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Abstract

We analyse, using a mixture of statistical models and natural language pro-
cess techniques, what happened in social media from June 2019 onwards to
understand the relationships between Cryptocurrencies’ prices and social me-
dia, focusing on the rise of the Bitcoin and Ethereum prices. In particular, we
identify and model the relationship between the cryptocurrencies market price
changes, and sentiment and topic discussion occurrences on social media, using
Hawkes” Model. We find that some topics occurrences and rise of sentiment in
social media precedes certain types of price movements. Specifically, discussions
concerning governments, trading, and Ethereum cryptocurrency as an exchange
currency appear to negatively affect Bitcoin and Ethereum prices. Those con-
cerning investments, appear to explain price rises, whilst discussions related to
new decentralized realities and technological applications explain price falls. Fi-
nally, we validate our model using a real case study: the already famous case of
”Wallstreetbet and GameStOp”E that took place in January 2021.

Keywords: Cryptocurrencies, Social Media Analysis, Fundamental Analysis,

Forecasting Price Movements, Hawkes Model

*Corresponding author.

Email addresses: marco.ortu@unica.it (Marco Ortu ), s.vaccaQeustema.it (Stefano
Vacca), giuseppe.destefanis@brunel.ac.uk (Giuseppe Destefanis), conversa@unica.it
(Claudio Conversano)

Lhttps://www.economist.com/finance-and-economics/2021,/02/06 /how-wallstreetbets-
works

Preprint submitted to Machine Learning With Applications December 8, 2021



1. Introduction

Cryptocurrencies stir intense interest in the scientific and financial disci-
plines and within social media communities, making the analysis of their price
movements one of the most discussed topics of the last few years, see |Zheng
et al.|(2018)) and Kyriazis| (2019)). Even if the number of studies related to cryp-
tocurrencies price forecasting increases, determinants of their price behaviours
are still mostly unexplored, and the knowledge about predicting their price
movements is still limited.

This paper builds on a previous work (Uras et al.| (2020)) to ascertain pos-
sible relationships between cryptocurrency market prices and social media dis-
cussions and understand what topics have a higher potential to predict price
movements. It is well known that developers’ moods can affect software quality
(Ortu et al,| (2015))), and if this background knowledge is applied in the field of
cryptocurrency software production and their quality metrics (Destefanis et al.
(2017)), this may affect cryptocurrency market prices as well. We first intro-
duce in Section [4| the analysis of the significant case of the launch of Libra E|
cryptocurrency in 2019 and the influence of the subsequent online discussions
on the cryptocurrencies’ markets.

This example opens the road for a more in-depth analysis in Section [5| where
we retrieved the discussions and comments from the social media platform Red-
dit, which is one of the most valuable sources of information related to cryp-
tocurrency markets (Bartolucci et al.|(2020)). We model these online discussions
using the Hawkes Model to understand the mutual influence of online techni-
cal discussion of the two leading cryptocurrencies (Bitcoin and Ethereum). We
continue on this direction in Section [6] where we analyse the occurrence of
particular topics from social media content through dynamic topic modelling,

that is an extension of Latent Dirichlet Allocation (LDA), along with emotional

2https://www.diem.com/en-us/



features extracted from comments, and again we apply the Hawkes model to
identify possible hidden interactions between these features and cryptocurrency
market prices.

The key contributions of our study are the following:

e Deciphering an hidden connection among crypto-markets and social me-

dia;

e Identification of a semantic model of occurrences (based on topic discus-

sion occurrences) deriving from mapping the signs in signals;

e Design of a cost-effective solution for a real-time alarm system that can

be used to support investors’ decisions;

e Specification of a unique mixture of natural language processing, statis-
tical model and pre-existing tools to promote and validate the research

hypothesis;

e Model validation using a real case study: the ” WallstreetBets VS GameStop”.
We found that our model is able to detect warning signals of imminent

financial distress.

The most remarkable contribution of our analysis is the specification and im-
plementation of an alarm system capable of highlighting warning events that can
be considered precursors of financial distress in the cryptocurrencies markets.

The proposed social media seismograph will translate the warning signals
from the Hawkes model into a direct and user-friendly format that will be able

to communicate real-time information to the final user.

2. Related Works

Cryptocurrency markets are in many aspects similar to stock markets, and
links with social media are even more robust (Keskin & Aste (2019))), and some
economists even compared the cryptocurrencies market to the gold market (Al-

Yahyaee et al., 2018). Over the years, several approaches related to forecasting



cryptocurrency price movements have been developed (L. Cocco| (2019alb); Bar-|

ftolucci et al.| (2020)). McNally et al. tried to predict with the highest possible

accuracy, achieving 52% and a RMSE of 8%, the directions of Bitcoin prices in
USD using machine learning algorithms like LSTM (Long short-term memory)
and RNN (Recurrent Neural Network) (S. McNally| (2018)). Naimy and Hayek

tried to forecast the Bitcoin/USD exchange rate volatility using GARCH (Gen-
eralized AutoRegressive Conditional Heteroscedasticity) models
(2018)). Numerous studies tried to use online information (including social
media topics discussions) to predict cryptocurrencies price changes. For ex-

ample, Google searches for Bitcoin-related terms have been shown to have a

relationship with the Bitcoin price (Kristoufek (2013)). Garcia and Schweitzer

have considered the strength and polarization of opinions displayed on Twit-

ter. They show that an increase in the polarization of sentiment (disagreement

of sentiment) anticipates a rise in the price of Bitcoin (Garcia & Schweitzer]

(2015)). In another work, several machine learning pipelines were implemented
to identify cryptocurrency market movements to prove whether Twitter data
relating to cryptocurrencies can be utilized to develop promising crypto coin

trading strategies (Stuart G. Colianni (2015)). |R. C. Phillips| (2017) monitored

the activity on the social media platform Reddit to detect the epidemic-like
spread of investment ideas beneficial in the prediction of cryptocurrency price
bubbles.

Other studies highlighted the potential prediction power of social media fea-
tures on cryptocurrencies markets (Bartolucci et al.| (2020)) while
(2018)) showed that particular topics tend to precede certain types of price

movements, for example the discussion of ‘risk and investment vs trading’ being

indicative of price falls, the discussion of ‘substantial price movements’ being
indicative of volatility, and the discussion of ‘fundamental cryptocurrency value’
by technical communities being indicative of price rises. Thanks to all the works
that helped prove possible association relationships between the cryptocurrency
price changes and social media, we can state that the discussion topics’ knowl-

edge that affects prices seems to be a useful component of a successful trading



model.

2.1. Limitation Of Current Literature

The proposed approaches lack, in general, a global vision of the heteroge-
neous factors influencing cryptocurrencies markets, focusing on specific aspects
such as the financial time series, social media, media websites, Google trends
(Wotk| (2020)). Most of the proposed approaches are also missing a practical
validation in the field. We overcome these limitations by modelling most of
these factors using Hawkes’ models to decipher relationships among social me-
dia, cryptocurrencies markets, media websites and financial data. We tested our
model on a real case scenario, showing the pactical application of the proposed

approach and the designed system.

