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Abstract
Zeros in compositional data are very common and can be classified into
rounded and essential zeros. The rounded zero refers to a small proportion
or below detection limit value, while the essential zero refers to the complete
absence of the component in the composition. In this article, we propose a
new framework for analyzing compositional data with zero entries by introduc-
ing a stochastic representation. In particular, a new distribution, namely the
Dirichlet composition distribution, is developed to accommodate the possible
essential-zero feature in compositional data. We derive its distributional prop-
erties (e.g., its moments). The calculation of maximum likelihood estimates via
the Expectation-Maximization (EM) algorithm will be proposed. The regression
model based on the new Dirichlet composition distribution will be considered.
Simulation studies are conducted to evaluate the performance of the proposed
methodologies. Finally, our method is employed to analyze a dataset of fluores-
cence in situ hybridization (FISH) for chromosome detection.

KEYWORDS
compositional data, Dirichlet distribution, EM algorithm, essential zero, gamma distribution,
rounded zeros, stochastic representation

1 INTRODUCTION

Compositional data, which consist of vectors of positive components subject to a constant-sum constraint (e.g., equal to 1
for proportions and 100 for percentages), record the information about the relative frequencies associated with different
components of a system (Ferrers, 1886). They commonly arise in many disciplines such as the components of rocks in
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geology, the budget share patterns of household expenditures in economics, and the proportion of normal cells in medical
research. It is noteworthy that compositional data are subject to the following two intrinsic constraints:

(a) (Bounded support constraint) Each element in the component vector must lie between 0 and 1, inclusive; and
(b) (Summation constraint) All the elements in the component vector must sum to 1.

Mosimann (1962) proposed theDirichlet-multinomial (DM) distribution, which is a family of discretemultivariate prob-
ability distributions on a finite support of nonnegative integers. It is noteworthy that DM is a compound probability dis-
tribution, which models counts from a multinomial distribution with a probability vector that is drawn from a Dirichlet
distribution. As a result, the DM model (i.e., zero-inflated generalized DM [ZIGDM] by Tang & Chen, 2019) is designed
for count data and fails to deal with the compositional data, which are proportions or percentages, described in this arti-
cle. Applications of statistical methods designed for unconstrained data to such compositional data may result in invalid
inference conclusions. For instance, Pearson (1897) discussed the spurious correlation issue in compositional data analysis
and concluded that the unit-sum constraint is often intentionally ignored and the statistical methods without constraints
are misused, which may eventually lead to disastrous results. Aitchison (1982) first proposed statistical methodology for
the compositional data. Aitchison (1982, 1986) first introduced the logistic normal (LN) distribution as a framework for
compositional data analyses. In particular, his technique assumesmultivariate normality of additive log-ratio transformed
data. Since then, various researchers have extended Aitchison’s approach in both theoretical and practical respects. For
example, Zhang (2000) discussed various distributions for compositional data on the simplex district (e.g., the generalized
Dirichlet, additive logistic, and spherical distributions). Egozue et al. (2003) introduced the isometric log-ratio transfor-
mation.
In compositional data analysis, the presence of zero components may induce obstacles to the applications of the afore-

mentioned distributional approaches (e.g., zero cannot be the denominator when applying the additive logistic transfor-
mation). Aitchison (1986) classified the zeros in compositional data into rounded (or trace elements) zeros and essential
(or true) zeros. It is not uncommon that compositional data contain zero components due to either complete absence (i.e.,
essential zeros), or a small proportion or below the detection limit (i.e., rounded zeros) of certain component(s). Aitchison
(1982) pointed out that the log-ratio transformation failed to work when these zeros are denominators.
To deal with the rounded zeros, the most popular method is to replace the rounded zero(s) by a small value (i.e.,

zero replacement). For example, Palarea-Albaladejo and Martín-Fernández (2008) proposed a modified EM algorithm
to replace the rounded zeros in compositional data, Hijazi (2011) developed the EM algorithm–based method to deal
with rounded zeros. The nonparametric imputation approach is proposed by Martín-Fernández et al. (2003) to handle
rounded zeros.
For essential zeros, three well-known approaches have been developed. The data amalgamation, which was proposed

by Aitchison (1990), is to eliminate the components with zero elements by combining them with some other nonzero
components. The second approachmodels the zeros separately (e.g., Aitchison, 1986; Bear&Billheimer, 2016; Zadora et al.,
2010). For instance, Bear and Billheimer (2016) projected compositions with zeros onto smaller dimensional subspaces. As
a result, they developed amixture of logistic normalswhich successfully addresses the issues of division by zero and the log
of zero. The third approach is to transform compositions into directional data on the hypersphere and develop a regression
model using the Kent distribution (e.g., Kent, 1982; Scealy & Welsh, 2011), which tolerates zeros. Other methods are also
investigated, such as themixturemodels to eliminate the essential zeros (Stewart & Field, 2011), the latent Gaussianmodel
(Butler & Glasbey, 2008), and the Dirichlet regression model (Tsagris & Stewart, 2018).
In clinical research, compositional data with essential zeros are not uncommon. For instance, chromosome abnormal-

ities are considered to be the most common cause of spontaneous abortion. Fluorescence in situ hybridization (FISH) is a
cytogenetic technique developed in the early 1980s (see, e.g., Langer-Safer et al., 1982). It uses fluorescent DNA probes to
target specific chromosomal locations within the nucleus, resulting in colored signals that can be detected using a fluores-
cent microscope. For spontaneous abortion, a damaged embryo is taken out from the gravida and the FISH technique is
then employed to detect the cells which are selected randomly from the damaged embryo. Finally, the respective propor-
tions of diploidy, triploidy, and polyploidy at chromosome 22 for those randomly chosen and tested cells are recorded for
each embryo. Obviously, the observations are compositional data (i.e., total sum is equal to one). For example, an obser-
vation of (0.2,0.3,0.5) means 20%, 30%, and 30% of the selected cells are chromosome diploidy, chromosome triploidy,
and chromosome polyploidy, respectively. The FISH data reported in the Supporting Information are the compositional
observations of 51 embryos from the curettage operation in Zhongshan People’s Hospital in Mainland China. The age of
each gravida is also reported. It is noteworthy that nearly 80% (i.e., 40 out of 51) of the embryos demonstrate purely normal
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chromosomes (i.e., compositional observation being (1, 0, 0)). Most importantly, none of the aforementioned approaches
are suitable for our FISH data, which motivate the present article.
The rest of this paper is organized as follows. In Section 2, we introduce a new stochastic representation (SR) for com-

positional data with zero components and the newDirichlet composition distribution (DCD) is defined. Likelihood-based
methods for parameter estimation and confidence intervals construction without covariates will be provided in Section 3.
Regression model analysis based on the distribution will be considered in Section 4. Simulation studies will be conducted
to examine the performance of our proposed methods in Section 5. We will revisit and analyze the FISH dataset in Sec-
tion 6. A brief discussion will be presented in Section 7. Some technical details are included in the Appendix.

2 NEWDEFINITION OF COMPOSITIONAL RANDOMVECTOR AND THE DCD

In this section, we introduce a new definition of a compositional random vector which can be adopted for modeling the
compositional data. The definition is proposed based on SR. We then introduce the DCD by assuming the base vector
following independent Gamma distributions.

2.1 Definition of a compositional random vector

To model the zero elements in the compositional data, we employ the SR to establish the definition of a compositional
random vector.

Definition 1. (Compositional random vector). A random vector 𝐗 = (𝑋1, … , 𝑋𝑚)
⊤ is said to be an𝑚-dimensional compo-

sitional random vector if

𝐗
d
=

𝐙◦𝐘

𝐙⊤𝐘
(1)

with 𝐙 = (𝑍1, … , 𝑍𝑚)
⊤ being the indicator vector (i.e., 𝑍𝑗 = 0 or 1 for 𝑗 = 1,… ,𝑚) such that

∑𝑚

𝑗=1
𝑍𝑗 ≠ 0, and 𝐲 =

(𝑌1, … , 𝑌𝑚)
⊤being the base vector with each element being positive random variable (i.e., 𝑌𝑗 ∈ (0, +∞), for 𝑗 = 1,… ,𝑚),

“
d
=”meaning the randomvariables on both sides have the same distribution,𝐙◦𝐘 = (𝑍1𝑌1, … , 𝑍𝑚𝑌𝑚)

⊤and𝐙⊤𝐘 =
𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖 .

The indicator vector𝐙 provides the possibility of zero entries in the distributionwith𝑍𝑗 = 0meaning the 𝑗th component
in 𝐗 being zero. The base vector 𝐘 carries the quantitative information. It can be any positive vector and determines the
nonzero components in 𝐗.

2.2 Definition of DCD

In the compositional random vector, if we let 𝐙 be the𝑚-dimensional independent Bernoulli random variables by exclud-
ing the point 𝟎𝟎, and 𝐘 be the independent Gamma random variable with different shape parameters 𝛼𝑖 but identical rate
parameter 𝛽, we can define a new distribution called DCD. Since the rate parameter 𝛽 will be eliminated in the SR of the
compositional random vector, 𝛽 is unidentifiable in the distribution. Without loss of generality, we assume 𝛽 = 1. That is,
for each 𝐘 = (𝑌1, … , 𝑌𝑚)

⊤, we have {𝑌𝑖}𝑚𝑖=1
ind
∼ Gamma(𝛼𝑖, 1).

