pictures for each emotion. Every image appeared in the Categorical Task (Study 
1) and four of the images were used to create the morphs in the Perceptual Task (Study 1). Images 
were cropped to a square containing the whole face but removing the neck and the top of the head. 
All images were presented in full colour. 

 

Procedure 

Before participants entered the scanner, they completed a brief multiple-choice style expression 
categorisation test. Participants viewed each face for 5000ms in the centre of a laptop screen, with 6 
labels (state the labels) presented underneath. Each label had a corresponding number (1-6), and 
participants were required to indicate which of the labels best described the emotion in the 
presented face. The purpose of this task was to encourage participants to discriminate between the 
faces in terms of the 6 basic emotions. 

 

MRI data acquisition 
MRI data was collected with a 3T TIM Trio MRI scanner (Siemens, Erlangen) using a 32-channel head 
array coil at the Combined Universities Brain Imaging Centre (CUBIC). Functional images were 
acquired for the experimental and localiser runs with an echo planar imaging sequence with a 
multiband acceleration factor of 2, with 46 axial slices aligned with the ventral surface of the 
temporal and occipital lobes, covering the whole brain excluding the cerebellum in most participants 
(TR = 2000ms, TE = 34ms, Flip angle = 76°, voxel size = 2.5mm x 2.5mm x 2.5mm). For participants 
with larger brains, the upper most part of the parietal lobe was excluded. A high-resolution T1-
weighted MPRAGE anatomical scan was also acquired for each participant (TR = 1830ms, TE = 
3.03ms, Flip angle = 11°, Voxel size = 1mm x 1mm x 1mm). Runs were divided into experimental runs 
and functional localiser runs. Participants completed ten experimental runs, two theory of mind area 
localiser runs, and one face area localiser run. Experimental runs were stopped after eight and nine 
runs for two participants due to discomfort, and one participant did not complete the theory of 
mind localiser. The data provided by these participants were still used in the analysis.  

 

Experimental fMRI task 

Materials 

We selected the top 11 most genuine examples of each of the six basic emotions (Anger, Disgust, 
Fear, Happiness, Sadness, and Surprise) from the Radboud face database, using the validation data 
from Langner et al. (2010). Participants had previously viewed five examples of each expression 
category in the multiple-choice task. Every image appeared in the Categorical Task (Study 1) and 
eight of the images were used to create the morphs in the Perceptual Task (Study 1). During each 
run, participants viewed all 66 images. All images were presented in full colour. 
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Procedure 

An event-related design was used for the experimental runs. The 66 pictures of facial expressions 
were presented once each in each experimental run. Pictures were presented sequentially for 
1000ms each (height = 12.5°, width = 16.7°, at a viewing distance of 80cm). After each presentation, 
a blank fixation screen was presented at a jittered duration of between 1000ms and 3000ms. 
Participants performed a one-back task, by pressing a button whenever there was a consecutive 
repetition of any facial expression – the repetition was always of a different identity (i.e. it was a 
different picture), encouraging participants to attend to the expression rather than just the image.  

During each run, the 66 faces were presented in a pseudo-random order: initially the order of 60 
(ten examples of six expressions) was randomised until there were no consecutive repetitions of the 
same facial expression. Each of the six remaining images of facial expressions were inserted into this 
sequence after the position of a random example of the same expression, to provide a repetition of 
each expression for the one-back task. This randomisation procedure was conducted independently 
for each run and each participant. A blank fixation screen was presented for the first four seconds of 
each run.  

 

Functional localisers 
To localise the face responsive regions, participants viewed 16 second blocks of expressive faces, 
neutral faces, and scrambled faces from the Radboud face database (Langner et al., 2010), with 
additional 16 second blocks of rest (no stimuli). Blocks of expressive faces comprised a randomly 
selected mix of angry and fearful faces from the front facing angry and fearful faces of the database. 
Each face was also scrambled using MATLAB, by overlaying the image with a 20x20 grid and 
randomly rearranging the position of the ‘tiles’. During each block, 16 faces (or scrambled faces) 
were selected at random. In each block, each stimulus was presented for 900ms (ISI = 100ms). Blocks 
of stimuli were presented in a pseudo-random order. Each block occurred four times with no 
separation between them, and there were never consecutive repetitions of the same block.  

To localise the MPFC, we used stimuli from Dodell-Feder, Koster-Hale, Bedny and Saxe (2011) 
Participants were presented with short textual scenarios that require inferences about either the 
mental state of an individual (belief condition) or physical state of a scene (photo condition). Full 
stimuli are available at http://saxelab.mit.edu/superloc.php. Participants completed a true/false task 
in response to a statement presented beneath the text, by pressing a button with their left hand for 
true and right hand for false. The text and true/false statement appeared on screen for 18 seconds, 
followed by a blank screen for 12 seconds. Please note that, due to an error, we used timings that 
differed from those used in the original paper (which presented the text for 10 seconds, followed by 
the true/false statement for 4 seconds, and 12 seconds of rest). 

 

Image preprocessing and general linear model 
For each participant, all functional images were realigned (registered to the mean of the whole 
session using 2nd degree B-spline interpolation) and resliced (using 4th degree B-spline interpolation). 
Each participant’s structural image was segmented and co-registered to their mean functional 
image, then functional images were normalised to MNI space (voxel size = 2mm x 2mm x 2mm) 
using the deformation field output from warping the structural to the MNI template. Functional 
images for the localiser tasks were smoothed with a gaussian kernel at FWHM = 8mm. All 
preprocessing was performed in the SPM12 toolbox in MATLAB 2016b. Runs were excluded if the 
participant moved more than 2.5mm in any direction, or rotated more than 1 degree along any axis. 

