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Abstract— This paper presents a framework for all-state esti-

mation of Lithium-Sulfur (Li-S) battery cells based on a Long 

Short-Term Memory Recurrent Neural Network (LSTM RNN) 

model.  Under the proposed framework, the LSTM RNN model 

is calibrated into the single task of State of Charge (SoC) estima-

tion for fresh Li-S prototype cells.  The Adaptive Moment Esti-

mation (Adam) solver is used.  Data sets for training and testing 

are derived from experiments using the WLTP duty cycles.   The 

calibrated LSTM RNN structure is described for the purposes of 

training and testing with experimental datasets, so as to generate 

a network that can be deployed in real-time system.  The demon-

stration of the training and testing results has shown robustness 

of the proposed approach against nonlinearities of the experi-

mental datasets and uncertainty in initial SoC.  The approach 

gave satisfactory estimation performance with an acceptable 

tradeoff between estimation accuracy and convergence speed.  

 

I. INTRODUCTION 

As the battery industry develops, research challenges are 
arising in relation to the next generation of battery cells.  This 
encompasses many areas such as electrode materials, manu-
facturing, lifetime extension, safety enhancement technolo-
gies, multi-scale modelling, battery management systems and 
BMS.  In the UK alone, the Faraday Battery Challenge has 
funded approximately 100 business entities and 20 research 
organizations working to fulfill these technical gaps and de-
liver world-class innovations in automotive battery technology 
[1].  There are no doubt similar efforts worldwide. 

Energy density and safety are key concerns of battery in-
dustry.  Lithium sulfur (Li-S) cells offer higher gravimetric en-
ergy density and volumetric energy density compared with 
commercial lithium ion.  Commercial organizations have pa-
tented materials designed for safety, allowing Li-S cells to 
meet international standards criteria in terms of abuse testing.: 
existing Li-S cells can withstand extreme abuse situations 
within commercial application scenarios, which offers poten-
tial for a high safety level in commercial use [2].  Li-S can be 
regarded as a promising technology with distinct advantages 
over alternatives in the future market.  Current research aims 
to eliminate the remaining limitations such as poor instantane-
ous power capability and short cycle life [3].  

 
 

To gain full advantage of Li-S, it it is vital to understand 
its in-application behavior.  This has imposed specific require-
ments on modelling and state observation issues. Multiple-
scale modelling of the Li-S cells have been carried out from 
atoms to structure, to cell, module and pack design. A series of 
Li-S cell state monitoring and control methods depending on 
the battery cell model has been developed, including a set of 
modeling and parameterization methods considering scenarios 
such as charging, discharging, thermal effect, and aging ef-
fects. [4, 5, 6, 7]. These methods have been verified through 
tests and experiments, and finally applied in a BMS.  Accurate 
battery models capable of predicting all dynamic characteris-
tics is important, and a key research gap has been the predict-
ability of all the relevant parameters to quantify performance 
in the presence of ageing.  

The most representative unknown states in batteries are the 
SoC, remaining useful life, state of power and state of health, 
which has attracted a lot of researchers in recent years [8, 9]. 
These indicators depend on the internal performance of the 
battery, and they are have non-linear relations to electrical, 
chemical and thermal parameters. Equivalent circuit models 
with unknown parameters have been built to solve the state es-
timation problems, however, these relies on the parameter 
identification algorithms which can be vulnerable to inaccura-
cies and add to the online calculation burden. More overall, the 
involvement of several polysulfide species and its solubility 
during discharge led to a relatively stable voltage plateau—
low plateau, which causes challenges in the observability of 
SoC. This is a distinctive feature of Li-S cell which distin-
guishes it from many other types of battery cell [10, 11]. The 
requirement for a relatively accurate initial SoC value can be a 
limitation for some traditional SoC estimation methods. 

Artificial Neural Networks (ANNs) have provided an al-
ternative approach which does not require much prior 
knowledge of the Li-S cell. ANNs have been used on a variety 
of tasks including computer vision, speech recognition, ma-
chine translation, medical diagnosis, and so on. The basic 
ANN algorithm proposes a candidate model which can be 
evaluated against experimental datasets and an ANN structure 
in accordance with working scenarios. By choosing candidate 
networks and algorithms, an ANN is capable of carrying out 
regression analysis, sequence recognition, clustering, and nu-
merical control. Li-S cell SoC estimation can be categorized 
as a time series estimation problem.  