Definition 2. (DCD). A compositional random vector𝐗
d
=

𝐙◦𝐘

𝐙⊤𝐘
is said to follow the DCD, denoted by DCD(𝒑, 𝜶), if 𝐙 ⊥⊥ 𝐘

and

Pr(𝐙 = 𝒛) =

𝑚∏
𝑗=1

(1 − 𝑝𝑗)
𝑧𝑗𝑝

1−𝑧𝑗
𝑗

1 − 𝑝1⋯𝑝𝑚
, (2)
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and

𝑓(𝐘 = 𝐲) =

𝑚∏
𝑖=1

e𝑦𝑖 𝑦𝛼𝑖−1
𝑖

Γ(𝛼𝑖)
, (3)

where 𝒑 = (𝑝1, … , 𝑝𝑚)
⊤ contains the parameters of the indicator vector and 𝜶 = (𝛼1, … , 𝛼𝑚)

⊤ contains the parameters of
the base vector with {0 ≤ 𝑝𝑗 < 1, 𝛼𝑗 > 0}𝑚

𝑗=1
.

The probability density function of 𝐗 is then given by

𝑓(𝒙) =

𝑚∏
𝑗=1

𝑝
1−𝑧𝑗
𝑗

(1 − 𝑝𝑗)
𝑧𝑗

1 − 𝑝1⋯𝑝𝑚
×

⎡⎢⎢⎣
Γ(𝛼∗

𝕁
)∏

𝑗∈𝕁
Γ(𝛼𝑗)

∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

⎤⎥⎥⎦, (4)

where 𝑧𝑗 = 𝐼(𝑥𝑗 > 0), 𝑗 = 1,… ,𝑚 and 𝛼∗
𝕁
=

∑
𝑗∈𝕁

𝛼𝑗 , 𝕁 is the subset of the index with 𝒙 being positive (i.e., 𝑥𝑗 > 0 for any

𝑗 ∈ 𝕁 and 𝑥𝑗 = 0 for 𝑗 ∉ 𝕁). (For more details of the probability density function, refer to Appendix A.1.)

Remark 1. It is clear that 𝑝𝑗 ≠ 1 for 𝑗 = 1,… ,𝑚. As Pr(𝑍𝑗 = 0) = 𝑝𝑗 = 1 implies that the element in the 𝑗th column must
be 0, we can simply delete the 𝑗th column and the remaining𝑚 − 1 columns still form a compositional random vector.

Remark 2. If 𝑝𝑗 = 0 for 𝑗 = 1,… ,𝑚, it means 𝑍𝑗 = 1, we have DCD(𝟎𝟎, 𝜶)=Dirichlet(𝛼1, … , 𝛼𝑚). That is, the well-known
Dirichlet distribution is a special case of DCD(𝒑, 𝜶).

Remark 3. We here suppose 𝐙 follows the zero-truncatedmultivariate Bernoulli distribution. Due to SR in (1), the denom-

inator 𝐙⊤𝐘 =
𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖 must be nonzero; therefore, 𝑍1, … , 𝑍𝑚 are not independent as they cannot be 0 at the same time.

That is, {𝑍𝑗}𝑚𝑗=1 follow the independent Bernoulli distributions but exclude the point 𝟎𝟎.

2.3 Mixed moments and moment generating function

If 𝐗 ∼ DCD(𝒑, 𝜶), then the following results can be easily shown:

𝐸(𝐗) = ∑
𝒛

𝑚∏
𝑗=1

𝑝
1−𝑧𝑗
𝑗

(1 − 𝑝𝑗)
𝑧𝑗

1 − 𝑝1⋯𝑝𝑚
×

(
𝟎𝟎𝕂,

𝜶𝕁

𝛼∗
𝕁

)⊤

,

Cov(𝐗,𝐗) = ∑
𝒛

𝑚∏
𝑗=1

𝑝
1−𝑧𝑗
𝑗

(1 − 𝑝𝑗)
𝑧𝑗

1 − 𝑝1⋯𝑝𝑚
× Cov(𝐗|𝐙,𝐗|𝐙), (5)

𝐸(
∏
𝑗∈𝕁

𝑋
𝑟𝑗
𝑗
) =

𝐵(
∑

𝑗∈𝕁
𝛼𝑗 +

∑
𝑗∈𝕁

𝑟𝑗)

𝐵(
∑

𝑗∈𝕁
𝛼𝑗)

; 𝐸(
∏
∃𝑗∉𝕁

𝑋
𝑟𝑗
𝑗
) = 0, (6)

where 𝕂 is the subset with 𝒙 being 0 (i.e., 𝕂 = {1, … ,𝑚}∖𝕁), (𝟎𝟎𝕂,
𝜶𝕁

𝛼∗
𝕁

)⊤= (𝑒𝑖)𝑚×1, and Cov(𝐗,𝐗) = (𝑣𝑖𝑗)𝑚×𝑚

𝑒𝑖 = 0; if 𝑖 ∈ 𝕂;

𝑒𝑖 =
𝛼𝑖

𝛼∗
𝕁

; if 𝑖 ∈ 𝕁;

𝑣𝑖𝑖 = 0; if 𝑖 ∈ 𝕂;
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𝑣𝑖𝑖 =
𝛼𝑖(𝛼

∗
𝕁
−𝛼𝑖)

(𝛼∗
𝕁
)2(𝛼∗

𝕁
+1)

, if 𝑖 ∈ 𝕁;

𝑣𝑖𝑗 = 0; if 𝑖 ∈ 𝕂 or 𝑗 ∈ 𝕂;

𝑣𝑖𝑗 = −
𝛼𝑖𝛼𝑗

(𝛼∗
𝕁
)2(𝛼∗

𝕁
+1)

, if 𝑖, 𝑗 ∈ 𝕁. (7)

3 Statistical inference without covariates

In this section, we present statistical inferences based on data without covariates, which include the maximum likelihood
estimates (MLEs) calculation in Section 3.1 and the confidence interval construction in Section 3.2.

3.1 Maximum likelihood estimates for target parameters

Suppose the 𝑛 observations are {𝒙1, … , 𝒙𝑛}, where 𝒙𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑚)
⊤ and 𝑚 is the number of dimensions. Without loss

of information, we assume that there are zero entries in the first 𝑘 observations, that is min(𝒙𝑖) = 0 for 𝑖 = 1, … , 𝑘, and
min(𝒙𝑖) > 0 for 𝑖 = 𝑘 + 1,… , 𝑛, 0 ≤ 𝑘 ≤ 𝑚. We have 𝕁𝑖 = (1, 2, … ,𝑚)⊤ when 𝑖 ≥ 𝑘. Therefore, the observed likelihood
function is given by

𝐿(𝒑, 𝜶|𝑌obs) =
⎧⎪⎪⎨⎪⎪⎩

𝑛∏
𝑖=1

𝑚∏
𝑗=1

𝑝
1−𝑧𝑖𝑗
𝑗

(1 − 𝑝𝑗)
𝑧𝑖𝑗

1 − 𝑝1⋯𝑝𝑚

⎫⎪⎪⎬⎪⎪⎭
×

⎧⎪⎨⎪⎩
𝑘∏
𝑖=1

⎡⎢⎢⎣
Γ(𝛼∗

𝕁𝑖
)∏

𝑗∈𝕁𝑖
Γ(𝛼𝑗)

∏
𝑗∈𝕁𝑖

𝑥
𝛼𝑗−1

𝑖𝑗

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

×

⎧⎪⎨⎪⎩
𝑛∏

𝑖=𝑘+1

⎡⎢⎢⎣
Γ(
∑𝑚

𝑗=1
𝛼𝑗)∏𝑚

𝑗=1
Γ(𝛼𝑗)

𝑚∏
𝑗=1

𝑥
𝛼𝑗−1

𝑖𝑗

⎤⎥⎥⎦
⎫⎪⎬⎪⎭, (8)

where 𝕁𝑖 denotes the index set of those positive elements in each 𝒙𝑖 (i.e., 𝑥𝑖𝑗 > 0 if 𝑗 ∈ 𝕁𝑖). Here, the indicator variable 𝐙
can be observed via the observation 𝒙𝑖 as

𝑍𝑖𝑗|(𝐗𝑖 = 𝒙𝑖) =

{
0, if 𝑥𝑖𝑗 = 0,

1, if 𝑥𝑖𝑗 > 0.
(9)

Observing that 𝑍𝑗 = 1 is equivalent to 𝑗 ∈ 𝕁𝑖 . we have

𝑙(𝒑, 𝜶|𝑌obs) = {
𝑛∑
𝑖=1

[
(1 − 𝑧𝑖𝑗) log 𝑝𝑗 + 𝑧𝑖𝑗 log(1 − 𝑝𝑗) − log(1 − 𝑝1⋯𝑝𝑚)

]}

+

𝑘∑
𝑖=1

{
log Γ(𝛼∗

𝕁𝑖
) +

∑
𝑗∈𝕁𝑖

[
(𝛼𝑗 − 1) log 𝑥𝑖𝑗 − log Γ(𝛼𝑗)

