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Abstract: Extreme precipitation can seriously affect the ecological environment, agriculture, human
safety, and property resilience. A full-scale and scientific assessment in extreme precipitation
characteristics is necessary for water resources management and providing decision-making support to
mitigate the potential losses brought by extreme precipitation. In the present study, a multidimensional
risk assessment framework is developed to investigate the spatial–temporal changes in different
extreme precipitation indicators. The Gaussian mixture model (GMM) is applied to fit the distribution
for each indicator and carry out single index risk assessment. The joint probabilistic features of
multiple extreme indicators can be explored through coupling the GMM distributions into copulas.
In addition, the moving window approach and the Mann–Kendall test are integrated to examine
non-stationary risks (evaluated by “AND”, “OR”, and Kendall return periods) of multidimensional
indicators along with their changing trends and significance. The proposed assessment framework
is applied to the Loess Plateau, China. Four extreme precipitation indicators are characterized:
the amount (P95), the number of days (D95), the intensity (I95), and the proportion (R95) of
extreme precipitation. The spatial–temporal changes of these indicators and their multidimensional
combinations (including six two-dimensional and three three-dimensional combinations) are fully
identified and quantitatively evaluated.

Keywords: extreme precipitation; Gaussian mixture model; copula; multidimensional; spatial–temporal
changes; Loess Plateau

1. Introduction

In recent years, the increasingly catastrophic impact of hydrometeorological disasters has aroused
public concern over extreme events due to climate change [1–3]. The drastic changes in the global
water cycle may lead to increasing extremes such as extreme precipitation and drought in local
areas [4,5]. The extreme precipitation can seriously affect eco-environment, agriculture, human safety,
and property resilience [6–8]. Risk analysis for extreme precipitation is important for hydrologic designs
and environmental systems management [9–11]. In the process of climate change, the spatial–temporal
distribution of precipitation has also changed significantly in many regions around the world.
The characteristics of extreme precipitation have also presented dynamic features [12], in which the
changes of magnitude or/and frequency of extreme precipitation may have significant impacts on local
flooding [10,13]. However, the commonly used risk assessment techniques with stationary assumption
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(constant probability) make the resulting hydrologic design questionable under changing environmental
conditions [10]. Therefore, it is necessary to conduct an in-depth study on the non-stationary risk
characteristics of extreme precipitation under climate change. Such research is remarkably valuable to
enhance scientific understanding of the possible changes in floods and other secondary disasters, and
provide key information for generating appropriate adaptation measures.

A variety of indicators are employed to characterize the duration, intensity, and amount of extreme
precipitation [14–17]. Frequency characteristics estimated from probability distribution functions are
often used to assess risks of those extreme precipitation indicators [18,19]. For example, based on
the generalized extreme value theory [20] and the moving window approach, Ghosh et al. [21] have
explored the non-stationary frequency characteristics of annual maximum rainfall in India. It is worthy
to notice that the extreme precipitation indexes are usually correlated among each other, and univariate
estimation of the extreme precipitation indicators may underestimate or overestimate the severity of
the extreme event [11,15]. The joint probabilistic characteristics of correlated indicators of extreme
precipitation are of great importance in hydrological risk management, and have also become essential
factors under consideration for water resources planning, design, and management [11].

As a widely accepted and applied multidimensional joint analysis method, the copula method
has been successfully applied in hydrological risk assessment [22–24]. Two prominent advantages
of this method are that the marginal and joint distributions for indicators can be built separately,
giving flexibility in choosing different marginal and dependence models, and there are a number of
marginal distributions and copula functions available. Particularly, the bivariate copula functions have
already been introduced into two-dimensional extreme precipitation studies, and different kinds of
return periods (e.g., “AND”, “OR” return periods, see Section 3) are applied to analyze the joint risk
characteristics of extreme precipitation indicators (see, e.g., in [15,25]). For instance, Liu et al. [26]
have used the copula method to study the joint probabilistic features of six extreme precipitation
indicators in southwestern China. Based on projections from climate models, Goswami et al. [15]
have applied the copula method to assess the bivariate behaviors of seven extreme indicators in the
North Sikkim in the future. Li et al. [11] have incorporated non-stationary analysis into a bivariate
analysis of extreme precipitation by using the Archimedean copulas combined with a moving window
scheme. The Akaike’s information criteria (AIC, [27]) and Kolomogorov–Smirnov test (KS) were
usually employed to do the goodness-of-fit assessment for the copulas [15,16].

Although joint risk analysis of extreme precipitation indicators has been carried out by numerous
studies, some challenges still need to be further addressed: (i) Different marginal distributions have
been used in previous studies, which may produce noticeable uncertainty, and thus it is desired to
adopt a widely applicable marginal distribution to eliminate or reduce model uncertainty. (ii) Bivariate
behaviors of extreme precipitation indicators have been extensively characterized, but there are
few studies on high-dimensional extremes larger than two, and also no comprehensive analysis
on combinations of multiple-dimensional indicators. (iii) The joint return periods are frequently
characterized by “AND” and “OR” types, which can hardly meet the needs of multivariate risk
assessments in practical application. Moreover, no research in this field (extreme precipitation) is
found to address the high-dimensional Kendall return period. Further, the vine copula, which is
built by decomposed bivariate copulas, has been used to construct multivariate joint distributions in
recent years [28]. However, for the three-dimensional cases, the parametric copula functions, such
as Archimedean and elliptical copula families, are easy to calculate and are effective to capture the
dependence structure among the variables [29,30].

