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Abstract—A single latent factor-dependent, non-negative and
multiplicative update (SLF-NMU) learning algorithm is highly
efficient in building a non-negative latent factor (NLF) model defined
on an HiDS matrix. However, convergence characteristics of such
NLF models are never justified in theory. To address this issue, this
study conducts rigorous convergence analysis for an SLF-NMU-based
NLF model. The main idea is two-fold, a) proving that its learning
objective keeps non-increasing with its SLF-NMU-based learning
rules via constructing specific auxiliary functions, and b) proving that
it converges to a stable equilibrium point with its SLF-NMU-based
learning rules via analyzing the Karush-Kuhn-Tucker (KKT)
conditions of its learning objective. Experimental results on ten HiDS
matrices from real applications provide numerical evidence that
indicates the correctness of the achieved proof.

Index Terms—Learning System, Single Latent Factor-dependent
Non-negative and Multiplicative Update, Non-negative Latent Factor
Analysis, Neural Networks, Convergence, Latent Factor Analysis,
High-Dimensional and Sparse Matrix, Big Data

I. INTRODUCTION

HIGH-DIMENSIONAL AND SPARSE (HiDS) matrix is
commonly adopted to describe incomplete interactions
among concerning objects in big data-related applications, e.g.,
user-service invocations in services computing [1], [3],
user-item preferences in recommender systems [4], and protein
interactomes in bioinformatics [7]. Despite its extreme sparsity,
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it contains tremendously useful knowledge such as potential
links [11]-[13], community tendency [14]-[16], [54] and cluster
[17], [35]. A latent factor (LF)-based approach [4], [5], [18],
[19] can efficiently implement knowledge acquisition from an
HiDS matrix. It works by 1) mapping concerned objects into a
low-dimensional LF space, 2) defining a learning objective on
the known data of an HiDS target with desired LFs, and 3)
optimizing the objective to achieve LFs precisely outlining
concerned objects, which are useful in addressing subsequent
learning tasks like missing data recovering [9]-[17], [43].

Non-negativity is a common characteristic of most real data,
e.g., social impacts from social network services applications
[16], [27]. To well represent their non-negativity, an LF model
should be restricted to be non-negative [3], [26], [28]. A
non-negative matrix factorization (NMF) model [29]-[36],
[48]-[52] is designed to address full matrices under the
non-negative constraints, but it cannot address an HiDS one
directly. Although such a defect can be overcome via specific
model designs like weight indication [48] or intermediate
matrix incorporation [49], it further suffers high costs in both
computation and storage. This is because its costs are
proportional to the target matrix’s full size [3], [28]. When the
target is HiDS, its full size can be much larger than the size of
its known data. For instance, the MovieLens 20M [44] matrix’s
full size is 3.7 billion, while the density of its known data is
0.54%. Due to its extremely low density, it is very inefficient to
make a model’s costs linear with its full size.

For efficiently implementing non-negative latent factor
(NLF) analysis on an HiDS matrix, Luo et al. [3], [28] present a
single latent factor-dependent, non-negative and multiplicative
update (SLF-NMU) algorithm. It is defined on an HiDS
matrix’s known data, thereby reducing the storage and
computational costs to be linear with the size of its known data.
Although it builds an NLF model with high efficiency, its
convergence characteristics are never justified formally. For
addressing this issue, this paper aims at theoretically proving
that an NLF model converges to a Karush-Kuhn-Tucker (KKT)
equilibrium point with an SLF-NMU learning algorithm. Main
contributions of this work include
a) Rigorous proof demonstrating that an SLF-NMU-based NLF

model’s learning objective is non-increasing during the

training process via building specific auxiliary functions
corresponding to its parameter update rules;

b) Rigorous proof demonstrating that an SLF-NMU-based NLF
model’s parameter learning sequence converges to a KKT
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equilibrium point of its learning objective; and
¢) Detailed empirical studies on ten HiDS matrices collected by

big data-related applications.

Note that convergence analysis for a non-convex learning
model is critical in the optimization community [2], [5], [6], [8],
[21]-[25]. According to prior research [3], [11], [12], an
SLF-NMU-based NLF model is a bi-linear and thus
non-convex learning model. Therefore, its rigorous
convergence proof is highly useful in providing insights into its
learning ability with an HiDS matrix as its input. Moreover, as
discussed in [66], [67], performing LF analysis on an HiDS
matrix is actually equivalent to building a single-layered neural
network whose inputs and outputs are both the target HiDS
matrix. Note that in big data-related applications, HiDS
matrices are far more frequently encountered than complete
ones [3], [68]. It is becoming increasingly important to design a
neural network-based learning system with incomplete inputs
[3], [66]-[70]. Therefore, results achieved in this study can help
people better understand the characteristics of a neural network
defined on incomplete data.

The remainder of this paper is organized as follows. Section
IT gives the preliminaries. Section III presents rigorous proof
regarding the convergence of an SLF-NMU-based NLF model.
Section IV provides empirical studies. Section V discusses
several critical points. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Problem Formulation

For LF analysis, we recall the definition of an HiDS matrix

(31, [11], [12],
Definition 1. Let M and N be two large entity sets, YV be a
matrix whose element y,,, quantifies the interaction between
m€eM and n€N, A and T" be ¥’s known and unknown subsets. Y
is an HiDS matrix if [A|<|T.

Based on A, an LF model implements a rank-d estimation
Y=AX" for Y with 4™ and X" being LF matrices. It should
be pointed out that d is far less than the minimum of |M] and |N].
For achieving 4 and X, we construct a loss function to measure
the difference between Y and ¥ depending on A only. Based on
the Euclidean distance, it is given by

1 d 2
E(A,X):E ZA[ym,n _;am,l\'xn,kj > (1)

where a,, 4, X, and y,, , denote specified elements in 4, X, and Y.
For correctly representing non-negative data [1], [3], [11]-[13],
[16],[19], [27], (1) should fulfill the non-negativity constraints,

a,,20,x,,>0,YmeM,neN,ke{l2,.d}. (2)

Meanwhile, building an LF model on an HiDS matrix is
ill-posed [3], [28], [42], making regularizations indispensable.