]}

+

𝑛∑
𝑖=𝑘+1

{
log Γ(

𝑚∑
𝑗=1

𝛼𝑗) +

𝑚∑
𝑗=1

[
(𝛼𝑗 − 1) log 𝑥𝑖𝑗 − log Γ(𝛼𝑗)

]}
. (10)

Instead of obtaining the MLEs of the parameters 𝒑 = (𝑝1, … , 𝑝𝑚)
⊤ and 𝜶 = (𝛼1, … , 𝛼𝑚)

⊤ via solving the solutions to
the system of equations 𝜕𝑙(𝒑,𝜶|𝑌obs)

𝜕𝒑
= 𝟎𝟎 and 𝜕𝑙(𝒑,𝜶|𝑌obs)

𝜕𝜶
= 𝟎𝟎, we consider the EM algorithm. Motivated by the SR, we

introduce the base vectors {𝐲𝑖}𝑛𝑖=1 and 𝑠 as missing data, where 𝑠 denotes the number of unobserved 𝟎𝟎 to make the compo-
nents in 𝐙 being independent. In fact, 𝐙 are independent Bernoulli variables which exclude the outcome of 𝟎𝟎. Therefore,
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{𝟎𝟎,… , 𝟎𝟎
⏟ ⏟ ⏟

𝑠

, {𝒛𝑖}
𝑛
𝑖=1
} are the complete observations and the likelihood function based on the complete data is given by

𝐿𝑐𝑜𝑚(𝒑, 𝜶|𝑌com) = (𝑝1⋯𝑝𝑚)
𝑠 ×

⎧⎪⎨⎪⎩
𝑛∏
𝑖=1

𝑚∏
𝑗=1

⎡⎢⎢⎣𝑝
1−𝑧𝑖𝑗
𝑗

(1 − 𝑝𝑗)
𝑧𝑖𝑗 ×

e𝑦𝑖𝑗 𝑦
𝛼𝑗−1

𝑖𝑗

Γ(𝛼𝑗)

⎤⎥⎥⎦
⎫⎪⎬⎪⎭, (11)

and the log-likelihood function of the complete data likelihood function is

𝑙𝑐𝑜𝑚(𝒑, 𝜶|𝑌com) = 𝑠

𝑚∑
𝑗=1

log 𝑝𝑗 +

𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
𝑧𝑖𝑗 log(1 − 𝑝𝑗) + (1 − 𝑧𝑖𝑗) log 𝑝𝑗

]
+

{
𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
−𝑦𝑖𝑗 + (𝛼𝑗 − 1) log 𝑦𝑖𝑗 − log Γ(𝛼𝑗)

]}
. (12)

The M-step is to solve the following equations, for 𝑗 = 1,… ,𝑚 ∶

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑙𝑐𝑜𝑚(𝒑, 𝜶|𝑌com)
𝜕𝑝𝑗

=
𝑠

𝑝𝑗
+

𝑛∑
𝑖=1

(
1 − 𝑧𝑖𝑗

𝑝𝑗
−

𝑧𝑖𝑗

1 − 𝑝𝑗

)
= 0,

𝜕𝑙𝑐𝑜𝑚(𝒑, 𝜶|𝑌com)
𝜕𝛼𝑗

=

𝑛∑
𝑖=1

[log 𝑦𝑖𝑗 − 𝜓(𝛼𝑗)] = 0,

(13)

where 𝜓 denotes the digamma function with 𝜓(𝛼) = 𝑑 log(Γ(𝛼))

𝑑𝛼
=

Γ′(𝛼)

Γ(𝛼)
. For 𝑝𝑗, 𝑗 = 1,… ,𝑚, we have

𝑝𝑗 = 1 −

∑𝑛

𝑖=1
𝑧𝑖𝑗

𝑛 + 𝑠
. (14)

However, there are no closed-form solutions for 𝛼𝑗s and we will use the following Newton–Raphson iterative algorithm
to find the MLEs of 𝜶s.

𝛼
(𝑡+1)
𝑗

= 𝛼
(𝑡)
𝑗
−

[
𝜕𝑙2𝑐𝑜𝑚(𝒑, 𝜶|𝑌com)

𝜕𝛼2
𝑗

]−1
×
𝜕𝑙𝑐𝑜𝑚(𝒑, 𝜶|𝑌com)

𝜕𝛼𝑗
, (15)

where 𝜕𝑙2𝑐𝑜𝑚(𝒑,𝜶|𝑌com)
𝜕𝛼2

𝑗

= −𝑛𝜙(𝛼𝑗) with 𝜙(𝛼𝑗) =
𝑑2 log(Γ(𝛼))

𝑑𝛼2
=

𝑑𝜓(𝛼)

𝑑𝛼
being the trigamma function.

To obtain the E step, we have the following theorem and the proof is presented in Appendix A.2.

Theorem 1. The conditional expectation of log 𝑦𝑖𝑗 given 𝒙 is as follows:

𝐸(log 𝑦𝑗|𝒙) ={
𝜓(𝛼𝑗), if 𝑥𝑗 = 0,

𝜓(𝛼∗
𝕁𝑖
) + log 𝑥𝑗 if 𝑥𝑗 > 0.

(16)

The E-step is to replace the missing data by the following conditional expectations:

𝐸(𝑠) =
𝑛𝑝1⋯𝑝𝑚
1 − 𝑝1⋯𝑝𝑚

𝐸(log 𝑦𝑗|𝒙) = {
𝜓(𝛼𝑗), if 𝑥𝑗 = 0,

𝜓(𝛼∗
𝕁𝑖
) + log 𝑥𝑗 if 𝑥𝑗 > 0.

(17)
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Here, we can consider the initial values of parameters being 𝜶0 = (1, … , 1)⊤ in the EM algorithm. The above steps (i.e.,
E- andM-steps) are repeated until a certain convergence condition is achieved. For instance, if the difference between two
successive log-likelihood values is less than the prespecified value 0.001, the algorithm stops after 100–150 iterations.

3.2 Confidence interval construction

In this section, wewill consider the construction of confidence intervals for target parameters using the bootstrapmethod.
It is noted that the value of 𝑝𝑗 must be restricted within the interval [0,1]. However, Wald-type confidence intervals may
produce upper (or lower) limit larger (or less) than 1 (or 0). It is noteworthy that the MLE of 𝒑 obtained via our proposed
EM algorithm always lies between 0 and 1. As a result, we apply the bootstrap method to create the bootstrap confidence
interval (CI) for any arbitrary function of 𝜽 = (𝒑, 𝜶), denoted by 𝜗 = ℎ(𝜽). Briefly, based on the observations, we can
independently generate {𝐲𝑖}𝑛𝑖=1 with each {𝐲𝑖} is randomly selected from the 𝑛 observations with replacement. Having
obtained 𝑌∗

obs
= {𝒚∗

1
, … , 𝒚∗𝑛}, we can calculate the parameter estimates 𝜽

∗
and get the bootstrap replication 𝜗̂∗ = ℎ(𝜽

∗
).

Independently repeating this process 𝐵 times, we obtain 𝐵 replications {𝜗̂∗𝑔 }𝐵𝑔=1. The bootstrap CI of 𝜗 can be constructed
by [𝜗

L
, 𝜗

U
], where 𝜗

L
and 𝜗

U
are the 100(𝛼/2) and 100(1 − 𝛼/2) percentiles of {𝜗̂∗𝑔 }𝐵𝑔=1, respectively.

4 STATISTICAL INFERENCEWITH COVARIATES

In this section, we will show how to formulate the regressionmodel for the target parameters and how to obtain theMLEs
of the coefficients in the regression model. Let the covariates of each observation be denoted by {𝒗𝑖, 𝒘𝑖}, 𝑖 = 1, … , 𝑛. We
consider the following regression models:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐗𝑖
ind
∼ DCD(𝒑𝑖, 𝜶𝑖), 𝑖 = 1, … , 𝑛,

log

(
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗

)
= 𝒗⊤

𝑖
𝜷𝑗, and

log(𝛼𝑖𝑗) = 𝒘⊤
𝑖
𝜸𝑗, 𝑗 = 1,… ,𝑚.