To estimate betas for each event of the experimental runs (i.e. each of the 66 pictures of facial 
expressions), we used the LS-S approach (Mumford, Turner, Ashby, & Poldrack, 2012), where each 

http://saxelab.mit.edu/superloc.php
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event was fitted with a separate linear model containing a regressor for the event of interest and a 
separate regressor that models all other events, along with 6 regressors for the realignment 
parameters within each run. This approach aims to lead to more accurate estimates of activation 
than modelling each trial with a separate regressor within the same model (Mumford et al., 2012), 
and has previously been used to estimate patterns of activation in response to facial expressions 
(Wegrzyn et al., 2015). The GLMs were convolved with a standard haemodynamic response function 
and high-pass filtered at 128s. Due to technical issues during scanning, the scanner stopped before 
all stimuli had been presented for some participants (a total of 6 stimuli across all runs across all 
participants were presented after the scanner stopped). Betas for any event presented within 3 
seconds of the scanner finishing were not estimated (18 stimuli across all participants). 

 

Region of interest definition 
To define the face responsive regions and the MPFC, a group-constrained subject-specific approach 
was used (Fedorenko, Hsieh, Nieto-Castañón, Whitfield-Gabrieli, & Kanwisher, 2010; Julian, 
Fedorenko, Webster, & Kanwisher, 2012). This method allows us to define these regions without 
experimenter bias. Briefly, we used group masks for each region of interest from previous studies 
(see below) and then intersected each group mask with each participant’s activation map to define 
individual ROIs. 

Group level maps from previous research were used as masks for the middle-MPFC (Dufour et al., 
2013), and three core face-responsive regions, namely the FFA, OFA, and STS (Julian et al., 2012). For 
each participant, we performed standard univariate analysis for each of the two localiser tasks. To 
localise face responsive regions, we subtracted the response to scrambled faces from the response 
to both neutral and expressive faces. Contrasting faces to scrambled faces has been used to identify 
face-responsive regions in previous research investigating the representation of expression and 
identity (Sormaz, Watson, et al., 2016; Weibert, Flack, Young, & Andrews, 2018; Winston, Henson, 
Fine-Goulden, & Dolan, 2004). To localise theory of mind responsive regions, we subtracted the 
response to the photo conditions from the response to the belief conditions in the Theory of Mind 
localiser task. Using a liberal threshold of p<.05 (uncorrected), we found the peak voxel for each 
participant within each mask and used a sphere with a 6mm radius, centred on these coordinates, as 
the ROI for each participant. If no peak voxels were significant below p<.05, we used the peak 
coordinates from second level random effects analysis as the centre the sphere. These coordinates 
were also used for the one participant who did not complete the theory of mind task. The second-
level analysis was conducted at the group-level, using a one-sample t-test for each contrast at 
p<.001 (uncorrected), within the same group level maps from previous research (Dufour et al., 2013; 
Julian et al., 2012) as used in the subject-specific approach. 

 

Model construction 
We used the three models we used previously (Shape, Surface and Conceptual) and two models 
derived from the behavioural tasks (Perceptual and Categorical) from Study 1 for the analysis in 
Study 2. The behavioural models (Perceptual and Categorical) were created by averaging 
participants’ individual matrices for each task (again mirroring averaging cells in the confusion 
matrices in the Categorical Task). The Shape and Surface Models were reconstructed using the 
stimuli presented to participants in the scanner. Following Sormaz, Watson et al. (2016), the 
similarity of every pair of faces was calculated and averaged for each expression pair to create a 
single 6x6 matrix for each model, but otherwise using the same procedures as in Study 1. The 
Conceptual Model remained the same as in Study 1. Pairwise Spearman’s correlations showed no 
significant correlations between Conceptual and Shape (rho(13) = .311, p = .259), no significant 
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correlation between Conceptual and Surface (rho(13) = .311, p = .259), and no significant correlation 
between Shape and Surface (rho(13) = -.068, p = .812). 

 

Univariate analysis (experimental task) 
For exploratory purposes, we assessed any differences between the univariate responses to each of 
the facial expression categories within each of the ROIs. Estimated betas for each emotion were 
averaged across all voxels within each ROI, then averaged across runs. To assess any differential 
response between them, paired t-tests were performed between every pair of betas across all 
participants, using FDR correction to account for multiple comparisons (Benjamini & Hochberg, 
1995). 

 

Representational similarity analysis 
After betas were estimated for each event in each run, they were averaged for each emotion 
(creating six averaged response patterns per run), then these averaged response patterns within 
each region were vectorised and each pattern was z-scored (i.e. the pattern of activation for each 
condition across voxels was z-scored to mean of zero and standard deviation of one — see Goesaert 
& Op de Beeck, 2013). A 6x6 Representational Dissimilarity Matrix was constructed by taking the 
squared Euclidean distances between each z-scored vector, for each region of interest. We chose 
this distance measure (squared Euclidean) as we used multiple linear regression with RSA, which 
requires a distance measure that sums linearly (Brooks et al., 2019; Carlin & Kriegeskorte, 2017).  

Rows and columns of the RDMs were sorted by expression consistently across runs (Angry, 
Disgusted, Fearful, Happy, Sad, and Surprised). For each participant, an average RDM was computed 
by averaging the RDMs from all runs. Models were reversed-coded (by subtracting each element 
from the maximum element in the array + 1) to keep the direction and size consistent with the 
neural RDMs. The relationship between each of the models and the neural RDMs was first examined 
using a Spearman’s correlation, for each participant. The array of correlation coefficients was then 
tested against 0 (i.e. no correlation) using a one-sided Wilcoxon signed rank test.  