This paper proposes a novel framework based on a LSTM 
RNN model for all Li-S state estimation; and within this 
framework a generic approach for SoC estimation for a new 
prototype Li-S battery cell is presented. The LSTM RNN is 
able to predict the SoC while maintaining accuracy and for 
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varying initial conditions. By contrast with many published 
methods, this method does not require extensive battery cell 
modelling or good knowledge of initial SoC values.  An ap-
propriate level of balance between efficiency and functions has 
been achieved.   

The paper will describe the full method including the ac-
quisition of experimental data, the algorithm details, the train-
ing and testing methods, and the results.  It will be shown that 
the estimator performs effectively on data obtained from real-
world cells, despite an unknown initial condition. 

II. LI-S CELL CHARACTERIZATION AND ESTIMATION TASKS 

A. Li-S cell and experimental test setup 

The lithium-sulfur cells used in this research are provided 
by OXIS Energy [2]; the company holds several key patents in 
Li-S battery manufacturing and related research. The battery 
research group at Cranfield University is in collaboration with 
OXIS Energy in multiple parallel projects from EU and UK, 
covering the areas of control, simulation, application, duty cy-
cle modelling, hardware prototyping, mixed hardware/simula-
tion test environments and state estimation.  

In this paper the Li-S cells are tested for generating the ex-
perimental datasets for the training of LSTM RNN. The power 
source/sink devices located at the battery test laboratory of 
Cranfield University are used for carrying out the Li-S cell 
tests, where a duty cycle test current profile is the input signal 
and the terminal voltage is the output signal. The Li-S cell is 
put in an aluminum container which is placed in a temperature 
controllable thermal chamber, as shown in Figure 1. 

B. Training features of the Li-S cell 

In this paper, the measurements and observable variables 
serve as the training inputs for the LSTM RNN. The measure-
ments include the current profile 𝐼 and terminal voltage meas-
urement 𝑉𝑡. This Li-S cells have partly demonstrated normal 
performance as commercial Li-ion cells and partly demon-
strated peculiar state properties according to Cranfield tests—
especially a relatively flat voltage which is also known as ‘low 
plateau’, as shown in the red dash box (verses ‘high plateau’ 
in green dash box) in Figure 2. It has been proved to reduce the 
state observation level in [10, 11]. The observable internal re-
sistance 𝑅  is calculated based on the assumption of a re-
sistance between two terminals of a single cell; the internal re-
sistance is obtained from the voltage difference over the aver-
age current within a time window. The time window length is 
set at 75 seconds in this experiment if there is no extra clarifi-
cation. The SoC value calculated through coulomb counting is 
used as the one training input. The LSTM RNN is constructed 
with three or four inputs in the experiments of this paper.   

The tasks are (1) to predict the SoC value without parame-
terization of battery cell and without knowledge of initial SoC 
value, (2) to train a robust SoC estimation LSTM RNN con-
sidering the nonlinearities and new voltage-time property from 
the training data, and (3) to test the estimation performance of 
the LSTM RNN under multi-dimensional training features. 

 

Figure 1.  Experimental facilities 

 

Figure 2.  The training features 

III. TECHNICAL SOLUTION 

A.  A data-based framework for all-state estimation 
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Figure 3.  All-state estimation framework 

Based on a broad review of related knowledge and re-
search, we propose a framework for all-state estimation of Li-
S cell using LSTM RNN. As described in Figure 3, this model 
is capable of carrying out single-task estimation as well as 



 

 

 

multi-task estimation. In this paper, it is calibrated for SoC es-
timation of Li-S cell considering constant ambient tempera-
tures, measurements, and LSTM RNN structure.   