The challenges mentioned above prompt us to propose a comprehensive risk assessment
framework, which can extensively evaluate the spatial–temporal changes of multidimensional extreme
precipitation indicators. Therefore, the main purpose of this study is to achieve the following objectives.
(i) Adopting a marginal distribution which can be applied uniformly for all indicators. (ii) Assessing
the risks of multidimensional indicator combinations by different types of return periods, including
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two- and three-dimensional Kendall return periods. (iii) Establishing a non-stationary assessment
model and evaluate the spatial–temporal changing features of risks for multidimensional indicators.

2. Overview of the study area and data

With an area of ~640,000 km2, the Loess Plateau, which is located in the north of central China, is
selected as the study area (Figure 1). The altitude of the Loess Plateau mainly ranges between 900 to
2200 m, and the terrain is characterized by high-west and low-east patterns. In the Loess Plateau, there
are some mountains up to 3500 m above sea level, as well as plains and basins at an altitude of only
400 to 500 m. The Loess Plateau is also the largest area covered by loess in the world, presenting loose
soil structure and fragile eco-environmental systems.
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The average annual precipitation in the Loess Plateau is only 413.6 mm. Due to the influence
of monsoon climate and complex geomorphic types, the precipitation in the Loess Plateau varies
greatly in time and space. The spatial distribution shows more precipitation in the southeast and
less in the northwest (Figure 1b). From southeast to northwest, the climate successively presents
semi-humid, semi-arid, and arid types. The temporal distribution of precipitation in the Loess Plateau
is also uneven. This mainly contains two aspects: First, the inter-annual variability of precipitation is
noticeable. In the years with excessive rainfall, the precipitation may be several times more than that in
the water-deficient years. Second, seasonal differences in precipitation are also large, with precipitation
in Summer and Autumn accounting for 60–80% of the annual precipitation. The precipitation in rainy
season may be concentrated in few intensive rainfall events. It is customary that a single rainstorm
accounts for 30% or more of the annual rainfall, leading to coexistence of water shortage and soil
erosion in the Loess Plateau.

The daily precipitation data with time period from 1959 to 2018 of 63 stations (Figure 1b, two of
them are located near the Loess Plateau) are collected from the China Meteorological Administration.
The ratio of missing values over all stations is from 1.23% to 3.15%, with an average of 1.83%, and the
proportion of missing values in rainy season (July–September) is 0.44% on average. The missing values
were replaced by average precipitation of neighboring stations, and the calculation of extreme indicators
would be affected very little [31]. In order to facilitate the comparative study of the multidimensional
risks of extreme precipitation indicators in different climatic regions, the study area is divided into
two sub-regions based on the rainfall pattern (400 mm precipitation contour), taking into account the
integrity of the basin and the similarity of other natural geographic factors. The first sub-region is
the arid and semi-arid area (Region 1), including 25 stations, and the second area (Region 2) contains
38 stations, experiencing a semi-humid climate (Figure 1b).
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3. Method

3.1. Gaussian Mixture Model

To quantitatively evaluate the probabilistic characteristics of each extreme precipitation indicator
and meet the needs of fitting joint distributions for different indicator combinations, suitable marginal
distributions should be constructed in advance. In order to reduce the uncertainty brought by
differences in marginal distributions, the Gaussian mixture model (GMM) [22] is applied to fit the
marginal distributions for all extreme precipitation indicators in this study. The probability density
function (PDF) of GMM is expressed by a weighted sum of n-component Gaussian PDFs:

p(x) =
n∑

i=1

αiGi(x;µi, σi) (1)

where x denotes one extreme precipitation indicator, αi (i = 1, 2, . . . , n) are the non-negative mixture

weights which satisfy
n∑

i=1
αi = 1, Gi(x; µi, σi) represents the ith Gaussian density component, and can

be expressed as

Gi(x;µi, σi) =
1

√
2πσi

exp(
−(x− µi)

2

2σ2
j

) (2)

where µi, and σi represent the mean and standard deviation of the ith Gaussian model, respectively.
Given an appropriate number of components, the GMM can fully approximate a wide variety of
distributions encountered in practical applications [22,32].

The maximum likelihood estimation (MLE) method is used to estimate the unknown parameters
in the GMM model by maximizing the likelihood function through the Expectation–Maximization
algorithm (EM) [28]. Let θi = (αi, µi, σi), Θ = (θ1, θ2, . . . , θn), and the indicator x has a sample size of
m, the likelihood function L of the model with n components can be expressed as

L(x|Θ) = log
m∏

j=1

n∑
i=1

Gi(x;µi, σi) =
m∑

j=1

log
n∑

i=1

Gi(x;µi, σi) (3)

The EM algorithm uses an iterative approach to maximize the likelihood function, and the
parameters in GMM are gradually updated. The EM algorithm consists of two steps: E-step and M-step.
A brief description of the two steps can be shown as follows. E-step: Calculate the posterior probability
of the ith component based on the current estimated parameters or the initial given parameters:

βi, j = E(αi|x j; Θ) =
αiGi(x j; Θ)∑ n
i=1αiGi(x j; Θ)

, 1 ≤ i ≤ n, 1 ≤ j ≤ m (4)

M-step: Update all the parameters in the model according to the weighted averages over all
elements of the indicator:

α′i =

∑m
j βi, j

m
(5)

µ′i =

∑m
j βi, jxi∑m

j βi, j
(6)

σ′i =

∑m
j βi, j(xi − µ

′

i )
2∑m

j βi, j
(7)

More detailed information regarding the EM algorithm can be seen in [33]. In this study, the upper
limit of the iteration times is set to 100,000, and the convergence condition is the difference between the
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update parameters and the last parameters, which is set to be less than 10−5. The goodness-of-fit for
GMM is examined using the root mean square error (RMSE), Akaike’s information criteria (AIC [27]),
and the Kolomogorov–Smirnov (KS) test (at the 5% significance level of the p-value) [30].

