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ABSTRACT
Single-index quantile regression (QR) models can avoid the curse of dimensionality in nonparametric
problems by assuming that the response is only related to a single linear combination of the covariates.
Like the standard parametric or nonparametric QR whose estimated curves may cross, the single-index QR
can also suffer quantile crossing, leading to an invalid distribution for the response. This issue has attracted
considerable attention in the literature in the recent year. In this article, we consider single-index models,
develop methods for QR that guarantee noncrossing quantile curves, and extend the methods and results
to composite quantile regression. The asymptotic properties of the proposed estimators are derived and
their advantages over existing methods are explained. Simulation studies and a real data application are
conducted to illustrate the finite sample performance of the proposed methods.

ARTICLE HISTORY
Received June 2021
Accepted November 2021

KEYWORDS
Composite quantile
regression; Crossing quantile
curves; Quantile regression;
Single-index model

1. Introduction

Quantile regression (QR) (Koenker 2005) has been receiving
increasing attention in econometrics and statistics. Its advan-
tages over the other estimation methods have been well inves-
tigated. As an alternative to the least-square regression, QR
provides a complete statistical analysis of the stochastic relation-
ships among variables. Specifically, QR is used to estimate the
τ th conditional quantile of the response variable. Let

QY(τ |x) = QY(τ |X = x) = inf{y : P(Y ≤ y|X = x) ≥ τ },

denote the τ th conditional quantile of the response Y given a p-
dimensional vector of covariates X = x. In short, QY(τ |x) is the
smallest real value such that the probability of obtaining smaller
values of Y is at least τ . The traditional QR is concerned with the
estimation of the τ th conditional QR of Y for a given x, which
often sets a linear model as follows:

QY(τ |x) = x�γ01,τ ,

where γ01,τ is a p-dimensional vector of unknown parameters.
Because this model has a strict linearity assumption and lacks
the flexibility to deal with various nonlinearities present in some
datasets, several authors have considered the completely flexi-
ble nonparametric estimation of the conditional quantiles; see
Chaudhuri (1991), Yu and Jones (1998), Takeuchi et al. (2006),
Li and Racine (2008), Guerre and Sabbah (2012), Kong et al.
(2013), Huang and Nguyen (2018), and among others.

As in the case of conditional mean regression, the nonpara-
metric estimation of QY(τ |x) suffers from the so-called curse of
dimensionality. One way to solve this is to consider the single-

CONTACT Keming Yu keming.yu@brunel.ac.uk Department of Mathematics, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK.
Both authors have equal contribution.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

index model (Ichimura 1993). Specifically, given τ ∈ (0, 1), we
model the τ th conditional quantile of the response variable Y at
the multivariate covariate vector of values X = x with a single-
index structure,

QY(τ |x) = g0,τ (x�γ01,τ ), (1.1)

where g0,τ (·) is the unknown link function and γ01,τ is the
unknown parameter vector. For identifiability, one imposes cer-
tain conditions on γ01,τ , and it is often assumed that ‖γ01,τ‖2 =
1 and the first nonzero element of γ01,τ is positive. Note that
‖γ01,τ‖2 = 1; it means that the true value of γ01,τ is the
boundary point on the unit sphere, and hence g0,τ (x�γ01,τ ) does
not have a derivative at the point γ01,τ (Zhu and Xue 2006). To
overcome this difficulty, we make the following adjustment by
using the “delete-one-component” method proposed by Yu and
Ruppert (2002). We assume that γ01,τ = (1, γ �

0,τ )
� with γ0,τ ∈

Rp−1. Christou and Akritas (2016) also used this adjustment.
This means that we transform a restricted problem of estimating
γ01,τ to an unrestricted problem.

The single-index model has the following advantages: (i) the
single-index in the link function projects multivariate covariates
onto a one-dimensional variate, which effectively overcomes
the “curse of dimensionality”; (ii) the unspecified link func-
tion allows model flexibility and thus has a lower risk of mis-
specification; and (iii) the interpretation of covariate effects is
easy because of the linear structure of the index. Therefore,
single-index quantile regression (1.1) has received extensive
attention in the literature in the recent years; see Chaudhuri et al.
(1997), Wu et al. (2010), Oh et al. (2011), Kong and Xia (2012),
Lv et al. (2015), Christou and Akritas (2016), Jiang et al. (2016),
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Ma and He (2016), Tang et al. (2018), Jiang and Yu (2020), and
among others.

Population conditional quantile functions cannot cross each
other for different quantile orders; however, the estimated
regression curves often violate this, which can be very chal-
lenging for interpretation and further analysis. Considerable
attention in the literature has been devoted to studying the
noncrossing estimation of a variety of quantile regression
models for years. For linear and nonlinear quantile estimation,
He (1997) restricted the possible solution space of the response
distribution to location-scale changes of a base distribution to
obtain noncrossing curves. Wu and Liu (2009) had proposed
a stepwise procedure to ensure noncrossing estimated curves.
Santos and Kneib (2020) considered a flexible Bayesian quantile
regression model with Gaussian process adjustment to achieve a
noncrossing property. For nonparametric noncrossing quantile
estimation, Yu and Jones (1998) had suggested a double kernel
smoothing method with a minor modification of this estimate
in a second step so that the corresponding quantile curves
are monotonic. Hall et al. (1999) had proposed an adjusted
Nadaraya-Watson estimator, which modifies the weights so
that the resulting estimate of the conditional distribution
function is monotonic. Dette and Volgushev (2008) considered
noncrossing estimates of quantile curves using a simultaneous
inversion and isotonization of an estimate of the conditional
distribution function. Bondell et al. (2010) developed a
method for noncrossing quantile regression (NCQR) curve
estimation using spline based constraints. Chernozhukov et al.
(2010) proposed estimating noncrossing quantile curves via
a monotonic rearrangement of the original nonmonotonic
function. Schnabel and Eilers (2013) developed a quantile sheet
that contained the quantile level as an argument in the quantile
curve. Andriyana et al. (2018) extended the methods of He
(1997), Wu and Liu (2009), Bondell et al. (2010), and Schnabel
and Eilers (2013) to prevent the crossing of the estimated
quantile curves in a setting of varying-coefficient modeling.
Kim et al. (2019) derived a monotonic constraint tree model
for quantile regression. Chen et al. (2021) had studied the
noncrossing problem for semiparametric multi-index quantile
regression while requiring that the unknown parameter not
depend on quantile level τ ; however, this cannot guarantee
quantile noncrossing under model (1.1). This article aims to
develop a new estimation method for model (1.1) to avoid
quantile crossing.

Most existing methods for addressing quantile crossing are
based on a restricted version of the regression quantile or set a
monotonic constraint. They cannot be directly applied to single-
index quantile regression, because there are both parametric
(γ01,τ ) and nonparametric (g0,τ (·)) parts in model (1.1). The
innovation of this article is the simple kernel estimation of the
nonparametric part (g0,τ (·)) in model (1.1) to avoid quantile
crossing. Therefore, the restrictive estimator of an unknown
parameter (γ01,τ ) in model (1.1) is valid, where the restrictive
condition guarantees the noncrossing estimator of the quantile
function QY(τ |x). The method does not impose any assump-
tions on g0,τ (·) except for some continuity and smoothness con-
ditions. Furthermore, we study its extension called composite
quantile regression (CQR) proposed by Zou and Yuan (2008).
Jiang et al. (2016) extended the CQR method to a single-index

model. Christou and Akritas (2016) also developed a kernel
estimation of the nonparametric part for model (1.1). However,
their method needs to estimate QY(τ |x) first, which may face the
“curse of dimensionality”. More importantly, the estimator of the
nonparametric part cannot avoid quantile crossing. Therefore,
the restrictive estimator of unknown parameters in model (1.1)
by their method is not necessarily effective.