2.2. Statement Of Purpose

Starting with the current research, we hypothesized that social media con-

tains sufficient information on causal relationships:

e Between topic discussion occurrences on social media and cryptocurrencies

market price changes

e Among different Blockchain communities discussions which influence one

with another.

e Between prices of Cryptocurrencies and sentiment arising from social me-

dia discussion’s groups.

These relationships can be aggregated into a monitoring system with the
purpose of warning system of possible incoming financial distresses. We tested
this hypothesis modelling the occurrences of rise/fall of topics concerning cryp-
tocurrencies, the occurrences of rise/fall of sentiment and emotions in social
media, and the occurrences of cryptocurrencies’ price rise/fall using Hawkes’
model. We found consistency with previous studies, in particular, sentiment and
emotions occurrences in social media (Bartolucci et al.| (2020)) along with spe-

cific discussion topics (Phillips & Gorse| (2018])) help decipher users behaviours



and reactions to certain information regarding future cryptocurrencies market

trends, and causing further price changes.

2.8. Practical Implication: Implementation Of A Social Warning System
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Figure 1: High-Level conceptual architecture.

We propose a social seismograph to help decipher users behaviours and re-
actions to certain information regarding future market trends and causing fur-
ther price changes. In particular, Hawkes’ models could be used in a real-time
alarm system, as causal relationships start to emerge, a digital dashboard light
up imitating an alarm system, where warning lights begin to change colours or
blinking, highlight possible critic events. Figure [T] shows the conceptual archi-
tecture of such a system where the output of the Hawkes process are mapped
into the real-time decision support system, which translates the information into

a direct, informative and visual dashboard.

2.4. Context

The context of the present study is represented by the social media envi-
ronments around the cryptocurrencies ecosystems. These two environments are
constantly growing in terms of users involved and the volumes of investments.

Figure [2] summaries the main concept involved in our study.
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Figure 2: Conceptual Context Diagram.

Cryptocurrencies, in many cases, and especially the ones considered in this
study, are supported by open source communities that contribute to the devel-
opment and maintenance of the underlying technology. The research in software
engineering on online open source communities is hence suitable for the context
of the present study.

Indeed, recent studies in software engineering have been conducted consid-
ering the human aspects of software development in online open source com-
munities, focusing the attention on a better understanding of how developers
interact with each other, studying their emotions and affects.

Numerous tools to extract emotions and affects measures, specifically in the
software engineering domain, have also been developed. For example,
demonstrated the feasibility of a machine learning classifier using

emotion-driving words and technical terms to identify developers’ comments

containing gratitude, joy and sadness.
We exploit these tools to extract emotional content from comments expressed

by technical users in specialized social media discussion groups on cryptocur-



rencies.

3. Background

This section introduces the basics of the two main techniques we used to anal-
yse the relationship between cryptocurrencies market price changes and topic
discussion occurrences on social media: Topic Modeling and Hawkes Process

Model.

3.1. Topic Modelling

A topic model is a specific statistical model used to identify the abstract
topics within a collection of documents. Topic modelling is a frequently used
text-mining tool for automatically identifying themes within a corpus, finding
the distribution of words in each topic, and topics in each document. In this
work, we use Latent Dirichlet Allocation (LDA) (D. Blei & Jordan| (2003))), a
popular unsupervised learning technique for topic modelling. This type of topic
model assumes each document contains multiple topics to different extents. In
the following, we briefly discuss the generative process by which LDA assumes

each document originates.

e The first step is to choose, for each document, the number of words N to

generate.

e The process then randomly chooses a distribution over topics. This pa-

rameter is usually labelled as 6.

e Finally, for each word to be generated in the document, the process ran-
domly chooses a topic, Z,, from the distribution of topics, and from that

topic chooses a word, W, using the distribution of words in the topic.

If we consider a given document d and topic ¢, the variables of interest in
this model are the distribution of topic ¢ in document d and the distribution
of words in topic t. These variables are latent, hidden parameters that can be

estimated via inference for any specific dataset. It has been proved that the



standard LDA model can not understand both the ordering of words within a
document and the ordering of documents within a corpus. For this reason, an
extension of this model was developed by Blei et al. (Blei & Lafferty| (2006])).
This extended LDA model is known as dynamic topic model, and even if it still
has no understanding of the order of words in a document, at least the order of

documents in the corpus is taken into account.

3.2. Hawkes Model

The Hawkes process is a point process class (Neuts| (1979))), also known as a
self-exciting counting process, in which the impulse response function explicitly
depends on past events (Hawkes (1971)). In this type of process, the observa-
tion of an event causes the increase of the process impulse function. From a

mathematical point of view, a point process is a Hawkes process if the impulse

function )\(t|Ht) of the process takes the form of .

A(HH) = Xo(t) + > o(t—t:) (1)

ity <t

In equation H, represents the history of given past events, A\(t) is a
positive function that determines the basic intensity of the process, and ¢ is
another positive function known as memory kernel, since it depends on past
events occurred before time ¢{. Hawkes models can be used to identify the
dynamics of interactions between a group of K processes. The occurrence of
an event on a particular process can cause an impulse response on that process
(self-excitation), determining an increase of the likelihood of other events and
on other processes (mutual-excitation). Thus, given a set of events occurring
on several processes, a Hawkes model can be used to quantify previously hidden
connections between the processes.

In this work, we apply a Hawkes model to decipher how topics are related
to one another and how price changes are related to the topic occurrence and
sentiment and emotion expressed in social media comments.

Figure[3]illustrates an explanatory example of a multivariate Hawkes process

with three flows of events: A(t)g, A(t); and A(t)2. In this example, the event



flows have been constructed so that A(t)g is not influenced by other flows, but

only by events that happen on its own flow (self-exciting effect); otherwise,

events in the same A(t)g can have effects in A(¢); and A(t)2 (mutual-exciting

effect).
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Figure 3: Example of multivariate Hawkes process

We can consider these flows of events as follows:

e A(t)o: as a price movement flow of events (up and down movements per

time interval).
e \(t)1: as the occurrences of a specific topic in social media.

e \(t)2: as the occurrences of positive comments in social media.

This example helps to understand how the Hawkes’ processes can model
the many events happening simultaneously in both social media and Crypto-
Markets and quantify hidden connections between the processes.

Once the Hawkes model is fitted on data, it will contain some weights (in

a matrix-wise fashion) representing the directional strength of any interaction

10



between processes interpreted as the expected number of events on a specific

process resulting from an event on another process.

A1 A2 A3

ADL | ADL->ADL | ADL->A®D2 | A®DL->A®D)3

A()2 AD2->A0)1 | AB)2->A(1)2 | A()2->A(1)3

AD3 | AD3->AML | AD3SA®2 | A®D3->AD)3

Figure 4: Example of Hawkes Coefficient Matrix.

Figure 4| represents the Hawkes coefficient matrix, fitted with the hypo-
thetical data from the previous example. This matrix represents the coeffi-
cients of the fitted model: along the diagonal we have the coefficients for the
self-excitation and the coefficients outside the diagonal represent the mutual-
excitation. We used the right arrow symbol ”—" to highlight the direction of
the relationship, i.e. A(t);1 — A(t)2 coefficient represents the strength of the

relationship of A\(¢); events on A(t)y and A(t)s — A(t); vice versa.