3.2. Joint Probability Distribution and Return Period

3.2.1. Joint Probability Distribution for Extreme Precipitation Indicators

Let X = (X1, X2, . . . , Xd) be a d-dimensional random vector formed by d extreme precipitation
indicators. Based on the theory of copula proposed by Sklar [34], the d-dimensional distribution
function FX can be expressed by the Copula function as

F(X) = C(FX1(x1), FX2(x2), · · ·, FXd(xd)) (8)

where C represents the copula function that satisfying [0,1]d
→ [0,1]; FX1(x1), FX2(x2), · · ·, FXd(xd)

denote continuous marginal distribution functions of the d-dimensional random vector X.
Various copula functions, which can be classified into different copula families (e.g., elliptical,

extreme value, and Archimedean), are available in multivariate analysis. In this study, four candidate
copulas at two- and three-dimensional forms are applied to analyze the joint probability distributions
for two- and three-dimensional indicator combinations. These copulas are the Student t and Gaussian
copulas from elliptical family, and Frank and Gumbel copulas from Arachmedean family. These
copulas are adopted because these parametric copula functions can be easily constructed for two- or
higher-dimensional situations, and be effective to capture a broad class of dependence structures [29,30].
The basic characteristics of those copulas can be seen in Xu et al. [29]. The unknown parameters in the
chosen copulas are estimated based on the inversion of Kendall’s τ [35,36], by using the copula package
in R [29]. The validation passes when the p-value in the KS test is greater than 0.05, and smaller AIC
and RMSE values imply a better goodness-of-fit. Detailed descriptions on these testing methods can
be found in Zhang [37].

3.2.2. Return Periods for Extreme Precipitation Indicators and Their Combinations

The concept of return period is defined as the average time interval between successive occurrence
of a given event, which can be estimated from the exceedance probability. The return period TX for a
single index (represented by X) beyond a certain value x can be formulated as

TX =
1

P(X > x)
=

1
1− F(x)

(9)

Three types of return periods have been proposed the two- and three-dimensional cases in
hydrology, which are “AND”, “OR”, and Kendall return periods. Figure 2 illustrates the difference
between the three return periods in a two-dimensional case.Water 2020, 12, x FOR PEER REVIEW 7 of 21 
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In Figure 2, u and v represent the marginal distributions of two indicators X1 and X2 (F(X1) = u,
F(X2) = v), respectively. C(ui, vi) = t is the joint probability for a given (ui, vi). The three return
periods are defined based on three different types of probability expressions. The space formed by
the dotted lines, u = 1 and v = 1 in the upper right corner indicates the probability that both the two
indicators exceed their threshold values P{u> ui ∩ v> vi}. The return period Tand

X1,X2
corresponding to

the simultaneous occurrence of two events can be expressed as

Tand
X1,X2

= 1
P(X1>x1∩X2>x2)

= 1
1−F(x1)−F(x2)+F(x1,x2)

= 1
1−u−v+C(u,v)

(10)

For a three-dimensional case, in which three indicators exceeding their thresholds simultaneously,
the joint return period Tand

X1,X2,X3
is shown as

Tand
X1,X2,X3

= 1
P(X1>x1∩X2>x2∩X3>x3)

= 1
1−F(x1)−F(x2)−F(x3)+F(x1,x2)+F(x1,x3)+F(x2,x3)−F(x1,x2,x3)

= 1
1−u−v−w+C(u,v)+C(u,w)+C(v,w)−C(u,v,w)

(11)

where X1, X2, and X3 represent extreme indicators; x1, x2, and x3 are the certain thresholds of the
indicators; F(x), F(x1,x2), . . . , F(x1,x2,x3) denote the cumulative probability distributions (CDFs) or
joint CDFs corresponding to the thresholds; u, v, and w represent the marginal distributions of the
indicators; and C(u,v), . . . , C(u,v,w) stand for copula functions describing joint distributions of extreme
precipitation indicators.

The remaining space excluding the shadow part in Figure 2 indicates the probability that at least
one of the two indicators exceeds the threshold (P{u > ui ∪ v > vi}). The corresponding return period
expressed by Tor

X1,X2
can be calculated as

Tor
X1,X2

=
1

P(X1 > x1 ∪X2 > x2)
=

1
1− F(x1, x2)

=
1

1−C(u, v)
(12)

For the three-dimensional case, in which at least one of the three indicators exceeding the threshold,
the return period Tor

X1,X2,X3
can be expressed as

Tor
X1,X2,X3

= 1
P(X1>x1∪X2>x2∪X3>x3)

= 1
1−F(x1,x2,x3)

= 1
1−C(u,v,w)

(13)

The space formed by the curve C = t, u = 1 and v = 1 (C = t is a surface in the three-dimensional
case) represents the probability P(k) = P(C > t), and the corresponding Kendall return period is 1/P(k).
The Kendall return period is calculated by introducing the Kendall measure Kc [38]:

Kc(t) = P(C(u1, u2, . . . , ud) ≤ t) (14)

For bivariate Archimedean copulas, Kc can be calculated from the generators of the copula
functions. For the t copula, Gaussian copula and Archimedean copulas of three or higher dimensions,
the Kc can hardly be calculated directly. In this study, the random sampling algorithm (10,000 sampling
in this study) is used to estimate Kc [39], and then Kendall return periods of all two-dimensional and
three-dimensional cases are obtained. Sampling algorithm steps to estimate Kc:

1. Simulate a sample u1, ..., um from the d-dimensional copula C;
2. For i = 1 ,..., m calculate wi = C(ui);
3. Estimate Kc: K̂C(t) = 1

m
∑m

i=1 1(wi ≤ t).
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4. Case Study and Results Analysis

4.1. Case Study

In order to quantitatively assess the changes in extreme precipitation from different perspectives, a
number indicators focusing on various aspects of extreme precipitation have been proposed. According
to the recommendations of the World Meteorological Organization, other relevant studies [14,15], four
extreme precipitation indicators are used in this study to describe extreme precipitation features in
Loess Plateau, including, the amount (P95), the number of days (D95), the intensity (I95), and the
proportion (R95) of extreme precipitation. Detailed definitions of these indicators are shown in Table 1.

