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Abstract—High dimensional and sparse (HiDS) data with
non-negativity constraints are commonly seen in industrial
applications like recommender systems. They can be modeled into
an HiDS matrix, from which non-negative latent factor analysis
(NLFA) is highly effective in extracting useful features.
Preforming NLFA on an HiDS matrix is ill-posed, desiring an
effective regularization scheme for avoiding overfitting. Current
models mostly adopt a standard L, scheme, which does not
consider the imbalanced distribution of known data in an HiDS
matrix. From this point of view, this study proposes an
instance-frequency-weighted regularization (IR) scheme for
NLFA on HiDS data. It specifies the regularization effects on each
LF with its relevant instance count, i.e., instance-frequency, which
clearly describes the known data distribution of an HiDS matrix.
By doing so, it achieves finely grained modeling of regularization
effects. Experimental results on HiDS matrices from industrial
applications demonstrate that compared with an L, scheme, an IR
scheme enables a resultant model to achieve higher accuracy in
missing data estimation of an HiDS matrix.

Index  Terms—Non-negative Latent Factor Analysis,
Regularization, Instance-frequency, High Dimensional and
Sparse Data, Recommender System, Industrial Application

I. INTRODUCTION

N THIS ERA of big data, learning system-based industrial
applications usually involve numerous entities and their
corresponding high dimensional relationships, e.g., users, items
and user-item preferences in recommender systems [1-3], users,
services and user-service QoS history in Web-service QoS
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analysis [4-6], users and user-user trust networks in social
network-based services [7-10], and proteins and protein-protein
interactome mappings in bioinformatics [11-13]. Due to the
exploding numbers of involved entities, e.g., millions of users
and items in a recommender system, it becomes impossible to
observe the full relationship among them. As a result, High
Dimensional and Sparse (HiDS) matrices are often adopted to
describe such relationships in practice [1-13]. Note that in an
HiDS matrix, most entries are “missing” rather than “zero” in
conventional sparse matrices, €.g., an unobserved connection
between a specified user-item tuple is “missing” rather than
“zero” in recommender systems [1-3].

In spite of its sparsity, an HiDS matrix contains rich
information regarding various desired patterns, e.g., user
preferences in a recommender system [1-3] and community
tendency in a social network service system [7-10]. How to
extract such useful knowledge from an HiDS matrix becomes a
vital yet thorny issue. Various knowledge acquisition models
are proposed for such purposes [3, 8-10], among which latent
factor analysis (LFA)-based models prove to be highly efficient
[3, 14-18].

Similar to matrix factorization or low-rank embedding
models [47-49], an LFA-based model maps entities
corresponding to rows and columns of an HiDS matrix into a
unique and low-dimensional feature space. Then it builds an
objective function based on the target matrix’s known entries
and corresponding LFs. This objective is minimized with
respect to desired LFs to form the output model [14-18].
Representative LFA-based models include the biased,
regularized, incremental and simultaneous model [14], singular
value decomposition plus-plus model [15, 16], probabilistic
model [17], nonparametric model [18], weighted trace-norm
regularization-based model [19], and non-parametric
Bayesian-based model [20]. Different LFA-based models have
different model design and training schemes, yet they share the
same principle of focusing on known entries of an HiDS matrix
to define the learning objective and train desired latent factors
(LFs). These LFs are interpreted as the entity features hidden in
an HiDS matrices and very useful in various data analysis tasks
like missing data estimation [3, 14-18], community detection [9,
21], image tagging [22], video re-indexing [23], mobile-user
tracking [24], and point of interests recommendation [50].