Letyp,, :zj:lamvkxnvk , we reformulate (2) to incorporate L,

norm-based regularizations into it,

1 R d d
5(A3X) = 5 ’ZA(()’”M ~Vun )2 +4, ;ai‘k + lx;xik J’

st a,,20,x,,20,VmeM,neN,ke {1,2,...,d}.

3)

where 4, and Ay denote the regularization constants for 4 and X,
respectively.

B. A Non-negative Latent Factor Model

An NLF model adopts an SLF-NMU-based learning
algorithm to optimize 4 and X'in (3). It initially applies additive
gradient descent (AGD) to each LF:

AGD
argming (4, X) =
AX

iy =s 2 (s =% (V0 =50a)) (@)

neA(m)

'xn,k <~ 'xn,k - T]n,k Z (ﬂX'xn,/{ - am,k (ym,n - ym,n ))

mEA(n)

where 7, and 7, are learning rates for a,, and x,, s, A(m) and

A(n) are A’s subsets related to m and n, respectively. From (4),

we see that a,, and x,; can become negative due to

ok Z (‘xn,/cj}m‘n + ﬂ’Aam,k) and -7,, Z (am,kj’m,n +2’X'xn,k) .
neA(m) meA(n)

For canceling these negative terms to keep the non-negativity

of 4 and X, an SLF-NMU algorithm manipulates #,,; and 7, 4,

am,k
’7m‘ = N 5
! Z(: )xn,kym,n + ﬂ’A |A(m) am,k
)
xn,k
7711 = A °
py %“ )am,kyrn,n + A, |A(n) X, 4

By combining (5) and (4), we achieve the learning rules for an
SLF-NMU-based NLF model [28]:

. SLF -NMU
argming(4,X) =
A,X

Z xy,)kym,n
am k <~ am k ne"A(m) ’
’ ' z( )'xn,kym,n + ﬂ'A |A (m)| am‘k (6)
neA(m
Z am,kym,n
X “x mEA(n) .
o m z an1,kj>n1,n + j“X |A (n)| x"’k
meA(n)

C. Incorporation of Linear Biases

As discussed in previous studies [20], [22], incorporating
linear biases makes an NLF model become more steadily
during the training process, at the same time obtain higher
accuracy for estimating missing entries of a target HIDS matrix.
With linear bias vectors B* and C™ for M and N, respectively,
the objective function (3) is reformulated into

¢(4,X,B,C)=
1
2,4

st. a,,20,x,,>0b,>0,c, 20,

VmeM,n eN,ke{l,Z,...,d},
(7
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where each approximation y,,, to y,, ,EA is given by

d
ym,n = zam,k‘xn,k + bm + cn . (8)
k=1

Following the same principle of (6), we have the learning rules
for a biased NLF (BNLF) model,
b/n J’

SLF-NMU
c, ] 9)

argming(4,X,B,C) =
am.k <« am.k z xn,kym,n/[ z 'xn,k.j}m,n + ){’A|A(m) am,kj’

A,X,B,C
ot 3 )| B s afato)
ne(m) neA(m)
wc T e[ 2 soralato
meA(n) meA(n)
neA(m) neA(m)
)
III. CONVERGENCE ANALYSIS OF THE NON-NEGATIVE LATENT
FACTOR MODEL
A. An Alternative Way to Achieve an SLF-NMU Algorithm
It is firstly necessary to discover the connections between an
SLF-NMU algorithm and the KKT conditions [46], [52], [54]
of the learning objective (6). Let K=[x,], ®=[@.] be
Lagrangian multipliers for the non-negative constraints a,, ;>0

and x,,,>0, respectively. Then the Lagrangian L for (3) is:
L=¢(4.X)-Tr(KA")-Tr(0X")

xn,k <_xn$k z anukym,n/[ z anukj}m,n +1X|A(n)

meA(n) meA(n)

M 4 M 4 (10)
= E(A’X) _szm,kam,k _Zz¢n,k‘xn,k’
m=1 k=1 n=1 k=1

where Tr() calculates the trace of an enclosed matrix.
Considering the partial derivatives of L with a,,; and x,,;:

0 -
aajk = ”E/\Z(m)(ﬂ%am,k — Xk (ym,n Vo )) Kk = 0,
aaL = Z (ﬂ’Xxn,k Y (ym,n = Vn )) 4.4 =0;
xn,k meA(n) (1 1)
Km,k: Z (ﬂ‘Aam,k _xn,k (ym,n _j}m,n))!

- ne/\(m)
¢n,k = z (ﬂ'X‘xn,k - am,k (ym,n - ym,n ))
meA(n)
Then considering the KKT conditions of (10), i.e., & 4aus=0,
Yk je> Am k> AN @, 4, 4=0, V @, 1, X, 1, We achieve that
am,k Z (ﬂ’Aam,k - xn,k (ymm - j>m,n )) = O’

nEA(m)

S 2 (At = s (Vi =T )0

meA(n)

(12)

With (12), we arrive at the following iterative equations which
actually lead to (6),

neA(m) neA(m)

am,k Z xn,kym,n Zam,k [ﬂ’A |A(m) am,k + Z 'xn,k.j}m,n]’

xn,k z am,kym,n :xn,k (AX |A(7’l)

meA(n)

xn,k + Z am,kym,nJ;

meA(n)
Z 'xn,k ym,n

neA(m)

ﬂA |A(m) am,k + z xn.kj}m,n ,

ne/\(m)

Z am,k ym.n

meA(n)

xn’k AX |A(n) xn,k + z am,k.),}m,n -

mEA(n)

(13)

am,k <« am,k

X

n,k <«

From (10)-(13), we see that the SLF-NMU-based learning
rules in an NLF model are closely connected to the KKT
conditions of its learning objective.