4. Cryptocurrencies and Sentiment Analysis: a case study on Libra

The cryptocurrency market is volatile, and its performance is influenced by
information from various sources. Since they are based on different blockchain
technologies, cryptocurrencies are candidates to be complementary currencies
to the current fiat currencies or, shortly, to replace them.

The Blockchain is a technology, and as such, we can study it through Rogers’
innovation adoption model. According to [Rogers| (2010)), all technologies go
through a first phase in which only the ”Innovators” (about 2.5%, this is the

case of the period before autumn 2017) and the ”First acquirers” adhere (13.5

11



%). After that, however, to establish itself in the market, a technology must
overcome what Rogers calls ”Chasm” (i.e. ravine), which identifies the phase in
which the technology is adopted by a more significant market segment, called
”early-adopters”. Nowadays, especially on Telegram, users use cryptocurrencies
as currency to trade and make money buying and selling. There are also the
so-called ”Pioneers”, who have held Bitcoins since before the 2017 bubble and
are not interested in making direct profits but believe in the project and the
future inclusion in society. It is no coincidence that the major IT companies
(e.g., Facebook) are creating their cryptocurrencies, thus laying the foundations
for several mechanisms such as collaboration, win-to-win and competition (or
conflict), on which virtual currencies will become established and those that
will disappear. It is not the first time in history that more coins or currencies
coexist. What seems inevitable is that Bitcoin is having more and more success
and spread throughout the world, and the technology that supports it is now
the future of society. Given the broad ecosystem of cryptocurrencies, we can
understand if and how different blockchain’s communities influence each other,
especially from the software implementation and design.

In 2017 Facebook announced its intention “to reach 1.7 billion people in the
world who do not yet have a bank account”. Facebook, which already holds
personal data of the profiles of 2.23 billion monthly active users, will seek to
obtain information related to financial trends. As stated by the company, the
cryptocurrency is independent but controlled by the Libra Association (an as-
sociation based in Switzerland), intending to regulate and validate transactions
related to social funds. In support of the association, there are several small
tech companies including PayPal, eBay, Spotify, Uber and Lyft, and financial
companies and venture capitals such as Andreessen Horowitz, Thrive Capital,
Visa and Mastercard.

In this illustrative case, we analyze the technical discussion of two blockchain
developer’s communities, Bitcoin and Libra, from two different public platforms:
Reddit and Telegram. We use text mining techniques to understand whether

the announcement of Libra influenced Bitcoin’s price variations.
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4.1. Reddit

The social media platform Reddit is an American social news aggregation,
web content rating, and discussion website that reaches about 8 billion page
views per month. It is a top-rated social network in English-speaking countries,
especially Canada and the United States. Almost all the messages are written in
English, while the minority are Spanish, Italian, French, and German. Reddit is
built over multiple subreddits, where each subreddit is dedicated to discussing
a particular subject. Therefore, there are specific subreddits related to major

cryptocurrency projects.
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Figure 5: Bitcoin trend - June 2019

Our data collection led to the extraction of 9,453 messages, 713 different
discussions and 5,507 unique users who talked about Libra. We carried out the
research by investigating the keyword Libra. The term Bitcoin instead had
much larger volumes, thanks to the widespread diffusion and reputation of the
technology. The collected messages were 68,243, the discussions 2,625 and the
total number of users was 22,799.

We used the Vader (Hutto & Gilbert| (2014])) tool to extract the Sentiment from

13



these comments. VADER (Valence Aware Dictionary and sEntiment Reasoner)
is a lexicon and rule-based sentiment analysis tool specifically attuned to senti-
ments expressed in social media. Figure [5{shows Sentiment (the central trend in
green), price (upper part in blue) and volume of the transactions (lower orange)
for Bitcoin in June 2019. June 26th 2019 was when Bitcoin prices rose the most,
indicating an excellent opportunity to sell for those who already owned Bitcoin,
but a great disappointment for those who did not buy it previously, thus losing
the chance to profit from a possible sale. Furthermore, the Sentiment recorded
a sharp decline, bringing the lowest value of the month. This is confirmed by
the fact that the volume of trade has increased disproportionately, inferring that
most investors have sold the cryptocurrency on that date.

In Figure [6] the trend of Libra’s Sentiment is represented with the same
type of graph shown in Figure In this case, it is essential to note that the
Sentiment recorded a remarkable price rise on June 14th, the day of the disclo-
sure of the news that would soon see the entry into the market of Facebook’s
cryptocurrency. This graph does not show a definite direct correlation with
the price of Bitcoin, but this does not imply, however, that the news did not
contribute to increasing the value of Bitcoin.

As for now, beyond Bitcoin, there are few “virtual” currencies to which
investors can rely on. However, Libra could establish itself as a reliable currency
because it is kept alive by a large company that cares for the image and aims
to make it last over time. Despite the scandal that engulfed Facebook in May
2018, it has shown that it is robust and continuously investing in the market.
These features make Libra more reliable than other currencies, born without
basic programming and much more vulnerable to speculative attacks. Since
Facebook’s mission is to create a stable currency, many people claim that Libra
will be the new Tether, a virtual currency linked to the US dollar, which has
always been at the centre of accusations and scandals.

Figure shows the sum up of the percentage of comments classified as
positive, negative and neutral during June 2019 for Bitcoin. The Sentiment

is positive in 53.8% of comments, while negative and neutral are balanced at

14
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Figure 6: Libra trend - June 2019

around 23%.

Figure shows the sum up of the percentage of the comments classified as
positive, negative and neutral during June 2019 for Libra. Contrarily, in this
case, the Sentiment is much more unbalanced, with the neutral comments being
less than 10%, while positive comments account for the 61.8% and negative ones

for the 29,3%.

B Positive W Positive
Neutral M Negative
W Negative Neutral
(a) Bitcoin Sentiment on June 2019 (b) Libra Sentiment on June 2019
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4.2. Telegram Communities

We extracted the messages written by users of some specific communities
on Telegram. These communities are public chat groups in which people with
particular interests discuss in real-time. For this reason, compared to Reddit
users, they are much more critical and sensitive to market changes and are
more likely to seek higher profits. The considered Telegram communities were

the following:

e Bad Crypto Podcast,
e The Coin Farm,
e Ripple Group (XRP),

e WCSE RA TALKS.

Figure [8] shows Sentiment’s performance for each of the considered groups
during June 2019. The trend is mostly negative, but with positive peaks, prob-
ably due to the excellent performance of Bitcoin on the market.

We classified the groups with more significant influence and those with the
trend of the common Sentiment. Figure [J]shows the Pearson correlation matrix
between the four groups and the Bitcoin closing price trend. We built the matrix
by grouping the days of positive Bitcoin growth (i.e., from June 21st, until the
peak of the month - June 26, 2019). A correlation coefficient close to +1 denotes
a direct (or positive) correlation, so the two variables under analysis have the
same type of linear trend. A correlation coefficient close to -1 denotes an indirect
(or negative) correlation and indicates that the two variables have an opposite
trend; finally, a correlation equal to zero indicates that the two variables do not
exhibit a linear correlation.