In spite of their efficiency, the aforementioned LFA-based
models fail to fulfill the non-negativity constraints. Note that
non-negative HiDS data are frequently encountered in



industrial applications like Web-service QoS analysis [4-6] and
social-network services [7-10]. Naturally, non-negative LFs
well depict the essential characteristic, i.e., non-negativity, of
such non-negative data. Hence, it is highly significant to build
non-negative latent factor analysis (NLFA)-based models on
them. Given a full matrix, non-negative matrix factorization
(NMF) models are well established [25-32]. Paatero and
Tapper [25] propose to truncate the negative factors to zero in
an alternating least squares (ALS)-based training process,
thereby achieving non-negative LF matrices. Lee and Seung
[26] derive the non-negatively multiplicative update to keep the
non-negativity of the LF matrices if they are initially
non-negative. Lin [27] proposes projected gradient decent to
train the desired LFs with gradient descent and truncate the
negative results to zero to implement an NMF model. Hoyer
[28] proposes a sparse NMF model with the L, ; regularization
adopting the non-negative and multiplicative update proposed
in [25] for precisely clustering the involved entities. Kim and
Park propose a sparse NMF model which also incorporates the
L, regularization into the model but adopts the projected ALS
proposed in [24] to train the desired LFs. Ding et al. [30]
propose the kernel NMF model, which is especially effective in
extracting meaningful patterns from images. These NMF
models and their extensions [51-54] have proven to be highly
effective on complete matrices. However, they cannot handle
an HiDS matrix directly.

Great efforts haves been made for performing NLFA on an
HiDS matrix. Existing models can be divided into two
categories. The first kind of models adopt an intermediate full
matrix to approximate an HiDS matrix, and then conduct the
NMF process on this intermediate matrix to obtain
non-negative LFs [33, 34], e.g., the weighted non-negative
matrix factorization model by Zhang ef al. [33] and the
non-negative matrix completion model by Xu et al. [34]. Such a
model can address HiDS matrices and is compatible with
existing NMF algorithms [25-32], but suffers unacceptably
high computational and storage costs. This is because an HiDS
matrix’s full approximation can be huge [3, 14-18]. For
instance, the MovieLens 20M matrix [43] has 20,000,263
instances scattering in 138,493 rows and 26,744 columns. Its
data density is 0.54% only, but the total number of its entries is
more than 3.7 billion. To manipulate such a huge matrix is
extremely expensive in practice if not impossible.

The second kind of models [35-39] design
single-element-dependent and non-negative training schemes,
which enable them to extract desired non-negative LFs from an
HiDS matrix based on its known entries only. Luo ef al. [35, 36]
propose the single latent factor-dependent, non-negative and
multiplicative update (SLF-NMU) learning scheme, which can
guarantee the non-negativity of involved LFs if they are
initially non-negative. They further integrate the principle of an
alternating direction method into the training scheme, thereby
achieving fast model convergence [37]. Although both models
can perform efficient NLFA on an HiDS matrix, they mainly
focus on the training scheme but ignoring the regularization
design [33-39]. Performing NLFA on an HiDS matrix is in
nature an ill-posed problem without a unique or

globally-optimal solution. Due to the imbalanced data
distribution in an HiDS matrix, the learning objective is also
highly imbalanced, i.e., it depends heavily on LFs related to
many instances and vice versa. When addressing such a
problem, model regularization is vital in improving its
generality [3, 14-18]. However, current NLFA-based models
all adopt general regularization schemes like an L, scheme
[14-18, 35-39]. It is designed for problems defined on full data,
but HiDS data are far different in data sparsity and distribution.
Note that characteristics of target data should be carefully
modeled in a regularization scheme for making the resultant
model well represent them. For addressing this issue, this study
proposes an instance-frequency-weighted regularization (IR)
scheme, which is especially designed for NFLA-based models
defined on an HiDS matrix.

An IR scheme incorporates the information of imbalanced
instance-frequency into the regularization terms, thereby
implementing finely grained modeling of regularization effects.
With it, this study aims at improving a resultant model’s
representativeness to HiDS data, and finally improving its
performance like prediction accuracy for its missing data. The
main contributions of this study include:

a) Instance-frequency-weighted regularization scheme, which
is a novel regularization scheme especially designed for
NLFA-based models on HiDS data;

b) Detailed algorithm design and analysis for a Non-negative
latent factor analysis with Instance-frequency-weighted
Regularization (NIR) model; and

¢) Empirical studies on two HiDS matrices generated by
industrial applications.

The rest of this paper is organized as follows: Section II
states an NLFA problem, Section III presents the IR scheme,
Section IV gives and discusses the experimental results, and
finally, Section V concludes this paper.