B. Convergence Analysis of an NLF model

In this part, we theoretically analyze the convergence of an
SLF-NMU learning algorithm in the following two steps.
1) Non-increasing learning objective with SLF-NMU.

In this step, we aim to prove that (3) is non-increasing with
(6). To do so, we have
Theorem 1. (3) is non-increasing with (6).
To prove Theorem 1, an auxiliary function [31], [53] is vital.
Definition 2. G(x, x') is an auxiliary function of F(x) if

G(x,x")2 F(x), G(x,x)=F(x). 14
We further recall the following lemma [31], [53],
Lemma 1. F keeps non-increasing with the following rule,
X' = argmin G(x,x’ ) (15)
Proof of Lemma 1. With Definition 2, we deduce that
F(x')=G(x[,x[)2G(x'”,x[)ZF(x”l). (16)m

Note that we have F(x"")=F(x) when x' guarantees a local

minimum of G(x, x'), Hence, VF(x)=0 holds if F is
differentiable around x". Hence, (16) can be extended into the
following converging sequence to xp,=arg min, F(x),

F(x,,) << F(x")<F(x') << F(x)<F(x,). (17)
Next, we aim to achieve that (6) for is exactly consistent with
that in (15) with a specifically designed G. Considering x,, ,EX,
let qu.k be the partial loss from &4, X) related to x,; only,

d d
F\’”A :l z [(ym,n _.);m,n)z +/1Aza§1,k +1X2x:’kj’ (18)
2, =1 =l

min

d
Where ym,n :am,kxn,k + Z am,l'xn,l .
I1=1,#k

So we have the first-order and second-order derivatives of F,

with respect to x,,,

FL =280 At T (e (3= 30)) 19

Xn,
* axn)k mEA(n)
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e a)

F
o)

Based on (18)-(20), we achieve the following proposition.
Proposition 1. The following function

Ofxx}) = £, (52 <, (322 (x-2)

Xk n k nk

21
L YT o B

meA )7
is an auxiliary function of F, .
n.k

+ 2 (a)

meA(n)

(20)

Proof of Proposition 1. With (21), G(x,x)zfim (x) holds.

Then we aim to prove G(x, xffl) 2F (x) . To do so, we first

(

derive the quadratic approximation to F, at x 3{ .
n.k >

F (x)z

£ () L () ot o, () ()

By combining (20-22), we see that G(x, x,(fl) is an auxiliary
function of £,

(22)

if the following inequality holds,

A A5+ X a5,
me/\(n)

a,.) - @3)

- 22X|A(n)|+ Z (

xn,lc meA(n)

Note that we have y,,,20 according to Y’s non-negativity, and
an 20, and x,, >0 with SLF-NMU. So (23) is equal to

Z am Vi 2 m, Z (am,k )2. 24)
meA(n meA(n)
Then we reformulate the left term of (24) as follows:
z amkymn = Z amk[amk‘xnk + z amlxnlJ
me/\ mEA n I1=1,1#k
= xl(It,;( z (am.k )2 + Z [am,k i am,l‘xn.lJ (25)
mEA(n) mEA(n) I1=1,l#k
Zx,% Z (amk)z.
’ mEA(n) '

Note that (23) holds with (25), making G(x xnk) be an
auxiliary function of £, .m

Based on Proposition 1, we achieve the following proof.
Proof of Theorem 1. Based on (15), (19) and (21), we achieve
x,(f;l) = arg! min G(x xn'zt )
z am,k.};m,n + )”X |A(}’l) xr(lt,)»
= F;;A ()Cl(:}{ )+ meA(n)

)

n

Z amkymn

(1+1) (1) meA(n

=X,k (—.X,'k
Z mk.ymn—"_/1 |A

meA(n)

Based on (26), it is clear that F,

X k

is non-increasing with (6).

Naturally, (26) holds VrneEN, meM, ke{l, 2, ...,
Theorem 1 holds.m

Following Theorem 1, with a positive initialization, i.e.,
VmeM, neN and ke{l, 2, ..., dy: al'), x°) >0, (3) is

non-increasing when training 4 and X with (6). From this point
of view, we have the following recursion,

Fad)2 F (e )2 6 (a0 n )2 F(a) 20

which indicates that a sequence {F (xf,’;C )} is monotonically

d}. Hence,

@7

non-increasing and bounded. Hence, we deduce that

()P0
With (28), we further have the following inference,
lim |x (”l) x5’1,| =0. (29)

Therefore, a sequence {xfj)k} is bounded and convergent.

Similarly, a sequence { o+ is also bounded and convergent.

+
2) Sequences {a ) } and{

m,k
KKT equilibrium point of (3).
To prove it, we have

} by SLF-NMU converge to a

Theorem 2. Sequences {aﬁf}k } and{xg’jc} by (6) converge to an

equilibrium point (a'; , x\) ) of £(4, X) in (3).

Proof of Theorem 2. Based on (29), a sequence {x,%}
converges with (6). Let X denote a stationary point of X, i.c.,
0<al) = = lim x') <+, VneN, ke{l, 2, ..., d}. Thus, the

following KKT conditions of (3) regarding X should be
satisfied, if X is one of its equilibrium points.