Part 1: LSTM RNN based on constant ambient tempera-
ture and varying ambient temperature 

Since temperature acts as a key factor in Li-S cell, i.e. 
lifespan, discharging rate, charging speed, and safety, it de-
serves to be researched as an independent part, as shown in 
Part 1 of Figure 3. Within this framework the temperature pro-
file is composed of two parts: constant ambient temperatures 
and varying ambient temperatures. Firstly, the commercial 
thermal chambers and the emerging high-standard thermal 
management facilities have provided complementary capabil-
ity in obtaining enriched temperature profiles at laboratory en-
vironment. A duty cycle test profile under constant tempera-
ture can be obtained easily, by repeating the test under differ-
ent temperature levels it is easy to get an adequate amount of 
training data. Secondly, the sophisticated work conditions of 
vehicles have supplied with various temperature profiles by 
carrying out test under varying and difficult ambient tempera-
tures, more useful nonlinear and uncertain scenarios within the 
measurements can be captured as well. The above two points 
have proposed both chance (more accessible datasets) and 
challenges (how to use the datasets?). For the varying temper-
ature, fuzzy logic has provided an alternative probability 
method to determine a temperature scope within which a work 
scenario of Li-S cell may happen, though it needs to be con-
sidered together with electrical measurements and observa-
tions [4, 10].  

Part 2: LSTM RNN based on measurements and observa-
tions 

The Part 2 of Figure 3 showed access to measurable and 
observable Li-S states (temperature excluded). A comprehen-
sive use of measurements and observations have greatly en-
riched the dataset storage with more training features. For the 
purpose of building a full estimation model for Li-S perfor-
mance and Li-S aging, the all-state estimation framework may 
consider training LSTM RNN using full features in the first 
instance, then consider distributed modelling for enhancement 
of local functions. Both routes work together to exploit the ca-
pability of LSTM RNN fully. In all the features, the linear fea-
tures increase estimation accuracy and reduce error rate. The 
nonlinear features may act with double-edge effects, i.e. in-
crease the complexity of decision making while enrich training 
features.  

The electrical training features are obtained at constant am-
bient temperature in most laboratory study, while it is obtained 
at varying temperature at real-world test. According to differ-
ent temperature profile or different work scenarios, the cate-
gory for the same training features will be different. Therefore, 
the Part 2 in Figure 3 does exist out of Part 1.  

Data science technologies, e.g. data mining and statistics, 
are be used in processing raw datasets together with physical 
or engineering theories, to relax requirements on ANN train-
ing. 

Part 3: LSTM RNN based on optimal initialization of pa-
rameters and network structures 

The Part 3 has been shown in the green area of Figure 3. 
This model works by using gradient-based techniques [12]. 
More specifically, this model is composed of the LSTM unit 
structure definition, RNN depth definition, ANN parameters 
initialization and training parameters tuning methods. In this 
research MATLAB Deep Learning Toolbox was used, which  
limited access to the LSTM unit structure definition.   How-
ever, the remaining three parts can be realized conveniently. 
The ANN parameters initialization and the training parameters 
tuning methods are used in the task of Li-S cell SoC estima-
tion. 

This all-state prediction framework is designed at the crit-
ical development period of the battery industry; a systematic 
research around the estimation of long-term and temporary 
states of vehicle batteries at complex ambient and internal ther-
mal conditions is desperately needed. The authors of this arti-
cle is committed to structural design and system development 
in battery state and thermal management to help battery re-
search, development and manufacturing with reduced resource 
consumption. 

B. LSTM RNN structure 

In this section, the LSTM RNN structure is introduced. The 
LSTM RNN has been proposed as a candidate for battery state 
estimation because of its capability in processing multi-dimen-
sional data without equivalent circuit model (ECM) and the 
capability in learning long-term dependencies between time 
steps of sequence data [4, 12, 13]. The LSTM cells are embed-
ded in the RNN framework with multiple layers, as shown in 
Figure 4. A LSTM RNN has overcome gradient decent from 
ANN application, which caused degradation of deep-learning 
performance. It is further proved as a part of the training algo-
rithm in Section C. 

In the LSTM RNN structure, the LSTM Cell calculates the 
hidden state (output state) and the updated cell state using the 
last time step of hidden state and the current time step of input 
sequence. A LSTM layer is used to process a sequence of data, 
in which the cell state functions as a storage pool of learned 
information from previous time steps of data while the hidden 
state represents the current output. In order to obtain high per-
formance multi-layer LSTM cells are often used in training. A 
loss function is usually incorporated in the calculation process. 
The hidden state and cell state is selected, forgotten, and up-
dated through the use of gate mechanism, which includes input 
gate, forget gate, and output gate. 