Table 1. Concept of four extreme precipitation indicators.

Indices Abbreviations Definitions Unit

Number of extreme
precipitation days D95

Number of days with P > 95th
percentile (daily precipitation exceeding

the 95th percentile of precipitation
series during 1971–2000).

days

The amount of extreme
heavy precipitation P95 Annual total amount of precipitation

with P > 95th percentile mm

The intensity of extreme
precipitation I95 Average daily precipitation intensity of

extreme precipitation mm/day

Ratio of extreme
precipitation R95 Ratio of annual total precipitation due

to events exceeding the 95th percentile -

Six two-dimensional and three three-dimensional combination schemes of the four indicators can
be formulated. The indicator combination schemes are shown in Table 2, and the joint return period of
“AND”, “OR”, and Kendall for these combinations are characterized. Taking “AND” return periods of
the combination events of {D95, P95} and {D95, P95, R95} as examples, the combination {D95, P95}
indicates D95 and P95 simultaneously exceed their thresholds (Equation (10)), which means that an
extreme precipitation event with long time and large amount would happen and severe flood may occur.
The combination {D95, P95, R95} indicates that an extreme precipitation event with long duration and
large amount occurs, and the proportion of this event to annual precipitation also exceeds the threshold
(Equation (11)). For the reason that the annual rainfall is largely completed by extreme precipitation in
this situation, adaptation strategies should be devised to achieve reasonable storage of water resources
in the flood season and allocation of water resources throughout the year. The meaning of the other
types of return periods for each joint event can be inferred from the definitions in Section 3.2.2.

Table 2. The two-dimensional and three-dimensional indicator combination schemes.

ID Combinations ID Combinations ID Combinations

1 {D95, P95} 4 {P95, I95} 7 {D95, P95, R95}
2 {D95, I95} 5 {P95, R95} 8 {D95, I95, R95}
3 {D95, R95} 6 {I95, R95} 9 {P95, I95, R95}

The spatial risk characteristics for single indicators and multi-indicator combinations throughout
the Loess Plateau can be obtained from the results over all stations in the region. In order to explore
the trend in different extreme precipitation indicators and their joint risks, a 30-year moving window
approach is applied. From the beginning of 1959–1988 to the end of 1989–2018, 31 groups of results
for all stations were obtained. For each group, every indicator is fitted with marginal distribution
(the GMM) and copulas are fitted for all two and three-dimensional combinations. The initial group
(from 1959 to 1988) and the final group (from 1989 to 2018) of the 31 results belong to two independent
time periods. The comparison of the results for these two groups can directly reflect the changes
of extreme precipitation in the past two representative periods. By evaluating the outcomes of
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31 groups in time series, the trend for both the univariate and multivariate risks can then be obtained.
The Mann–Kendall (MK) test [40] is applied to evaluate whether the trend is significant, and the
linear regression method is used to quantitative assess the degree of change. The annual extreme
precipitation indicators are used in this study, and the Mann–Kendall test is basically not affected by
serial correlation.

Taking Yulin station (Station 34 in Figure 1) as an example, the whole calculation process for
the three indicators of P95, D95, and R95 during the period 1959–1988 is illustrated. GMM is used
to construct the marginal distributions for the three indicators, and the test results of KS, RMSE,
and AIC are shown in Table 3. Table S1 in the Supplementary Materials also shows the statistical
test comparisons between GMM and the best fitted ones of five other commonly used parametric
distributions (Gamma, Pearson type III (P III), lognormal (LN), Log Pearson type III (LP III), and
generalized extreme value (GEV)) [23]. The p-values of KS tests are all greater and the AIC values are all
smaller for GMM than other parametric distributions. Figure S1 shows the PDF fitting results of GMM
with other parameter distributions in Table S1. It can be seen that even in the case of non-multimodal
PDF, the performance of GMM can be similar to the optimal parameter distribution (Figure S1c) or
even better (Figure S1b). Candidate copulas of Frank Gumbel, Gaussian, and t copulas (at two- or
three-dimensional forms) are applied to build the joint probability distributions of multi-indicator
combinations. The optimal copulas selected according to the KS, RMSE and AIC tests are shown
in Table 3, and the corresponding test values are also displayed. It can be seen that the p-values of
KS test for all indicators and multi-indicator combinations are all greater than 0.05, which means
that the fitted distributions can effectively describe the probability characteristics of the indicators in
various dimensions. The test results of the other copulas such as Frank and Gumbel are shown in
Table S2 in the Supplementary Materials. Figure 3a–f further shows the goodness-of-fit by comparing
the empirical PDFs and CDFs with those from GMM distributions of the three indicators, and the
theoretical distributions show good agreements with the empirical distributions. Figure 3g–i shows
the bivariate CDFs for three two-dimensional indicator combinations.

Table 3. Statistical test results for Gaussian mixture model (GMM) and best-fitted copulas at
Yulin Station.