VneN,meM,ke{l,...,d}:

oL
ox

(2) = 3 (Al =i (9, =3 )) -4 =0,

meA(n)

(30)
Note that following (10)-(13), Condition (a) is naturally
fulfilled with (6) and (13). Thus we actually have
¢)5T/Z = Z(: )(l xn kT mk(ymn ),)m,n ))
meA(n

we focus on Conditions (c)-(d). We start with

€2))

Thus,

constructing Hn .

z am.k ym.n

meA( )

xn Jk + z am,kym,n

meA(n)

6') =

TN 2

Obviously, (32) is bounded by non-negative a,,; and y,, ,:
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z amkymn

mEA n

xnk+ z amkymn

meA(n)

=lim @ 33
t—>+0 AX |A ( )

Hence, the update rule of x,, 4 can be rewritten with SLF-NMU,

t+1 9(1 (34)
By combining (29) and (34), we have
tim [+(7) =20} | = 0= x{)0l) 5] =0, (35)

Note that following the update rule (13), x(l,)( is greater than

or equal to zero with a non-negatively initial hypothesis. Hence,
we have the following inferences.
a) When x{") >0. Based on (32) and (35), we have:

*

x§>0,2 =0 >0=46") =1
36
| |'x + Z amkymn_ z am,kym,nzo' ( )
meA(n) meA(n)

Combining (31) and (36), we obtain the Condition (b) in (30),
¢)E;2 = ﬂ’X |A(n) xifl)( + z am,k.}/}m n Z am kym n =

meA(n) meA(n

(37)

= gt 2t =0,

Meanwhile, when ¢ 4 =0and x ") >0, Conditions (c) and (d) are
naturally fulfilled. Hence, (30) is fulfilled whenx ,>0.
b) When xfik =0. Note that conditions (b) and (c) in (30) are

naturally fulfilled in this case. Hence, we want to justify
Condition (d). To do so, we reformulate x{") into

K =x M}gg]‘[ﬁ (38)
Based on (38) we further have the following inferences,
) > 0.4 im [T =) =0 im [Tl =0
ZA: @y Vo
. * meh(n)
= limd)) =6}) = A S e <1 (39)

meA(n)

xl(:l)c+ 2 am,kymn Z amkymn_ N

me/\(n) me/\

Hence, (30) is also fulfilled whenx

= |A

()

) >0. Analogously, we
can prove that sequence {agf?k} also converges to an stable

equilibrium point of (3). Thus, Theorem 2 stands.m

By combining Theorems 1 and 2, we have proven that an
SLF-NMU-based NLF model converges to a KKT equilibrium
point of its objective. It should be pointed out a positive
initialization of LFs is helpful in achieving an optimal solution,
which is consistent with [55].

C. Convergence Analysis of a BNLF model

1) Non-increasing learning objective with biased SLF-NMU.
We firstly present the following theorem.

Theorem 3. (7) is non-increasing with (9).
Note that for Theorem 3, we only have to analyze the partial

loss with B and C since conditions of 4 and X are highly similar
with that in an NLF model as shown in Theorem 1. Considering

b,EB, let Fb be the partial loss of &4, X, B, C) related to b,
only. Then we derive the first-order and second-order

derivatives of Fb with respect to b,

Fy = 2 | (m)]b, - 2 )(ym,n D) (40)
=(1+ 4, )|A(m)|. (41)
Based on (7), (40) and (41), we present Proposition 2.
Proposition 2. The following function
G{b.t)F, (80} 7 (o) p-10)
(42)

1
+=| D (Pun A B
2[”5/\(”’)()}'”’” w

is an auxiliary function of £,

)/b,f’}(b-b;’))z,

Note that the proof of Proposition 2 is provided in the
supplementary file of this paper. With it we prove Theorem 3,
whose proof is also provided in the supplementary file.

Following Theorems 1 and 3, with a positive initialization,
ie., VmeM, neN, and ke{l, 2, .., dy: a®, x) ) and

0)

¢, >0, (7) is non-increasing when training 4, X, B and C with

(9). From this point of view, we have the following recursion:
F(b >) > F(b )> G(b (1+1) b“)> F(b (1+1) )z 0, (43)
which indicates that a sequence {15 (b,(nt) )} is non-increasing and

bounded. Hence, we deduce that

lim |7 (50 )~ 7 (5 )‘ ~0. (44)
Based on (49), we further yield the following inference:
llm z+1 | _ (45)

Therefore, a sequence {bfn’)} is convergent and bounded.
Similarly, a sequence {05[)} is also convergent and bounded.
2) Sequences {afﬂ’?,{} , {xi’)k} {bfﬂ‘)} and {cg‘)} by a biased
SLF-NMU converge to a KKT equilibrium point of (7).

To prove it, we have the following theorem.
Theorem 4. Sequences {afﬂ’?k} , {x('l}, {bfn‘)}and{cl(’z)}by )

converge to an equilibrium point of (7).
Note that its proof is provided in the supplementary file. By

0

analogy, we prove that sequence {cﬁ } also converges to an

equilibrium point of (7).

Hence, by combining Theorems 1-4, we arrive at the
conclusion that a BNLF model converges to a KKT equilibrium
point of its objective with a biased SLF-NMU algorithm.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. General Settings
Evaluation Metrics. Considering the need for recovering
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full links among involved entities [1]-[12] when addressing an
HiDS matrix in real applications, the main purpose is to
estimate its missing entries. Hence, we adopt the root mean
squared error (RMSE) as an evaluation metric to test the
reconstruction ability of tested models on an HiDS matrix [3],
[11], [12], [28], [47],

RMSE= ﬁ( > (n,v—fu,v)zj,

€T

(46)

where || calculates a set’s cardinality, ¥ denotes the validation
set that is disjoint with the given set A, and 7,, stands for an
estimation for r,,€¥ by a tested model, respectively.

Thus, the convergence behaviors of a tested model are
reflected by three factors, i.e., a) its training RMSE, b) its
absolute reduction of the learning objective (2), and c) its LF
distributions during/after the learning process. All factors are
expected to be stable when a model converges. All empirical
tests are conducted on a server with a 2.7 GHz E5-2680 V4
CPU and 256 GB RAM, and all models are implemented in
JAVA SE 8U131.