LSTM

Cell

LSTM

Cell

Hidden 

state

Cell 

state

Hidden 

state

Cell 

state

Input 

sequence Xt-1 Xt
Xt+1

f g i

o

ct

htht-1

ct-1

LSTM Cell

Deeper LSTM layers

Loss function

Figure 4.  LSTM RNN structure 



 

 

 

 𝑖𝑡 = 𝜎𝑔(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)  = 𝜎𝑔𝑛𝑒𝑡(𝑖,~) 

(1) 

 𝑓𝑡 = 𝜎𝑔(𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)  = 𝜎𝑔𝑛𝑒𝑡(𝑓,~) 

 𝑔𝑡 = 𝜎𝑐(𝑊𝑔[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑔)  = 𝜎𝑔𝑛𝑒𝑡(𝑔,~) 

 𝑜𝑡 = 𝜎𝑔(𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)  = 𝜎𝑔𝑛𝑒𝑡(𝑜,~) 

 𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑔𝑡 

 ℎ𝑡 = 𝑜𝑡⨀𝜎𝑐(𝑐𝑡)  

where the 𝑊 denotes weight matrices, 𝑋 is the input sequence, 𝑖, 𝑓, 𝑜, ℎ, 𝑐, 𝑏  represents the input gate, forget gate, output gate, 

hidden state, cell state, and the bias respectively, ʘ is the ele-

ment-wise product of the vectors. The 𝑛𝑒𝑡(∗,~) are weight in-

puts. The sigmoid function  𝜎(𝑥) is given by 𝜎(𝑥) = 11+𝑒−𝑥. 

C. LSTM RNN training algorithm 

The LSTM has been proved to be effective in estimation tasks 

for long-time sequence datasets, since it introduced a new 

weight gradients processing mechanism which distinguish it 

from other ANN methods [13, 14]. The following algorithm 

demonstrates the process by which gradient descent is elimi-

nated. As a training algorithm, the LSTM includes both for-

ward and backward calculation. The algorithm is stated as fol-

lows: 

Step 1. Forward output calculation for neurons; 

Step 2. Backward error calculation for neurons, which 

include back calculation along time and error transfor-

mation between layers; 

Step 3. Calculate weight gradients from errors. 

The forward calculation is shown in Equation (1), and the 

backward calculation of errors and weight gradients is shown 

in the following context. The error at time t is defined as a de-

rivative function of loss against output: 

 𝛿𝑡 = 𝜕𝐿𝑜𝑠𝑠𝜕ℎ𝑡  (2) 

The error corresponding to each gate are described as follows: 

 𝛿(𝑖,𝑡) = 𝜕𝐿𝑜𝑠𝑠𝜕𝑛𝑒𝑡(𝑖,𝑡) 

(3) 

 𝛿(𝑓,𝑡) = 𝜕𝐿𝑜𝑠𝑠𝜕𝑛𝑒𝑡(𝑓,𝑡) 

 𝛿(𝑔,𝑡) = 𝜕𝐿𝑜𝑠𝑠𝜕𝑛𝑒𝑡(𝑔,𝑡) 

 𝛿(𝑜,𝑡) = 𝜕𝐿𝑜𝑠𝑠𝜕𝑛𝑒𝑡(𝑜,𝑡) 

For the backward calculation, the error at time 𝑡 − 1 can be 

calculated from time 𝑡: 

 𝛿𝑡−1 = 𝛿𝑡𝑇 𝜕ℎ𝑡𝜕ℎ𝑡−1 (4) 

where 
𝜕ℎ𝑡𝜕ℎ𝑡−1  is a Jacobian Matrix. The backward error with 

long time-step is obtained by putting Equation (1) into (4): 

 𝛿𝑡−1 = ∑ 𝛿(𝜖,𝑡)𝑇 𝜕𝑛𝑒𝑡(𝜖,𝑡)𝜕ℎ𝑡−1𝜖:={𝑖,𝑓,𝑔,𝑜}  (5) 

Based on Equation (5), the forward error is calculated: 

 𝛿𝑘 = ∏ 𝛿𝜏𝑡−1
𝜏=𝑘  (6) 

Assume that the above calculation is for the lay-n in LSTM 

RNN, we define the error to an upper LSTM layer: 