Scheme Distribution
KS Test

RMSE AIC
T p-Value

D95 GMM 0.143 0.568 0.055 −170.089
P95 GMM 0.089 0.972 0.029 −208.096
R95 GMM 0.082 0.987 0.032 −202.164

{D95, P95} Gaussian 0.022 0.615 0.027 −215.108
{D95, R95} t 0.024 0.697 0.032 −203.671
{P95, R95} Gaussian 0.028 0.790 0.030 −208.887

{D95, P95, R95} t 0.032 0.648 0.021 −228.451

KS test: the Kolomogorov-Smirnov test; T: the value of the test statistic; p-Value: the significance level; RMSE: root
mean square error; AIC: Akaike’s information criteria.

Given the 10-year univariate return period of three indicators, joint return periods of “AND”,
“OR”, and Kendall for two- and three-dimensional cases are then evaluated. It can be seen from Table 4
that, for the same indicator combination scheme, the ranking order of the three return periods is
Tor < Tk (Kendall return period) < Tand. This can also be inferred from the corresponding probabilities
of various return periods in Figure 2, that is, P(and) < P(k) < P(or). Compared to the two-dimensional
cases, it can be found that the Tor of the three-dimensional return period is smaller. The maximum
return period (17.45 years) can be found when the three indicators occur simultaneously.



Water 2020, 12, 1217 9 of 19
Water 2020, 12, x FOR PEER REVIEW 11 of 21 

 

 

Figure 3. The probability density functions (PDFs) and cumulative probability distributions (CDFs) 

for three precipitation indicators and bivariate CDFs for three indicator combinations at Yulin 

Station: (a) PDF for D95, (b) PDF for P95, (c) PDF for R95, (d) CDF for D95, (e) CDF for P95, (f) CDF 

for R95, (g) bivariate CDF for {P95, D95}, (h) bivariate CDF for {D95, R95}, and (i) bivariate CDF for 

{P95, R95}. 

Given the 10-year univariate return period of three indicators, joint return periods of “AND”, 

“OR”, and Kendall for two- and three-dimensional cases are then evaluated. It can be seen from 

Table 4 that, for the same indicator combination scheme, the ranking order of the three return 

periods is Tor < Tk (Kendall return period) < Tand. This can also be inferred from the corresponding 

probabilities of various return periods in Figure 2, that is, P(and) < P(k) < P(or). Compared to the 

two-dimensional cases, it can be found that the Tor of the three-dimensional return period is smaller. 

The maximum return period (17.45 years) can be found when the three indicators occur 

simultaneously. 

Figure 3. The probability density functions (PDFs) and cumulative probability distributions (CDFs)
for three precipitation indicators and bivariate CDFs for three indicator combinations at Yulin Station:
(a) PDF for D95, (b) PDF for P95, (c) PDF for R95, (d) CDF for D95, (e) CDF for P95, (f) CDF for R95,
(g) bivariate CDF for {P95, D95}, (h) bivariate CDF for {D95, R95}, and (i) bivariate CDF for {P95, R95}.

Table 4. Joint returned periods of “AND” (Tand), “OR” (Tor), and Kendall (Tk) for two and
three-dimensional cases.

Return Periods {D95, P95} {D95, R95} {P95, R95} {D95, P95, R95}

Tor 8.09 7.28 7.79 7.01
Tk 11.66 13.50 11.77 12.66

Tand 13.09 15.99 13.96 17.45

4.2. Changes of Different Schemes in Two 30-Year Stages

Based on the fitted GMM distributions, for a given return period, the values of the corresponding
indicators can be obtained through the univariate return period formula (Equation (9)). In order to
conduct a more illustrative comparison of the 10-year return period values between different regions,
the values of four indicators at all stations under two 30-year periods are interpolated to the whole
region by using the Kriging method (Figure 4). Figure 4a–d provides the comparisons of four indicator
values between the time period of 1959–1988 (T1 period, left ones) and time period of 1989–2018
(T2 period, right ones).
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Figure 4. The values of four extreme precipitation indicators at 10-year return period for time periods
of 1959–1988 (left ones) and 1989–2018 (right ones): (a) D95, (b) P95, (c) I95, and (d) R95.

The results show that the univariate return period values of the 10-year stage for all groups are
similar in spatial distribution between the two 30-year stages over the entire region. The minimum
values of D95 and P95 appear in the northwest of Loess Plateau, and there is a stepwise increasing
trend from northwest to southeast for these two indicators. In the southeastern area, it is more prone to
heavy rainfall for a long time (D95), which brings greater amounts of precipitation (P95). The values of
I95 exhibit obvious increasing direction from west to east, while R95 presents a clear North–South gap.
The mean values (averaged over the stations) of D95, P95, and I95 in Region 1 are 0.67 days, 78.2 mm,
and 15.6 mm/day smaller than those in Region 2 for T1 period. Also, these indicators in Region 1 are
0.63 days, 81.2 mm, and 16.7 mm/day smaller than those in Region 2 for T2 period. The mean value of
R95 in Region 1 is slightly higher than that in Region 2, and the values of R95 could be above 0.5 in the
north part of Region 1. This indicates that, with the least annual precipitation in the northwest, nearly
half of the annual precipitation would fall by extreme heavy precipitation.