In addition, we ran multiple regression to examine the unique predictor value of each model and 
whether a combination of models could better explain the brain representational distances. For each 
participant, multiple linear regression was performed using the Conceptual, Shape, and Surface 
Models as predictors and the brain RDMs (separately for each region of interest) as the outcome 
(Figure 7A). All predictors and the neural RDM were z-scored to calculate the standardised betas for 
each model. A constant of ones was also entered into each regression model. The distributions of 
standardised beta weights across participants were tested against 0 using a one-sample t-test, for 
each model, for each region of interest. To assess the relationship between the neural RDMs and 
perceptual and categorical models, these were each entered as predictors in separate regression 
models. As with the previous regressions, the predictor and the neural RDM were z-scored and 
entered into the model with a constant of ones, and the array of standardised betas were tested 
against 0 using a one sample t-test. 

 

Preregistration 
This study was pre-registered before any data collection. Methods and analysis plan were pre-
registered on 08/11/18 and are available on the Open Science Framework (https://osf.io/34fm7/). 
Any changes to the study procedures analysis plan are transparently identified and the outcomes of 
pre-registered and post hoc analyses are distinguished. We note that we had originally planned to 
calculate representational distances between the responses to every pair of stimuli (resulting in a 

https://osf.io/34fm7/
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66x66 RDM) rather than between the averaged responses to each emotion category. However, 
preliminary analysis showed that this substantially reduced the reliability of RDMs across 
participants. Furthermore, we had intended to use different contrasts to localise the face areas, by 
contrasting neutral faces to scrambled to localise the FFA and OFA, and contrasting expressive faces 
to neutral to localise the STS. We have instead chosen to contrast all faces to scrambled faces for all 
regions, as this identifies voxels that are responsive to both neutral and expressive faces. 
Additionally, we had not planned to use the group-constrained subject-specific approach to define 
the regions of interest, but rather the results of univariate analysis for each participant. This was 
changed as some participants did not show significant differential activation to the contrasts used in 
the univariate analysis of the localiser tasks, and using spheres centred around peak voxels allowed 
for a consistent number of voxels in the ROIs across all participants.  

 

Results 

Data exclusion 
One participant moved more than our threshold (2.5mm in any direction) during the face localiser 
and 5 of the experimental runs, so we excluded this participant from any further analysis. One 
experimental run was also excluded from each of three additional participants due to movement, 
but we analysed the other runs for these participants. Finally, one participant was found to have a 
large structural abnormality, so was excluded from any analysis, leaving 28 participants for the main 
analysis (with 10 experimental runs for 23 participants, 9 runs for 4 participants, and 8 runs for 1 
participant, including those who only completed 8 and 9 runs of the experimental task). These 
exclusion criteria were established after the univariate analysis, but prior to the RSA. 

 

Multiple choice task 
We calculated the mean and standard deviation for the accuracy at correctly recognising each 
emotion during the behavioural multiple-choice task conducted outside the scanner. Participants 
were most accurate at the recognition of happy faces (with an average accuracy of 98%) and were 
least accurate at the recognition of angry and fearful faces (with recognition accuracies of 61.33% 
and 66% respectively). Results of this task are presented in the supplementary material (Table S1). 
As this task was conducted to familiarise participants with the six basic expressions, these results 
were not used in any further analysis. 

 

ROI definition 
Using the approach described in the methods section, we used the localiser tasks to define the 
regions of interest (FFA, OFA, STS, and MPFC) for each participant. Table 1 shows the number of 
participants in which we found at least one voxel showing significant differential activation, and the 
mean coordinates in MNI space across these participants, for each region. For these participants, we 
placed a sphere (of 6mm radius) around the peak voxel for each contrast and extracted response 
patterns for each condition from these spheres. For the remaining participants in each region, the 
sphere was centred around the peak coordinates from second level analysis conducted across all 
participants (MNI coordinates [x, y, z]: FFA = [44, -52, -18]; OFA = [36, -82, -10]; STS = [52, -54, 6]; 
MPFC = [10, 48, 14]). We note that the contrast and method used to define these regions was 
different to the plan outlined in the preregistration (see preregistration section for more detail). 
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Table 1: Results from the group-constrained subject-specific approach to region of interest definition. 
Number of subjects in which at least one-voxel showing significant differential activation within each 
mask, and the average x, y, and z coordinates across these subjects are shown. 

Region Number of 
participants (/28) 

Mean coordinates 

x y z 
FFA 28  40.7  -49.1  -18.7 

OFA 28  43.1  -76.1  -9.9 

STS 25  52.3  -46.4  5.58 
MPFC 27 3.6 56.4 14.2 

 

 

Univariate analysis (Experimental task) 
To assess whether there was any differential univariate response to the facial expressions within 
each of the ROIs, the betas in response to each emotion were averaged across all voxels within each 
ROI, and then averaged across runs for each participant. Paired t-tests were then performed 
between every possible pairwise combination of these mean betas. To account for multiple 
comparisons, we controlled false discovery rate (FDR) at level .05 (Benjamini & Hochberg, 1995). 
Results are presented in Figure 4. A similar pattern of results was observed across the three face-
responsive regions, where fearful, surprised, angry, and disgusted faces evoked the largest 
responses. Happy faces evoked the smallest response. There were also differences between 
expressions in the MPFC, but with a different pattern of responses.  
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Figure 4: Univariate response to each expression category within each ROI. Horizontal black bars 
indicate a significant p-value for the pairwise comparison, accounting for an FDR of .05 (FFA all p < 
.010; OFA p < .022; STS p < .026; MPFC p < .013) 

 

Representational similarity analysis 
We first explored the relationship between each model and the brain representational geometries 
within each region. To do so, we calculated the Spearman’s correlation coefficient between the 
lower diagonal cells of each model RDM and the corresponding cells in the brain RDM for each 
region and each participant. Brain RDMs are presented in Figure 5 (averaged across participants for 
the purpose of visualisation, although individual RDMs were used in the analysis). We note that we 
had originally planned to calculate the representational distances between every pair of stimuli 
rather than every emotion category (see preregistration section for more detail). 
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Figure 5: Brain RDMs for each ROI (averaged across participants for visualisation purposes). Cells of 
each matrix used in the analyses are highlighted. Colourbar values represent squared Euclidean 
distance. 