II. ANNLFA PROBLEM

In our context, an HiDS matrix is defined as [14-18, 35-39]:
Definition 1. Let M and N denote two large entity sets, 7"
denote a matrix whose entry ¢,, quantifies some relationship
between entities mEM and n€N, and A and I" denote the known
and unknown entry sets of T; T is HiDS if |A|<K(T.

Given T, an LFA-based model is defined as [14-18]:
Definition 2. Given T and A, an LFA-based model seeks for a
rank-d approximation 7=PQ" to T with P""* and 0"’ being
LF matrices and d<<min{|M|,|N|}.

Note that d is interpreted as the dimension of the LF space, P
and Q consist of LFs reflecting the characteristics of M and N
described by A, respectively. To obtain them, an objective
measuring the difference between A and corresponding entries
in 7 is required. With Euclidean distance [14-18, 35-39], such
an objective function is formulated by:

1 d ’
S(P’Q) = E Z [tm,n _me,kqn,k] (D

where t,,,, pmi and g, denote specified entries in 7, P, and Q,
respectively. Most industrial data are non-negative [25-34], i.e.,
for vme€M, n€N: t,,>0. For correctly describing such



non-negative data, the objective (1) is extended into the
following constrained form [35-39]:
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)
st. VmeM,neN,ke{l, 2, ... d}:p,, >0, q,, >0;
which establishes the problem of NLFA on an HiDS matrix.

III. NLFA WITH INSTANCE-FREQUENCY-WEIGHTED
REGULARIZATION

A. L, Norm-regularized Problem

An NLFA problem is ill-posed: a unique and
globally-optimal solution cannot be achieved, and the results
depend heavily on its initial hypotheses [14-18, 35-39]. It
desires regularization for preventing overfitting [3, 14-18].
Existing models commonly adopt general regularization
schemes, where an L, scheme is frequently encountered [14-18,
35-39]. Note that with an L, scheme, the regularization term
corresponding to (2) is formulated as follows:
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where ||| computes the Frobenius norm of the enclosed matrix,

and 1 denotes the regularization coefficient. With it, (2) is
extended into:
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Note that (4) works by minimizing the generalized loss and the
Frobenius norms of P and Q simultaneously, thereby avoiding
overfitting [14-18, 35-39].

Regularization effects in (4) are controlled by 4 solely. As
discussed in prior studies [25-30, 33, 34, 40, 41], when the cost
function is defined on a rectangular matrix with imbalanced
row/column ratio, the regularization coefficients can be
specified according to its row and column counts for
controlling the regularization effects more precisely. Formally,
we assign different regularization coefficients Ap and 4, to LFs
in P and Q, respectively. They are set as [25-30, 33, 34, 40, 41]:

Ap[IN|=2 \M|=y = 2=y |N|. 4, = y|M], ®)
where the constant y adjusts 4 and 4, according to 7°s row and
column counts. By combining (4-5) we achieve the following
objective function:

8(P,Q) = %tz;\ [tm,n - me,kqn,k]
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st. YmeM,ne N,k e {1, 2, .., d}:pm’k >0,q,,>0;
where the regularization term is actually given by:
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From (7) we clearly see that when |N|<|M|, heavier
regularization effects are applied to LFs in Q rather than in P,
and vice versa. In other words, an LF connected with many
training instances suffer heavy regularization for preventing the
entire model from overfitting, as in Fig. 1(a).
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Fig. 1. Regularization design on a full matrix and an HiDS one.

B. An Instance-frequency-weighted Regularization Scheme

According to (7), an L, scheme considers the imbalanced
row/column count in a full matrix. However, it cannot address
the imbalanced data distribution of an HiDS matrix. As shown
in Fig. 1(b), Vm€M and Vn€EN correspond to specified entry
counts in an HiDS matrix, which is actually the size of A’s
subsets related to them. Hence, regularization coefficients
should be controlled with care by assigning a unique
regularization coefficient to them, i.e., Vm€M and VneN we
make 4,, and 4, be their specified regularization coefficients.
Thus, (4) is reformulated as follows:

1 d :
8(P’Q):E Z ! n _me,kqn,k]
ty G[\ =
1M 1
Zﬂ meﬁ Zﬂ ank ®)
s.t. ‘v’mGM,nGN,ke{l, 2, o d}:pm’k >0,4q,,2>0.