 𝛿𝑡𝑛−1 = 𝜕𝐿𝑜𝑠𝑠𝑛𝑒𝑡𝑡𝑛−1 (7) 

The weight gradients at each time step are computed using the 

errors at each time step. Different from traditional approach, 

the accumulation is obtained as the final weight gradient: 

 𝜕𝐿𝑜𝑠𝑠𝜕𝑊(𝑖,𝑡) =  ∑ 𝜕𝐿𝑜𝑠𝑠𝜕𝑛𝑒𝑡(𝑖,𝑗)
𝑡

𝑗=1
𝜕𝑛𝑒𝑡(𝑖,𝑗)𝜕𝑊(𝑖,𝑗)  

=  ∑ 𝛿(𝑖,𝑗)ℎ𝑗−1𝑇𝑡
𝑗=1  

(8) 

 𝜕𝐿𝑜𝑠𝑠𝜕𝑊(𝑓,𝑡) =  ∑ 𝜕𝐿𝑜𝑠𝑠𝜕𝑛𝑒𝑡(𝑓,𝑗)
𝑡

𝑗=1
𝜕𝑛𝑒𝑡(𝑓,𝑗)𝜕𝑊(𝑓,𝑗)  

=  ∑ 𝛿(𝑓,𝑗)ℎ𝑗−1𝑇𝑡
𝑗=1  

 𝜕𝐿𝑜𝑠𝑠𝜕𝑊(𝑔,𝑡) =  ∑ 𝜕𝐿𝑜𝑠𝑠𝜕𝑛𝑒𝑡(𝑔,𝑗)
𝑡

𝑗=1
𝜕𝑛𝑒𝑡(𝑔,𝑗)𝜕𝑊(𝑔,𝑗)  

=  ∑ 𝛿(𝑔,𝑗)ℎ𝑗−1𝑇𝑡
𝑗=1  

 𝜕𝐿𝑜𝑠𝑠𝜕𝑊(𝑜,𝑡) =  ∑ 𝜕𝐿𝑜𝑠𝑠𝜕𝑛𝑒𝑡(𝑜,𝑗)
𝑡

𝑗=1
𝜕𝑛𝑒𝑡(𝑜,𝑗)𝜕𝑊(𝑜,𝑗)  

=  ∑ 𝛿(𝑜,𝑗)ℎ𝑗−1𝑇𝑡
𝑗=1  

Correspondingly, the bias gradients are obtained the same way 

as weight gradients: 

 𝜕𝐿𝑜𝑠𝑠𝜕𝑏(𝑖,𝑡) =  ∑ 𝛿(𝑖,𝑗)𝑡
𝑗=1   

(9) 

 𝜕𝐿𝑜𝑠𝑠𝜕𝑏(𝑓,𝑡) =  ∑ 𝛿(𝑓,𝑗)𝑡
𝑗=1  

 𝜕𝐿𝑜𝑠𝑠𝜕𝑏(𝑔,𝑡) =  ∑ 𝛿(𝑔,𝑗)𝑡
𝑗=1  

 𝜕𝐿𝑜𝑠𝑠𝜕𝑏(𝑜,𝑡) =  ∑ 𝛿(𝑜,𝑗)𝑡
𝑗=1  



 

 

 

Finally, gradients corresponding to input layers 𝑋𝑡 are calcu-

lated: 

 𝜕𝐿𝑜𝑠𝑠𝜕𝑊(𝑖,𝑋𝑡) = 𝛿(𝑖,𝑡)𝑋𝑡𝑇 

(10) 

 𝜕𝐿𝑜𝑠𝑠𝜕𝑊(𝑓,𝑋𝑡) =  𝛿(𝑓,𝑡)𝑋𝑡𝑇 

 𝜕𝐿𝑜𝑠𝑠𝜕𝑊(𝑔,𝑋𝑡) =  𝛿(𝑔,𝑡)𝑋𝑡𝑇 

 𝜕𝐿𝑜𝑠𝑠𝜕𝑊(𝑜,𝑋𝑡) =  𝛿(𝑜,𝑡)𝑋𝑡𝑇 

D. Evaluation metric for SoC estimation accuracy 

The estimation accuracy of the time series is used as an 

evaluation metric for the estimation accuracy of the battery 

SoC. There are several types of evaluation metrics to prove 

the performance from various angles, however in the applica-

tion scenario of this paper the estimation accuracy is the only 

evaluation metric [15]. The Root Mean Square Error (RMSE) 

is chosen to evaluate the performance. A lower RMSE value 

indicates a better estimation performance. It is defined in the 

equation (11). 