The analysis shows that the price of Bitcoin is highly positively correlated
with all the considered groups except for Ripple Group (XRP), which has a
robust negative correlation equal to -0.71. This data is not accidental and

explains how this is the only group in our analysis that does not appreciate

16



Bitcoin’s price growth. The correlation analysis further confirms this on June
27th, when Bitcoin’s price began its descent. In this case, the Sentiment is on

the rise because of the decline in Bitcoin prices.
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4.3. Topic Analysis

The Topic modeling analysis for Libra communities is shown in Figure
which shows three well separated and rater different topics. The word Libra
appears in the first topic, representing the most important context of the dis-
cussions from the 21st to the 26th of June. This suggests that the users’ concern
was linked to the price of the Ripple cryptocurrency and the Libra’s recent in-
formation. Figure shows the topic analysis with words which appear most
frequently in the same word corpus or document. For example, the analysis car-
ried out for the keyword Libra, shows that words like Facebook, Bitcoin, money,

Blockchain and the same Libra, are often used together in the same context.
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Figure 10: Latent Dirichlet Allocation per Ripple Group XRP Telegram.

4.4. Discussion On Libra and Bitcoin

Our preliminary analysis showed how the price of Bitcoin is highly posi-
tively correlated with the considered discussion’s groups, although limited to
one month, this study shows how Blockchain development communities influ-
ence each other from Sentiment expressed in technical discussions.

Further analysis will involve more sophisticated methodologies, such as (Phillips
(2018)), to deeper understand how discussions in different Blockchains

18
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Figure 11: Latent Dirichlet Allocation for Libra

communities influence each other and influence the cryptocurrencies’ price (Bar-
y

ftolucci et al] (2020)). In Sections [5] and [6| we apply these methodologies.

5. Cryptocurrencies’ Communities Mutual Influence: A case study

on Bitcoin and Ethereum

In this section, we analyse online discussion comments from the social media
platform Reddit using LDA topic modelling and Hawkes models. Hawkes mod-
els are applied to these online discussions to understand the mutual influence
of online technical discussion of the two leading cryptocurrencies, Bitcoin and
Ethereum. We first introduce some information about the data sources and
their processing achieved applying dynamic topic modelling approach
(2006)). Secondly, we applied the Hawkes models to these discussions’
topics to understand the mutual influences between online discussion groups of

Bitcoin and Ethereum.
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5.1. Data Sources

Reddit is built over multiple subreddits, where each subreddit is dedicated
to discussing a particular subject. Therefore, there are specific subreddits re-
lated to major cryptocurrency projects. For each considered cryptocurrency,
two subreddits are analysed, one technical and one trading related. They are

mentioned in Tab. [

Cryptocurrency Technical Discussions Trading Discussions
Bitcoin r/Bitcoin r/BitcoinMarkets
Ethereum r/Ethereum r/EthTrader

Table 1: Considered subreddits

For each subreddit, we fetched a given amount of comments for almost one
million comments analysed. The historical prices of Bitcoin and Ethereum were
extracted from the ”Historical Data” section available on Crypto Data Download
website, specifically from the Coinbase trading exchange. The hourly prices time
series were retrieved, stored and then aggregated to the required granularity.
The sample period considered in this work is one year, from January 1st 2019
to December 31st 2019. The chosen data period appears to be suitable since in
September 2019, a significant fall in the Bitcoin price occurred with consequent
ripple effects on Ethereum prices, allowing us to investigate the interaction

between prices and social media during this considered period.

5.2. Results

Before applying topic modelling, the corpus has been pre-processed. There-
fore, topics were obtained removing stop words (such as “the”), links, special
characters, and varied punctuation. We used part-of-speech (POS) tagging to
categorise words into types; nouns and adjectives are maintained while other
types are removed. Furthermore, we applied stemming techniques to reduce

derived words to their base root. These techniques allow grouping different
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terms into one unique root term and simplify the number of features to increase
attention to the most critical terms. After this data pre-processing step, we
applied Latent Dirichelet Allocation and, in particular, the LdaModel method
provided by the Gensim python library (R. Rehurek (2010)) to identify distinct
topics through topic modelling technique, thus generating a time series of topic
occurrences. For insight into this topics’ selection process, Table [2] shows all
topics selected for their coherent cryptocurrency-related content. For the sake

of brevity, we only report those for the r/Bitcoin subreddit.

r/Bitcoin
#Topic Label Top Topic’s Words

0 personal investment ‘money’, ‘time’, *wallet’, "'way’, *thing’, 'work’, "coin’,
transact’, ‘crypto’, 'point’, ’actual’, ’try’, 'mean’,
‘mine’, ’sure’, 'person’

1 Bank ‘price’, ’exchange’, ’thank’, ’day’, ’dollar’, ’atm’,
'wrong’, ’shit’, ’purchase’, ’withdraw’, ’satoshi’,
"check’, ’list’, ’demand’, ’name’, ’hope’, ’google’,
com’, It’

2 Bitcoin & Blockchain "bitcoin’, ’btc’, ’year’, 'mew’, ’look’, ’post’, ’cur-
rency’, ’question’, 'remove’, ’address’, 'node’, 'net-
work’, ’change’, ’free’, 'month’, ’internet’, ’user’,
‘power’, ’believe’

3 Government 'people’, ’good’, 'market’, 'value’, ’govern’, ’right’,
'world’, ’account’, ’reason’, ’everyone’, ’country’,
‘maybe’, "talk’, ’idea’, 'guy’, 'last’

4 Trading ‘gt’, ‘use’, 'bank’, 'pay’, 'fee’, ’cash’, ’gold’; ’trade’,
tax’, ’scam’, ’lol’, 'need’, 'word’, ’coinbase’, 'rate’,

kyc’, ask’, 'trust’

Table 2: Selected topics from r/Bitcoin subreddit

The chosen topics are then analysed in a Hawkes model, alongside mar-
ket prices. We used the HawkesConditionalLaw method provided by the tick
Python library (Bacry et al.| (2017)). Once we created the topics, the creation

of the features in events and processes was performed. We aggregated data
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into groups composed of events happening in a time interval of sixty-minutes
(At = 60min).

Two features were processed from each cryptocurrency prices, namely the
delta_price feature, which is the difference between the closing price and the
hourly opening price, and the log_return feature, i.e. the logarithm of the dif-
ference between higher price and hourly lower price. We then considered a total
of fourteen features, five topics and two price features for each cryptocurrency.
The max_lag parameter models the maximum time for which an individual
event can affect other events (of the same or of different type), in this work we
tested different values of max_lag. We chose these max_lag values according to
the period’s length and the number of events associated per interval.

Before illustrating our results, it is important to clarify the interpretation
of the Hawkes’ coefficients matrices’ values. The coefficients are obtained from
the matrix representing the weights obtained from applying the Hawkes model
fitted to the dataset and displayed from the vertical to the horizontal axis. They
represent the average number of expected events per time interval.