 

The array of correlation coefficients (i.e. coefficients across all participants) was then tested against 
0 using a one-sided Wilcoxon signed rank test. FDR correction was used to account for multiple 
comparisons within each ROI. The mean correlation coefficients, standard deviations, associated z-
statistic from the Wilcoxon signed rank test, and p-values are reported in Table 2. 
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Table 2: The mean and standard deviation of the correlation coefficients, and the results of the 
Wilcoxon signed tank test, for each model, for each region. 

ROI Model Mean Rho S.D. Z-stat P 

FFA Conceptual 0.232 0.336 3.074 2.11E-03 

Shape 0.158 0.275 2.642 8.25E-03 
Surface -0.018 0.258 -0.376 7.071E-01 

Categorical 0.282 0.254 4.111 3.95E-05 

Perceptual 0.312 0.262 4.099 4.14E-05 
OFA Conceptual 0.284 0.315 3.587 3.35E-04 

Shape 0.117 0.275 2.027 4.27E-02 

Surface 0.077 0.258 1.670 9.50E-02 

Categorical 0.279 0.271 3.928 8.55E-05 
Perceptual 0.275 0.252 4.076 4.58E-05 

STS Conceptual 0.249 0.273 3.530 4.16E-04 

Shape 0.015 0.287 0.108 9.14E-01 

Surface 0.054 0.342 0.911 3.62E-01 

Categorical 0.318 0.243 4.258 2.06E-05 

Perceptual 0.255 0.270 3.712 2.06E-04 

MPFC Conceptual 0.206 0.349 2.699 6.97E-03 
Shape 0.118 0.219 2.631 8.51E-03 

Surface 0.049 0.325 0.820 4.12E-01 

Categorical 0.206 0.302 2.915 3.56E-03 

Perceptual 0.250 0.266 3.632 2.81E-04 

 

Conceptual, Categorical, and Perceptual similarities were related to the representational distances in 
all four ROIs. The structure of the Shape Model was only associated with the representational 
structure in the FFA and MPFC, whereas the Surface model was not associated with the 
representational structure in any region. Figure 6 shows the correlation coefficients, and the 
estimated noise ceiling, which was calculated following Nili et al. (2014). The upper bound of the 
noise ceiling for each region shows the average Spearman’s correlation coefficient between each 
participants’ RDM (for that region) and the average of all participants’ RDMs (for the same region), 
after rank transforming all matrices. The lower bound of the noise ceiling is the average Spearman’s 
correlation coefficient between each participant’s RDM and the average of all other participants’ 
RDMs, after rank transforming all matrices. The lower-bound of the noise-ceilings ranged from 0.243 
in the MPFC to 0.413 in the STS. The only model to reach the noise ceiling in any region was the 
Perceptual Model in the MPFC, suggesting this model performs as well as any model can, given the 
noise in the data (Nili et al., 2014). 
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Figure 6: The mean correlation coefficient between each model and the RDM for each region, across 
participants. Error bars represent one standard error. Asterisks show that the array of coefficients is 
significantly larger than 0. Grey bars show the upper and lower bounds of the noise ceiling.  

 

Multiple linear regression representational similarity analysis 
To assess the relative contribution of the three models (Conceptual, Shape, and Surface) to the 
representational structure of emotions in each of the four regions, we used multiple linear 
regression with each of the models as predictors and each subject’s RDM as the dependent variable. 
We first checked whether the estimation of the regression coefficients had been affected by 
multicollinearity by again calculating the VIFs. The VIF for the Conceptual model was 1.14, for the 
Shape model was 1.05, and for the Surface model was 1.09. None of the VIFs exceed the 
recommended threshold of 5 (Montgomery et al., 2012), suggesting that any multicollinearity 
among the predictors had not substantially affected the estimation of the coefficients. Models and 
RDMs were z-scored to calculate the standardised beta value for each predictor. Standardised betas 
were then compared against 0 using a one-sample t-test, and compared to each other using paired 
sample t-tests. FDR correction was used to account for multiple comparisons separately for each 
ROI, accepting an average FDR of .05. The mean standardised parameter estimates and standard 
error for each predictor are presented in Figure 7B. Results of the one-sample T-tests are presented 
in Table 3, and results of the pairwise comparisons are presented in Table 4. Conceptual similarity 
significantly explained some of the variance of the representational structures in all four regions 
after controlling for the similarities of face shapes and surface textures.  
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Figure 7: (A) Illustration of the regression model performed per participant, to assess the relative 
contribution of conceptual, shape, and surface information. (B) The mean standardised betas for 
each of the 3 models, for each region. Error bars show standard error. Asterisks indicate that the 
regression coefficients are significantly larger than 0, and horizontal bars indicate significant 
differences between the regression coefficients. 

 

Interestingly, after controlling for conceptual similarities, shape and surface similarities did not share 
unique variance with representational similarity in the MPFC, STS, or OFA. In the FFA, these models 
explained some additional variance after controlling for conceptual similarity, although the variance 
explained by conceptual similarity was significantly larger across participants than the variance 
explained by the shape and surface models. The three models together explained most variance in 
the STS (mean R2 = 0.354), followed by the OFA (mean R2 = 0.343), MPFC (mean R2 = 0.322), then the 
FFA (mean R2 = 0.316). 
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Table 3: Mean, standard deviation, and the results of the one-sample t-test for the conceptual, 
shape, and surface models as predictors of the representational structure in each of the 4 regions. 
Significant t-tests are presented in bold. 