The spatial distributions of the indicator values behave differently between the two time periods.
The 10-year return period values of the four indicators in the T2 period (1989–2018), when compared
with those in T1 period (1959–1988), exhibit the following changes. The value of D95 decreases slightly
throughout the region, with an average decrease of 0.26 days. The station with the largest decrease
of D95 appears in the northeast with a decrease of 1.95 days, whereas the station with the largest
growth of D95 appears in the southwest region with an increase of 1.2 days. Similar to the changes
of D95, P95 decreases significantly in north and southeast, with an average decrease of 13.13 mm.
I95 increases significantly in some stations in the southwest and southeast regions with the largest
increase of 9.96 and 25.4 mm/day, respectively. The spatial difference of R95 in different time periods is
not obvious, and the change of annual precipitation does not bring obvious change of R95. Table 5
displays the average changes of four indicators in different regions and the number of stations which
show growth changes by comparing with that in T1 period.
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Table 5. Statistics of changes in four indicators in different regions.

Region Number of
Stations

D95 P95 I95 R95

A N A N A N A N

1 25 −0.24 7 −11.29 11 0.36 14 −0.013 11
2 38 −0.27 14 −8.27 14 1.44 24 −0.004 16

A: The average change over all stations in the region; N: Number of stations with increased value.

Under the condition that the indicator values at a 10-year return period, the joint return periods of
Tand for two-dimensional or three-dimensional indicator combinations can then be obtained. Figure 5
shows Tand at each station in T1 period (i.e., 1959–1988) (sub-graphs on the left) of six two-dimensional
indicator combinations, and the spatial changes in T2 (i.e., 1989–2018) compared with that in the T1
period (right ones of each group). The red areas in the right sub-graphs indicate decreasing Tand in
past 30 years, which signify that the regions are more prone to joint risk than the T1 period.Water 2020, 12, x FOR PEER REVIEW 14 of 21 
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Figure 5. Joint return periods (Tand) at each station in 1959–1988 (left ones) and spatial changes in
1989–2018 (right ones) for six two-dimensional indicator combinations: (a) {D95, P95}, (b) {D95, I95},
(c) {D95, R95}, (d) {P95, I95}, (e) {P95, R95}, and (f) {I95, R95}.

The averaged Tand of three two-dimensional combination events {D95, P95}, {D95, R95}, and
{P95, R95} in the T1 period are 13.05, 14.68, and 13.35 years, respectively. The Tand values are only
slightly longer than the return period of a single event (10 years), and the minimum values of the three
combined events are 11.03, 12.25, and 11.31 years, respectively. It is proved that these three groups
of combination events are extremely easy to happen, and the events of different indicators in each
combination at a 10-year return period level usually occur together. There is no obvious regularity in
the spatial distributions of Tand for these three combinations. The spatial distributions of the changes
in Tand for the three groups in T2 period by comparing with that in T1 are obviously different from
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each other. It is worth noticing that in the central region of the Loess Plateau, the return periods of the
three indicator combinations are all decreased, indicating that increased chances for occurrence of the
three joint events in this region.

The mean Tand values of the other three two-dimensional combination events of {D95, I95},
{P95, I95}, and {I95, R95} are 32.65, 22.37, and 22.45, respectively. The occurrence probability is relatively
small compared with the above three combinations, but the severity of the events may be far greater
than the former ones. For example, {D95, I95} represents a long-time heavy rainfall event with high
precipitation intensity. For these three combination events, their spatial distributions of Tand are
basically the same (T1 period), and their spatial distributions of changing trend in the past 30 years
are also similar to each other. The three combination events share a common feature that all of them
contain the I95 index. The above results may be because the joint distributions are significantly affected
by the I95 indicator, which means that the contribution of I95 to the joint return period is far greater
than other indicators. The Tand of the three combined events in the past 30 years have decreased greatly
in the northern and central regions, which implies the occurrence probability of extreme joint events
has increased significantly. A comprehensive evaluation of Tand of the six two-dimensional indicator
combinations shows that the probability of all the six joint extreme events in the central part of the
region has increased.

Figure 6 shows the Tand values of three three-dimensional indicator combinations at each station
in 1959–1988, and also the spatial changes in 1989–2018 compared with that in the T1 stage. The Tand

values of {D95, P95, R95} are significantly smaller than those for the other two groups, with an average
of only 15.53 years in 1959–1988. For the two three-dimensional events that contain the precipitation
intensity indicator, the Tand values are generally greater than that of the rest one. The mean Tand of
{D95, I95, R95} and {P95, I95, R95} from 1959 to 1988 is 31.2 and 24.8 years, respectively. The spatial
distribution and the change direction of joint return periods of the two events are similar with each
other and are also similar to those for the two-dimensional events in Figure 5b,d,e. In T1 stage, the Tand

values of {D95, I95, R95} and {P95, I95, R95} in Region 1 are generally smaller than those in Region 2.
Figure 6b,c shows that the change direction of Tand in T2 stage compared with T1 stage has decreased
in the northern and central regions, and increased in other regions. This may also be because the Tand

values of different combination events are highly affected by the precipitation intensity indicator. In the
north part of Region 1, where extreme precipitation occurs frequently in T1 stage, the three-dimensional
Tand get even smaller in T2 stage.
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Figure 6. Joint return periods (Tand) at each station in 1959–1988 (left ones) and spatial changes in
1989–2018 (right ones) for three three-dimensional indicator combinations: (a) {D95, P95, R95}, (b) {D95,
I95, R95}, and (c) {P95, I95, R95}.
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Figures S2–S5 (in the Supplementary Materials) provide the Tk and Tor values of two- and
three-dimensional indicator combinations at each station in 1959–1988, and the spatial changes in
1989–2018 compared with those in the T1 stage. In two-dimensional cases at T1 stage, the Tk values
are all smaller than Tand over all stations (see explanation in Section 4.1) and are similar to Tand in
magnitude distribution and change direction. The average Tk values corresponding to Figure S2a–f
are 1.55, 10.09, 2.37, 5.66, 1.72, and 5.73 years smaller than those of Tand, respectively. The magnitude
distribution of Tor values in T1 stage are opposite to Tand, as well as the change direction in T2 stage.
This is because, given the CDF values of two indicators, the value of Tand is only related to bivariate
CDF like Tor (Equations (10) and (12)). With the change of one bivariate CDF, the change directions
of the two return periods are opposite with each other. In three-dimensional cases at T1 stage, the
average TK values corresponding to Figure S3a–c are, respectively, 2.82, 8.80, and 6.83 years smaller
than Tand. The average Tor values in Figure S5a–c are only 6.98, 5.50, and 5.82 years, respectively.