With (8), VmeM and VneN we need to select 1, and 4,.
When T is full as shown in Fig. 1(a), we actually have:

Myseees My EM:|A(m1)|:-~-:‘A(m‘M‘)‘=|N|, o)
My EN:|A(nl)|:-~-: A(n‘N‘) =|M|;
With (9), we rewrite the selection rule (5) as follows:
lml /|N| = A'ml /|A(m1 )| == /1»%,‘ /|N|
oy /‘A(’”\M\)‘ =4 /|N] 0
=4, [IM|=4, [|A(n) == Ay, M|
=, f|A ()| =20/ =7

When T is HiDS, we naturally have Vm,, myEM: A(m;)<|M],



A(m,)<s|N| and we obviously cannot guarantee that |[A(m;)] is
equal to |[A(m;y)| (this condition is also applied to entities in N)
as in (10). However, we can keep the ratio between an entity’s
related entry count and its regularization coefficient consistent
in M and N, thereby achieving:

m)| = /l”/|A(n)| =y
=VmeM: A, =y|A(m).YneN: 2, =y|A(n),

where we call |A(m)| and |A(n)| instance-frequency weights

related to m and n. In (11) we adopt the linear function f{x)=x

with respect to the instance-frequency weight related with each
entity, i.e., we actually have:

VmeM: A = ;/-f(|A(m)|),Vn EN:A = )/~f<|A(n)|);
VxeR": f(x)=
Hence, its more generalized form is given by:
VmeM:A, =y f(|A(m)).yneN: 4, =y f(A(n)), (13)
where the function f'is chosen to be monotonically increasing at
its decision parameter for applying heavy regularization to LFs
corresponding to high instance-frequency [25-30, 33, 34, 40,

41]. In this study, we make f'be the power function, i.e., we let
Aix)=x" where f is a positive constant, reformulating (13) into:
VmeM: 2, :7/|A(m)|ﬂ,‘v’n€N:/1n :7/|A(n)|ﬁ. (14)

Note that with such design, the regularization terms act as: a)
increase slower than the instance-frequency weight when
0<p<1, b) increase faster than the instance-frequency weight
when f>1, and c) is linearly related to the instance-frequency
weight when f=1.

By combining (8) and (14), we achieve the objective
function for an  NLFA-based model with an
instance-frequency-weighted regularization (IR) scheme:

5<P=Q) :% Z [tm,n - ;pm,k%,k]

by EA
pE 2 al RS 2
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st. VmeM,neN,ke{l, 2, ..,d}:p,, >0, q,, >0.
Note that the regularization term of (15) is formulated by:

d , W i
:% ;'A(m)vupm»"z+;|A(")|ﬂ|Q 2], (16)

where |||, computes the L, norm of the enclosed vector, P,,.
and 0, denote the mth row vector in P and nth row vector in Q,
respectively. By comparing L, regularization terms in (7) with
an IR terms in (16), we clearly see the differences between
them: as shown in (7), an L, scheme only describes a small part
of the information regarding the data distribution of a target
HiDS matrix, which is reflected by its row/column ratio. In
comparison, an IR scheme describes this information much
more  precisely by  incorporating each  entity’s
instance-frequency weight into the regularization coefficients.
Moreover, it considers a tunable function with the
instance-frequency weight, ie., Ax)=*, to implement
finely-grained control of the regularization effects. With it, we
are able to precisely adjust the regularization on each desired

(11

(12)

(15)

LF during the training process, which is actually decided by the
imbalanced data distribution of a HiDS matrix.