(18)

Let 𝑠𝑖 denote the number of supplementary 𝟎𝟎 to make the elements in 𝒛𝑖 being independent, where 𝑖 = 1, … , 𝑛. Obvi-
ously, 𝑠1, … , 𝑠𝑛 are missing data with 𝑠𝑖 = 1 being equivalent to 𝑍𝑖1 = ⋯𝑍𝑖𝑚 = 0 and Pr(𝑠𝑖 = 1) = 𝑝𝑖1 ⋯𝑝𝑖𝑚. Thus, the
complete likelihood function is given by

𝐿1(𝜷, 𝜸|𝑌com) = 𝑛∏
𝑖=1

𝑚∏
𝑗=1

⎡⎢⎢⎣𝑝
1−𝑧𝑖𝑗
𝑖𝑗

(1 − 𝑝𝑖𝑗)
𝑧𝑖𝑗 (𝑝𝑖1 ⋯𝑝𝑖𝑚)

𝑠𝑖 ×
e−𝑦𝑖𝑗 𝑦

𝛼𝑖𝑗−1

𝑖𝑗

Γ(𝛼𝑖𝑗)

⎤⎥⎥⎦
=

𝑛∏
𝑖=1

𝑚∏
𝑗=1

⎡⎢⎢⎢⎣
(

e𝒗
⊤
𝑖
𝜷𝑗

1 + e𝒗
⊤
𝑖
𝜷𝑗

)1−𝑧𝑖𝑗(
1

1 + e𝒗
⊤
𝑖
𝜷𝑗

)𝑧𝑖𝑗( 𝑚∏
𝑙=1

e𝒘
⊤
𝑖
𝜷𝑙

1 + e𝒘
⊤
𝑖
𝜷𝑙

)𝑠𝑖

×
e−𝑦𝑖𝑗 𝑦e

𝒘⊤
𝑖
𝜸𝑗−1

𝑖𝑗

Γ(e𝒘
⊤
𝑖
𝜷𝑗 )

⎤⎥⎥⎥⎦. (19)

Or, the log-likelihood function is

𝑙1(𝜷, 𝜸|𝑌com) = 𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
(1 − 𝑧𝑖𝑗 + 𝑠𝑖) log 𝑝𝑖𝑗 + 𝑧𝑖𝑗 log(1 − 𝑝𝑖𝑗)

]
+

𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
−𝑦𝑖𝑗 + (𝛼𝑖𝑗 − 1) log(𝑦𝑖𝑗) − log(Γ(𝛼𝑖𝑗))

]
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=

𝑛∑
𝑖=1

𝑚∑
𝑗=1

{
(1 + 𝑠𝑖)

[
𝒗⊤
𝑖
𝜷𝑗 − log

(
1 + e𝒗

⊤
𝑖
𝜷𝑗
)]

− 𝑧𝑖𝑗𝒗
⊤
𝑖
𝜷𝑗

}

+

𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
−𝑦𝑖𝑗 + (e𝒘

⊤
𝑖
𝜸𝑗 − 1) log(𝑦𝑖𝑗) − log(Γ(e𝒘

⊤
𝑖
𝜸𝑗 ))

]

=

𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
(1 + 𝑠𝑖 − 𝑧𝑖𝑗)𝒗

⊤
𝑖
𝜷𝑗 − (1 + 𝑠𝑖) log

(
1 + e𝒗

⊤
𝑖
𝜷𝑗
)]

+

𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
−𝑦𝑖𝑗 + (e𝒘

⊤
𝑖
𝜸𝑗 − 1) log(𝑦𝑖𝑗) − log(Γ(e𝒘

⊤
𝑖
𝜸𝑗 ))

]
. (20)

The MLEs of the regression coefficients are the solution to the following equations:

𝜕𝑙1(𝜷, 𝜸|𝑌𝑐𝑜𝑚)
𝜕𝜷

= 𝟎𝟎 and
𝜕𝑙1(𝜷, 𝜸|𝑌𝑐𝑜𝑚)

𝜕𝜸
= 𝟎𝟎. (21)

It is obvious that there is no closed-form solution to (21). Here, we use the Newton–Raphson algorithm to calculate the
MLEs, and the iterations are given by

𝜷
(𝑡+1)
𝑗

= 𝜷
(𝑡)
𝑗
−

[
𝜕𝑙2
1
(𝜷, 𝜸|𝑌com)
𝜕𝜷𝑗𝜷

⊤
𝑗

]−1
×
𝜕𝑙1(𝜷, 𝜸|𝑌com)

𝜕𝜷𝑗
and

𝜸
(𝑡+1)
𝑗

= 𝜸
(𝑡)
𝑗
−

[
𝜕𝑙2
1
(𝜷, 𝜸|𝑌com)
𝜕𝜸𝑗𝜸

⊤
𝑗

]−1
×
𝜕𝑙1(𝜷, 𝜸|𝑌com)

𝜕𝜸𝑗
, 𝑗 = 1,… ,𝑚. (22)

The first and negative second partial derivatives of the complete-data log-likelihood function are given by

𝜕𝑙1(𝜷, 𝜸|𝑌com)
𝜕𝜷𝑗

=

𝑛∑
𝑖=1

[(1 − 𝑧𝑖𝑗 − 𝑝𝑖𝑗)𝒗𝑖 + 𝑠𝑖(1 − 𝑝𝑖𝑗)𝒗𝑖]

= 𝐕⊤[(𝟏𝟏 − 𝒛(𝑗) − 𝒑(𝑗)) + (𝟏𝟏 − 𝒑(𝑗))◦𝒔],

𝜕𝑙1(𝜷, 𝜸|𝑌com)
𝜕𝜸𝑗

=

𝑛∑
𝑖=1

[
𝛼𝑖𝑗 log 𝑦𝑖𝑗 − 𝜓(𝛼𝑖𝑗)𝛼𝑖𝑗

]
𝒘𝑖 = 𝐖⊤[𝜶(𝑗)◦(log(𝒚(𝑗)) − 𝜓(𝜶(𝑗)))],

−
𝜕2𝑙1(𝜷, 𝜸|𝑌com)

𝜕𝜷𝑗𝜕𝜷
⊤
𝑗

=

𝑛∑
𝑖=1

[𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)(1 + 𝑠𝑖)𝒗𝑖𝒗
⊤
𝑖
] (23)

= 𝐕⊤diag[𝒑(𝑗)◦(𝟏𝟏 − 𝒑(𝑗))◦(𝟏𝟏 + 𝒔]𝐕

=̂ 𝐉com(𝜷𝑗), and

−
𝜕2𝑙1(𝜷, 𝜸|𝑌com)

𝜕𝜸𝑗𝜕𝜸
⊤
𝑗

=

𝑛∑
𝑖=1

[
𝛼𝑖𝑗 log 𝑦𝑖𝑗 − 𝜙(𝛼𝑖𝑗)𝛼

2
𝑖𝑗
− 𝜓(𝛼𝑖𝑗)𝛼𝑖𝑗

]
𝒘𝑖𝒘

⊤
𝑖

= −𝐖⊤diag
[
(𝜶(𝑗)◦ log(𝒚(𝑗)) − 𝚽(𝜶(𝑗))◦𝜶

2
(𝑗)
− 𝚿(𝜶(𝑗))◦𝜶(𝑗))

]
𝐖

=̂ 𝐉com(𝜸𝑗),
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where

𝐕 = (𝒗1, … , 𝒗𝑛)
⊤, 𝒛(𝑗) = (𝑧1𝑗, … , 𝑧𝑛𝑗)

⊤, 𝒑(𝑗) = (𝑝1𝑗, … , 𝑝𝑛𝑗)
⊤,

𝐖 = (𝒘1,… ,𝒘𝑛)
⊤ 𝒔 = (𝑠1, … , 𝑠𝑛)

⊤, 𝜶(𝑗) = (𝛼1𝑗, … , 𝛼𝑛𝑗)
⊤,

𝒚(𝑗) = (𝑦1𝑗, … , 𝑦𝑛𝑗)
⊤, 𝑗 = 1,… ,𝑚.

(24)

Here, 𝐉com(𝜷𝑖) and 𝐉com(𝜸𝑖) are actually the complete-data Fisher information matrices associated with the parameter
vectors 𝜷𝑗 and 𝜸𝑗 , respectively, which depend on neither the observed data nor the latent/missing data.
To obtain the MLEs of the parameter vectors 𝜷𝑗 and 𝜸𝑗 in the presence of missing data (i.e., 𝑠1, … , 𝑠𝑛), we introduce the

EM algorithm. Briefly, the M-step is to separately calculate the MLEs of 𝜷𝑗 and 𝜸𝑗 via Newton–Raphson algorithms as
follows:

⎧⎪⎨⎪⎩
𝜷
(𝑡+1)
𝑗

= 𝜷
(𝑡)
𝑗
+ 𝐉−1com(𝜷

(𝑡)
𝑗
)𝐕⊤

[
(𝟏𝟏 − 𝒛(𝑗) − 𝒑(𝑗)) + (1 − 𝒑(𝑗))𝒔

]
, and

𝜸
(𝑡+1)
𝑗

= 𝜸
(𝑡)
𝑗
+ 𝐉−1com(𝜸

(𝑡)
𝑖
)𝐖⊤

[
𝜶(𝑗)◦ log(𝒚(𝑗)) − 𝜓(𝜶(𝑗))

]
, 𝑗 = 1, … ,𝑚.