4.3. The Trend of Return Period of Multidimensional Moving Window Series

Figure 7 shows the changing trends in 10-year return period values for the four individual
indicators calculated from the 30-year moving time series over all stations. The significance of changing
trend and magnitude are also displayed in Figure 7. Table 6 provides statistics on the proportion
of stations with significant increasing/decreasing trends, and average changes in the two regions.
The results show that in the semi-arid area of the Loess Plateau (Region 1), the changing trends of D95
and P95 are similar in significance and direction. The 10-year return period values exhibit a significant
decrease trend for D95 and P95 at 46% and 38% of the stations, respectively. However, some stations
in the southwest area show a significant increasing trend. For these two indicators in Region 2, 42%
and 50% of the stations display a significant decreasing trend, while only 16% and 24% of the stations
show a significant increasing trend. Forty-two percent of the stations in Region 2 show a significant
decreasing trend for I95, with a decrease ranging in magnitude from 2.2 to 31.6 mm/day. The southern
region generally exhibits a significant increase in extreme precipitation intensity, which may increase
the risk of flooding in that region. The distribution of stations with significant decreasing trends of R95
is consistent with that of P95. However, more stations in the southern part of Region 1 show significant
increasing trends. The proportion of extreme precipitation in annual precipitation increases. This
means that the precipitation concentration degree increases, which will aggravate the spatial–temporal
distribution of precipitation

Table 6. Statistical information on the increase and decrease trend of the four indicators in two regions:
The proportion of stations with significant increasing trend (PI) and the total growth over the moving
window series (TG); the proportion of stations with significant decreasing trend (PD) and total reduction
over the moving window series (TD).

Indices
Region 1 Region 2

PI/TG PD/TD PI/TG PD/TD

D95 0.31/0.54 0.46/−0.63 0.16/0.53 0.42/−0.95
P95 0.19/22.04 0.38/−35.7 0.24/39.40 0.50/−37.01
I95 0.27/6.79 0.38/−6.80 0.42/12.17 0.29/−11.63
R95 0.38/0.05 0.46/−0.06 0.34/0.04 0.34/−0.05
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Figure 7. Changing trends in 10-year return period values over 30-year moving window series for four
indicators: (a) D95, (b) P95, (c) I95, and (d) R95. Blue dots indicate significant decreasing trends, red
dots denote significant increasing trends, and the crosses indicate non-significant trend.

Figure 8 displays the significance and magnitude of the changing trends for Tand of the six
two-dimensional indicator combinations based on the 30-year moving time series over all stations.
Figure 8b,d,f shows that the joint return periods of three two-dimensional events {D95, I95}, {P95, I95},
and {I95, R95} in the whole region present a relatively consistent trend. The joint return periods of these
three events in the entire region show significant increasing trends at 30, 25, and 29 stations, respectively.
Moreover, 19 of them are shared stations, and these stations are mainly located in the south of Region 1.
There are 17, 16, and 19 stations showing significant decreasing trends, 14 of which are shared stations,
which are mainly located in the middle and north parts of the Loess Plateau. The average reductions
in the Tand return period are 26.8, 9.25, and 9.39 years for the three events, respectively. These results
suggest that the possibility of flood events with long time and high intensity in the middle of the Loess
Plateau would increase. The decrease in Tand indicates that extreme precipitation events with the same
degree occur more frequently. For the other three two-dimensional combined events, it can be seen
that the return period of Tand for {P95, R95} is most significantly reduced in the entire region, with a
total number of 24 stations showing a significant decreasing trend.
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Figure 8. The significance and magnitude of the trends in joint return periods (Tand) over 30-year
moving window series for six two-dimensional indicator combinations: (a) {D95, P95}, (b) {D95, I95},
(c) {D95, R95}, (d) {P95, I95}, (e) {P95, R95}, and (f) {I95, R95}.

Figure 9 shows the significance and magnitude of the trends in joint return periods of Tand

for three-dimensional indicator combinations over all stations. It can be seen that some stations in
the central region of Loess Plateau exhibit significant downward trends for all three-dimensional
events. The changing trend of Tand for {D95, P95, R95} in the middle of Region 2 shows a considerable
differentiation state: The changing trend for stations in the western region decreased significantly,
whereas those in the eastern region increased significantly. The stations with significant decreasing
trend in Tand for {D95, P95, R95} are mainly located in the sub-humid regions, with an average reduction
of 20.5 years. However, the stations with significantly decreasing return periods for {P95, I95, R95} are
located near the boundary of 400 mm rainfall, with an average decrease of 13.5 years. This means that
the combination event of {P95, I95, R95} in the semi-arid and semi-humid junction area tends to be
more frequent.