Overall, this study offers a novel approach and makes the
following key contributions:

i. We develop methods to prevent the crossing of the estimated
quantile curves in single-index modeling. The proposed esti-
mation methods are easy to implement for computation.

ii. We study the CQR method which can improve the efficiency.

The article is organized as follows. In Section 2, we intro-
duce the NCQR and derive the asymptotic theories of new
estimations for model (1.1). In Section 3, a noncrossing single-
index CQR is proposed. Simulation examples and a real data
application are given in Section 4 to illustrate the proposed
procedures. Final remarks are given in Section 5. All technical
proofs are deferred to the supplementary material.

2. Noncrossing Single-Index Quantile Regression

2.1. The Noncrossing Estimator of g0,τ (·)
Let {Yi, Xi}n

i=1 with Xi ∈ D ⊂ Rp be an independent identically
distributed (iid) sample from (Y , X). The classical kernel esti-
mation is based on minimizing the following local linear sample
with respect to (a, b) to obtain the estimator ĝτ (u|γ0,τ ) = â of
g0,τ (u|γ0,τ ), where

(â, b̂) = arg min
(a,b)

n∑
i=1

ρτ

(
Yi − a − b(X�

i γ01,τ − u)
)

K

(
X�

i γ01,τ − u
h

)
,

where ρτ (r) = τ r − rI(r < 0) is the check loss function, I(·)
is the indicator function, K(·) is the kernel weight function and
h is called bandwidth, which is used to control the amount of
smoothing. See the details from Wu et al. (2010) and among
others. However, from the numerical examples of Section 4, this
estimation method may not avoid quantile crossing.

Let F(Y|X�γ01,τ = U0,τ ) be the conditional distribution
function of Y given X�γ01,τ = U0,τ ; then, g0,τ (U0,τ |γ0,τ ) in
model (1.1) can be regarded to satisfy

F(·|X�γ01,τ = U0,τ ) = τ .
Then, instead of the “check-function”-based classical kernel
quantile regression estimation above, we estimate g0,τ (U0,τ |γ0,τ )
via the inverse function of the conditional distribution F(Y|X�
γ01,τ = U0,τ ). We will show that by properly selecting
the kernel function, this alternative single-index quantile
regression estimation can automatically produce an estimator of
g0,τ (U0,τ |γ0,τ ) over the design set. This estimator is a monotonic
function of τ and avoids quantile crossing.

In fact, F(y|X�γ01,τ = U0,τ ) is unknown, and its well-known
kernel estimator is

F̂(y|X�γ01,τ = u) =
∑n

j=1 Kh(u−Uj,τ )I(Yj≤y)∑n
j=1 Kh(u−Uj,τ )

,
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where Uj,τ = X�
j γ01,τ and Kh(·) = K(·/h)/h. We replace the

indicator function I(·) by a smoothing distribution function as

F̂(y|X�γ01,τ = u) =
∑n

j=1 Kh(u−Uj,τ )�

(
y−Yj

h1

)
∑n

j=1 Kh(u−Uj,τ )
,

(2.1)

with

�(y) =
∫ y

−∞
W(v)dv,

and the associated bandwidth h1, where W(·) could be any
symmetric probability density function.

It is well known that the selection of both bandwidths h and
h1 are important in nonparametric kernel smoothing methods,
but the selection of kernel functions K(·) and W(·) are not
as important as h and h1. Specifically, we choose W(·) as the
uniform kernel: W(v) = 1/2I(|v| ≤ 1), for simple calculation.
This affords the quantile function gτ ≡ gτ (u|γ0,τ ) to satisfy

1
h1

∫ gτ

−∞
W

(Yj − v
h1

)
dv

= 1
2h1

∫ gτ

−∞
I(Yj − h1 ≤ v ≤ Yj + h1)dv

= 1
2h1

I(gτ ≥ Yj − h1)

∫ min(gτ ,Yj+h1)

Yj−h1

dv

= 1
2h1

{
(gτ − Yj + h1) − (gτ − Yj − h1)I(gτ ≥ Yj + h1)

− (gτ − Yj + h1)I(gτ ≤ Yj − h1)
}

,

and that ĝτ (u|γ0,τ ), for each u, is the value of gτ (u|γ0,τ ), which
is the solution of

gτ (u|γ0,τ ) =(2τ − 1)h1 +
∑n

j=1 YjKh(u−Uj,τ )∑n
j=1 Kh(u−Uj,τ )

+
∑n

j=1{gτ (u|γ0,τ )−Yj−h1}Kh(u−Uj,τ )I{Yj≤gτ (u|γ0,τ )−h1}∑n
j=1 Kh(u−Uj,τ )

+
∑n

j=1{gτ (u|γ0,τ )−Yj+h1}Kh(u−Uj,τ )I{Yj≥gτ (u|γ0,τ )+h1}∑n
j=1 Kh(u−Uj,τ )

.
(2.2)

When γ01,τ is independent of τ , we can rewrite Uj,τ =
X�

j γ01,τ as Uj. Then, taking the first derivative over τ on both
sides of Equation (2.2), we can prove the following lemma:
∂gτ (u|γ0,τ )

∂τ

= 2h1
∑n

j=1 Kh(u − Uj)∑n
j=1 Kh(u − Uj)I{gτ (u|γ0,τ ) − h1 < Yj < gτ (u|γ0,τ ) + h1} > 0,

where ∂gτ (u|γ0,τ )/∂τ is the first derivative of gτ (u|γ0,τ ) with
respect to τ . That is, the estimated g0,τ (u|γ0,τ ) by this new
method is a monotonic function of τ for all u.

By (2.2) and a
√

nh-consistent initial estimator g̃τ (u) of
g0,τ (u|γ0,τ ), which can be obtained by Wu et al. (2010), we can
propose the estimator of g0,τ (u|γ0,τ ) by

ĝτ (u|γ0,τ ) =(2τ − 1)h1 +
∑n

j=1 YjKh(u−Uj,τ )∑n
j=1 Kh(u−Uj,τ )

+
∑n

j=1{g̃τ (u)−Yj−h1}Kh(u−Uj,τ )I{Yj≤g̃τ (u)−h1}∑n
j=1 Kh(u−Uj,τ )

+
∑n

j=1{g̃τ (u)−Yj+h1}Kh(u−Uj,τ )I{Yj≥g̃τ (u)+h1}∑n
j=1 Kh(u−Uj,τ )

.
(2.3)

2.2. The Noncrossing Estimator of QY(τ |x)

The main purpose of this article is to study QY(τ |x) =
g0,τ (x�γ01,τ ) without the crossing problem. Suppose we want
to estimate quantile functions QY(τt|x) simultaneously at
0 < τ1 < · · · < τq < 1.