(25)

The E-step is to replace 𝑠𝑖 in (25) by their conditional expectations, that is,

𝐸(𝑠𝑖|𝑌obs, 𝜷, 𝜸) = (
𝑚∏
𝑗=1

𝑝𝑖𝑗

)/(
1 −

𝑚∏
𝑗=1

𝑝𝑖𝑗

)
, (26)

𝐸(log 𝑦𝑖𝑗|𝑌obs, 𝜷, 𝜸) (6)= ⎧⎪⎨⎪⎩
𝜓(𝛼𝑖𝑗), if 𝑥𝑖𝑗 = 0,

𝜓(
∑
𝑗∈𝐽𝑖

𝛼𝑖𝑗) + log 𝑥𝑖𝑗, if 𝑥𝑖𝑗 > 0
, (27)

where

𝑝𝑖𝑗 =
e𝒗

⊤
𝑖
𝜷𝑗

1 + e𝒗
⊤
𝑖
𝜷𝑗

and

𝛼𝑖𝑗 = e𝒘
⊤
𝑖
𝜸𝑗 , 𝑗 = 1, … ,𝑚; 𝑖 = 1, … , 𝑛. (28)

Remark 4. The calculation of coefficients usually works well when the dimension is not large. However, the Newton–
Raphson algorithm may fail to work when the dimension is high due to the Jacobian (i.e., 𝐉𝑐𝑜𝑚(𝜷)) tending to be 0 in
some iterations. Therefore, studies with a large number of covariates should be carefully handled in order to get reliable
estimates. This will be an interesting and practical topic for future research.

5 HYPOTHESIS TEST

Weare usually interested inwhether some of the coefficients/parameters are equal to zero. In this section, wewill consider
the likelihood ratio test (LRT) for the following hypotheses:

𝐻0: 𝜷𝑖1 = ⋯ = 𝜷𝑖𝑟 = 𝜸𝑗1 = ⋯ = 𝜸𝑗𝑡 = 𝟎𝟎 against 𝐻1: not 𝐻0, (29)

where 𝑖1, … , 𝑖𝑟 satisfy 1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝐿1, 1 ≤ 𝑗1 < ⋯ < 𝑗𝑡 ≤ 𝐿2, and 𝐿1 and 𝐿2 are the number of covariates related to
𝐩 and 𝜶, respectively. The LRT statistic is then given by

𝑇 = −2[𝓁(𝜷0, 𝜸̂0|𝑌obs) − 𝓁(𝜷, 𝜸̂|𝑌obs)], (30)
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TABLE 1 MLEs and bootstrap confidence intervals of parameters when𝑚 = 2

𝒏 = 𝟏𝟎𝟎 𝒏 = 𝟑𝟎𝟎 𝒏 = 𝟓𝟎𝟎

True value MLE Width CP MLE Width CP MLE Width CP
𝑝1 = 0.1 0.101 0.128 0.940 0.101 0.075 0.950 0.100 0.058 0.955
𝑝2 = 0.2 0.199 0.163 0.939 0.199 0.094 0.955 0.199 0.073 0.958
𝛼1 = 3 3.131 2.072 0.916 3.049 1.119 0.937 3.024 0.852 0.952
𝛼2 = 4 4.191 2.823 0.910 4.068 1.516 0.930 4.032 1.157 0.946
𝑝1 = 0.1 0.099 0.145 0.935 0.100 0.085 0.935 0.100 0.067 0.950
𝑝2 = 0.4 0.398 0.198 0.960 0.399 0.115 0.941 0.399 0.089 0.945
𝛼1 = 2 2.136 1.711 0.890 2.060 0.889 0.918 2.040 0.682 0.937
𝛼2 = 1 1.053 0.748 0.896 1.025 0.399 0.919 1.017 0.304 0.938

Note: MLE is the mean of the 1000 point estimates via the EM algorithm; width and CP are the average width and coverage proportion of 1000 bootstrap confi-
dence intervals.

where (𝜷0, 𝜸̂0) are the constrained MLEs of (𝜷, 𝜸) under𝐻0 and 𝜷, 𝜸̂ are the unconstrained MLE of (𝜷, 𝜸). Under the null
hypothesis𝐻0, the 𝑝-value is given by

𝑝 = Pr(𝑇 > 𝑡|𝐻′
0
) = Pr(𝜒2(𝜈) > 𝑡), (31)

where 𝑡 is the observed value of 𝑇 and 𝜒2(𝜈) is the chi-square distribution with 𝜈 = 𝑟 + 𝑡 degrees of freedom.

6 SIMULATION STUDIES

To evaluate the performance of the proposed statisticalmethods ofDCD,we first investigate the accuracy of point estimates
and confidence interval estimates for different parameter settings via simulation studies. We then conduct simulation
studies for the regressionmodel. TheMLEs of parameters, standard deviation, and confidence intervals are presented.We
will compare the ZIGDM model proposed by Tang and Chen (2019) with our proposed DCD model. Finally, simulation
results for hypothesis testing are presented. In this section, all statistical computations are implemented in R.

6.1 Accuracy of point and interval estimates

For the𝑚-dimensional compositional data, there are 2𝑚 parameters in the DCD (i.e., the𝑚-dimensional parameter 𝒑 =

(𝑝1, …𝑝𝑚)
⊤ and𝑚-dimensional parameter 𝜶 = (𝛼1, …𝛼𝑚)

⊤).
We consider two cases, 𝑚 = 2 and 𝑚 = 3, to evaluate the accuracy of point and confidence interval estimates. When

𝑚 = 2, we set (𝒑, 𝜶) = (0.1, 0.2, 3, 4) or (0.1,0.4,2,1). When𝑚 = 3, we set (𝒑, 𝜶) = (0.1, 0.3, 0.2, 3, 2, 4) or (0.2,0.2,0.3,2,1,3).
For each parameter configuration, we generate {𝒚𝑖}𝑛𝑖=1 ∼ DCD(𝒑, 𝜶) with 𝑛 = 100, 300, 500, and calculate the MLEs via
the EM algorithm and the 95% bootstrap CIs with a significance level 𝛼 = 0.05 with 𝐵 = 1000. The MLEs of parameters,
the width, and coverage probability of the bootstrap confidence interval are presented in Tables 1 and 2 for 𝑚 = 2 and
𝑚 = 3, respectively.
From Tables 1 and 2, it is clear that the performance of the MLEs is satisfactory in the sense that (i) the bias of the

estimate is negligible; (ii) the confidence width is acceptable; and (iii) the coverage probability is from 0.923 to 0.966,
which is not far from the prespecified value 1 − 0.05 = 0.95. Though 0.923 is a little far from 0.95, the coverage proportion
can be improved by increasing the sample size.

6.2 Numerical results for the regression model

In this subsection, we conduct simulation to evaluate the performance of the proposed regressionmodel for target param-
eters. Here, we set 𝑚 = 3 and the regression coefficient vector is (𝜷1, 𝜷2, 𝜷3, 𝜸1, 𝜸2, 𝜸3) with the true values being set and
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TABLE 2 MLEs and bootstrap confidence intervals of parameters when𝑚 = 3

𝒏 = 𝟏𝟎𝟎 𝒏 = 𝟑𝟎𝟎 𝒏 = 𝟓𝟎𝟎

True value MLE Width CP MLE Width CP MLE Width CP
𝑝1 = 0.1 0.100 0.118 0.936 0.100 0.069 0.940 0.100 0.054 0.953
𝑝2= 0.3 0.302 0.180 0.950 0.300 0.104 0.943 0.300 0.081 0.950
𝑝3= 0.2 0.198 0.157 0.943 0.199 0.091 0.938 0.199 0.071 0.938
𝛼1= 3 3.091 1.528 0.926 3.019 0.840 0.952 3.011 0.646 0.948
𝛼2 = 2 2.046 1.033 0.915 2.010 0.572 0.950 2.007 0.440 0.940
𝛼3 = 4 4.115 2.069 0.924 4.028 1.143 0.943 4.012 0.879 0.939
𝑝1 = 0.2 0.201 0.160 0.953 0.200 0.093 0.948 0.200 0.072 0.955
𝑝2= 0.2 0.198 0.158 0.953 0.199 0.092 0.959 0.199 0.072 0.949
𝑝3= 0.3 0.299 0.180 0.954 0.300 0.105 0.948 0.300 0.081 0.952
𝛼1= 2 2.067 1.088 0.921 2.020 0.595 0.941 2.012 0.456 0.957
𝛼2 = 1 1.031 0.514 0.912 1.012 0.284 0.930 1.007 0.218 0.934
𝛼3 = 3 3.100 1.696 0.925 3.032 0.930 0.939 3.019 0.710 0.945

Note: MLE is the mean of the 1000 point estimates via the EM algorithm; width and CP are the average width and coverage proportion of 1000 bootstrap confi-
dence intervals.