The following graphs are read from the vertical to the horizontal axis, and
the arrows help to understand which process is causing and which is caused. A
blue colour indicates a causal relationship with a positive weight, namely when
the number of events per time interval increases on the vertical axis variable,
then the number of events increases in the horizontal axis variable. Red colour
expresses a negative relationship, namely when the number of events per time
interval increases on the vertical axis variable, then the number of events de-
creases in the horizontal axis variable. Intermediate weights and values very
close to zero are represented with a colour that gradually approaches white (no
causal relationship).

Fig. [12] shows the strength of the connections between the considered pro-
cesses for Bitcoin and Ethereum technical discussions for a max_lag of 24. There
is a general pattern of soft self-excitement positive relationships between all the
variables, highlighted by the coefficients placed on the diagonal. Some causal

relationship are established between topic_0 (related to discussion investments)
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of the Bitcoin and topic-3 and topic_4 of Ethereum (related to discussions about
decentralized realities and deployment applications). The Bitcoin and Ethereum
log_return feature is negatively affected by Bitcoin topic_0 feature, while posi-
tively affected by Ethereum topic_3 and topic_4.

The results obtained with a max_lag of 48, shown in Fig. highlights
that the self-excitement relationship are no longer present and the appearance
of some causal relationship between btc_log_return feature and Bitcoin and
Ethereum delta_return features. It also appears that Bitcoin and Ethereum
topics negatively affect the delta_price feature of both cryptocurrencies.

The Bitcoin and Ethereum log_return feature is negatively affected by Bit-
coin topic_0 feature, while positively affected by Ethereum topic_3 and topic_4.
The results obtained with a maz_lag of 48, shown in Fig. highlights that the
self-excitement relationship are no longer present and the appearance of some
causal relationship between btc_log_return feature and Bitcoin and Ethereum
delta_return features. It also appears that Bitcoin and Ethereum topics nega-
tively affect the delta_price feature of both cryptocurrencies.

Figure [I4)shows the connections strength between the considered processes

for Bitcoin and Ethereum trading discussions for a maz_lag of 24.
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Figure 14: Hawkes matrix for r/BitcoinMarkets and r/EthTrader, maz_lag 24.

In this case the relationships between topics features and the variables related
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to the prices are almost zero. Instead, the self-excitement relationships between
all the features are stronger than those occurred in the technical discussion case.

Fig. [[5] shows the same Bitcoin and Ethereum trading discussions results
obtained with a maz_lag of 48 hours. It appears that there are no substantial
differences compared to the previous case with max_lag equal to 24, the only
remarkable observation that is worth noting is that all the negative relationships

established between the topics features become positive in this case.
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Figure 15: Hawkes matrix for r/BitcoinMarkets and r/EthTrader, maz_lag 48.

6. Cryptocurrencies Price Changes and Social Media: a case study

on Reddit

This section focuses on the influences between online discussion groups of
Bitcoin and Ethereum and their cryptocurrencies’ markets price changes. We
apply the same approach used in the previous section based on modelling on-
line discussions with topic modelling and then use Hawkes models to highlight
hidden relationships between social media activities and cryptocurrencies. In
particular, we focus on shedding light on the relationships between social media
discussions and Ethereum and Bitcoin price changes. Concerning the previous
analysis in Section [B] we consider social features such as sentiment and emotions

expressed in online social media comments.
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6.1. Data Sources

We collected data from Reddit and selected two subreddits for each cryp-
tocurrency considered, one technical and one trading related. Tab. [3| shows the

considered subreddits.

Cryptocurrency Technical Discussions Trading Discussions

Bitcoin r/Bitcoin r/BitcoinMarkets
Ethereum r/Ethereum r/EthTrader

Table 3: Considered subreddits

Subreddit # Comments Comments/Redditor Ratio
r/Bitcoin 430.183 8,21
Tecnical
r/Ethereum 80.130 6,51
r/BitcoinMarkets 212.828 29,13
Trading
r/EthTrader 245.786 16,42

Table 4: Subreddits Statistics.

The distinction between subreddits of technical discussions and subreddits
with speculation (trading) topics is vital. In the first case, we expect to find users
whose interest is more focused on technology (on the implementations of new
products or technological systems); in the second case, in principle, we expect to
find users who discuss the present, past and future trend of the cryptocurrency
price (the financial aspects).

Table [4] shows the total number of messages extracted from the 1st of Jan-
uary till the 31st of December 2019, and the fraction of messages per user (or
Redditor).

Bitcoin (the first cryptocurrency by market capitalization) is the most talked-
about of the subreddits under review; by adding the two subreddits (technical

and trading type), the total exceeds 630 thousand comments. However, for
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Ethereum, the volume of messages is higher for the trading theme than for
technical discussions, and the reason might be that when it comes to Ethereum,
users are more interested from the financial perspective than the technological
one.

We created the dataset from data extracted from two primary sources: the
market prices of Bitcoin and Ethereum and the comments extracted from the
four main subreddits. Specifically, we extracted the data relating to Bitcoin
and Ether prices from the ”Historical Data” section available on the English
exchange Coinbase.com. These data contain various information at one-hour

intervals, in particular:

e the opening price.

the closing price.

the highest price.

the lowest price

the trading volume.

Prices have been modelled to express increases and decreases in volatility

over time with the following two features.

e [og_returns_volatility: it represents the difference between the highest price
and the lowest price per hour, expressed in logarithmic form as represented

in equation [2}

log_returns_volatility; = log(Prigh,; — PLow,i) (2)

e delta_return: it represents the difference between the closing price and the

opening price in one hour, as expressed in equation

delta_return; = (Pciose,i — Popen.i) (3)

Along with these technical features, we added sentiment and emotional fea-

tures, in particular for each comment we evaluated the following features:
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e Sentiment.
e Valence Arousal and Dominance (VAD) metrics.

e Dynamic Topic Modeling (Blei & Lafferty| (2006)).

The sentiment of Reddit’s comments has been evaluated using a Sentiment
Analysis tool called VADER (Hutto & Gilbert| (2014))) as we described in Section
VAD metrics have been computed using the well known Warriner framework
(Warriner et al.| (2013))). The topic features refer to the five topics identified in
the previous section (and reported in Table .

Starting on the 2nd of April 2019, the Bitcoin price began a phase of progres-
sive rise, which ended on the 28th of June 2019 (followed by strong fluctuations
in prices which lasted throughout the summer). In the last quarter of the year,
there were two significant drops in price. The first began on the 23rd September
2019, and the second (with a gradual decrease which began on 27th October
2019 and ended on 23rd November 2019) with a loss in value of over $ 2,500
(25%).