When γ01,τ is independent of τ , we first obtain the estimator
γ̂1 of γ01,τ by the method in Wu et al. (2010), Kong and
Xia (2012), or Christou and Akritas (2016) (τ = 0.5 is
recommended). Then, as discussed in Section 2.1, Q̂Y(τt|x) =
ĝτt (x�γ̂1) is a noncrossing estimator of QY(τt|x) for t =
1, . . . , q, where ĝτt (·) is defined in (2.3) with u = x�γ̂1 and
Uj,τ = X�

j γ̂1.
For the single-index quantile regression model (1.1), γ01,τ

should depend on τ . In this case, we need some restrictions on
the estimator of γ01,τ to obtain noncrossing curves. We estimate
γ0(τ ) = (γ �

0,τ1 , . . . , γ �
0,τq)

� by the following noncrossing restric-
tion:
γ̂ (τ ) = arg minγτt

1
n

∑q
t=1

∑n
i=1 ρτt

(
Yi − ĝτt (X�

i γ1,τt |γτt )
)

s.t. ĝτt (x�γ1,τt |γτt ) ≥ ĝτt−1(x�γ1,τt−1 |γτt−1), ∀x ∈ D,
(2.4)

where γ̂ (τ ) = (γ̂ �
τ1 , . . . , γ̂ �

τq )� and γ1,τt = (1, γ �
τt )� with γτt ∈

Rp−1, for t = 1, . . . , q. According to the estimator γ̂ (τ ) of γ0(τ )

by (2.4), we can have Q̂Y(τt|x) = ĝτt (x�γ̂1,τt ), t = 1, . . . , q,
which are noncrossing by the constraint in (2.4). Moreover,
because of the noncrossing of {ĝτt (·)}q

t=1, at least one solution
satisfying the restriction condition in (2.4) is γ̂τ1 = · · · = γ̂τq ,
which are independent of τ .

2.3. Asymptotic Normality of Estimators

Let F(·) and f (·) be the cumulative distribution function and
density function of Y, respectively. Denote by fU0,τ (·) the
marginal density function of U0,τ , f ′

U0,τ
(·) is the derivative

of fU0,τ (·), f (·|u) is the conditional density of Y given u,
μ2 = ∫

u2K(u)du and ν0 = ∫
K2(u)du. Moreover, we make

the following assumptions.
Condition 1: The density function of X�γ1 is positive and

uniformly continuous for γ1 in a neighborhood of γ01,τ . Fur-
thermore, fU0,τ (u0,τ ) has a continuous and bounded second
derivative with respect to u0,τ = x�γ01,τ . For a fixed value of
u0,τ , fU0,τ (u0,τ ) > 0.

Condition 2: The function g0,τ (·) has a continuous and
bounded second derivative.

Condition 3: The conditional cumulative distribution func-
tion of Y given u, F(y|u), has a uniformly continuous second-
order partial derivative function with respect to Y and u. The
conditional density of Y given u, f (y|u), is continuous in u for
each y, and 0 < f (g0,τ (u)|u) ≤ c, where c is a positive constant.
Moreover, there exist positive constants ε and δ and a positive
function G(y|u) such that

sup|un−u|≤ε f (y|un) ≤ G(y|u),
∫ |ρ′

τ (y − g0,τ (u))|2+δG(y|u)dy < ∞,∫ {ρτ (y − t) − ρτ (y) − ρ′
τ (y)t}2G(y|u)dy = o(t2) as t → 0.

Condition 4: Define ϕτ (t|x) = E
{
ρτ

(
Yi − g0,τ (x�γ01,τ ) + t

)
|X = x

}
, for which the expectation and differentiation can be

interchanged, and let the first and second derivatives of ϕτ (t|x)

with respect to t exist.
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Condition 5: The kernel K(·) is a symmetric, bounded, and
compactly supported density function.

Condition 6: The following expectations exist,

S0 =E
[{g′

0,τ (X�γ01,τ )}2X̃−1X̃�−1
]

,
S1 =E

[
f (g0,τ (X�γ01,τ )|X�γ01,τ ){g′

0,τ (X�γ01,τ )}2X̃−1X̃�−1
]

,

where X̃−1 = X−1 − E(X−1|X�γ01,τ ), and X−1 is the (p −
1)-dimensional vector consisting of coordinates 2, . . . , p of X.
Moreover, S1 is assumed to be nonsingular.

Remark 2.1. Conditions 1–6 are standard conditions, which are
commonly used in single-index regression; see Wu et al. (2010)
and Christou and Akritas (2016). Condition 1 guarantees the
existence of any ratio terms with the density appearing as part
of the denominator. Condition 2 is a common assumption for
the link function. Condition 3 is weaker than the Lipschitz con-
tinuity of the function ρ′

τ (·). Condition 4 imposes smoothness
conditions on ϕτ (·|x), since ρτ (·) is actually not differentiable
at 0. Condition 5 simply requires that the kernel function is a
proper density with a finite second moment that is required for
the asymptotic variance of estimators. Condition 6 ensures the
existence of the asymptotic variance of estimators.

Theorem 2.1. Under Conditions 1–6, nh9 → 0, nh5h4
1 → 0,

nh → ∞, n → ∞, h1 → 0,
√

nh mint(τt − τt−1) → ∞ with
0 < τ1 < · · · < τq < 1, and the initial estimator g̃τ (·) in (2.3)
is

√
nh-consistent. Then for any z ∈ Rpq, we have∣∣P [√
n

{
γ̂ (τ )− γ0(τ )

} ≤ z
] − P

[√
n {γ̄ (τ )− γ0(τ )} ≤ z

]∣∣→0,

where γ̂ (τ ) is defined in (2.4) and γ̄ (τ ) = (γ̄ �
τ1 , . . . , γ̄ �

τq )� is the
unconstrained estimator with

γ̄τt = arg minγτt
1
n

∑n
i=1 ρτt

(
Yi − ĝτt (X�

i γ1,τt |γτt )
)

,
t = 1, . . . , q. (2.5)

Moreover, for any τ ∈ (τ1, . . . , τq), we have
√

n(γ̂τ − γ0,τ )
L−→ N

(
0, τ(1 − τ)S−1

1 S0S−1
1

)
,

where L−→ stands for convergence in the distribution.

Theorem 2.2. Under the same conditions as in Theorem 2.1,
then for an interior point u,

√
nh

{
ĝτ (u|γ̂τ ) − g0,τ (u) − ατ (u)

} L−→ N (0, �τ (u)) ,

where

ατ (u) = f −1(g0,τ (u)|u)
{

1
2 h2μ2βτ (u) + 1

6 h2
1

∂2F(y|u)

∂y2

∣∣
y=g0,τ (u)

}
,

βτ (u) = ∂2F(g0,τ (u)|u)

∂u2 + 2f −1
U0,τ

(u)f ′
U0,τ

(u)
∂F(g0,τ (u)|u)

∂u ,
�τ (u) = ν0{τ(1−τ)−1/3h1f (g0,τ (u)|u)}

fU0,τ (u)f 2(g0,τ (u)|u)
.