TABLE 3 MLEs for the regression coefficients in the DCD regression model

Parameter True MLE Width CP True MLE Width CP
0.2 0.211 0.587 0.946 −1 −1.019 0.579 0.915

𝜷1 −2 −2.022 0.788 0.950 2 2.030 0.709 0.901
1 1.013 0.594 0.928 −1 −1.012 0.600 0.972
1 1.019 0.581 0.967 3 3.063 1.244 0.967

𝜷2 −1 −1.016 0.603 0.939 1 1.029 0.713 0.958
2 2.031 0.700 0.953 −2 −2.037 0.971 0.944
−1 −1.019 0.721 0.960 −1 −1.016 0.773 0.923

𝜷3 −3 −3.059 1.014 0.912 −2 −2.035 1.019 0.918
3 3.059 1.090 0.936 3 3.047 1.313 0.951
−1 −0.925 0.357 0.878 −1 −0.986 0.364 0.928

𝜸1 −1 −1.012 0.335 0.924 1 0.971 0.338 0.895
2 1.975 0.291 0.886 −2 −1.963 0.385 0.919
−2.5 −2.391 0.312 0.862 −2 −1.992 0.345 0.943

𝜸2 2 1.894 0.316 0.946 0.5 0.478 0.358 0.922
−2 −1.888 0.386 0.872 −1.5 −1.472 0.358 0.947
−1 −0.892 0.377 0.939 −1 −0.993 0.382 0.947

𝜸3 1 0.895 0.373 0.959 2 1.974 0.356 0.936
−2 −1.887 0.341 0.941 −1 −0.973 0.358 0.956

Note: MLE is the mean of the 1000 point estimates via the EM algorithm; width is the mean of the width of the 1000 CIs and CP is the coverage proportion of the
confidence intervals.

reported in Table 3. We generate {𝒙𝑖}500𝑖=1
∼ DCD(𝒑, 𝜶), where 𝑝𝑖𝑗 =

e𝒗⊤𝑖 𝜷𝑗

1+e𝒗⊤𝑖 𝜷𝑗
and 𝛼𝑖𝑗 = e𝒘

⊤
𝑖
𝜷𝑗 . For each observed data 𝒚𝑖 ,

we calculate the MLEs (𝜷1, 𝜷2, 𝜷3, 𝜸̂1, 𝜸̂2, 𝜸̂3) and this process is repeated 1000 times. The mean value, standard deviation
and bootstrap confidence interval are presented in Table 3. According to the results, the MLEs and bootstrap confidence
intervals perform well.
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TABLE 4 The 𝐿2 distances between observations and predictions: 𝑑1 and 𝑑2
𝝅𝟏 𝝅𝟐 𝝅𝟑 𝝅𝟒

Parameters 𝒅𝟏 𝒅𝟐 𝒅𝟏 𝒅𝟐 𝒅𝟏 𝒅𝟐 𝒅𝟏 𝒅𝟐

(𝐚1, 𝐛1) 𝑛=100 20.26 20.41 21.50 22.06 20.50 20.40 25.57 27.01
n=300 61.41 61.44 65.31 66.60 62.84 61.61 77.08 81.43
n=500 102.76 102.34 108.60 110.96 104.80 103.00 128.87 135.42

(𝐚2, 𝐛2) 𝑛=100 16.60 16.11 26.66 26.37 36.53 34.79 31.68 32.87
𝑛=300 49.94 48.44 81.30 79.34 110.94 105.00 96.05 99.18
𝑛=500 83.07 80.69 135.23 131.94 184.80 175.47 159.84 165.67

(𝐚3, 𝐛3) 𝑛=100 14.18 13.79 26.80 26.78 39.48 38.82 32.54 34.27
𝑛=300 42.66 41.56 81.20 81.19 119.85 117.52 98.16 103.76
𝑛=500 71.06 69.04 134.98 135.03 200.03 196.08 163.54 172.35

TABLE 5 The 𝐿2 distances between observations and predictions: 𝑑3 and 𝑑4
𝐩𝟏 𝐩𝟐 𝐩𝟑 𝐩𝟒

Parameters 𝒅𝟑 𝒅𝟒 𝒅𝟑 𝒅𝟒 𝒅𝟑 𝒅𝟒 𝒅𝟑 𝒅𝟒

𝜶1 𝑛=100 40.86 38.72 26.08 21.35 28.90 26.17 30.54 29.37
n=300 122.35 116.52 78.82 64.76 87.35 79.20 92.61 89.08
n=500 204.86 195.15 131.57 107.93 145.43 131.91 154.36 148.83

𝜶2 𝑛=100 56.19 52.03 23.50 21.80 36.75 34.89 50.54 50.60
𝑛=300 169.76 156.88 70.18 65.42 110.42 104.67 152.10 152.17
𝑛=500 283.58 261.86 117.68 109.50 184.64 174.48 254.46 254.46

𝜶3 𝑛=100 52.21 50.98 37.92 31.52 44.45 41.45 34.01 31.12
𝑛=300 157.61 153.92 113.95 94.95 132.90 124.44 103.05 94.36
𝑛=500 263.51 257.16 190.19 158.34 223.38 207.44 172.41 157.27

6.3 The sensitivity and robustness of the model

In this subsection, we will investigate the sensitivity and robustness of our model and compare the performance between
the DCD and ZIGDMmodels. Let 𝐮 = (𝑢1, … , 𝑢𝑚)

⊤be the observation in the ZIGDMmodel. It is easy to see that theMLEs
for the parameters based on 𝐮 and 𝐮′ = 𝑐𝐮 with 𝑐 being any nonzero constant are different under the ZIGDM model.
However, theMLE for the parameters under our proposed DCDmodel will be invariant for constant multiplication. From
this perspective, our model is more robust than the ZIGDMmodel. Next, we will consider the sensitivity of our model. For
this purpose, we generate the data from the ZIGDMmodel and compare the 𝐿2 distance between the observation and the
predictions using the DCD model and ZIGDM model. We set sample size 𝑛 = 100, 300, 500 and parameters being 𝝅1 =
(0, 0.1)⊤, 𝝅2 = (0.1, 0.1)⊤, 𝝅3 = (0.2, 0)⊤, 𝝅4 = (0.2, 0.3)⊤; 𝐚1 = (2, 3)⊤, 𝐛1 = (5, 3)⊤, 𝐚2 = (3, 3)⊤, 𝐛2 = (2, 4)⊤, 𝐚3 = (4, 1)⊤, and
𝐛3 = (2, 2)⊤. We generate the data {𝐮𝑖}𝑛𝑖=1 with 𝐮𝑖 = (𝑢𝑖1, … , 𝑢𝑖𝑚)

⊤ and each 𝐮𝑖 following the ZIGDM distribution with
𝑁 = 𝑁1 = ⋯ = 𝑁𝑛 = 100. That is 𝐮𝑖 ∼ ZIGDM(𝝅, 𝐚, 𝐛). For {𝐮𝑖}𝑛𝑖=1, we obtain the MLEs of the parameters (𝝅̂, 𝐚̂, 𝐛̂), and
then calculate the predictions of the {𝐮̂(1)

𝑖
}𝑛
𝑖=1

by applying the ZIGDM model. Similarly, the predictions of {𝐮̂(2)
𝑖
}𝑛
𝑖=1

are
obtained based on the DCD model. The 𝐿2 distance between observations and predictions (denoted as 𝑑1 and 𝑑2) are
presented in Table 4, where 𝑑𝑘 =

∑𝑛

𝑖=1
(𝐮𝑖 − 𝐮̂

(𝑘)
𝑖
)⊤(𝐮𝑖 − 𝐮̂

(𝑘)
𝑖
)∕𝑁2 with 𝑘 = 1 and 2.

As the data are generated from the DMmodel, 𝑑1 is expected to be less than 𝑑2. From Table 4, 𝑑1 is generally less than
𝑑2. It is noticed that the DCD model sometimes fits better than the ZIDGM model. It suggests that our proposed DCD
model is robust.
Next, we generate the data from DCD distribution with 𝑛 = 100, 300, 500 and parameters being 𝐩1 = (0.4, 0.1, 0.3)⊤,

𝐩2 = (0, 0.1, 0.2)⊤, 𝐩3 = (0.2, 0, 0.3)⊤, 𝐩4 = (0.3, 0.2, 0.1)⊤; 𝜶1 = (4, 5, 6)⊤, 𝜶2 = (3, 2, 1),⊤ and 𝜶3 = (2, 2, 5)⊤. We obtain the
MLEs based on the ZIGDMmodel and then calculate the 𝐿2 distance between the predictions and observed data (denoted
as 𝑑3). Since the ZIGDMmodel does not work for DCD data, we assume𝑁1 = ⋯ = 𝑁𝑚 = 100. Similarly, we can get the 𝐿2
distance (denoted as 𝑑4) using the DCDmodel. We report 𝑑3 and 𝑑4 in Table 5. As expected, 𝑑3 should be generally larger
than 𝑑4. The results in Table 5 support that the performance of the DCDmodel is generally better than the ZIGDMmodel.
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TABLE 6 The type I error rates for the LRT

Type I error 𝒏 = 𝟓𝟎 𝒏 = 𝟏𝟎𝟎 𝒏 = 𝟐𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎

Case I 0.057 0.073 0.057 0.045 0.056
Case II 0.100 0.058 0.040 0.053 0.050
Case III 0.077 0.056 0.047 0.047 0.044

TABLE 7 The simulated powers for the LRT

Type I error 𝒏 = 𝟓𝟎 𝒏 = 𝟏𝟎𝟎 𝒏 = 𝟐𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎

Case I 0.692 0.955 1.000 1.000 1.000
Case II 1.000 1.000 1.000 1.000 1.000
Case III 1.000 1.000 1.000 1.000 1.000

6.4 Hypothesis testing

In this subsection, we evaluate the performance of our proposed LRT. We set 𝜷𝑗 = (𝛽𝑗1, 𝛽𝑗2, 𝛽𝑗3)
⊤ and 𝜸𝑗 = (𝛾𝑗1, 𝛾𝑗2, 𝛾𝑗3)

⊤

for 𝑗 = 1, 2, 3. According to Equation (8), we first consider Case I:

𝐻0: 𝜷1 = 𝜷2 = 𝜷3 = 0 against 𝐻1:𝐻0 is not true. (32)

We generate the data {𝒙𝑖}
𝑛
𝑖=1

∼ DCD(𝒑, 𝜶) for 1000 times, where 𝜷1 = 𝜷2 = 𝜷3 = 𝟎𝟎 and 𝜸1 = (−1,−1, 2)⊤, 𝜸2 =
(−2.5, 2, −2)⊤, and 𝜸3 = (−1, 1, −2)⊤. Second, we consider Case II:

𝐻0: 𝜸1 = 𝜸2 = 𝜸3 = 𝟎𝟎 against 𝐻1:𝐻0 is not true. (33)

We generate the data with 𝜸′
1
= 𝜸′

2
= 𝜸′

3
= 𝟎𝟎 and 𝜷′

1
= (0.2, −2, 1)⊤, 𝜷′

2
= (0.3, −1, 0.5)⊤, and 𝜷′

3
= (−1,−3, 3)⊤. Third, we

consider Case III:

𝐻0: 𝜷1 = 𝜷2 = 𝜷3 = 𝜸1 = 𝜸2 = 𝜸3 = 0 against 𝐻1:𝐻0 is not true. (34)

We generate data with parameters being 𝜷1 = 𝜷2 = 𝜷3 = 𝜸1 = 𝜸2 = 𝜸3 = 𝟎𝟎. Applying the LRT in Section 5, we record the
proportions of rejection of the above three cases with the sample size being 𝑛 = 50, 𝑛 = 100, 𝑛 = 200, 𝑛 = 500, 𝑛 = 1000.
The simulated type I error rate is reported in Table 6. It is clearly that the performance of our LRT is fairly good even when
the sample size is small. When the sample size is larger than 200, the simulated type I error rate is close to the prespecified
significance level (i.e., 0.05).
Next, we investigate the power of the LRT. We generate the data from {𝒙𝑖}

𝑛
𝑖=1

∼ DCD(𝒑, 𝜶) with parameters being
(𝟎𝟎, 𝜷′

2
, 𝟎𝟎, 𝟎𝟎, 𝜸2, 𝟎𝟎). The number of rejections according to the above three cases is recorded in Table 7. As expected, the

simulated power increases with the sample size.

7 THE PERCENTAGE OF CHROMOSOME DATA BY THE FISH TEST

In this section, we revisit the FISH test dataset described in Section 1. We here apply the DCD to analyze the FISH data of
chromosome 16. First, we analyze the dataset with no covariate, and the results are reported in Table 8.
As we can see from Table 8, the first component in the composition dataset (i.e., the normal cell) is all nonzeros, 𝑝̂1 = 0

means that the probability of zero observation for the normal cell is 0. The probability of zero observations of the triple
and tetraploid cell is estimated to be 0.784 and 0.980, respectively. That is, for the chromosome 16 the triple cell can be
found with 20% percentage while tetraploid can be found with only 2% percentage. For the base part of the compositional
data, the estimate corresponding to the triple cell is larger than those of the normal and tetraploid cells; that is, 𝛼̂1 = 12.17,
𝛼̂1 = 38.52, and 𝛼̂3 = 6.12. In other words, once there is abnormal chromosome in the cell the triple is more frequent than
the other two.
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TABLE 8 MLEs and 95% bootstrap CIs of parameters for the parameters of the FISH data

Parameter MLE Mean Median 95% Bootstrap CI
𝑝1 0.000 0.000 0.000 [ 0.000, 0.000]
𝑝2 0.784 0.774 0.765 [0.667, 0.882]
𝑝3 0.980 0.969 0.980 [0.922, 0.980]
𝛼1 12.170 10.860 10.435 [6.661, 17.288]
𝛼2 38.516 33.009 32.074 [17.123, 54.360]
𝛼3 6.117 5.359 5.202 [3.146, 8.399]

TABLE 9 MLEs and 95% bootstrap CIs of parameters for the coefficients in the regression model of the FISH data

Parameter Coefficients |cMLE Standard deviation 95% Bootstrap CI
𝛽1 Intercept −12.985 2.912 [−19.302, −8.034]

Age 1.019 1.840 [−2.419, 4.221]
𝛽2 Intercept 1.293 0.371 [0.663, 2.076]

Age 0.080 0.388 [−0.680, 0.942]
𝛽3 Intercept 4.192 0.459 [2.779, 4.448]

Age 0.796 0.316 [0.458, 1.753]
𝛾1 Intercept 3.116 0.559 [1.238, 3.798]

Age 1.003 0.992 [−2.461, 2.082]
𝛾2 Intercept 4.270 0.652 [1.876, 4.904]

Age 1.178 1.036 [−2.534, 2.234]
𝛾3 Intercept 1.234 0.329 [ 0.729, 1.803]

Age − 0.615 0.150 [−0.925, −0.366]

Due to the assumption of the normal distribution for covariates in the regression model, we make the standardization
for covariate age in the FISH dataset. Furthermore, we apply the regression model to investigate the relationship between
parameters (𝒑, 𝜶) and the age of gravida. The MLEs of the coefficients are reported in Table 9. We apply the LRT to the
hypotheses listed in Section 5, and the null hypothesis is rejected at 𝛼 = 0.05. Therefore, we have reason to believe that
age is a significant variable.

8 DISCUSSION

In this article, we consider a new framework for analyzing compositional data with zero entries based on SR. In partic-
ular, a new distribution, namely the DCD, is developed to accommodate the possible essential-zero feature in composi-
tional data (i.e., some components are completely absent). In our proposed distribution, the elements in the base vector
are assumed to follow independent gamma distributions. Therefore, any positive random variable can be adopted as an
element of the base vector (e.g., the inverse Gaussian and chi-square random variables), and different base vectors will
correspond to a different relationship among elements. It is of research and practical interests to relax the assumption of
independence among the components in the base vector. Besides, regression modeling for high-dimensional covariates is
also an interesting and necessary topic as the Jacobi tends to be zero when the dimension of covariates is high.
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APPENDIX
Before we present the proofs, we first introduce the following two lemmas.
Lemma 1. Let 𝐗 = (𝑋1, … , 𝑋𝑚)

⊤ follow the composition Dirichlet distribution DCD(𝒑, 𝜶), 𝐘 be the base vector with 𝑌𝑖
ind
∼

Γ(𝛼𝑖, 1) and𝐙 be an indicator vector with𝐘 ⊥⊥ 𝐙. If 𝑠 =
𝑚∑
𝑖=1

𝑍𝑖𝑌𝑖 , then the joint probability density function of (𝐗, 𝑠) conditioned

on 𝐙 is given by

𝑓(𝒙, 𝑠|𝒛) = 𝑓(𝒙𝕁, 𝑠) = 𝑠𝛼−1e−𝑠 ×
⎛⎜⎜⎝
∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)

⎞⎟⎟⎠, (A.1)

where 𝕁 is the subset of the index with 𝐗 being positive; that is, we have 𝑥𝑗 > 0 for 𝑗 ∈ 𝕁, 𝑥𝑗 = 0 for 𝑗 ∉ 𝕁 and
𝑚∑
𝑗=1

𝑋𝑗 = 1.

Proof. Without loss of generality, we assume that the first 𝑟 elements of 𝐗 is positive; that is, 𝕁 = {1, 2, … , 𝑟}. The joint
probability density function of (𝑌1, … , 𝑌𝑟) is then given by

𝑓(𝑦1, … , 𝑦𝑟) =

𝑟∏
𝑗=1

𝑦
𝛼𝑗−1

𝑗
e−𝑦𝑗

Γ(𝛼𝑗)
. (A.2)

Next, we consider the following transformation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑠 =
𝑟∑
𝑖=1

𝑌𝑖.

𝑋1 = 𝑌1∕𝑠,

⋮

𝑋𝑟−1 = 𝑌𝑟−1∕𝑠.

⟺

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑌1 = 𝑠𝑋1,

⋮

𝑌𝑟−1 = 𝑠𝑋𝑟−1,

𝑌𝑟 = 𝑠(1 −
𝑟−1∑
𝑖=1

𝑋𝑖).