For solving the non-negativity-constrained problem (15), we
adopt the single latent factor-dependent, non-negative and
multiplicative update (SLF-NMU) scheme [36, 37]. Firstly, we
apply the additive gradient descent to (13), yielding:

argming(P,Q)ﬁ:VmeM,neN,k6{1, 2, ey d}:
P.O

>
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where we adopt c-1 and ¢ for the status of LFs in P and Q after

d
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the cth and (c-1)th training iterations, and tm ]

for the status of entries in 7 relying on P! and QO°',
respectively.
In update rule (17) —7,, Z gt + A (m) i
ne/\ m

are the negative

nk[ S P A g
mEAn

terms. Following the principle of SLF-NMU, we manipulate
Nmi and 7,; to cancel them for achieving a non-negative
training process. More specifically, we set them as

el
Mk = pm,k/

Z g+ y|a(m) pel

neA(m

(18)
Mo =q§,£/ Z piic + 7A@ q,‘;,k‘]
mEA n
to achieve the following parameter update rule:
argming(P,Q)S F;VM VmeM,neN,ke{l, 2, .., d}:
P.0
Z an mon
c c—1 neA(m
pm.kam,k o ] 1 Y4 c—l,
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nE/\ m
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meA(n

With (19), we ach1eve the learning scheme of a_Non-negative
latent factor analysis with Instance-frequency-weighted
Regularization (NIR) model. Next we present its algorithm
design and analysis.

C. Algorithm Design and Analysis

Based on the inferences above, we deign the algorithm for an
NIR model, as shown in Algorithm NIR. In this algorithm, we
adopt four auxiliary matrices, i.e., 4", BM*? xNd apd yiN e



for a highly efficient training process. Note that 4 and B are
designed for caching the training increment brought by each
instance on the numerator and denominator of the update rule
for each LF in P, and X and Y are for the same purpose for each
LF in Q, respectively.

As depicted in Step 1 of Algorithm NIR, we pre-compute
and cache the instance-frequency-weight for each involved LF,
ie., |Am):vmeM and |A(n)/:vn€EN to avoid redundant
operations during the iterations. Then we train P and Q
iteratively, conducting each iteration as follows: a) traverse on
A to compute the training increment brought by each training
instance to the numerator and denominator of the update rule
for each LF in P and Q, as shown in Step 3 of Algorithm NIR;
and b) traverse on M and N to update P and Q by integrating
corresponding IR terms into their learning rule.

ALGORITHM NIR

Input: A, M, N
Operation Complexity
1. Initialize P, AP, BT QN yiId T yiied O((M+|N])xd)
Initialize d, y, f, i, Max_Iteration_Count (1)
traverse on A get |A(m)|:VmEM, |A(n)|:-VnEN O(A)
traverse on M and N get |A(m)/’:YmeM, |A(n):-vneN  O(M+N)"™
2. while not converge and i<Max_Iteration_Count do xi
Set4,B,X,Y=0 O((M[+N)*d)
3. traverse on A get each t,,, X|A|
comput t:,,,,, O(d)
for k=1~d xd
A=A gt G i b o(1)
Bus =D st k¥l (1)
X k=X TP Xt (1)
Yni=Y r1,k+p mJ»'XtAm.n ®( 1)
end for -
end for --
4. for meM M)
for i=1~d xd
Bt PX A M) X o(1)
D k=i b i (1)
end for --
end for --
5. forneN *|N|
for i=1~d xd
YndYnityX ‘A(n)‘ﬂan,k o(1)
k=X iV (1)
end for -
end for -
end while --
Output: P, 0

"Such low cost can be achieved with the help of a HashMap-like data structure.
“Note that to raise an arbitrary number to the power of § can be done in
constant time in most industrial language.

Based on Algorithm NIR, we formulate the time cost of an

NIR model as follows:

C, = @((|M| +|N)xd +ix((M|+|N|)xd +|A|xd)) 0

~0 (i X |A| xd )
Note that the last step of (20) is achieved based on the common
condition that max {|M],|N|}<«<|A| in most HiDS matrices, and
also by ignoring the lower-order-terms and constant
coefficients. Considering the storage complexity of Algorithm
NIR, we formulate it as follows:

Courage = O((|M|+|N])xd +|A|) = max{(|m|+|N])xd,|Al},
(2]
which is either linear with the entity count or instance count of

an HiDS matrix 7.