Region Model Mean S.D. Mean R2 T-test 

FFA Conceptual 0.288 0.300 

0.316 

t(27) = 5.071, p < .001 
Shape 0.111 0.265 t(27) = 2.214, p = .035 

Surface -0.118 0.232 t(27) = -2.708, p = .012 

OFA Conceptual 0.305 0.319 

 
0.343 

t(27) = 5.062, p < .001 
Shape 0.082 0.296 t(27) = 1.471, p = .153 

Surface -0.032 0.244 t(27) = -0.690, p = .496 

STS Conceptual 0.329 0.305 

0.354 

t(27) = 5.712, p = .001 

Shape -0.009 0.261 t(27) = -0.175, p = .863 
Surface -0.048 0.338 t(27) = -0.756, p = .456 

MPFC Conceptual 0.236 0.350 

0.322 

t(27) = 3.570, p = .001 

Shape 0.076 0.250 t(27) = 1.610, p = .119 

Surface -0.046 0.294 t(27) = -0.834, p = .411 

 

Table 4: Results of the pairwise comparisons between the standardised betas for each predictor, for 
each region. Significant t-tests are presented in bold. 

Region Model comparison T-test 

FFA Conceptual-Shape t(27) = 2.338, p = .027 

Conceptual-Surface t(27) = 6.342, p < .001 
Shape-Surface t(27) = 3.615, p = .001 

OFA Conceptual-Shape t(27) = 2.649, p = .013 

Conceptual-Surface t(27) = 4.475, p < .001 
Shape-Surface t(27) = 1.479, p = .151 

STS Conceptual-Shape t(27) = 4.707, p < .001 

Conceptual-Surface t(27) = 3.966, p < .001 

Shape-Surface t(27) = 0.442, p = .662 
MPFC Conceptual-Shape t(27) = 1.690, p = .103 

Conceptual-Surface t(27) = 3.557, p = .001 

Shape-Surface t(27) = 1.724, p = .096 

 

 

Perceptual and categorical models 
We then assessed whether the representational structure within each region is best associated with 
the Categorical or Perceptual Tasks (derived from the results of Study 1). For this analysis, we 
conducted a separate regression for each of the two tasks, using the model as a predictor of the 
neural RDM for each ROI. As with the previous regressions, the neural RDMs and predictors were z-
scored, and the array of resulting standardised beta weights were compared against 0 using a one-
sample t-test. Both models were able to predict the representational structure in all regions above 
chance. The mean standardised beta, mean R squared value, and the results of the one-sample t-test 
for the categorical and perceptual models are presented in Table 5 below. 
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Table 5: The mean standardised beta across participants, the standard deviation, and the results of 
the t-tests (one sample t-tests comparing parameter estimates against zero) for the perceptual and 
categorical models as predictors of the representational structure in each region. Significant t-tests 
are presented in bold. 

Region Predictor Mean 
standardised beta 

S.D. Mean R2 T-test 

FFA Perceptual 0.310 0.242 0.153 t(27) = 6.780, p < .001 

Categorical 0.212 0.271 0.116 t(27) = 4.144, p < .001 
OFA Perceptual 0.286 0.235 0.135 t(27) = 6.442, p < .001 

Categorical 0.243 0.252 0.120 t(27) = 5.093, p < .001 

STS Perceptual 0.273 0.243 0.132 t(27) = 5.938, p < .001 

Categorical 0.262 0.209 0.111 t(27) = 6.632, p < .001 
MPFC Perceptual 0.232 0.275 0.127 t(27) = 4.450, p < .001 

Categorical 0.163 0.275 0.099 t(27) = 3.143, p = .004 

 

We compared the overall fit of the two models, by performing a paired sample t-test between the 
arrays of R2 values output from the regressions. We found no difference between the amount of 
variance explained by either model in any region (FFA: t(27) = 1.487, p = .149; STS: t(27) = 0.930, p = 
.360; OFA: t(27) = 0.848, p = .404; MPFC: t(27) = 1.290, p = .208).  

 

Discussion 
In this study, we aimed to explore the relative role of conceptual and stimulus-based cues in the 
neural mechanisms underpinning facial expression perception. The results highlight the particular 
role of conceptual information, as the conceptual model showed the highest correlations with the 
representational distances within three face-responsive regions and an MPFC region involved in the 
processing of theory of mind.  Such results add to previous research into the role of these three cues 
in neural representations of facial expressions (Brooks et al., 2019; Sormaz, Watson, et al., 2016), by 
showing that representational distances in all regions we examined (the FFA, OFA, STS, and MPFC) 
are best explained by the similarities of emotion concepts, even after controlling for the variance 
shared by the other cues. 

We found a similar pattern of results in all four regions that we examined, where the 
representational structure was more related to the structure of emotion concepts than to the 
presentational structures of the stimulus properties. This was unexpected, as we predicted that the 
similarities of the stimulus properties would best explain the variance in representational 
geometries in the core face regions (the FFA, OFA, and STS). However, the role of emotion concepts 
on representations in the FFA is consistent with the results of Brooks et al. (2019), who similarly 
reported that representational distances in the right fusiform gyrus are still explained by the 
similarities of emotion concepts after controlling for the similarities of several image properties (the 
similarity of face silhouettes, similarity of pixel intensity maps, and similarity of ‘higher-level visual 
features’ output from a computational model of object recognition). Our results expand upon these 
as we show that conceptual information can still explain representations after controlling for the 
similarities of both face shape and surface textures, two stimulus-based cues that play a 
considerable role in the perception of facial expressions (Sormaz, Watson, et al., 2016; Sormaz, 
Young, & Andrews, 2016). This pattern of results in the OFA suggests the accessibility of emotion 
concepts in the early perception of facial expressions. The result that the two stimulus-based cues 
did not explain the representational structure was unexpected as this region is involved in early 
stages of the visual processing of faces and facial expressions (Haxby et al., 2000). It may be the case 
that the representational distances of facial expressions within the OFA could have better been 
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explained by similarities of other low-level image properties. For example, Weibert et al. (2018) 
found that the correlations between GIST descriptors (spatial frequency distributions after passing 
images through a series of Gabor filters; Oliva & Torralba, 2001) explained the representational 
similarity of facial expressions in the three core face regions. Similarly, Brooks et al. (2019) used 
three measures of visual similarity as controls in the RSA regression model (the similarity of face 
silhouettes, similarity of pixel intensity maps, and similarity of ‘higher-level visual features’ as output 
from the HMAX model of object recognition). While the regression coefficients of these models were 
not reported, their measure of conceptual similarity did not explain representational distances 
within the OFA after controlling for these measures. Perhaps these low-level measures of image 
similarities can better explain the representational structure of expressions within the OFA than 
shape and surface similarities. For the MPFC these results were in line with our predictions as 
previous research has shown that representations of emotions within this area are modality 
independent (Peelen et al., 2010; Skerry & Saxe, 2014), and so are not structured around any 
property of the stimulus but rather conceptual knowledge of emotions.  