Tested Models. As shown in Table I, three models, i.e., NLF
[3], BNLF [28], and WNMF [48] are tested and compared.

TABLE I
TESTED MODELS IN OUR EXPERIMENTS

No. Name Description

Original NLF model relying on the SLF-NMU algorithm

M1 NLF proposed in [28].
M2 BNLF Biased NLF model by SLF-NMU proposed in [3].
M3 WNMF A wqighted NMF model proposed in [48]. It can address
an HiDS matrix.
TABLE IL
DETAILS OF EXPERIMENTAL DATASETS
No. Name |A[HY| M| |V Source
D1 ML20M 20,000,263 138,493 26,744 MovieLens [44]
D2 NetFlix 100,480,507 2,649,429 17,770 NetFlix [45]
D3 Douban 16,830,839 129, 490 58, 541 Douban [56]
D4 Flixter 8,196,077 147,612 48,794 Flixter [61]
D5 Epinion 13,668,320 120,492 755,760 Truslet website [62]
D6 Dating 17,359,346 135,359 168,791  LibimSeTi [63]
D7 EM 2,811,718 72,916 1,628 EachMovie
D8 Network 175,180 134,007 134,007  Authors’ affiliation
D9 PICE 5,778,268 15,752 15,752 STRING [64]
D10 PIPA 1.559.616 5,565 5,565 STRING [64]

Datasets. As recorded in Table II, ten real HiDS matrices
collected from industrial applications are adopted. We employ
the following settings for objective results.

a) Each dataset is divided into five disjoint and equally-sized
subsets randomly. We adopt the 80%-20% given-validation
settings and five-fold cross-validations in all the experiments,
i.e., each time we choose four subsets as the given set A to
build a model to predict missing data and the remaining one
as the validation set ¥ to achieve its validation RMSE. Then
we sequentially repeat this process five times to conduct
five-fold cross-validation for the final results.

b) When building a model, the given set A is further split into
two disjoint training and testing subsets with the ratio of 90%:
10%. The model is trained on the training set and tested on
the testing set to determine if its training process should be
terminated. The training of a model ends if it converges, i.e.,
its error difference between two successive epochs is less
than 107, or its iteration count exceeds a preset threshold, i.e.,

1000.
¢) Making A,=Ax=A3=A=A for M1-2 following [3], [28], [47] (it

should be pointed out that tuning them separately can

slightly improve the accuracy of MI1-2 but is very
time-consuming).

d) Note that according to [3]-[5], [7]-[12], [28], [47], an NLF
model’s performance can be affected by its initial hypothesis.
Hence, on each testing case, we initialize M1-3 with the
same randomly-generated and non-negative arrays for
eliminating the influence of an initial hypothesis.

By doing so, we make all involved models built on the given
set A only. For M1-2, the hyper-parameter 4 is tuned on A. For
M1-3, the training termination is guaranteed on A. Each
model’s reconstruction ability is validated on ¥ separately,
whose information is never referred by its training process.

B. Impact of 1

As discussed in prior studies [28], [47], M1-2’s performance
can be improved significantly via incorporating the Tikhonov
regularization. Note that the hyper-parameter A actually
controls the regularization effects in their objective function.
They may suffer overfitting as 4 becomes too small and
underfitting as 4 becomes too large. These phenomena are
connected with the convergence behaviors of M1-2 and should
be carefully validated. We have set A in the scale of [0.01, 0.20]
for demonstrating the former, and set A=10, 100, and 1000 for
demonstrating the latter.
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Fig. 1. RMSE decreasing curves of M1-2 on D1-2 as 4 in [0.02, 0.10].
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Fig. 2. RMSE decreasing curves of M1-2 on D1 as A=10, 100, 1000.
Fig. 1 depicts the RMSE decreasing curves for M1-2 on D1-2

as A1in [0.02, 0.10]. Fig. 3 depicts the RMSE decreasing curves
for M1-2 on D1 as A=10, 100 and 1000. Similar phenomena are
also encountered on D3-10. Moreover, the optimal A for M1-2
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on D1-10 are summarized in Table III. Note that these results

are achieved on A of DI1-10 only, following the settings

mentioned in Section IV(A). From them, we find that:

a) M1-2 suffers overfitting as 4 becomes too small, which is
reflected by their accuracy loss. From Figs. 1-2, we see
that M1-2’s RMSE as /=0.02 is obviously higher than that
achieved as 1=0.04. More specifically, M1’s RMSE is
0.8001 when A4=0.02, and 0.7895 when A=0.04. Thus,
inappropriately small 4 makes it suffer an accuracy loss at
1.34%. Considering M2, its RMSE is 0.8021 as 1=0.02 and
0.7924 as 4=0.04. It turns out that too small A makes it suffer
overfitting, leading to an accuracy loss at 1.20%.

b) M1-2 suffer underfitting as A becomes too large, which is
also reflected by their accuracy loss. When A increases
over 0.04, M1-2 suffer accuracy loss on D1-2, as shown in
Figs. 1-2, which is caused by underfitting. From Fig. 2, we
clearly see that as A increases to 10-1000, M1-2 can still
guarantee the convergence to a stable equilibrium point of
the objective function. However, they converge to mostly
minimize the regularization terms instead of minimizing the
generalized error to fit the training data, thereby suffering
significant accuracy loss. For example, as depicted in Fig.
2(b), M2’s RMSE at 3.6714 when A=1000, which is about
4.65 times that of 0.7895 when 1=0.04.