IV. EXPERIMENTS

A. General Settings

Evaluation Protocol. Given an HiDS matrix 7, one major
task is to estimate its unknown entries in I' based on its known
ones in A due to the great need to recover the full relationship
mapping between M and N [1-13]. Hence, this study adopts the
task of missing data estimation as the evaluation protocol. More
specifically, given A, such a task makes a tested model predict
unobserved data in I'. The outcome is measured on a validation
set V¥ disjoint with A. For validating the accuracy of a tested
model, we choose the mean absolute error (MAE), which is
widely adopted for validating the statistical accuracy of an
LFA-based model when predicting missing data in an HiDS
matrix [1-3, 14-20, 35-39, 42]. It is given by

3 s =l / ¥,

fyn €F
where |-|,»s denotes the absolute value of a given number. Note
that All experiments are conducted on a PC with a 2.5 GHz i7
CPU and 32 GB RAM. All models are implemented in JAVA
SE 7U60 to check their suitability for industrial usage.

Experimental Datasets. Two HiDS datasets are adopted
a) DI: MovieLens 20M. It is collected by the MovieLens
system [43] and maintained by the GroupLens research team. It
contains 20,000,263 known entries in the scale of [0.5, 5], by
138,493 users on 26,744 movies. Its data density is 0.54% only;
b) D2: Douban. It is collected by the Chinese largest online
book, movie and music reviewing application Douban [44], and
contains 16,830,839 ratings in the scale of [1, 5] from 129,490
users on 58,541 movies. Its data density is 0.22% only.

Note that both datasets are a) high-dimensional, b) extremely
sparse, and ¢) collected by industrial applications currently in
use. Hence, results on them are highly representative.

In our experiments, either dataset is randomly split into five
equally-sized, disjoint subsets. On both datasets, we adopt the
80%-20% train-test settings and five-fold cross-validations, i.e.,
each time we select four subsets as A to train a model predicting
the remaining one subset as ¥. This process is sequentially
repeated for five times to achieve the final results. During the
experiments, the training process of a tested model terminates if
a) the number of consumed iterations reaches a preset threshold,
i.e., 1000, and b) the model converges, i.e., its error arises, or
the difference in the training error of two consecutive iterations
is smaller than 107,

MAE =

B. Parameter Sensitivity Tests

From (19) we see that an NIR model depends on y and . So
we conduct parameter sensitivity tests with them. Considering
p, we aim to validate different cases when the regularization
effects increase a) slower than, b) faster than, and c) linearly
with corresponding instance-frequency weight. Hence, its
testing scale is set as (0.8, 1.2). In terms of y, it tunes the
regularization effects linearly and uniformly across a whole
model. So we make it grow from 0.01 to 0.10 linearly.
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Results. The parameter sensitivity results are depicted in
Figs. 2 and 3. From them, we find that:
a) y and f decide an NIR model’s prediction accuracy for
missing data. As depicted in Fig. 2(b), when fixing =0.9 on
D1, the MAE of an NLFA-based model is 0.5997 with y=0.07,
and 0.6171 with y=0.01, respectively. The numerical gap of
MAE is 2.82%. When fixing y=0.07, the MAE of an
NLFA-based model is 0.5997 with $=0.9, and 0.7301 with
p=1.2, respectively. The numerical gap of MAE is 17.86%.
Similar situations can be found on D2, as shown in Fig. 3(b).
When fixing =0.9, the MAE is 0.5566 with y=0.09, and 0.5782
with y=0.01, respectively. The numerical gap of MAE is 3.74%.
With y=0.09, the MAE is 0.5566 with =0.9, and 0.6615 with
p=1.2, respectively. The numerical gap of MAE is 15.86%.
From these results, we see that the prediction accuracy of NIR
is closely connected with § and y: they should be chosen with
care to achieve the lowest MAE.
b) Optimal f and y are data-dependent. For instance, on D1
NIR achieves the lowest MAE at 0.5997 with £=0.9 and y=0.07,
as shown in Fig. 2(a). On D2, it achieves the lowest MAE at 0.
5566 with =0.9 and y=0.09, as shown in Fig. 3(a). On both
datasets, the optimal f is 0.9. As given in (19), f controls the
instance-frequency-related regularization on each individual
LF. It monotonically increases with instance-frequency weight,
but can grows slower when f<l. It appears necessary to
carefully control the regularization increment at individual
LF-related instance-frequency-weight to achieve a highly
accurate NIR model. On the other hand, as given in (19), y
controls the regularization effect from a model perspective. Its
optimal value is different on D1 and D2. Note they differ from
each other vastly in data distribution, entity count, instance
count, and data density. These factors are closely connected
with regularization effects [14-20, 35, 36].
¢) f and y can affect NIR’s convergence rate. As depicted in
Figs. 2(d), 2(e), 3(d) and 3(e), in most testing cases NIR’s
training iteration count reaches the upper bound, i.e., 1,000 as S
and y vary. However, on some extreme cases on D2, i.e., with
f>1.1, an NLFA-based model is tracked by some local saddle
points after much less iterations, as given in Fig. 3(e).
Nonetheless, this phenomenon is explainable: according to (19),
as S grows over certain threshold, regularization effects in IR
terms can be over amplified. Under such circumstances, a NIR
model can suffer under fitting instead of over fitting, making it
suffer accuracy loss.
d) Selection of # and y does not depend on initial hypotheses.