Under Conditions 1 and 3 where f (g0,τ (u)|u) > 0 and
fU0,τ (u) > 0, the asymptotic variance �τ (u) is smaller than
ν0τ(1 − τ)/{fU0,τ (u)f 2(g0,τ (u)|u)}, the asymptotic variance of
existing estimates; see Wu et al. (2010) and Christou and Akritas
(2016). This asymptotically smaller variance of the proposed
estimators than that of existing estimators may partially explain
why it can avoid quantile crossing. Moreover, the bias of the

proposed method is different from that of Wu et al. (2010) or
Christou and Akritas (2016). However, it is difficult to compare
their differences.

With the results of Theorems 2.1 and 2.2, it is straightfor-
ward to obtain a conditional quantile estimator Q̂Y(τ |x) =
ĝ(x�γ̂1,τ |γ̂τ ) of QY(τ |x) in (1.1), where γ̂1,τ = (1, γ̂ �

τ )�. The
asymptotic normality of Q̂Y(τ |x) is as follows.

Theorem 2.3. Under the same conditions as in Theorem 2.2 and
nh4 → ∞, then for an interior point x,
√

nh
{

Q̂Y(τ |x) − QY(τ |x) − ατ (x�γ01,τ )
} L−→ N

(
0, �τ (x�γ01,τ )

)
.

2.4. Selection of Bandwidths

In this section, we focus on how to choose the bandwidths h and
h1. Theorem 2.2 implies that the mean squared error (MSE) of
ĝτ (u|γ̂τ ) is

MSE(ĝτ (u|γ̂τ ))= α2
τ (u) + (nh)−1�τ (u)

= C1h4 + C2h2h2
1 + C3h4

1 + C4(nh)−1

−C5h1(nh)−1,
(2.6)

where C1 = 1/4f −2(g0,τ (u)|u)μ2
2β

2
τ (u), C2 = 1/6f −2(g0,τ (u)|u)

μ2βτ (u)∂2F(y|u)/∂y2|y=g0,τ (u), C3 = 1/36f −2(g0,τ (u)|u)

∂2F(y|u)/∂y2|y=g0,τ (u), C4 = ν0τ(1 − τ)f −1
U0,τ

(u)f −2(g0,τ (u)|u)

and C5 = 1/3ν0f −1
U0,τ

(u)f −1(g0,τ (u)|u) are all constants.
The first-order conditions required for minimization of (2.6)

are
∂MSE(ĝτ (u|γ̂τ ))

∂h = 4C1h3 + 2C2hh2
1 − C4(nh2)−1

+C5h1(nh2)−1 = 0,
(2.7)

∂MSE(ĝτ (u|γ̂τ ))

∂h1
= 2C2h2h1 + 4C3h3

1 − C5(nh)−1 = 0. (2.8)

From (2.7) and (2.8), one can see that h1 must have an order
smaller than that of h. Furthermore, assume h = cn−θ and h1 =
c1n−θ1 . Then we must have θ1 > θ . One can try to use θ1 = θ or
θ1 < θ , which will lead to a contradiction. Therefore, from (2.7)
we have θ = 1/5, and substituting it into (2.8) yields θ1 = 2/5.
Thus, the optimal bandwidths are h = cn−1/5 and h1 = c1n−2/5.

The above analysis provides only the optimal rate. Although
in principle one can compute plug-in bandwidths based on
(2.6), this will not be feasible in applied settings. In practice,
the bandwidths h and h1 can be selected by minimizing the
following cross-validation function (Li et al. 2013):

CV(h, h1) = 1
n2

∑n
i=1

∑n
j=1

{
I(Yi ≤ Yj) − F̂−i(Yj|Ûi,τ )

}2
,

(2.9)
where F̂−i(·) is the “leave-one-out” kernel estimator by (2.1) and
Ûi,τ = X�

i γ̂1,τ . Moreover, (2.9) can be easily solved by using the
“npcdistbw” function in the R package “np.”

2.5. The Algorithm

In this section, we introduce the algorithm of the methods
proposed in Sections 2.1 and 2.2.

To ensure that the estimated quantile curves do not cross, we
adopt the stepwise procedure (Wu and Liu 2009). It starts by
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estimating a particular quantile function; τ = 0.5 was advised
by Wu and Liu (2009). In the next step, we estimate the next
(higher or lower order) quantile. In the upward step, we add
a constraint so that the estimated higher order quantile curve
exceeds the preceding estimated quantile curve. In the down-
ward step, we put a constraint such that the estimated lower
order quantile curve does not exceed the preceding estimated
quantile curve. The procedure continues by moving to the next
quantile order.

Moreover, to obtain the estimator γ̂ (τ ) by minimizing (2.4),
we use a local linear approximation of ĝτt (X�

i γ1,τt |γτt ) around a√
n-consistent initial value γ̃τt of γ0,τt . This yields

ĝτt (X�
i γ1,τt |γτt ) ≈ ĝτ (X�

i γ̃1,τt |γ̃τt )

+ ĝ′
τ (X�

i γ̃1,τt |γ̃τt )X�
i,−1(γτt − γ̃τt ),

where γ̃1,τt = (1, γ̃ �
τt )� and ĝ′

τ (u) = ∂ ĝτ (u)/∂u.
The steps of the proposed procedure are summarized as

follows.
Step 0: Obtain initial estimators of γ0,τ and g0,τ (·).
The initial estimators γ̃τ of γ0,τ and g̃τ (X�

i γ̃1,τ ) of g0,τ (X�
i

γ̃1,τ ) for τ ∈ (τ1, . . . .τq), can be obtained by the method
in Wu et al. (2010), Kong and Xia (2012), or Christou and
Akritas (2016), which all satisfy the condition of

√
n and

√
nh

consistency for γ0,τ and g0,τ (·), respectively. In our numerical
study, we obtain all initial estimators by methods in Wu et al.
(2010). Note that γ01,τ = (1, γ �

0,τ )
�, we modify the estimator of

γ01,τ in Wu et al. (2010) by setting its first component equal to
1.

Step 1: Estimate γ0,τ with τ = 0.5 (unconstrained estima-
tion).

The median quantile estimator is given by minimizing the
following objective function with respect to γ :

1
n

∑n
i=1 ρ0.5

(
Yi − ĝ0.5(X�

i γ̃1,0.5|γ̃0.5)

− ĝ′
0.5(X�

i γ̃1,0.5|γ̃0.5)X�
i,−1(γ − γ̃0.5)

)
= 1

n
∑n

i=1 ρ0.5
(
Y∗

i,0.5 − ĝ′
0.5(X�

i γ̃1,0.5|γ̃0.5)X�
i,−1γ

)
,
(2.10)

where Y∗
i,τ = Yi − ĝτ (X�

i γ̃1,τ |γ̃τ )+ ĝ′
τ (X�

i γ̃1,τ |γ̃τ )X�
i,−1γ̃τ . Note

that (2.10) can be easily solved by using the “rq” function in the
R package “quantreg”.