The fluctuations in the price of Ether roughly follow those of Bitcoin. Both
cryptocurrencies recorded upward peaks starting from April 2nd 2019. Unlike
Bitcoin, in Ethereum, the price hike’s start begins in the first days of Febru-
ary (when the news on the protocol change started a trail of cautious opti-
mism). There are more negative fluctuations, especially during the summer,
when Ether’s price collapsed on July 9th 2019. As of July 17th 2019, in just
eight days, the price has dropped by over $ 100 (about 30% of the value). We

used these drops and rises in prices as representative case studies in Section [6.3

6.2. Methodology

The use of Hawkes processes models a time series of occurrences of events.
Therefore, it is essential to express the events as an aggregation of information:
we merged the data with a frequency of 60 minutes (A;), as described in previous
Section This periodicity made it possible to count the number of related
events per hour, from the 1st of January to the 31st of December 2019.
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Specifically, for the sentiment, we decided to count the number of positive
and negative events. Therefore, in an interval of one hour, n comments with
positive polarity and m comments with negative polarity are counted. We ex-
cluded neutral events because they were considered uninformative; in fact, most
of these represent questions (e.g., ”Is Bitcoin a good choice?”), or comments
without any impact on the market trend (e.g., I don’t know anything about
trading!”). VAD metrics are composed of continuous values. We decided to

divide the VAD metrics into two categories to count events:

e Low: if the associated VAD value is lower than the median value of the

entire year 2019;

e High: if the associated VAD value is instead higher than the median
threshold for the entire year 2019.

For example, when a comment has an Arousal value greater than the me-
dian, the low_arousal value is zero, while the high_arousal value is one. The
same holds for the other two VAD metrics: Dominance and Valence. These
occurrences were then aggregated to form a single event with a duration of A,
which, as mentioned, is one hour. For each subreddit, the LDA model generated
five topics, to which we manually assigned a label. In all four subreddits, the
recurring themes are similar: they mainly talk about the world of cryptocurren-
cies, trading and currency appreciation and depreciation, but they also refer to
Blockchain technology, decentralized realities and their implementation at the
government level and politic. Each comment has been assigned to one of the
five identified topics (dominant topic). In this case, if the number of comments
associated to a topic, for example with topic_0, is equal to 10, this will be the
count of the events related to topic_0 in that time interval.

During the whole year 2019, comments were grouped to create 8,760 events
(24 events a day for 365 days). Table [5|shows the distribution of events during
the entire period.

The least frequent subreddit is r/Ethereum, with an average of 9 comments
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Subreddit Avg. # Comments per event # Comments Comments/Redditor Ratio

r/Bitcoin 48,27 430.183 8,21
r/Ethereum 9,02 80.130 6,51
r/BitcoinMarkets 23,97 212.828 29,13
r/EthTrader 27,69 245.786 16,42

Table 5: Reddit Dataset Statistics

per events per time interval. The most densely packed subreddit is r/Bitcoin,

with over 48 comment events per time interval.

6.3. Results

In Figure the first subreddit analysed is r/Bitcoin. In this paragraph
and for all four subreddits, it has been chosen to implement a Hawkes weight
matrix using a max_lag equal to 24. This value’s choice is linked to the length
of the period considered: shorter relationships take on less importance than the

effects propagated over time.

Hawkes process r/Bitcoin
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Figure 16: Hawkes matrix for r/Bitcoin maz_lag 24 during all 2019.

The matrix in Figure [16| shows that the relationships between the variables

express self-excitement effects; therefore, the generation of an event in a process
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generates an effect in the same process: this is clear by looking at the blue

diagonal in the graph.

Hawkes process r/Ethereum
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Figure 17: Hawkes matrix for r/Ethereum max_lag 24 during all 2019.

Figure on the other hand, shows the same type of chart for r/Ethereum,
in which prices are related to Ether’s performance. Remarkably, in this case,
there are no marked self-excitement relationships as in the case seen in Bitcoin
(Figure , but there are strict mutual-excitement relationships. In particu-
lar, on the graph’s right, we see that events in the delta_return cause low-level
positive effects of Arousal. Hence, a price increase makes users unresponsive.
This is consistent with the fact that Redditors are, in general, attracted to price
devaluations so that they can take advantage of sudden depreciation and profits
from the future rise in the currency.

Figures [18| and [19] instead show the matrices whose discussions are strictly
characterized by financial and trading themes, namely: r/BitcoinMarkets and
r/EthTrader. As widely discussed throughout this study, the users who belong
to these two subreddits are very attentive to price trends, and, for this reason,
they are also very sensitive. The matrix confirms this in Figure where

an increase in price volatility causes a reduction of negative comments mainly
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Hawkes process r/BitcoinMarkets
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Figure 18: Hawkes matrix for r/BitcoinMarkets maz_lag 24 during all 2019.

linked to the negative sentiment of the Redditors. This can be explained by
the fact that investors prefer situations of stress and high volatility to speculate
more on the price.

In figure [T9] on the other hand, the effects are mainly related to the genera-
tion of high and low Arousal events. Thus, during the entire period, r/EthTrader
users are not influenced by prices, nor do they influence them. On the other
hand, high Arousal situations generate positive effects, therefore an increase, of
the events linked to negative sentiments.

The effects just illustrated could change depending on the type of informa-
tion driving the market. For example, in February, the news of the Ethereum
protocol change was the main topic discussed. Conversely, users expressed dif-
ferent emotions in June due to the large speculative bubble that swept through
prices. For this reason, periods of particular financial stress had to be inves-
tigated more closely. In the following subsections, we selected four of these

particular periods of interest:

e Case 1: The Days Close To The Price Increase As Of April 2nd 2019.
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Hawkes process r/EthTrader
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Figure 19: Hawkes matrix for r/EthereumTraders max_lag 24 during all 2019.

e Case 2: the update of the Ethereum protocol in February.
e Case 3: the fall of the Ether on July 14th.

e Case 4: the fall in the price of Bitcoin on September 24th.

6.3.1. Case 1: The Beginning Of The Spring 2019 Rises.

Compared with the whole of 2019, the first three months of the year are
characterized by general price stability in both cryptocurrencies. Figures
and [21] show the coefficient matrices for trading discussions for Ethereum and
Bitcoin. The analysis period chosen in this first subparagraph corresponds to
the days preceding the gradual rise in prices. Between April 2 and 4, 2019,
the price of Bitcoin suddenly increased by nearly $ 1,000, and on the same
incremental wave, Ether’s value went from $ 140 to over $ 160 (+ 12.5%) in
the same days. Studying relationships in trading-type subreddits has led to
observable results, while this has not been the case for technical discussions.
Figure shows the weight matrix relating to the r/EthTrader subreddit. In

this case, the events linked to high Valence and Arousal values generate adverse
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effects in price reduction, while the events of high Dominance, on the contrary,

generate positive effects in price fluctuations.

Hawkes process r/BitcoinMarkets
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Figure 20: Hawkes matrix for r/BitcoinMarkets maz_lag 12 during 1st April 2019.
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Figure 21: Hawkes matrix for r/EthereumTraders max_lag 12 during 1st April 2019.

here

shows the r/BitcoinMarkets subreddit. As in Figure

Figure

again, high levels of Arousal generate significant decreases in the price. It can
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be noted how high values of high_arousal generate positive effects on the topic
T4 relating to time, taxes and the future. This topic has generated concern
among users, also confirmed by the negative effect generated by the low_arousal

events.