TABLE III
OPTIMAL HYPER-PARAMETER A FOR M1-2 ON D1-10.
Dataset
“Model D1 D2 D3 D4 D5
M1 0.04 0.04 0.06 0.06 0.10
M2 0.04 0.04 0.06 0.06 0.08
Dataset
“Model D6 D7 D8 D9 D10
M1 0.18 0.02 0.12 0.01 0.02
M2 0.18 0.015 0.16 0.01 0.02
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Fig. 3. Absolute reduction of learning objective (2) by M1-3 on D1-2.
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C. Convergence Behaviors

In this part of the experiments, we validate the convergence
behaviors of M1-2. In addition, we include M3 for comparison.
On A, each tested model is expected to stabilize its a) Training
RMSE, b) absolute reduction of learning objective (2), and c)

LF distribution.

Fig. 3 depicts the absolute reduction of learning objective (2)
by M1-3 on D1-2. The RMSE decreasing curves of M1-3 on
D1-2 are depicted in Fig. 4. Figs. S1-2 in the Supplementary
File of this paper depict LF distributions of M1-2 after the
initialization, Ist, 10th, 50th, 100th, 200th, 400th, 600th, 800th,
and last iteration during the training process on D1. Note that
we present these results only for a concise report. However,
highly similar phenomena are encountered in other testing
cases. From these results, we have the following findings:

a) M1-2 converge better than M3 does on an HiDS matrix.
From Figs. 3-4, we see that M3 cannot reach a good local
optimum, and commonly ends with fewer iterations and
higher RMSE when compared with M1-2. For instance,
according to Fig. 4(a), on D1 it consumes 441 iterations to
obtain the RMSE at 0.8489. In comparison, M1 consumes
1000 iterations with the RMSE at 0.7895, and M2 also
consumes 1000 iterations with the RMSE at 0.7924. Both
NLF and BNLF models converge with much lower RMSE
than a WNMF does. Mover, according to Fig. 3(a), we see
that the absolute reduction of learning objective (2) achieved
by M3 is also much less than that achieved by M1-2 on D1,
indicating that M1-2 can better approximate the learning
objective than M3 does. The same situations are also found
on D2-10.

b) M1-2 enable their LF-distributions to converge to a
steady-state. As shown in Fig. S1-2, M1-2’s LFs initially
distribute uniformly in the range of [0, 0.005] with a random
hypothesis. However, their LF values and distributions
change sharply during the first 200 iterations, and then
change very slow during subsequent iterations, and finally
converge to an equilibrium state. Such a phenomenon again
supports our convergence proof.

D. Reconstruction Ability

In this part of the experiments, we validate M1-3’s RMSE on
Y of each dataset to see their reconstruction ability on an HiDS
matrix. RMSEs of M1-3 on D1-10 are recorded in Table IV.
Then we conduct the Friedman test [65] on these results to fully
understand their significance.

The average ranks with each model’s RMSE in table IV are
computed in Table V. Let 7/ denote the rank of the jth one of p
tested models on the ith one of S testing cases, a Friedman test
compares the average rank of each tested model calculated by

H, = Zf_:l r/ / S . Then the Friedman value is computed as

2
,__ 125 ._p(ptl)
=—0| ) Hi ————|. 47
Based on (47), the testing score is given by
_ 2
F, = (S—l)lfz (48)
S(p_l)_lp

which is distributed according to the F-distribution with p—1
and (p—1)(S—1) degrees of freedom [65]. Note that if Fr is
larger than a given critical value ¢, the null hypothesis which
claims the equivalence of all tested models can be rejected.

In our experiments, three models are tested on ten datasets.
Hence, we have p=3 and S=10. Thus, F has (2, 18) degrees of
freedom and the corresponding critical value is 3.55 for a=0.05.
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Hence, the null hypothesis can be rejected if the testing score is
higher than 3.55. By substituting the average ranks of M1-3 in
Table V into (47) and (48), we achieve that Fr=27.0, which is
much higher than 3.55. Hence, M1-3 are significantly different
with confidence at 95%.

TABLE IV
RMSE oF M1-3 ON ¥ OF D1-10.

Dataset

Model D1 D2 D3 D4 D5
M1 0.7901 0.8389 0.7258 0.9133 0.6101
M2 0.7930 0.8417 0.7177 09114 0.5982
M3 0.8498 0.8773 0.7655 0.9708 0.6481

Dataset

“Model D6 D7 D8 D9 D10
M1 1.8517 0.2316 2.1359 0.1081 0.1409
M2 1.8442 0.2335 2.0847 0.1126 0.1470
M3 2.0781 0.2611 3.2824 0.1308 0.1667

TABLE V
AVERAGE RANKS OF M1-3 W.R.T RMSE.
Models M1 M2 M3

Average Rank 1.5 1.5 3.0

0
1k
£
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>
]
5 3t
8
<
4 L
Ni1 NiZ Ni3

Fig. 5. Results of Nemenyi analysis
To further identify MI1-3’s performance, we adopt the
Nemenyi test [65]. Two models are significantly different if the
difference between their performance ranks is larger than the
critical difference value [65] given by

p ( p+ 1)

65
Note that g, in (49) is 2.052 with the critical level =0.1 as p=3
in our case [65]. By substituting p=3, S=10, and ¢,,=2.052 into
(49), we obtain that CD=0.918. Hence, two models are
significantly different in reconstruction ability on an HiDS
matrix with the confidence of 90%, when their rank different
value is larger than 0.918. The Nemenyi analysis results
according to Tables IV and V are shown in Fig. 5. From them,
we see that both M1 and M2, i.e., NLF and BNLF models,
significantly outperform M3, i.e., a WNMF model, in terms of
reconstruction ability on an HiDS matrix. In addition, M1 and
M2 do not have a significance difference in the level of RMSE
from each other.