Step 2: Complete up (γ0,τ ).
Starting from τt = 0.5, the next higher order τt+1 > τt

is obtained from the following constrained minimization prob-
lem:

γ̂τt+1 = arg minγτt+1
1
n

∑n
i=1 ρτt

(
Y∗

i,τt+1
− ĝ′

τt+1 (X�
i γ̃1,τt+1 |γ̃τt+1 )X�

i,−1γτt+1
)

s.t. ĝτt+1 (x�γ̃1,τt+1 |γ̃τt+1 ) + ĝ′
τt+1 (x�γ̃1,τt+1 |γ̃τt+1 )X�

i,−1(γτt+1 − γ̃τt+1 )

≥ ĝτt (x�γ̂1,τt |γ̂τt ) + δ, ∀x ∈ D,
(2.11)

where δ is a prespecified small positive number to ensure strict
inequality in (2.11). In our numerical study, we set δ = 10−4

as adopted by Wu and Liu (2009). Note that (2.11) can be
easily solved by using the “rq.fit.fnc” function in the R package
“quantreg”.

Step 3: Complete down (γ0,τ ).
Similar to the complete up version, we can estimate γ0,τt−1

based on γ̂τt by solving:
γ̂τt−1 = arg minγτt−1

1
n

∑n
i=1 ρτt

(
Y∗

i,τt−1
− ĝ′

τt−1 (X�
i γ̃1,τt−1 |γ̃τt−1 )X�

i,−1γτt−1
)

s.t. ĝτt−1 (x�γ̃1,τt−1 |γ̃τt−1 ) + ĝ′
τt−1 (x�γ̃1,τt−1 |γ̃τt−1 )X�

i,−1(γτt−1 − γ̃τt−1 )

≤ ĝτt (x�γ̂1,τt |γ̂τt ) − δ, ∀x ∈ D.

Step 4: Estimate g0,τ (·) and QY(τ |x).
From the

√
nh-consistent initial estimator g̃τ (u) in Step 0,

and given γ̂τ in Steps 1-3, we estimate the link function g0,τ (u)

in model (1.1) at any u by

ĝτ (u|γ̂τ ) = (2τ − 1)h1 +
∑n

j=1 YjKh(u−X�
j γ̂1,τ )∑n

j=1 Kh(u−X�
j γ̂1,τ )

+
∑n

j=1{g̃τ (u)−Yj−h1}Kh(u−X�
j γ̂1,τ )I{Yj≤g̃τ (u)−h1}∑n

j=1 Kh(u−X�
j γ̂1,τ )

+
∑n

j=1{g̃τ (u)−Yj+h1}Kh(u−X�
j γ̂1,τ )I{Yj≥g̃τ (u)+h1}∑n

j=1 Kh(u−X�
j γ̂1,τ )

,

where γ̂1,τ = (1, γ̂ �
τ )�.

It is straightforward to obtain the estimator of QY(τ |x) as

Q̂Y(τ |x) = ĝτ (x�γ̂1,τ |γ̂τ ).

3. Noncrossing Single-Index CQR

3.1. The Method

If the model (1.1) can be rewritten as follows:

QY(τ |x) = g0(x�γ01) + Qε(τ ), (3.1)

where ε is the random error which is independent of X, and
Qε(τ ) is the τ th quantile of ε for τ ∈ (0, 1). The function
g0(·) is the unknown nonparametric smoothing functions and
γ01 = (1, γ �

0 )� with γ0 ∈ Rp−1 is the unknown parameter
vector. Note that model (3.1) is a special case of model (1.1),
where γ01 and g0(·) are independent of τ . Our task is to estimate
γ0 and g0(·).

For model (3.1), γ0 is independent of τ . As discussed in
Section 2.2, we can use γ̄τ in (2.5) to estimate γ0 with any choice
of τ . Additional efficiency gain can be achieved by combining
information over multiple quantiles. We want to combine infor-
mation over the K quantiles with 0 < τ1 < · · · < τK < 1.
Typically, we use equally spaced quantiles τk = k/(K + 1) for
k ∈ {1, . . . , K}. Thus, we consider the CQR of γ0 as follows:

γ̂ = ∑K
k=1 vkγ̄τk , (3.2)

where
∑K

k=1 vk = 1.
After obtaining the estimator γ̂ of γ0 in model (3.1) by

(3.2), for any given point u, we consider the estimate g0(·) in
model (3.1). Consider weights w = (w1, . . . , wK)� satisfying
the constraints∑K

k=1 wk = 1 and
∑K

k=1 wkQε(τk) = 0. (3.3)

Therefore, using (3.1) and (3.3), we have
∑K

k=1 wkQY(τk|x) = ∑K
k=1 wk

{
g0(x�γ01) + Qε(τk)

}
= g0(x�γ01)

∑K
k=1 wk + ∑K

k=1 wkQε(τk)
= g0(x�γ01).

This identity suggests estimating g0(·) by plugging in a consis-
tent estimation of QY(τk|x), k ∈ {1, . . . , K}. By model (1.1) and
Theorem 2.3, with γ̂ in (3.2), we have

ĝ(x�γ̂1|γ̂ ) = ∑K
k=1 wkĝτk(x�γ̂1|γ̂ ), (3.4)
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where ĝτk(·|γ ) is defined in (2.3) and γ̂1 = (1, γ̂ �)�. Moreover,
for any given point u,

ĝ(u|γ̂ ) = ∑K
k=1 wkĝτk(u|γ̂ ). (3.5)

From (3.2), (3.4), and (3.5), it is easy to see that NCQR
estimators with τk in Section 2 are a special case of noncrossing
composite quantile regression (NCCQR) estimators when the
kth position of vector v or w is 1 and the rest is 0. Therefore,
under the choice of appropriate weight v or w, the estimated
efficiency of NCCQR is better than that of NCQR.

3.2. Asymptotic Normality of the Estimators

To establish the asymptotic properties of the proposed estima-
tors, the following technical conditions are imposed.

Condition 7: The density function of X�γ1 is positive and
uniformly continuous for γ1 in a neighborhood of γ01. Further-
more, the density of X�γ01 is continuous and bounded away
from 0 and ∞ on its support.

Condition 8: The function g0(·) has a continuous and
bounded second derivative.

Condition 9: fε(·) is the density function of ε. For any τ ∈
(0, 1), fε(Qε(τ )) is uniformly bounded away from zero and
infinity.

Remark 3.1. Conditions 7 and 8 are similar to Conditions 1
and 2 under different models (1.1) and (3.1). Condition 9 is
commonly assumed to derive the asymptotic normality of the
quantile regression estimator; see Koenker (2005).

3.2.1. Asymptotic Normality of Parametric Regression
Estimators

Theorem 3.1. Under regular Conditions 3-9, assume that∑K
k=1 vk = 1; if n → ∞, h1 → 0, nh9 → 0, nh5h4

1 → 0,
and nh → ∞, then,

√
n(γ̂ − γ0)

L−→ N
(
0, R1(v)S−1

2
)

,

where R1(v) = ∑K
k=1

∑K
k′=1 vkvk′ {min(τk, τk′) − τkτk′ }/{fε

(Qε(τk))fε(Qε(τk′))}, v = (v1, . . . , vK)�, and S2 = E
[{g′

0(X�
γ01)}2X̃−1X̃�−1

]
is assumed to be a nonsingular matrix.