To our knowledge, research has yet to assess whether shape and surface properties of facial 
expressions can explain representations in core face regions. Despite this, the result that these 
properties did not explain unique variance in the OFA and STS was surprising. Representational 
similarities of facial expressions within the OFA and STS are associated with perceptual similarity, as 
measured behaviourally (Said et al., 2010; Sormaz, Watson, et al., 2016), and research has also 
highlighted the important role of shape and surface properties in the perception of expressions 
(Sormaz, Watson, et al., 2016; Sormaz, Young, & Andrews, 2016). Similarly, in Study 1, we showed 
that pairwise perceptual similarities were explained above chance by shape and surface properties, 
even when controlling for conceptual information. Given these two lines of evidence, we expected 
to find that shape and surface similarities would explain representational similarities in these regions 
after controlling for conceptual similarity. 

Additionally, we explored which of the perceptual and categorical tasks (from Study 1) was better 
associated with the representational structure of emotions within each brain region. The 
representational distances within all four regions were associated with both tasks above chance, and 
no differences were found between the models in any region. Sormaz, Watson, et al. (2016) found 
that perceptual similarity of expressions was associated with representational similarity in the OFA 
and STS, but not the FFA, whereas the results of our study suggested that the representational 
structure in all three of these regions is explained by perceptual similarity. A potential reason for the 
difference of results in the FFA is our measure of perceptual similarity, which does not require 
making subjective judgements of similarity. 

In our study, we found that representations of facial expressions in the MPFC can be explained by 
conceptual knowledge of emotions after controlling for the similarities of the stimulus-properties. 
Additionally, perceptual similarity of expressions and categorisation errors explained 
representational similarity in this region in separate regression models. These results suggest that, 
while the MPFC may represent modality independent emotion concepts, it may also play a role in 
tasks requiring the perceptual discrimination and categorisation of facial expressions of emotion.  

 

General Discussion 
The aim of the present research was to examine the roles of emotion concepts and stimulus-based 
cues in the perceptual discrimination, categorisation, and brain representational structures of facial 
expressions of emotion. Study 1 showed that similarities of shape, surface, and conceptual cues are 
associated with both perceptual similarities of facial expressions and with patterns of 
categorisations. The results of Study 2 furthered this, by showing that the similarity of emotion 
concepts explains the similarity of neural representations of emotions in all four regions we 



 30 

examined (the FFA, OFA, STS, and MPFC), after controlling for the same stimulus-based properties. 
Considering both the behavioural and neuroimaging studies together, our results suggest that 
conceptual knowledge of emotions impacts perception of facial expressions and representations of 
emotions within brain regions involved in the early perceptual processing of facial expressions of 
emotion. 

Three questions were addressed within the research. The first was whether the conceptual similarity 
of emotions still explains perceptual similarity when emotion labels are not present in the 
perceptual task. Several studies have shown that the presence of emotion labels may influence the 
perception of facial expressions by activating emotion concepts (Fernández-Dols et al., 2008; 
Halberstadt & Niedenthal, 2001; Nook et al., 2015). Like Brooks and Freeman (2018), we have shown 
that the similarity of emotion concepts explains perceptual similarity, although we have furthered 
this by showing that this is still the case even when emotion labels are not present in the 
measurement of perceptual similarity. The second question asked what the role of these cues are in 
the explicit labelling of facial expressions. The results of Study 1 showed that the stimulus-based and 
conceptual cues explain the patterns of categorisation of facial expressions during an emotion 
labelling task, that is argued to recruit additional processes involved with assigning labels to stimuli 
(Palermo et al., 2013). The result that conceptual information explains these patterns of 
categorisation is comparable to the results of research showing that categorisations of gender and 
race is influenced by top-down expectations (Levin & Banaji, 2006; Macrae & Martin, 2007). 
Interestingly, the shape and surface cues explained behaviour during the two tasks to different 
extents, suggesting that perceptual tasks and labelling tasks may recruit different processes, or rely 
to different extents on different processes. Finally, we asked what the roles of these cues are in 
explaining the representational structures of facial expressions within several regions of the brain. 
While previous research had examined the independent contribution of stimulus-based and 
conceptual cues (Brooks et al., 2019; Sormaz, Watson, et al., 2016), we showed that the stimulus-
based cues did not seem to explain unique variance of the representational structures in any of the 
brain regions after controlling for conceptual cues. 

The role of emotion concepts in the perception, recognition, and neural representation of facial 
expressions is consistent with several models of social perception suggesting that top-down beliefs 
and prior expectations interact with bottom-up processes to shape our visual perception of others 
(Freeman & Johnson, 2016; Stolier, Hehman, & Freeman, 2018; Tamir & Thornton, 2018). Like 
research showing that the perception of race and gender categories is influenced by internal 
stereotype knowledge (Hugenberg & Bodenhausen, 2004; Macrae & Martin, 2007), the results of the 
current research support the suggestion that the perception and categorisation of others involves an 
interaction between lower-level features and higher-level conceptual information, and show that 
these interactions may extend into the domain of emotion recognition. One model (Freeman & 
Johnson, 2016) proposes a network of brain regions involved in  social perception, suggesting that 
the anterior temporal lobe retrieves social-conceptual information, and the orbitofrontal cortex 
(OFC) implements top-down predictions that shape representations of faces in the fusiform gyrus. 
Given that a region within the OFC is involved in top-down processes during object recognition (Bar, 
2003; Bar et al., 2006), and in predicting the affective value of stimuli (Shenhav, Barrett, & Bar, 
2013), it is possible that this region may be involved in implementing the top-down cues that shape 
representations of facial expressions in the FFA. Future research could examine the role of this 
region within the perception and recognition of facial expressions.  