 𝑅𝑀𝑆𝐸 = √∑(𝐴𝑖 − 𝑃𝑖)2𝑛
𝑖=1 𝑛⁄  (11) 

where Ai  is the real value, Pi is the estimation, n is the number 

of samples. 

IV. EXPERIMENTS 

A. Training 

The training is realized by designing a multi-layer LSTM 
RNN for a regression process. In order to avoid the gradient 
vanishing, the Adam optimization is used.  

The overall performance of Li-S SoC estimation is a com-
plex tuning process of all the relevant parameters of LSTM 
RNN, where beneficial effects of one characteristic are often 
established at the expense of other characteristics. In order to 
highlight the influence of fixed parameters on LSTM RNN, 

one variable value is tuned at one time when other parameters 
are unchanged to form comparable experiments. For the con-
venience of balancing between calculation speed and accu-
racy, the duty cycle test data are incorporated into training in-
puts using non-overlapping time windows. The time window 
refers to the time intervals within which a number of sampled 
values are averaged and appropriately smoothed. The sam-
pling time of Cranfield battery test facilities is 1s and the min-
imum change of battery SoC is set at 1% in the algorithm, 
which secured enough time for various lengths of time win-
dows in experiments. In this research the 25s, 50s, 75s, and 
100s have been used in the study though only 75s is chosen in 
accordance with acceptable efficiency and accuracy. 

B. Basic regression-based SoC estimation for two types of 

battery 

The measured datasets have been obtained from WLTP 
tests performed at constant 20℃ temperature and 100% SOC 
levels. Two types of batteries are tested both at appropriate 
stage of lifetime, generally within 20 cycles of charge/dis-
charge. Type-1 cell is manufactured with capacity of 12Ah and 
Type-2 14Ah. In order to achieve higher energy capacity, the 
manufacturing composition of the Type-2 Li-S cell is different 
from that of the Type-1, and thus the internal resistance char-
acteristic of the second battery shows strong nonlinearity and 
irregularity [4]. The internal resistance property is hugely dif-
ferent between these two types of cells. 

From Figure 5 and Figure 6, Type-1 and Type-2 Li-S cells 
are tested under the same condition—three training features 𝐼, 𝑉𝑡 and 𝑅, a 75-second time window and the initial learning 
rate 0.02. The experimental results show that the SoC estima-
tion accuracy for Type-2 cell is much lower than that in Type-
1, which is caused by the loss of linearity of the internal re-
sistance in Type-2 Li-S cell. However, the result has presented 
a certain degree of robustness against nonlinearity since the 
SoC estimation results are given out with acceptable level of 
estimation error for both types of Li-S cell.  

In order to make this case a generic study on SoC estima-

tion based on the LSTM RNN, the Type-2 Li-S cell is chosen 

as the experimental objective under different circumstance in 

the following context.

 

 

Figure 5.  SoC estimation of Type-1 Li-S cell 

 

Figure 6.  SoC estimation of Type-2 Li-S cell 



 

 

 

C. SoC estimation with two features and three features 

A dataset with multiple training features is essential since 
they bring in complementary information for a prediction task. 
Ideally these features show smooth and low-noise with clear 
developing trends. The ‘high plateau’ in Figure 2 supplied a 
positive example, while the ‘low plateau’ voltage supplied 
with almost void information and the resistance noisy and 
highly-irregular information. Therefore, a multiple-feature test 
is applied to find out the effectiveness from features 𝐼, 𝑉𝑡 and 
additional feature 𝑅, in order to verify (1) 𝐼, 𝑉𝑡 are effective in 
prediction and (2) 𝑅 is ineffective as a nonlinear and highly 
noisy additional feature in prediction task. 

The measured datasets from this experiment have been ob-
tained in response to an extensive range of charge/discharge 
WLTP tests performed at constant 15℃ temperature and 100% 
SOC levels. The datasets measured from Type-2 Li-S cell 
WLTP tests are used for the LSTM RNN training using the 
proposed method—one with two features (𝐼, 𝑉𝑡) and the other 
with three features (𝐼, 𝑉𝑡 and 𝑅). They have been tested under 
the same condition—a 75s time window and an initial learning 
rate 0.02.  