From Theorem 3.1, we find that the asymptotic variance of γ̂

depends on v only through R1(v). Thus, the optimal choice of
weights for maximizing the efficiency of the estimator γ̂ is

vopt = arg minv R1(v), such that
∑K

k=1 vk = 1
= DT−1D1/(1�DT−1D1), (3.6)

where D = diag{fε(Qε(τ1)), . . . , fε(Qε(τK))} , T is the K × K
matrix with entries min(τk, τk′)−τkτk′ , k, k′ ∈ {1, . . . , K}, and 1
is the K × 1 matrix with entries 1. Thus, the optimal asymptotic
variance using these weights (3.6) is (f�T−1f)−1S−1

2 , where f =
(fε(Qε(τ1)), . . . , fε(Qε(τK)))�. Note that the optimal asymp-
totic variance is the same as the weighted CQR proposed by
Jiang et al. (2016). Therefore, our proposed estimator is more
efficient than many estimation methods. The details can be seen
in Section 2.4 in Jiang et al. (2016).

It can be seen from (3.6) that the optimal weight vector vopt
involves unknown parameters fε(·) and Qε(τk), k = 1, . . . , K.
We can obtain the estimator of vopt as

v̂ = D̂T−1D̂1/(1�D̂T−1D1),
where D̂ = diag{f̂ε̂(Q̂ε̂(τ1)), . . . , f̂ε̂(Q̂ε̂(τK))}. Q̂ε̂(τ ) is the
sample τ -quantile of ε̂ = Y − ĝ(X�γ̂1), where γ̂1 and
ĝ(·) are obtained by (2.4) and (2.3) with τ = 0.5. f̂ε̂(u) =
n−1 ∑n

i=1 Kh2(ε̂i − u) and h2 can be chosen as h2 = 0.9 ×
min{std(ε̂), IQR(ε̂)/1.34} × n−1/5, where std and IQR denote
the sample standard deviation and sample interquantile,
respectively (Silverman 1986).

3.2.2. Asymptotic Normality of the Nonparametric
Functions

Theorem 3.2. Under the same conditions as in Theorem 3.1,
assume that

∑K
k=1 wk = 1 and

∑K
k=1 wkQε(τk) = 0; then, for

an interior point u,
√

nh
{

ĝ(u|γ̂ ) − g0(u) − α(u)
} L−→ N

(
0,

ν0R2(w)

fU0(u)

)
,

where fU0(·) is the marginal density function of U0 = X�γ01,
and

α(u) = f −1(g0(u)|u)
{

1
2 h2μ2β(u) + 1

6 h2
1

∂2F(y|u)

∂y2

∣∣
y=g0(u)

}
,

β(u) = ∂2F(g0(u)|u)

∂u2 + 2f −1
U0

(u)f ′
U0

(u)
∂F(g0(u)|u)

∂u ,

R2(w) = ∑K
k=1

∑K
k′=1 wwwk′

min(τk,τk′ )−τkτk′−1/3h1fε(Qε(min(τk,τk′ )))
fε(Qε(τk))fε(Qε(τk′ ))

.

Furthermore, when nh4 → ∞, for any interior point x,
√

nh
{̂
g(x�γ̂ |γ̂ ) − g0(x�γ0) − α(x�γ0)

} L−→ N
(
0,

ν0R2(w)

fU0(x�γ0)

)
.

It is easy to see that the bias of ĝ(u|γ̂ ) or of ĝ(x�γ̂ |γ̂ ) is
free of the choice of weight vector w, and only the variance
term R2(w) depends on the weight vector w. Then, the optimal
weights correspond to the minimum R2(w),

wopt = arg minw R2(w), such that
∑K

k=1 wk = 1

and
∑K

k=1 wkQε(τk) = 0

= (r��−1r)�−11−(1��−1r)�−1r
(r��−1r)(1��−11)−(1��−1r)2 ,

(3.7)

where r is a K-dimensional column vector with kth element
Qε(τk) and � is the K × K matrix with the (k, k′)th element

{min(τk, τk′) − τkτk′ − 1/3h1fε(Qε(min(τk, τk′))}
/{fε(Qε(τk))fε(Qε(τk′))}.

Note that wopt also involves unknown parameters fε(·) and
{Qε(τk)}K

k=1 as vopt. Therefore, we can use a similar method for
vopt to obtain the estimator of wopt.

4. Numerical Studies

In this section, we first use Monte Carlo simulation studies to
assess the finite sample performance of the proposed proce-
dures. We then demonstrate the application of the proposed
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Figure 1. The estimated conditional quantile functions for model (4.1) with Case 1 under different quantiles and estimation methods. The abscissa is x�γ̂0.5, where γ̂0.5 is
obtained by NIQR-W, NIQR-C, or NCQR at τ = 0.5.

methods with a real data analysis. All programs are written in
R code. The Gaussian kernel K(u) = (

√
2π)−1 exp(−u2/2) is

used in this section.

4.1. Simulation Example 1

We use simulation studies to illustrate the improvement of our
NCQR for the single-index model in Section 2 by comparing it



316 R. JIANG AND K. YU

Figure 2. The estimated conditional quantile functions for model (4.1) with Case 2 under different quantiles and estimation methods. The abscissa is x�γ̂0.5, where γ̂0.5 is
obtained by NIQR-W, NIQR-C, or NCQR at τ = 0.5.

to the naive individual quantile regression (NIQR). We consider
two NIQR methods: NIQR-W (Wu et al. 2010) and NIQR-C
(Christou and Akritas 2016). We use the following model (4.1)
to demonstrate that NIQR estimates may suffer from quantile
crossing, while our proposed NCQR method can avoid it.

Y = 2 sin(X�γ01) + σ(X)ε, (4.1)

where Xj ∼ N(0, 1) for j = 1, 2, γ01 = (1, 2)�, and the
sample size is fixed at n = 200. Two error distributions of ε

are considered: a standard normal distribution (N(0,1)) and a t
distribution with 3 degrees of freedom (t(3)). We consider the
following two cases:
Case 1 (Normal errors): σ(X) = 1 and ε ∼ N(0, 1), and
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Case 2 (Heteroscedastic errors): σ(X) = 0.5
√

1 + cos(X�γ01)
and ε ∼ t(3).

Quantile functions are estimated at τ = 0.1, 0.3, 0.5, 0.7, 0.9.
The NIQR-W, NIQR-C and NCQR estimated quantile functions
are plotted in Figures 1 and 2 for different cases and quantiles.
We can see that NIQR-W and NIQR-C suffer from quantile
crossing (see the area between the dotted lines). However, by
enforcing our noncrossing adjustment in Section 2, our new
estimates (NCQR) do not cross each other.

4.2. Simulation Example 2

To further compare with the NIQR, we consider the following
four simulation designs:

Design 1 (Homoscedastic model): Y = exp
(
X�γ01

)+ε, where
X ∼ U(0, 1) , γ01 = (1, 2)�, ε ∼ N(0, 1), and n = 200.

Design 2 (Heteroscedastic model): Y = 5 cos
(
2πX�γ0

) +√
1 + (

X�γ01
)2

ε, where X ∼ U(0, 1) , γ01 = (1, −1)�, ε ∼
N(0, 1), and n = 200.