(A.3)

Obviously,𝐘𝑟 = (𝑌1, … , 𝑌𝑟)
⊤ and (𝑠, 𝐗𝑟−1)

⊤ = (𝑠, 𝑋1, … , 𝑋𝑟−1)
⊤ are one-to-one transformations. The Jacobian determi-

nant from 𝐘𝑟 to (𝑠, 𝐗𝑟−1) is given by

𝐽(𝐲𝑟|𝑠, 𝐗𝑟−1) =

||||||||||||||

𝑋1 𝑠 0 ⋯ 0

𝑋2 0 𝑠 ⋯ 0

⋮ 0 0 ⋱ 0

𝑋𝑟−1 0 0 ⋯ 𝑠

1 −
𝑟−1∑
𝑖=1

𝑋𝑖 −𝑠 −𝑠 ⋯ −𝑠

||||||||||||||
=

|||||||||||

𝑋1 𝑠 0 ⋯ 0

𝑋2 0 𝑠 ⋯ 0

⋮ 0 0 ⋱ 0

𝑋𝑟−1 0 0 ⋯ 𝑠

1 0 0 ⋯ 0

|||||||||||
= 𝑠𝑟−1. (A.4)

https://doi.org/10.1002/bimj.202000334
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The probability density function of (𝑠, 𝐗𝑟−1) given 𝐙 is then given by

𝑓(𝑠, 𝒙𝑟−1|𝒛) = 𝑓(𝐲𝑟)𝐽(𝐲𝑟|𝑠, 𝒙𝑟−1) = 𝑠𝑟−1
𝑟∏

𝑗=1

(𝑠𝑥𝑗)
𝛼𝑗−1e−𝑠𝑥𝑗

Γ(𝛼𝑗)
= 𝑠𝛼

∗
𝕁
−1e−𝑠

𝑟∏
𝑗=1

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)
, (A.5)

where 𝛼∗
𝕁
=

𝑟∑
𝑗=1

𝛼𝑗, 𝑥𝑟 = 1 −
𝑟−1∑
𝑖=1

𝑥𝑖 . □

Lemma 2. Let 𝐗 = (𝑋1, … , 𝑋𝑚)
⊤ follow the composition Dirichlet distribution DCD(𝒑, 𝜶), 𝐘 be the base vector with 𝑌𝑖

ind
∼

Γ(𝛼𝑖, 1) and 𝐙 be an indicator vector with𝐘 ⊥⊥ 𝐙. If 𝑠 =
𝑚∑
𝑖=1

𝑍𝑖𝑌𝑖 , then the probability density function of𝐗 conditioned on 𝐙 is

given by

𝑓(𝒙|𝒛) = 𝑓(𝒙𝕁) = Γ(𝛼∗
𝕁
)
∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)
= Γ(𝛼∗

𝕁
)
∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)
, (A.6)

where 𝛼∗
𝕁
=

𝑟∑
𝑗=1

𝛼𝑗 .

Proof.

𝑓(𝒙𝕁) = ∫
+∞

0

𝑓(𝑠, 𝒙𝕁)𝑑𝑠 = ∫
+∞

0

𝑠𝛼
∗
𝕁
−1e−𝑠

∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)
𝑑𝑠 = Γ(𝛼∗

𝕁
)
∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)
. (A.7)

□

A.1 Proof of the pdf of DCD
The probability density function of the DCD is

𝑓(𝒙) =

𝑚∏
𝑗=1

𝑝
1−𝑧𝑗
𝑗

(1 − 𝑝𝑗)
𝑧𝑗

1 − 𝑝1⋯𝑝𝑚
×

⎡⎢⎢⎣
Γ(𝛼∗

𝕁𝑖
)∏

𝑗∈𝕁
Γ(𝛼𝑗)

∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

⎤⎥⎥⎦. (A.8)

Proof. The pdf of the DCD can be derived via its SR; that is, 𝐗
d
=

𝐙◦𝐘

(𝐙,𝐘)
. Actually, the indicator vector 𝒛 is derived

from 𝒙 by 𝑧𝑗 = 𝐼(𝑥𝑗 > 0), 𝑗 = 1,… ,𝑚. It is clear that the indicator vector 𝐙 is determined by the compositional data 𝐗,
the conditional mass function of 𝐙 is Pr(𝑍1 = 𝑧1, … , 𝑍𝑚 = 𝑧𝑚|𝒙) = 𝐼(𝑧1 = 𝐼(𝑥1 > 0), … , 𝑧𝑚 = 𝐼(𝑧𝑚 > 0)). Thus we have
𝑓(𝒙, 𝒛) = 𝑓(𝒛|𝒙)𝑓(𝒙) = 𝑓(𝒙)

Therefore, the probability density function (pdf) of DCD is

𝑓(𝒙) = 𝑓(𝒙, 𝒛) = 𝑓(𝒙|𝒛)𝑓(𝒛) = Γ(𝛼∗
𝕁𝑖
)∏

𝑗∈𝕁
Γ(𝛼𝑗)

∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗
×

∏𝑚

𝑗=1
(1 − 𝑝𝑗)

𝑧𝑗𝑝
1−𝑧𝑗
𝑗

1 − 𝑝1⋯𝑝𝑚
. (A.9)

□

A.2 Proof of Theorem 1
Lemma 3. Let 𝐗 = (𝑋1, … , 𝑋𝑚)

⊤ follow the composition Dirichlet distribution DCD(𝒑, 𝜶), 𝐘 be the base vector with 𝑌𝑖
ind
∼

Γ(𝛼𝑖, 1) and 𝐙 be an indicator vector with 𝐘 ⊥⊥ 𝐙. If 𝑠 =
𝑚∑
𝑖=1

𝑍𝑖𝑌𝑖 , then the joint probability density function of (𝑌𝑗, 𝐗𝕁) is given
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as follows:

𝑓(𝑦𝑗, 𝒙𝕁) = 𝑓(𝑠, 𝒙𝕁)
1

𝑥𝑗
=

1

𝑥𝑗
𝑠𝛼

∗
𝕁
−1e−𝑠

∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)
, (A.10)

where 𝑗 ∈ 𝕁, 𝛼∗
𝕁
=

𝑟∑
𝑗=1

𝛼𝑗 , 𝑠 = 𝑦𝑗∕𝑥𝑗 .

Proof. The proof follows immediately by using the transformation 𝑠 = 𝑦𝑗∕𝑥𝑗 . □

Lemma 4. Let 𝐗 = (𝑋1, … , 𝑋𝑚)
⊤ follow the composition Dirichlet distribution DCD(𝒑, 𝜶), 𝐘 be the base vector with 𝑌𝑖

ind
∼

Γ(𝛼𝑖, 1) and 𝐙 be an indicator vector with 𝐘 ⊥⊥ 𝐙. If 𝑠 =
𝑚∑
𝑖=1

𝑍𝑖𝑌𝑖 , then we have

𝐸(log 𝑦𝑗|𝑥𝑗 > 0) = 𝜓(𝛼∗
𝕁𝑖
) + log 𝑥𝑗, (A.11)

where 𝕁 is the subset of the index with 𝒙 being positive; that is, for any 𝑗 ∈ 𝕁, we have 𝑥𝑗 > 0; otherwise 𝑥𝑗 = 0.

Proof.

𝐸(log 𝑦𝑗|𝒙) = ∫
+∞

0

log 𝑦𝑗𝑓(𝑦𝑗|𝒙)𝑑𝑦𝑗 = ∫
+∞

0

log 𝑦𝑗 ×

1

𝑥𝑗
𝑠𝛼

∗
𝕁
−1e−𝑠

∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)

Γ(𝛼∗
𝕁
)
∏
𝑗∈𝕁

𝑥
𝛼𝑗−1

𝑗

Γ(𝛼𝑗)

𝑑𝑦𝑗

(2)
= ∫

+∞

0

(log 𝑠 + log 𝑥𝑗)e−𝑠𝑠𝛼
∗
𝕁
−1

Γ(𝛼∗
𝕁
)

𝑑𝑠

= ∫
+∞

0

(log 𝑠) × e−𝑠𝑠𝛼
∗
𝕁
−1

Γ(𝛼∗
𝕁
)

𝑑𝑠 + ∫
+∞

0

log 𝑥𝑗 ×
e−𝑠𝑠𝛼

∗
𝕁
−1

Γ(𝛼∗
𝕁
)
𝑑𝑠

= 𝜓(𝛼∗
𝕁
) + log 𝑥𝑗. (A.12)

Note: We make the transformation 𝑦𝑗 = 𝑠𝑥𝑗 above. □

Lemma 5. Let 𝐗 = (𝑋1, … , 𝑋𝑚)
⊤ follow the composition Dirichlet distribution DCD(𝒑, 𝜶), 𝐘 be the base vector with 𝑌𝑖

ind
∼

Γ(𝛼𝑖, 1) and 𝐙 be an indicator vector with 𝑍𝑖 ∼ Bernoulli(1 − 𝑝𝑖) and 𝐘 ⊥⊥ 𝐙. If 𝑠 =
𝑚∑
𝑖=1

𝑍𝑖𝑌𝑖 , then we have

𝐸(log 𝑦𝑗|𝑥𝑗 = 0) = 𝜓(𝛼𝑗). (A.13)

Proof.

𝐸(log 𝑦𝑗|𝑥𝑗 = 0) = 𝐸(log 𝑦𝑗|𝑧𝑗 = 0) = 𝐸(log 𝑦𝑗)

= ∫
+∞

0

log 𝑦𝑗𝑓(𝑦𝑗)𝑑𝑦𝑗 = ∫
+∞

0

log 𝑦𝑗 ×
𝑦
𝛼𝑗−1

𝑗
e−𝑦𝑗

Γ(𝛼𝑗)
𝑑𝑦𝑗

= 𝜓(𝛼𝑗). (A.14)
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Based on the results in Lemmas 4 and 5, Theorem 1 follows immediately with

𝐸(log 𝑦𝑗|𝒙) ={
𝜓(𝛼𝑗), if 𝑥𝑗 = 0,

𝜓(𝛼∗
𝕁𝑖
) + log 𝑥𝑗 if 𝑥𝑖𝑗 > 0.

(A.15)

□
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