Figures S6–S9 in the Supplementary Materials show the significance and magnitude of the
trend changes for Tk and Tor for the two- and three-dimensional situations over all stations.
In two-dimensional cases, the Tor and Tand basically show opposite changing trends, whereas Tk and
Tand show similar changing trends and directions, with only differences in magnitude. For example,
for {D95, I95}, {P95, I95} and {I95, R95}, the number of stations showing an increasing trend in Tk are 30,
23, and 25, respectively, in which 29, 22, and 24 stations are shared with the Tand cases. For the events
of {D95, I95, R95} and {P95, I95, R95}, the stations with significant decreasing trends in Tk (mainly
located in the central Loess Plateau) decreased by an average of 10.61 and 5.05 years, respectively.
The sites with significant decrease trends in Tor are mainly located in the southwest and northeast
parts of Loess Plateau.
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events of {D95, I95, R95} and {P95, I95, R95}, the stations with significant decreasing trends in Tk 

(mainly located in the central Loess Plateau) decreased by an average of 10.61 and 5.05 years, 

respectively. The sites with significant decrease trends in Tor are mainly located in the southwest 

and northeast parts of Loess Plateau. 

Figure 9. The significance and magnitude of the trends in joint return periods (Tand) over 30-year
moving window series for three three-dimensional indicator combinations: (a) {D95, P95, R95},
(b) {D95, I95, R95}, and (c) {P95, I95, R95}.

5. Discussions and Conclusions

Compared with the previous studies, this study presents several outstanding features in
multivariate risk inferences: (i) The joint risks of multidimensional indicators are evaluated in
this study. (ii) Three types of joint return periods, including “AND”, “OR”, and Kendall, are evaluated
for both two- and three-dimensional indicator combinations. (iii) By using the moving window
approach, the proposed approach can quantitatively evaluate the spatial–temporal changes in risks of
multidimensional cases. (iv) The GMM is used in fitting the marginal distributions for all indicators,
which helps reduce the uncertainty brought by marginal model selection. The Kendall return period
for high-dimensional copulas and two-dimensional elliptical copulas based on the random sampling
algorithm is another innovation in this field.

The developed extreme precipitation assessment framework is applied in the Loess Plateau, China.
The results indicate that the mean values of P95, D95, and I95 at 10-year return period in Region 1
(arid and semi-arid climate) are all smaller than those in Region 2 (semi-humid climate). However,
the mean value of R95 in Region 1 is slightly higher than that in Region 2, and nearly half of the annual
precipitation would occur by extreme heavy precipitation in the north of Region 1. Given the values
of the indicators at 10-year return period, the combined events of {D95, P95}, {D95, R95}, {P95, R95},
and {D95, P95, R95} are extremely easy to occur in the Loess Plateau. The occurrence probability
for combined events with the I95 indicator is relatively small compared with other combinations.
The spatial distributions of changing trends in joint return periods for the multidimensional events
containing the I95 indicator are generally the same. In the central region of Loess Plateau, the Tand
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values of all joint extremes are decreased. Tk values are smaller than Tand over all stations and are
similar to Tand in magnitude distribution and change direction. The magnitude distribution of Tor

values in T1 stage are opposite to Tand, as well as the change direction in T2 stage.
The provided assessment framework is repeatable and can be effectively transferred to other

research areas to explore the spatial–temporal changes in multidimensional characteristics of extreme
precipitation under climate change. Thanks to the development of climate models, this framework
can also be used to project multidimensional probability variation characteristics of future extreme
precipitation under different scenarios [41]. A variety of return period assessment methods are available
to meet the needs of different hydrologic designs, and can help provide countermeasures for possible
changes in floods and other secondary disasters.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/5/1217/s1,
Figure S1: Comparisons between GMM and other probability density estimates with theoretical frequency at Yulin
Station: (a) PDF for D95, (b) PDF for P95, (c) PDF for R95, Figure S2: Joint return periods (Tk) at each station in
1959-1988 (left ones) and spatial changes in 1989-2018 (right ones) for six two-dimensional indicator combinations:
(a) {D95, P95}, (b) {D95, I95}, (c) {D95, R95}, (d) {P95, I95}, (e) {P95, R95}, and (f) {I95, R95}, Figure S3: Joint
return periods (Tk) at each station in 1959-1988 (left ones) and spatial changes in 1989-2018 (right ones) for three
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and (f) {I95, R95}, Figure S5: Joint return periods (Tor) at each station in 1959-1988 (left ones) and spatial changes
in 1989-2018 (right ones) for three three-dimensional indicator combinations: (a) {D95, P95, R95}, (b) {D95, I95,
R95}, and (c) {P95, I95, R95}, Figure S6: The significance and magnitude of the trends in joint return periods (Tk)
over 30-year moving window series for six two-dimensional indicator combinations: (a) {D95, P95}, (b) {D95,
I95}, (c) {D95, R95}, (d) {P95, I95}, (e) {P95, R95}, and (f) {I95, R95}, Figure S7: The significance and magnitude of
the trends in joint return periods (Tk) over 30-year moving window series for three three-dimensional indicator
combinations: (a) {D95, P95, R95}, (b) {D95, I95, R95}, and (c) {P95, I95, R95}, Figure S8: The significance and
magnitude of the trends in joint return periods (Tor) over 30-year moving window series for six two-dimensional
indicator combinations: (a) {D95, P95}, (b) {D95, I95}, (c) {D95, R95}, (d) {P95, I95}, (e) {P95, R95}, and (f) {I95, R95},
Figure S9: The significance and magnitude of the trends in joint return periods (Tor) over 30-year moving window
series for three three-dimensional indicator combinations: (a) {D95, P95, R95}, (b) {D95, I95, R95}, and (c) {P95,
I95, R95}., Table S1: Statistical test comparisons between GMM and the best fitted ones of five other distributions
(Gamma, Pearson type III (P III), lognormal (LN), Log Pearson type III (LP III), generalized extreme value (GEV))
at Yulin Station, Table S2: Statistical test results for copulas at Yulin Station.
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