Hawkes process r/EthTrader
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Figure 22: Hawkes matrix for r/BitcoinMarkets maz_lag 6 from 28th March to 1st April 2019.

6.3.2. Case 2: The Update of the Ethereum Protocol in February.

The price of Ether has gone through a period of recovery since early Febru-
ary 2019. In this regard, the analysis was conducted on the Ethereum platform
subreddits by selecting the period between January 31st and February 6th 2019
(two days before the rise). Figure shows the matrix of the coefficients ob-
tained with Hawkes models for discussions in r/Ethereum. In this case, the
different topics are mostly affecting prices. Interestingly, the most important
topic is related to discussions on the fork (77), which causes positive effects on
the price. There is also a trail of positive comments, which in turn generates
price increases.

Curiously, there were no price influences from the metrics extracted from
r/EthTrader. This result might suggest that the rise is due precisely to the

news of the imminent change of protocol of Ethereum, and that it is not a
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Hawkes process r/Ethereum
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Figure 23: Hawkes matrix for r/Ethereum max_lag 12 from 31st January to 6th February
2019.

trivial coincidence.

6.3.3. Case 3: The Fall of the Ether on July 14th

In the time interval between 11th and 13th July 2019, Ether’s price is quite
stable, all this happens before the price, on July 14th, undergoes through a
deep drop of over $ 40 (-11.3%). The weight matrix in Figure [24] (r/Ethereum)
is characterized by a strong influence on prices due to low Dominance events
(positive effects on delta_return, while negative effects on log_returns_volatility).
Although the price is generally stable, users do not feel in control of the situation,
which generates continuous and oscillatory movements in the price.

The r/EthTrader coefficient matrix is illustrated in Figure There are
a few significant relationships here. Indeed, the prices are positively caused
by the topic Ty related to generic discussions on the Blockchain. The words

)

present in this topic ("f ** k7, "remove”, ”downvote”, ”question”) suggest little
discussion’s serene. The influence of topic T3 on prices is, on the contrary,
negative. Discussions related to the government, money, investment portfolios

cause prices to rise significantly stable and gradual.
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Hawkes process r/Ethereum
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Figure 24: Hawkes matrix for r/Ethereum maz_lag 12 from 11th July to 13 July 2019.

Hawkes process r/Ethereum

p
2.
2,
% % Ll %
(=’ . s S
Yoy, Bu, Yoy by on, a5, o NC
Moy, S S Ty, K2
(S Ce 5% e e » ~lo, Sro
S S 2, By BN
- high_valence 475 028 010 -010 117
— low_valence { 1.46 0.15 116 0.74 146 -3.75 -1.88 125 -0.22 0.55 144 033 011 003 -036 10

—high_arousal { 221 085 -155 156 -221 300 284 003 245 -158 223 -044 025 001 034

-2.56 196 -023 150 -334 -209 047 045 003 047

i 2.81--4.75 028 010 -010 117 3

- low_dominance { 0.23 038 0.01 028 023 087 256 034 100 -118 197 003 048 -000 -005

- low_arousal | 256 187

= high_dominance n 416

- positive_ sent { 3.04 0.88 311 265 3.04 - 509 158 -0.57 206 441 067 019 -004 070
-negative_sent { 193 369 220 487 193 281 080 -077 123 339 053 167 070 -0.17 003 0

-T44 073 006 130 075 073 -397 036 048 106 134 044 046 -023 005 026

-T14{=291 278 =281 326 291 533 326 110 173 -348 -4l4 076 -102 -053 077

724032 014 126 009 032 -155 361 026 056 -005 301 072 013 -014 023 -5

~T3 - 215 453 555 - 5.62. - 041 - 397 - 298 202 056 -106

-704 055 103 061 044 055 037 295 -152 -258 -037 329 112 038 021 033
—log_returns_volatility (0){ 504 -1.69 | 549 503 504 416 152 195 n 042 152 172 175 -10

—delta_return_(0){ 3.52 084 277 309 352 242 323 195 -179 240 071 071 002 167

Figure 25: Hawkes matrix for r/EthereumTraders maz_lag 12 from 11th July to 13 July 2019.
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6.3.4. Case 4: The Price Fuall of Bitcoin on September 24th.

For the last case study, we consider the period preceding the great collapse
of the Bitcoin price, more precisely, 24th September 2019 around 8 pm. The
time interval considered is between 20th and 24th September, about 1 hour
before the sudden collapse of the value of over $ 2,000 (over 10% of the total
value). Figures [26| and [27] show the two coefficient matrices corresponding to
the r/Bitcoin and r/BitcoinMarkets subreddits. With regard to the first figure,
it is mainly the emotions linked to the VAD metrics that drives the greatest
influences on prices. In particular, events related to low_dominance (which,
among other things, has a negative self-excitement value) cause positive effects
in delta_return. The low_dominance events are gradually decreasing over time,
and this generates a slight rise in prices, before the final fall of the 8pm on

September 24th.
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Figure 26: Hawkes matrix for r/Bitcoin maz_-lag 12 from 20th to 23rd September 2019.

Other remarkable results are shown by analysing the matrix relating to dis-
cussions of the trading theme (Figure . In particular, low Dominance and
high Arousal events generate positive effects on price volatility (log-volatility_return).

Conversely, high Dominance and low Arousal events have negative effects on
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log_volatility_return.
The case in Figure 27] shows how low Dominance events cause an increase
in events linked to equally low levels of Arousal, and which in turn have reper-

cussions to rises in price volatility and a continuous reduction of prices.

Hawkes process r/BitcoinMarkets
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Figure 27: Hawkes matrix for r/BitcoinMarkets maz_lag 12 from 20th to 23th September
2019.

7. Validation

In this section, we propose a validation methodology based on empirical
evidence. We will use the striking case of ”WallstreeBets and Game Stop[]
which took place in January 2021 and is the first recorded case where millions
of social media users coordinate their stock market’s behaviour with the purpose
of short squeezing a stock market title.

In brief, users on the forum WallStreetBets, a subreddit of Reddit.com [1]

Shttps://www.economist.com/finance-and-economics/2021/02/06 /how-wallstreetbets-

works
4https://www.reddit.com/r/wallstreetbets/
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had noticed what was happening with GameStopEL a publicly-traded company,
which was having economic difficulties. The forum users realized that the hedge
funders were betting against GameStop and shorting more shares than the exist-
ing ones (multiple landing of a share). Investors on WallStreetBets coordinate a
buy action of GameStop shares, pushing the price up and disrupting the hedge
fund investors’ plan. The move worked, creating higher demand for the shares
in relation to supply, and forcing the hedge funds to repurchase shares at a
higher price, generating a loss for millions. As a result of these actions, the
GME title registered +400% gain (on the 12th of January 2021, the value of
a GME share was $19.95, while on the 29th of January it reached $325). The
value of the title skyrocketed after the action of a coordinated (through the
forum WallStreetBets) group of online traders who targeted several hedge funds
which decided to short-sell shares of the video game company.

We used this use case as an empirical validation benchmark for our model
based on Hawkes model. From one side, we have the evidence of social media
users who coordinate themselves using the Reddit platform, and on the other
side, we can measure the price movements of a stock market title. We ask
whether it is possible to highlight social media signals of what was going to
happen using our model.