The focus of this discussion thus far has been on the role of conceptual information, however we 
aimed to examine the relative influence of conceptual and stimulus-based cues. The results for the 
role of the stimulus-based cues, however, have not been quite as clear. In Study, 1 we found that the 
similarities of both shape and surface cues can explain perceptual similarity and categorisation 
errors, where shape information played a particular role in explaining behaviour in the Perceptual 
Task and surface information best explained behaviour in the categorical task. However, the results 
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of Study 2 are not entirely consistent with the behavioural results, as these cues did not share any 
unique variance with the representational distances in any region (after controlling for the similarity 
of emotion concepts). As we found that shape and surface information still play a role in explaining 
perceptual similarity after controlling for conceptual similarity, and there is research suggesting that 
perceptual similarity is associated with representational similarities within several face processing 
regions (Said et al., 2010; Sormaz, Watson, et al., 2016), it was unexpected that these cues did not 
explain unique variance in the structure of neural representations in the brain regions that we 
examined. We note that the shape and surface models used in each study were not identical, as they 
were derived from the faces used in the Perceptual task for Study 1, and from the faces presented in 
the fMRI task for Study 2. Additionally, shape and surface similarities were calculated within-identity 
for Study 1 and between-identity for Study 2, due to the stimuli that were used in each study. 
Perhaps the differences between the stimuli used to create the models, or the variability between 
the within- and between-identity measurements of shape and surface similarity, may have been one 
cause of the differences between the role of the models in the two studies.  

Several studies have examined the contribution of face shape and surface texture to the processing 
of face identity, with results generally suggesting that explicit recognition of identity relies more on 
surface cues over shape (Andrews et al., 2016; Itz, Golle, Luttmann, Schweinberger, & Kaufmann, 
2017). One study, however, used EEG to show that an early face-sensitive ERP component (the 
N170) is sensitive to changes in face shape but not changes in surface reflectance, suggesting that 
face shape contributes to identity processing before surface textures (Caharel, Jiang, Blanz, & 
Rossion, 2009). Our results are consistent with this finding, in that we showed that shape cues 
explain perceptual discrimination more than surface cues, but surface cues play more of a role than 
shape cues in explaining the patterns of explicit labelling of expressions. Studies using fMRI with 
adaptation paradigms showed that the FFA and OFA are sensitive to changes in both shape and 
surface cues (Andrews et al., 2016; Jiang, Dricot, Blanz, Goebel, & Rossion, 2009), while another 
study using RSA showed that the dissimilarities of representations of face identities in the OFA are 
explained primarily by lower-level image-based properties of the stimuli, whereas dissimilarities in 
the FFA are explained primarily by higher-level human-rated properties such as the similarities of 
social traits and attractiveness (Tsantani et al., 2021). Our results suggest that, in the domain of 
emotion processing, high-level conceptual cues may play more of a role than low-level stimulus 
properties in explaining the representational dissimilarities of facial expressions in these regions. 

While our results provided an understanding of the relative influence of conceptual and stimulus-
based information on behaviour and brain representations of emotion, there are some further 
limitations to consider. In particular, we cannot be sure of any causal relationship between any 
particular cue and behaviour or neural representations. For example, it would not be appropriate to 
infer that a given pair of facial expressions are perceptually more similar because the corresponding 
emotion concepts are more similar. This issue of causality raises a further conceptual issue, which is 
that we cannot be sure that participants are ‘using’ any of the three cues we examined. For example, 
in the regression model for the Perceptual Task in Study 1 the average beta for the conceptual 
model was larger than that of the surface model, but the claim that participants use conceptual 
information more than surface information would be unwarranted. Future work could perhaps 
introduce some form of experimental manipulation (e.g. by removing each stimulus-cue after 
Sormaz, Young, and Andrews (2016), or disrupt access to emotion concepts via semantic satiation 
(Gendron et al., 2012; Lindquist et al., 2006)) to assess behaviour and neural representations where 
the availability of each cue is removed. It could also be interesting to combine RSA with EEG to 
investigate the timing at which different types of information may come into play when processing 
facial expressions of emotion. 

The low-to-moderate averaged R-squared values produced in the regression models (in Study 2) are 
also worth noting, as they suggest that there are additional sources of variance that can account for 
the representational structure within the four ROIs. Additionally, no model reached the noise ceiling 
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(with the exception of the Perceptual model in the MPFC), suggesting that they do not perform as 
well as any theoretical model could, given the noise in the data (Nili et al., 2014).  

One important limitation to consider is that our measure of surface similarity used greyscale images 
while participants were presented with colour images. By converting images to greyscale, our model 
of surface similarity was not able to capture the information provided by colour cues. Previous 
research, however, has demonstrated the importance of colour in the recognition of facial 
expressions of emotion. In particular, Benitez-Quiroz, Srinivasan and Martinez (2018) demonstrated 
that facial expressions can be classified above-chance using only face colour features. Moreover, the 
authors showed that participants could reliably categorise emotions using only colour cues, 
independently of shape information. Thorstenson, Elliot, Pazda, Perrett and Xiao (2018) additionally 
showed that participants can reliably manipulate the colour of emotional faces to match held 
emotion-colour associations. In our study, the discrepancy between using colour images and colour-
free surface models could also have contributed to the differences with the results of Sormaz, 
Watson et al. (2016), who presented participants with greyscale images and used greyscale images 
to calculate surface similarity. We think that it would be very interesting for future studies to build 
models based on colour cues of emotional faces (Benitez-Quiroz et al., 2018) and on the associations 
between emotions and colour cues (Thorstenson et al., 2018), and compare these models to the 
ones we included here. 