Design 3 (High-dimensional homoscedastic model): Y =(
X�γ01

)2 + ε, where X is drawn from a multivariate uniform
distribution on the [0, 1]p with covariance matrix �ij = 0.5i−j

for 1 ≤ i, j ≤ p, p = 100, γ01 = (1, 2, 1, 0, . . . , 0)�, ε ∼ t(5),
and n = 1000.

Design 4 (High-dimensional heteroscedastic model): Y =(
X�γ01

)2 +
√

1 + sin
(
X�γ01

)
ε, where X is drawn from a

multivariate uniform distribution on the [0, 1]p with covariance
matrix �ij = 0.5i−j for 1 ≤ i, j ≤ p, p = 100, γ01 =
(1, 2, 1, 0, . . . , 0)�, ε ∼ N(0, 1), and n = 1000.

Quantiles τ = 0.1, . . . , 0.9 are fitted to the data. We simulate
500 replicates, and all samples present crossing issues when
using NIQR. To compare the two methods, the empirical root
mean integrated squared errors (RMISE) are computed for each
design and τ .

RMISE =
[

1
n

∑n
i=1

{
Q̂Y(τ |Xi) − QY(τ |Xi)

}2
]1/2

,

where Q̂Y(τ |·) is the estimated function of the true function
QY(τ |·). Tables 1–4 present the average RMISE over the 500
datasets along with its estimated standard error for four designs
and three methods, respectively. In each of the settings con-
sidered, the proposed NCQR estimators of quantile functions
give significantly better estimates for all qantiles based on their
smaller RMISEs. Since the true curves do not cross, it is expected
that the NCQR estimator of the quantile function performs
better.

4.3. Simulation Example 3

We use Monte Carlo simulation studies to assess the finite sam-
ple performance of the proposed NCCQR method for single-
index models in Section 3. By Tables 1 and 2 in Jiang et al. (2016),
K = 9 is a good choice for NCCQR. Therefore, we only consider
K = 9 in this section (NCCQR9). Furthermore, we include
four competitors: (i) the NIQR-W with τ = 0.5 (NIQR-W0.5);
(ii) the NIQR-C with τ = 0.5 (NIQR-C0.5); (iii) the NCQR

Table 1. This table compares NIQR (NIQR-W and NIQR-C) and NCQR based on the
mean values and standard errors (in parentheses) of RMISE based on 500 estimates
for Design 1 under different quantiles.

τ NIQR-W NIQR-C NCQR

0.1 0.386 (0.103) 0.389 (0.101) 0.352 (0.084)
0.2 0.339 (0.077) 0.343 (0.078) 0.317 (0.069)
0.3 0.315 (0.073) 0.323 (0.087) 0.297 (0.066)
0.4 0.305 (0.069) 0.310 (0.070) 0.289 (0.064)
0.5 0.298 (0.066) 0.304 (0.073) 0.285 (0.060)
0.6 0.303 (0.069) 0.310 (0.072) 0.290 (0.062)
0.7 0.316 (0.079) 0.311 (0.072) 0.300 (0.067)
0.8 0.332 (0.077) 0.340 (0.080) 0.315 (0.067)
0.9 0.391 (0.098) 0.399 (0.102) 0.366 (0.085)

Table 2. This table compares NIQR (NIQR-W and NIQR-C) and NCQR based on the
mean values and standard errors (in parentheses) of RMISE based on 500 estimates
for Design 2 under different quantiles.

τ NIQR-W NIQR-C NCQR

0.1 0.608 (0.118) 0.598 (0.111) 0.532 (0.091)
0.2 0.520 (0.102) 0.512 (0.100) 0.471 (0.083)
0.3 0.482 (0.092) 0.473 (0.093) 0.441 (0.077)
0.4 0.471 (0.081) 0.457 (0.085) 0.433 (0.072)
0.5 0.469 (0.081) 0.451 (0.075) 0.431 (0.071)
0.6 0.476 (0.088) 0.458 (0.085) 0.439 (0.077)
0.7 0.491 (0.095) 0.473 (0.097) 0.453 (0.083)
0.8 0.530 (0.100) 0.510 (0.097) 0.484 (0.084)
0.9 0.602 (0.117) 0.592 (0.112) 0.538 (0.097)

Table 3. This table compares NIQR (NIQR-W and NIQR-C) and NCQR based on the
mean values and standard errors (in parentheses) of RMISE based on 500 estimates
for Design 3 under different quantiles.

τ NIQR-W NIQR-C NCQR

0.1 0.702 (0.064) 0.967 (0.065) 0.666 (0.065)
0.2 0.569 (0.032) 0.714 (0.048) 0.544 (0.029)
0.3 0.496 (0.036) 0.631 (0.029) 0.479 (0.034)
0.4 0.475 (0.048) 0.591 (0.032) 0.459 (0.050)
0.5 0.457 (0.050) 0.576 (0.050) 0.446 (0.052)
0.6 0.475 (0.040) 0.607 (0.030) 0.456 (0.042)
0.7 0.527 (0.050) 0.624 (0.062) 0.496 (0.050)
0.8 0.570 (0.057) 0.736 (0.057) 0.543 (0.056)
0.9 0.696 (0.055) 0.886 (0.047) 0.663 (0.053)

Table 4. This table compares NIQR (NIQR-W and NIQR-C) and NCQR based on the
mean values and standard errors (in parentheses) of RMISE based on 500 estimates
for Design 4 under different quantiles.

τ NIQR-W NIQR-C NCQR

0.1 0.542 (0.022) 0.565 (0.044) 0.511 (0.020)
0.2 0.424 (0.026) 0.452 (0.022) 0.396 (0.024)
0.3 0.358 (0.025) 0.393 (0.027) 0.334 (0.025)
0.4 0.331 (0.023) 0.353 (0.032) 0.308 (0.023)
0.5 0.315 (0.018) 0.326 (0.030) 0.303 (0.017)
0.6 0.321 (0.023) 0.335 (0.027) 0.308 (0.022)
0.7 0.341 (0.018) 0.350 (0.023) 0.320 (0.028)
0.8 0.389 (0.027) 0.402 (0.029) 0.365 (0.026)
0.9 0.523 (0.048) 0.535 (0.047) 0.506 (0.046)

with τ = 0.5 (NCQR0.5); and (iv) the weighted CQR with
K = 9 (WCQR9) proposed by Jiang et al. (2016). For the sake of
comparison, we modify WCQR9 by setting its first component
equal to 1. The data are generated according to the following
models:
Design 5: Y = 2 sin

(
X�γ0

) + ε, where X ∼ N(0, 1) , γ0 =
(1, 2)�, ε ∼ N(0, 1), and n = 200.
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Figure 3. The estimated conditional quantile functions for real estate valuation data under different quantiles and estimation methods. The abscissa is x�γ̂0.5, where γ̂0.5
is obtained by NIQR-W, NIQR-C, or NCQR at τ = 0.5.

Table 5. This table compares five estimation methods (NIQR-W0.5; NIQR-C0.5; NCQR0.5; WCQR9; NCCQR9) based on the mean values and standard errors (in parentheses)
of AAB and AIAB based on 500 estimates for Example 3 under different designs.