We conduct 100 independent tests with randomly generated,
different initial values of P and Q on both datasets, whose
results are given in Figs. 4 and 5. From them, we see that
optimal § and y are rarely affected by the initial hypotheses. For
B, its optimal value keeps on 0.9 on both datasets, as depicted in
Figs. 4(a) and 5(a). For y, its optimal value may change with
different initial hypotheses; however, such situations are
seldom encountered. On D1, the optimal value of y is 0.07 on
most cases (95 out of 100); on only a few cases it may become
0.06 (2 out of 100) or 0.08 (3 out of 100), as given in Fig. 4(b).
Similar situations are also encountered on D2, as depicted in
Fig. 5(b). Nonetheless, according to Figs. 4(c) and 5(c), an NIR
model’s MAE may fluctuate in the scale of 0.5% with different
initial hypotheses. Such situation is consistent with those
encountered in prior LFA-based models [14-20, 35-39]. As
discussed in [36], such randomness can help to build more
accurate NLFA ensemble. Further investigations into this issue
are in our future plan.

Based on the above findings, we summarize that an NIR
model’s prediction accuracy for missing data depends heavily
on its hyper parameters, i.e., § and y in (15). Considering the
parameter selection, £ is more stable, whose optimal value is at
0.9 on both datasets. The optimal value of y is more
data-dependent, scattering in the (0.07, 0.09) interval. However,
selection of # and y is rarely affected by an NIR model’s initial
hypothesis.

C. Comparison against other Regularization Schemes

TABLE I COMPARED REGULARIZATION SCHEMES

?/[01. E(e;ﬁ:'larization terms

ve 2PN e o)

M L=Z( NP+l

NR - L(P.O)=T ﬁwn)\” LA +§\A@>\”HQ”. ]

Four models with different regularization schemes are
compared in this part of experiments, whose details are
summarized in Table I. To achieve unbiased results, we set the
experiments as follows: a) d is fixed at 20 for all models; b) P
and Q are initialized with the same arrays whose elements are
randomly selected from the (0, 0.01) interval following a
uniform distribution to eliminate the impact by different initial
hypotheses; ¢) for M1 and M2, we tune the value of y to achieve
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the lowest prediction error on one fold of either dataset, and
then adopt the tuned y on the other four; and d) for NIR, we set
£=0.9 and y=0.07 on DI, and $=0.9 and y=0.09 on D2

according to results in Section IV(B).

TABLE Il LOWEST MAE ACHIEVED BY EACH MODEL

Model Ml M2 M3 NIR
D1 0.6314 0.6281 0.6244 0.5997
D2 0.5912 0.5853 0.5808 0.5567

Figs. 6 and 7 depict the LF distribution of NLFA-based
models with different regularization schemes. Fig. 8 depict the
training process of NLFA-based models with different
regularization schemes on D1 and D2. Table II depicts the
lowest MAE achieved by compared models. From these results,
we have the following findings:

a) An NIR model outperforms its peers inters of prediction
accuracy for missing data owing to its incorporation of an
IR scheme. As depicted in Table II and Fig. 8(a), the MAE of
M1, M2 and M3 is 0.6314, 0.6281 and 0.6244, respectively. In
comparison, an NIR model’s MAE is 0.5997. Compared to
M1-3, it achieves accuracy gain of 5.02%, 4.52% and 3.96%,
respectively. Similar situations can be found on D2, as shown
in Table II and Fig. 8(b). M1-3 and NIR achieve the MAE at
0.5912, 0.5853, 0.5808 and 0.5567, respectively. Compare with
M1-3, an NIR model achieves its accuracy gain at 5.83%, 4.88%
and 4.14%, respectively.