More generally, the three sources of information we chose to examine are not an exhaustive list of 
factors that can affect the processing of facial expressions. Several low-level image properties are 
reported to explain representations of facial expressions of emotion within the core face regions. 
Weibert et al. (2018) found that the correlations between the spatial frequencies of pairs of images 
(measured using GIST descriptors; Oliva & Torralba, 2001) explained the representational structure 
within the three core face regions. Similarly, Brooks et al. (2019) used the similarities of the 
silhouettes, pixel-by-pixel intensities, and a measure output from a computational model of object 
recognition (HMAX; Serre, Oliva, & Poggio, 2007) as control measures in the regression models. 
Furthermore, the dissimilarity of representations of faces in face processing regions has been 
explained by high-level judgements of social traits, attractiveness, and race and gender categories 
(Stolier & Freeman, 2016; Tsantani et al., 2021). Perhaps future research could employ a wider range 
of models to provide a more complete picture of the sources of information that can explain how 
facial expressions of emotion are represented. In addition to the cues examined within this research, 
the processing of emotions from facial expressions is well documented to be affected by multiple 
social, cognitive, affective, personality, and hormonal measures, so it is feasible that these factors 
may account for additional variance of the representational structures we observed. Should future 
work include participant-level measures (e.g. personality traits), more complex multilevel regression 
models could be used to account for this variance at the participant-level (in addition to variance 
between emotion-pairs). 

It is worth discussing the use of the six basic emotions in these two studies, following the work by 
Ekman and colleagues (e.g. Ekman, 1970; Ekman & Oster, 1979) and because these six categories 
have been used extensively in subsequent research. However, the experience of an emotion is 
clearly not confined to these six distinct categories, and is instead a much a more subjective and 
content-rich experience (Barrett, Mesquita, Ochsner, & Gross, 2007). It has been argued that 
emotions do not have such distinct boundaries, and that evidence that the six basic facial 
expressions can reliably be identified should not be taken as evidence of these boundaries for 
emotional experiences (Barrett, 2006). A data-driven study in which participants viewed emotionally 
evocative videos showed that participants reliably self-reported experiencing an emotion that falls 
into one of 27 distinct categories (Cowen & Keltner, 2017). In the domain of social perception, Skerry 
and Saxe (2015) showed that when identifying which of 20 emotions that characters in short stories 
were experiencing, dissociable patterns of activation for each emotional category were elicited in 
several regions involved with theory of mind. Together, these studies show that both the perception 
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and experience of emotions is not necessarily confined to the six basic emotions as has been used 
within this research. Similarly, the present work does not assume categorical separations between 
emotions, but investigates their representational structure. Moreover, although the emotion 
categories used in the present studies may not have captured a wider range of emotional 
experiences, similar procedures could be applied using a much wider range of labels. 

In conclusion, these results show the roles of shape, surface, and conceptual cues in behavioural and 
neural representations of facial expressions. Behaviourally, we showed that all three cues explain 
patterns of perceptual discrimination and the explicit categorisation of facial expressions. Using 
fMRI, the important role of conceptual information was demonstrated in the representational 
structure of facial expressions within several regions involved in the processing of facial expressions. 
These studies pave the way for future research to examine facial expression processing from the 
perspective of an integration between top-down and bottom-up cues. 
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Supplementary material 

Study 1 

Inter-subject reliability 
To test how consistent were the Perceptual and Categorical matrices across participants, we 
computed inter-subject reliability for each type of matrix by correlating (Spearman’s correlation 
coefficient) each participant’s matrix with the average matrix for all remaining participants. Inter-
subject reliability is presented in Figure S1, and the behavioural matrices showed good inter-subject 
reliability, with mean correlation of .661 for the Perceptual matrices and .765 for the Categorical 
Matrices. 

 

 

 

 

 

 

 

 

 

 

Figure S1: Inter-subject reliability. For each participant’s perceptual and categorical matrices, we 
computed the correlation with the average of all other participants’ matrices. Red bars represent the 
mean correlation coefficient. 
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Differences between categorical and perceptual regression coefficients 
 

 

 

 

 

 

 

 

 

 

 

Figure S2: The mean percentages of variance explained by each of the three predictors. Blue bars 
show the percentage of variance explained in the Perceptual Task, red bars show the percentage of 
variance explained in the Categorical Task. Error bars show one standard error around the mean. 

 

Study 2 

Multiple Choice Task 
Table S1: The mean, standard deviation, minimum and maximum accuracy scores for the recognition 
of each emotion.  

Emotion Mean (%) S.D. Min Max 

Angry 61.33 25.69 0 100 

Disgusted 91.33 17.95 20 100 

Fearful 66.00 34.10 0 100 

Happy 98.00 6.10 80 100 

Sad 92.00 14.48 40 100 

Surprised 94.00 10.70 60 100 

 

 

Relationship between stimulus models across studies 

As different stimuli were used in the two studies, the shape and surface models differed between 

the two. In Study 1, shape and surface similarities were calculated within-identity for the images 

used in the Perceptual Task. In Study 2, shape and surface similarities were calculated between 

every pair of images presented to participants in the scanner, and averaged. To examine the 

relationship of the models between the two studies, we performed a Spearman’s correlation 

between the lower triangles of the two models. A strong and significant relationship was found 

between the surface models used in the two studies (rho(13) = 0.607, p = .019), whereas a moderate 

but non-significant relationship was found between the two shape models (rho(13) = 0.518, p = 

.051). 
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