Model Result NIQR-W0.5 NIQR-C0.5 NCQR0.5 WCQR9 NCCQR9

Design 5 AAB 0.162 (0.129) 0.176 (0.138) 0.136 (0.102) 0.133 (0.108) 0.122 (0.109)
AIAB 0.263 (0.054) 0.257 (0.055) 0.247 (0.047) 0.231 (0.050) 0.224 (0.049)

Design 6 AAB 0.039 (0.017) 0.043 (0.022) 0.035 (0.020) 0.035 (0.016) 0.033 (0.018)
AIAB 0.262 (0.039) 0.280 (0.049) 0.254 (0.035) 0.251 (0.038) 0.241 (0.037)

Design 7 AAB 0.090 (0.006) 0.099 (0.004) 0.085 (0.006) 0.085 (0.005) 0.080 (0.005)
AIAB 0.317 (0.016) 0.335 (0.015) 0.312 (0.017) 0.292 (0.017) 0.287 (0.019)
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Table 6. This table presents the single-index coefficient estimates for real estate
valuation data under different estimation methods and quantiles.

Method τ Number Meter Year Date

NIQR-W 0.1 1.000 −0.024 −0.307 5.361
0.3 1.000 −0.024 −0.307 5.382
0.5 1.000 −0.024 −0.315 5.557
0.7 1.000 −0.026 −0.352 6.189
0.9 1.000 −0.025 −0.321 5.979

NIQR-C 0.1 1.000 −0.063 −0.796 13.587
0.3 1.000 −0.111 −1.585 19.364
0.5 1.000 −0.175 −2.119 36.924
0.7 1.000 −0.216 −3.407 60.921
0.9 1.000 −0.170 −2.463 42.316

NCQR 0.1 1.000 −0.023 −0.340 5.651
0.3 1.000 −0.024 −0.336 5.624
0.5 1.000 −0.029 −0.421 6.974
0.7 1.000 −0.030 −0.509 7.798
0.9 1.000 −0.028 −0.407 8.326

WCQR9 1.000 −0.025 −0.322 5.607
NCCQR9 1.000 −0.026 −0.395 6.489

Design 6: Y = (
X�γ0

)2+ε, where X ∼ U(1, 2) , γ0 = (1, 1, 1)�,
ε ∼ t(5), and n = 200.
Design 7: Y = exp

(
X�γ0

) + ε, where X is drawn from a
multivariate uniform distribution on the [0, 1]p with �ij =
0.5i−j for 1 ≤ i, j ≤ p, p = 100, γ0 = (1, 1, −1, 0, . . . , 0)�,
ε ∼ N(0, 1), and n = 1000.

To compare the five methods, the average absolute bias
(AAB) of γ̂ and the average integrated absolute bias (AIAB)
of ĝ(·) are computed for each design.

AAB = 1
p−1

∑p
j=2 |γ̂j − γ0,j|,

AIAB = 1
ngrid

∑ngrid
i=1

∣∣ĝ(ui) − g0(ui)
∣∣ ,

where ui, i = 1, . . . , ngrid are grid points of the support of X�γ0,
and ngrid = n. The simulation results are summarized in Table 5.
From the Table 5, we can see that NCCQR9 performs well under
different models and high-dimensional data. Moreover, in each
of the designs considered, the proposed NCQR0.5 estimators
of the parametric and nonparametric parts give significantly
better results than those of NIQR0.5 (NIQR-W0.5 and NIQR-
C0.5) based on their smaller AAB and AIAB. Since the true
curves do not cross, it is expected that the NCQR estimator of
the nonparametric part performs better. By using the noncross-
ing estimator of the nonparametric part, the proposed NCQR
estimators of the parametric part improve estimation efficiency.

4.4. Data Example: Real Estate Valuation Data

As an illustration, we now apply the proposed methodology
to real estate valuation data. The dataset is collected from the
public database of the Ministry of the Interior during the period
of June 2012 to May 2013 from two districts in Taipei City and
two districts in New Taipei City (https://archive.ics.uci.edu/~
ml/datasets/Real+estate+valuation+data+set). The data contain
414 observations on six variables, and the dependent variable
of interest is the residential housing price per unit area (Price).
Based on a related research Yeh and Hsu (2018), four appraisal
factors (independent variables) are chosen: the distance to the
nearest MRT station (Meter); the number of convenience stores

Figure 4. The estimated Price by NCCQR9 for real estate valuation data. The dots are
the observations Price and the curve is the estimated Price by the proposed NCCQR9
method. The abscissa is x�γ̂NCCQR9 .

Table 7. The ASPE of five estimation methods (NIQR-W0.5; NIQR-C0.5; NCQR0.5;
WCQR9; NCCQR9) for real estate valuation data.

Method NIQR-W0.5 NIQR-C0.5 NCQR0.5 WCQR9 NCCQR9
ASPE 42.617 44.204 42.027 40.857 40.805

in the living circle on foot (Number); house age (Year); and
transaction date (Date). All variables are centered around zero.
The following single-index quantile regression is used to fit the
data:

QPrice(τ |Number; Meter; Year; Date)
= gτ {γ1,τ Number + γ2,τ Meter + γ3,τ Year + γ4,τ Date}.

The estimated coefficients under different methods for the
above model are summarized in Table 6. Figure 3 shows the esti-
mated QPrice(τ |Number; Meter; Year; Date) of quantiles τ =
0.1, 0.3, 0.5, 0.7, 0.9 along with the data by NIQR-W, NIQR-C,
and NCQR. There are 10 data crossings for NIQR-W and 10 data
crossings for NIQR-C. In contrast, the NCQR improves the esti-
mates by removing the crossing. Figure 4 shows the estimated
Price by the NCCQR9 method along with the observations. This
suggests that the estimated Price by NCCQR9 provides a good
fit to the data.

Furthermore, to compare the performance of the five meth-
ods (NIQR-W0.5; NIQR-C0.5; NCQR0.5; WCQR9; NCCQR9),
we evaluate the average square prediction error (ASPE). The first
320 data points are used for the estimation, and the remaining
94 data points are used for the prediction. Therefore,

ASPE = 1
ñ

∑ñ
i=1(Pricei − ˆPricei)2,

where ˆPrice is the fitted value of Price and ñ = 94. The results
of ASPEs under different methods are presented in Table 7. It
is easy to see that the performances of NCQR0.5 are better than
those of NIQR-W0.5 and NIQR-C0.5. The results of NCCQR9
are the best based on the smallest ASPE.

5. Conclusion

In this article, we have considered the estimation problem of
the single-index quantile regression without quantile crossing.
An effective and simple-kernel estimation method of the non-
parametric part in model (1.1) has been provided for both stan-
dard single-index quantile regression and single-index CQR.

https://archive.ics.uci.edu/~ml/datasets/Real+estate+valuation+data+set
https://archive.ics.uci.edu/~ml/datasets/Real+estate+valuation+data+set
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Our proposed method gives a closed form expression for the
estimator of the nonparametric part and ensures noncrossing.
Thus, the restrictive estimators of unknown parameters are
valid, which guarantees the noncrossing estimator of QY(τ |x).
Simulations have demonstrated that the proposed noncrossing
method not only helps to provide more meaningful results, but
also improves the estimation accuracy of the resulting regression
functions. The real data application example further highlights
its value in applied settings.

Supplementary Material

The proofs of the proposed theorems are given in the supplementary
material file.
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