b) An NIR model achieves more specific LF distribution on
an HiDS matrix. As depicted in Figs. 6 and 7, with different
regularization schemes, resultant models achieve different LF
distributions. From Figs. 6 and 7, we observe an interesting
phenomenon that with regularization schemes precisely
describing the characteristics of the target HiDS matrix, an
NLFA-based model’s LF distribution tends to be more specific.
From Figs. 6 and 7, we clearly see that an NIR model’s LF
distribution is the most specific out of involved models. More
specifically, LF distributions are becoming more centralized as
well as their shape becomes more specific with a more
advanced regularization scheme. This phenomenon indicates
that with a well-designed regularization scheme enhances an

NLFA-based model’s representativeness to a target HiDS
matrix, thereby guaranteeing its high prediction accuracy for its
missing data.

0.68
0.67
0.66
0.65
0.64
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Fig. 8. Involved models’ training process on both datasets.
¢) An NLFA-based model’s convergence rate will merely be
affected by a tested regularization scheme. In our
experiments, all models consume 1,000 training iterations to
achieve the highest prediction accuracy for missing data of an
HiDS matrix, which is the upper bound in our experiments.

800 1000

D. Summary

Based on the experimental results, we summarize that:

a) The effects by IR are closely related to the hyper parameters
y and . f controls the regularization effects from a global
perspective of the whole model, while y controls the
regularization effects applied to individual LFs. In general, the
selection of y is more data-dependent than f;

b) An IR scheme can help an NLFA-based model better
represent an HiDS matrix, thereby achieving high prediction
accuracy for its missing data.

V. CONCLUSIONS

To perform NLFA on an HiDS matrix is ill-posed, making an
NLFA-based model eager for a precise regularization scheme
to avoid overfitting [14-24, 35-39]. Commonly adopted L,
regularization scheme does not consider an HiDS matrix’s
sparsity or imbalanced data distribution, which can weaken a
resultant NLFA-based model’s representative ability to it. This
study proposes an IR scheme to address this problem. It
considers instance-frequency weight corresponding to each LF,



which actually describes the sparsity and imbalanced data
distribution of an HiDS matrix. Thus, it precisely controls
regularization effects applied to each individual LF, thereby
achieving a model with fine representativeness to an HiDS
matrix. Based on the experimental results, an NIR model can
achieve significantly higher prediction accuracy for missing
data of an HiDS matrix compared with NLFA-based models
with L, schemes. An IR scheme proves to be very effective in
improving the generality of an NLFA-based model defined on
an HiDS matrix.

Future extensions of IR. In the future, we plan to extend an
IR scheme in the following aspects:
1) This study takes an L, regularization scheme as the baseline.
Although an L, scheme has proven to be very effective in
improving the generality of an NLFA-based model when
addressing the task of missing data estimation [14-18, 35-39],
other regularization schemes like an L, scheme or elastic-net
scheme [45, 46] work well in other data-analysis tasks like
community detection [8, 9, 21]. Note that the principle of IR is
also compatible with them, making it highly interesting to fully
investigate the performance of IR series in data analysis tasks.
2) It is significant to investigate the effects of different mapping
functions in an IR scheme according to (13). Meanwhile, an IR
scheme relies on a single mapping function, i.e., a power
function as presented in Section III. As a matter of fact, several
mapping functions can be adopted to form compound effects,
i.e., making the regularization term R=f{x)+g(x) with fand g
being different mapping functions. This issue should be also
addressed to achieve more effective regularization schemes.
3) As indicated in Section 1V, performance of an NIR model
depends on its hyper parameters f and y. How to make them
self-adaptive remains an open issue, which is highly worthy of
investigations to achieve more practical models.
4) It is desired to validate the compatibility between an IR
scheme and other learning objectives like S-distance or L, norm
[14-24].
We plan to address the above issues in the future.
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