CD=gq, (49)

E. Initialization Strategies

As revealed before [7]-[12], [26]-[31], [58], the performance
of an NLF model is sensitive to its initial hypothesis. However,
how to select an appropriate initial hypothesis for it remains an
open issue. According to prior research [7]-[12], [26]-[31], [58],
it is commonly accepted to randomly generate an initial
hypothesis in the non-negative field of real numbers. Hence, it

is the distribution of these randomly generated initializations
that affects the performance of a resultant model. For validating
its effects, we have conducted tests with six different
initialization distributions for M1-2. The details of tested

initialization distributions are summarized in Table VI.
TABLE VI
DETAILS OF TESTED DISTRIBUTIONS FOR GENERATING INITIAL HYPOTHESES OF
MI1-2. NOTE THAT F DENOTES ALL OF THEIR DESIRED LFs. FOR M1, F={4, X},
FORM2, F={B,C, A4, X }.

No. Distribution No. Distribution
Ul F~U(0, 0.005) Gl F~N(0.005, le-7)
U2 F~U(0,0.1) G2 F~N(0.1, 1e-5)
U3 F~U(0, 1.0) G3 F~N(1.0, 1e-4)

The RMSE decreasing curves of MI-2 with different
initialization distributions on D1 is depicted in Fig. 6. The
RMSE of M1-2 when F~U(0, 0.005) in 100 independent tests
on DI is depicted in Fig. 7. Note that similar results can be
observed on D2-10. Table VII summarizes the RMSE of M1-2
on D1-3 with different initial hypotheses. From them, we see
that:
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Fig. 7. RMSE of M1-2 when F~U(0, 0.005) in 100 independent tests on D1.

a) The prediction accuracy of an SLF-NMU-based NLF
model is slightly affected by its initial hypothesis. From
Fig. 6, we find that the convergence curves of M1-2 on D1
varies as their initialization distribution changes. However,
they will always converge to an equilibrium point regardless
of the initialization strategies. Moreover, from Fig. 7 we can
only observe slight accuracy fluctuation of M1-2 by different
initial hypotheses randomly generated from the same
distribution. The fluctuation ratio is limited in the range of
[-0.25%, 0.25%] according to our results.

b) Appropriate initialization strategies can enable a more
accurate model. If we aim at achieving performance gain
via improving M1-2’s initial hypothesis, the following two
strategies can be considered: 1) choosing the initialization
distribution wisely. According to Table VII, an NLF model
with a Gaussian hypothesis mostly outperforms one with a
Uniform hypothesis, which demonstrates that a Gaussian
initialization distribution can probably improve an NLF
model’s prediction accuracy. But in practice, it is still
necessary to adopt warming up tests with initialization
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distributions on a probe set; and 2) building an ensemble.
Since different initialization distributions can achieve
diversified NLF models as shown in Fig. 6, they can form an
efficient ensemble [57], [58] which can outperform any of its
base models to achieve stably high accuracy.

TABLE VII
RMSE OF M1-2 ON D1-3 WITH DIFFERENT INITIAL HYPOTHESES

Uniform Hypothesis Gaussian Hypothesis

Ul U2 u3 Gl G2 G3
M1 0.7901 0.7905  0.7894  0.7901 0.7899  0.7930
D1 M2 0.7930  0.7930  0.7925  0.7923 0.7925  0.7947
M1 0.8389  0.8389  0.8392  0.8387 0.8387 0.8392
b2 M2 0.8417 0.8419 0.8416  0.8414 0.8413 0.8417
M1 0.7258  0.7226  0.7089  0.7423 0.7193  0.7359
b3 M2  0.7177  0.7158  0.7083  0.7177 0.7135 0.7283
F. Summary

We summarize from the experimental results:

a) An SLF-NMU-based NLF/BNLF model converges to a
stable equilibrium point on an HiDS matrix;

b) An SLF-NMU-based NLF/BNLF model converges better
than an NMF model on an HiDS matrix. Its reconstruction
ability for an HiDS matrix’s unknown data is also better than
that of an NMF Model; and

¢) An SLF-NMU-based NLF/BNLF model’s regularization
coefficient and initialization hypotheses should be chosen
wisely to improve its performance.

V. DISCUSSIONS

A. Connections between an NLF and an NMF Model

An NMF model is designed for full matrices, which are
mostly seen as images in the area of computer vision. Initially,
Lee and Seung [30], [31] adopt it to extract local features from
a non-negative matrix representing an image. Subsequently,
many researchers investigate it and propose various NMF
extensions [29]-[36], [48]-[52]. To achieve the desired
non-negative feature matrices, a non-negative multiplicative
update (NMU) algorithm is commonly adopted. With it, if
YM*M s a full matrix, then it extracts features A" and X" as

“—a —(YX) X , X —(YTA)"’k (50)
mk m,k (AXTX)'M >nk n.k (XATA) :

n,k

a

As a matter of fact, other algorithms like the projected gradient
descent [59], projected alternating least squares [60] are also
proposed to train an NMF model. Nonetheless, an NMU
algorithm does not make truncations during the training process,
making it more suitable to represent the natural structures such
as node clusters hiding in the original matrix. Meanwhile, it is
implemented through making the learning rate adaptive to
achieve the multiplicative form, i.e., its learning rate is
self-adaptive. Hence, an NMF model frequently adopts an
NMU algorithm. The processing flow of such a model is shown
in Fig. S3 in the Supplementary File. According to (50), its
computational complexity is O(M|x|N|xkxf) with ¢ being
training iteration count, and storage complexity is @(|M|x|N]).
However, an NMF model cannot handle an HiDS matrix
directly since the products YX and Y'4 are intractable with ¥
being incomplete. As discussed in [28], [48], an NMF model

can be adjusted to fit an incomplete Y by integrating an
indicator matrix W™ into (50) to achieve a weighted NMF
(WNMF) model. In it, the indicator matrix’s element is set at
one if the corresponding element in Y is known, and zero
otherwise. Thus, WNMF can extract non-negative features
from an incomplete Y with an NMU algorithm:

(7 1)), (0verya),
), e,

n,k

ok Xk € Xk
m,k

where the operator o calculates the Hardamad product of two
matrices. Thus, the products (WoY)X and (WoY)'4 are solvable
when Y is HiDS. However, the computational and storage costs
of WNMF are respectively O(|M|X|N|xkxt) and O(M|x|N)),
which are the same as those of NMF. It is compatible with
existing NMF training algorithms like an NMF algorithm,
however, it suffers unnecessarily high costs on an HiDS matrix.
Its processing flow is in Fig. S4 in the Supplementary File.