In this experiment, the results from the two-feature-train-
ing as shown in Figure 7 have even shown a higher accuracy 
than that of the three-feature-training as shown in Figure 8. It 
is verified that the newly introduced a third training feature—
the internal resistance with strong nonlinearity from the Type-
2 Li-S cell does not help with improving training/test perfor-
mance of the LSTM RNN. Without the third feature, the two-
feature-training is proven to have maintained a good estima-
tion performance, reduced the training time (Empirically, over 

50%) and improved the calculation efficiency. This section has 
set up a standard structure with fixed dimensions for SoC esti-
mation using LSTM RNN.  

D. SoC estimation with relaxed initial SoC 

The measured datasets from this experiment have been ob-
tained in response to an extensive range of charge/discharge 
WLTP tests performed at constant 20℃ temperature and vari-
ous SOC levels. The data measured from Type-2 Li-S cell 
WLTP test are used for LSTM RNN training using two fea-
tures (𝐼, 𝑉𝑡). The experiment is conducted with a 75-second 
time window and an initial learning rate 0.05. 

In this experiment, the training performance of the algo-
rithm with relaxed initial SoC are demonstrated. In other 
words, the initial SoC values are not required in the training 
and test. Therefore, a random initial value (100%, 80%, 60%, 
30%) is set in this experiment in order to examine the SoC es-
timation performance under random initial SoC. This results 
showed a highest RMSE value of 28.5861% when the initial 
SoC is set at 30%. The experiment shows the remarkable ca-
pability of LSTM RNN in estimation of Li-S cell SoC without 
considering initial SoC. 

The results have showed that there is a SoC dip when SoC 
dropped into the scope between 75% and 70%, and it recovers 
quickly to an acceptable estimation value. This phenomenon 
can be found out in the Figure 9 and 10. The SoC dip is caused 
by the voltage dip at the transition between the high discharge 
plateaus and the lower discharge plateaus, who contribute 
about 25% and 75% to the total discharge capacity respec-
tively. 

 

 

Figure 7.  SoC estimation with two features  

 

Figure 8.  SoC estimation with three features  

 

 

Figure 9.  Initial SoC 100% 

 

Figure 10.  Initial SoC 80%  



 

 

 

 

Figure 11.  Initial SoC 60%  

 

Figure 12.  Initial SoC 30%  

The SoC estimation curves in the Figure 11 and 12 showed 

a fast convergence process at start. It is due to the relaxed in-

itial SoC in both training and test, the SoC estimation depends 

on the long-term memory between time steps of sequence 

data. A convergence process in the start is unavoidable. This 

distinguish LSTM RNN from other ANNs with capability in 

processing long time sequence data. 

V. CONCLUSION 

In this paper, the following contributions have been pre-

sented for the state estimation of Li-S cells using LSTM RNN 

in the context of WLTP test. 

1) An all-state estimation framework using LSTM RNN 

model for Li-S battery management has been proposed. It 

has integrated the measurements and observations from 

field tests for Li-S state estimation. 

2) The LSTM RNN model has been calibrated to esti-

mate SoC for fresh prototype Li-S cells. This approach has 

removed dependency on ECN model approaches and 

brought in estimation capability through learning long-

term dependencies between time steps of sequence data. 

The estimation model has given reliable estimation per-

formance despite the challenges presented by the near-flat 

‘low plateau’ open-circuit voltage. 

3) A LSTM RNN structure adopting the Adam solver 

was described for the purposes of training and testing with 

the experimental datasets. The results demonstrated that 

this method is robust to uncertainties and nonlinearities to 

a certain degree.  

4) This method has showed satisfactory SoC estimation 

performance for fresh prototype Li-S cells with new elec-

trochemical properties, and there is balanced estimation 

accuracy and convergence speed through SoC estimation. 

Some critical constraints have been relaxed, e.g. the sys-

tem parameterization and initial SoC values.  

The authors are working towards multi-task estimation and 

all-state estimation for Li-S cell management using deep 

LSTM RNN. 
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