Although the crypto-markets and stock markets are very different in many
ways, they also exhibit many similarities (Soloviev et al| (2020); Liang et al.
(2019); |Al-Yahyaee et al.| (2018))), and this use case provide a perfect benchmark
since we already know the causal effect.

Figure and shows the Hawkes model coefficients’ matrix (max_lag
equal to 6) in two different time windows: i) from 15th to 25th of January 2021;
ii) from 18th to 25th of January 2021. We aim to record events in social media
activities that are precursor of rises and fall in the price of the GME share.

The time difference between the first (15-25 January) and the second period
(15-18 January) is one day. In fact, during the weekend, the stock market is

Shttps://www.gamestop.com/
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Hawkes process r/wallstreetbets (max_lag=6) Hawkes process r/wallstreetbets (max_lag=12)
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Figure 28: Hawkes coefficients’ matrix before price arise from 15th to 25th January 2021

closed. We note that as the period of analysis approaches 25th January, the
coefficients’ scale decreases, passing from a range of [15; -15] to [3; -3]. The
colour of the coefficients also tends to brighten more as the days approach 25th
January, the day before the prices increase beginning. The price time series
cells light up more. This is mainly due to greater interest from people, which
probably generated a substantial increase in the number of comments in the
subreddit. There were few comments at the beginning of the month (compared
to the end of the month, when the stock value skyrocketed). During the period
from 23rd to 27th January 2021, there was an exponential increase in prices.
For this reason, this is the most exciting period in which users turn on their
discussions the most. Few relationships are seen in general, and there are mostly
mutual-excitement relationships. During this period, the rwallstreetbets sub-
reddit closed for two days (January 25th and 26th), so they are not considered
in the analysis. Specifically, in the matrix in Figure 29a] the matrix coefficients
of the days 23 and 27 January are reported, two distant days in which a lot has
happened. Events of positive and negative sentiment generate mutual excite-
ment. In particular, positive sentiment events cause a positive increase in price
variability. Sentiment still has a significant effect on topics.

The period January 25 and February 5 is the most chaotic of the entire anal-

ysis. The price of the GME share is going through a phase case of enormous
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Figure 29: Hawkes coefficients’ matrix before price arise from 23rd January to 5th February

2021 during price fall.

expansion (over 300 %) and then to a phase of sharp decline (with a fluctuat-
ing trend between the 25th and 2tnd of February). The latter is a black day
for GME investors, with the price dropping to 90 dollars. In this period, the
coefficient matrix shown in Figure highlights different causal relationships
with the price variables. Among all, the high valence events (more_valence)
negatively affect the rising and falling price events (CO_price_events_up and
CO_price_events_down). On the other hand, neutral sentiment events have a
negative effect on the latter, probably due to a period of uncertainty (users
ask questions about what is happening to the stock price, generating additional

uncertainty and price falls).

8. Conclusions

This work aimed to identify the relationships between topic discussion oc-
currences on social media and cryptocurrencies market price changes. Dynamic
topic modelling was first applied to social media content, and then a Hawkes
model was used to decipher relationships between topics and cryptocurrency
price movements.

We started our study considering the evolution of sentiment and discussed

topics on two developers communities: Bitcoin and Libra. We analysed discus-
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sions of developers communities in two popular social platforms: Reddit and
Telegram. Technical discussions range from software development to fintech,
and our goal was to understand if and how the discussions and sentiments in
one Blockchain community influence one another. We considered a time span of
one month, June 2019. We chose this particular month due to the announcement
of Libra, which has stirred the cryptocurrency market.

Our analysis showed that the price of Bitcoin is highly positively correlated
with the sentiment arising from all the considered discussion’s groups except for
Ripple Group (XRP), which has a robust negative correlation equal to -0.71.
This result is not fortuitous and explains that this is the only group in our
analysis that does not appreciate Bitcoin’s price growth. Although limited to
one month, this study shows how Blockchain development communities influence
each other from the sentiment expressed in technical discussions. Furthermore,
further analysis that involves more sophisticated methodologies such as Hawkes
processes (Phillips & Gorse| (2018])) have been applied to deeper understand
how discussions in different Blockchains communities influence each other and
influence the cryptocurrencies’ price (Bartolucci et al.| (2020)).

The additional analyses continued in this direction and revealed a link be-
tween the cryptocurrency market and the content in social media dedicated to
these topics. In particular, it is demonstrated that users’ opinions can explain
capital movements and consequent price fluctuations.

The work was divided into four phases: data extraction, data pre-processing,
the construction of variables and, finally, the modelling of metrics for applying
Hawkes’ processes. In the last section of the work, we presented several case
studies in which we focused on particular periods close to financial stresses for
both cryptocurrencies Bitcoin and Ethereum. Although the intrinsic causes
of price fluctuations are still being researched today, experiments have shown
interesting and significant causal relationships between metrics extracted from
social media and price fluctuations. The extraction and processing of data from
different sources (subreddit of type technical and trading type) made it possible

to deduce various recurring themes. From the construction of the matrices of
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the coefficients obtained by applying the Hawkes processes, it has been shown
how users in the multiple communities react differently to price changes.

In general, considering the whole year 2019, the r/Bitcoin subreddit pre-
sented self-excitement reports, while r/Ethereum mutual-excitement relations
were mainly caused by price fluctuations. However, in the trading-focused sub-
reddits, it is shown how in r/BitcoinMarkets price changes have adverse effects
on metrics extracted from the Redditors’ comments. Furthermore, analysing
four specific cases between Bitcoin and Ethereum, we noted that the topics
have less influence than the VAD and Sentiment metrics. The case of Ethereum
was an exception when users discussed the upcoming protocol change in Febru-
ary. It is mainly the VAD metrics that cause prices changes and High and Low
Arousal events. Thanks to the metrics and analysis tools shown in this paper,
it is possible to have a new overall point of view capable of capturing new pat-
terns. We validated the model using a real study case: the ”WallstreetBets
VS GameStop” event that took place in January 2021. We found that it was
possible to detect warning signals of imminent financial distress with our model.

Through these applications, it is possible to program a real-time alarm sys-
tem capable of highlighting precursors warning events of financial stress as a
sort of "social media seismograph” which anticipate financial earthquakes,
similarly to how seismographs identify earth tremors that anticipate an earth-
quake. In addition to being effective in the financial field, the Hawkes processes
shown here can be applied in various fields, including forecasts in electoral polls,
measurement of a company’s brand reputation, and identification of particular
social events in real-time. Consequently, the Hawkes coefficients in such a sys-
tem can be tracked, and as a coefficient begin to change colour, in our example
from deep blue (high positive influence) to deep red (high negative influence),
cryptocurrencies stakeholder may take informed actions on their stocks.

From the research point of view, future works will focus on the method-
ological aspects and implications of Hawkes’ model, especially in constructing
an extended Hawkes’ model that can more accurately fit the social media data

explored in the present study. These future studies will help better understand
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the role of social media in the online cryptocurrencies environments.
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