In comparison, an NLF model is specifically designed for an
HiDS matrix. With an SLF-NMU algorithm, its computational
and storage costs are respectively ® (JA|xkx?) and @(max {|A],
(IM|+|N))xd}). Thus, we have the following inferences:

Tur ‘A‘xkxtNLF N ‘A‘

Ty [MIX[NIxkxty, — [M|x[N]

Sy, max{{Al, (M|+|N|)xd} { I d1+1}

Sur M|x|N| B |M|x|N|” " {|M] |V
(52)

Given that |A|<|M|%|N], i.e., the known data of an HiDS matrix

are far less than its unknown ones (e.g., the known data of the

NetFlix matrix take 0.21% of its all entries only), an

SLF-NMU-based NLF model’s computational and storage

costs are much lower than those of an NMF model in theory.

Hence, an NLF model is far more efficient than an NMF-type

model on an HiDS matrix. Its processing flow is depicted in Fig.

S5 in the Supplementary File. From this point of view, it is

much suitable to address an HiDS matrix than an NMF model

does on the premise that it converges well, which is guaranteed
by the convergence analysis given in this paper.

On the other hand, it is well known that in the area of
recommender systems or social network services, an HiDS
matrix is far more frequently encountered than a full one.
Therefore, we’d prefer to take an NMF model as a special case
for an NLF model owing to the following reasons:

a) In our concerned big data-related Web-applications like a
recommender system, the observed data are commonly
incomplete, making an HiDS matrix be far more frequently
encountered than a full matrix. Actually, a full matrix can be
considered as an HiDS matrix whose data density is 100% in
such a scenario, indicating that the interactions among users
and items are fully observed (or quantized by the system,
which is also an ultimate objective for a recommender
system); and

b) Note that owing to its data-density-oriented learning
objective and algorithm, i.e., an SLF-NMU algorithm, an
NLF model can address an HiDS matrix whose data density
can be an arbitrary number in the (0%, 100%] interval. In
other words, it can address a matrix with/without missing
data. In comparison, an NMF model is defined on a full
matrix. Thus, it can only handle a matrix without missing
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data (or transmit a HiDS target into a full one like in a

WNMF model).

Nonetheless, in other fields like computer vision, full
matrices representing normal images are much more than
incomplete ones. Under such circumstances, an NLF model can
be considered as a special case of an NMF model. From this
point of view, we clearly see that although these two kinds of
models are closely connected, they are targeting at different
problems. It is important to make an appropriate choice for a
specific problem. From the theoretical and empirical studies of
this paper, it is efficient to adopt NLF on an HiDS matrix.

B. Theoretical Achievements of This Study

Since both NMF and NLF models are bi-linear, an auxiliary
function-based method can be adopted to show that both NMU
for NMF and SLF-NMU for NLF make their loss functions
non-increasing. Nonetheless, the theoretical achievements of
this work stand in two aspects: 1) an SLF-NMU is single
LF-dependent, making its mathematical expression very
different from that of an NMU algorithm. Meanwhile, an HiDS
matrix’s data density is low and distribution is highly
imbalanced. The convergence analysis in this paper
innovatively shows that an SLF-NMU learning algorithm can
enable an NLF model to converge on an arbitrary matrix in
spite of its sparsity and imbalanced data distribution; 2) its
ability to converge to a KKT equilibrium point is also proved
on an HiDS matrix, which is also not seen in prior studies.

C. Local or Global Convergence

It should be mentioend that the objective function of an
NLF/BNLF model is constrained and non-convex. Meanwhile,
according to (6), an SLF-NMU-based learning algorithm
actually implements an additive gradient descent-based training
process with carefully-selected learning rates to guarantee the
non-negativity of a resultant model. In other words, its achieved
stationary point (whose properties are verified according to the
previously provided theoretical studies) is a first-order one on a
non-convex problem. According to a prior study [25], such a
first-order stationary point can be a global optimum, local
optimum, or saddle point. How to identify its more specific
properties is very challenging (which still remains unveiled in
the optimization community according to [25]). We plan to
address this problem in our future work.

VI. CONCLUSIONS

In this paper, we rigorously prove that an NLF/BNLF model
defined on an HiDS matrix converges to a KKT equilibrium
point of its objective with an SLF-NMU-based learning
algorithm. Note that the proof consists of two steps, a) proving
that its learning objective goes non-increasing with SLF-NMU
by constructing a specifically-designed auxiliary function; and
b) proving that its parameter learning sequences finally
converge to a stable equilibrium point with SLF-NMU by
analyzing the KKT conditions of its learning objective.

Note that this study conducts the convergence analysis on an
objective relying on the Euclidean distance. However, the same
principle also applies equally to an NLF model depending on
other kinds of loss functions. With it, an SLF-NMU-based NLF
model’s convergence characteristics are theoretically justified,
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which are also supported by the empirical results on ten HiDS
matrices from real applications.

As revealed in previous studies [3], the parallelization of an
SLF-NMU algorithm can be implemented via a
properly-designed distributed computing framework. In this
case, can it still converge to a stable equilibrium point? We will
answer this question in the future.
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