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Abstract
Introduction The study of lipoprotein metabolism at the population level can provide valuable information for the organisa-
tion of lipoprotein related processes in the body. To use this information towards interventional hypotheses generation and 
testing, we need to be able to identify the mechanistic connections among the large number of observed correlations between 
the measured components of the system.
Objectives To use population level metabolomics information to gain insight on their biochemical networks and metabolism.
Methods Genetic and metabolomics information for 230 metabolic measures, predominately lipoprotein related, from a 
targeted nuclear magnetic resonance approach, in two samples of an established European cohort, totalling more than 9400 
individuals analysed using phenotypic and genetic correlations, as well as Mendelian Randomisation.
Results More than 20,500 phenotypic correlations were identified in the data, with almost 2000 also showing evidence of 
strong genetic correlation. Mendelian randomisation, provided evidence for a causal effect between 9496 pairs of metabolic 
measures, mainly between lipoprotein traits. The results provide insights on the organisation of lipoproteins in three distinct 
classes, the heterogeneity between HDL particles, and the association, or lack of, between CLA, glycolysis markers, such as 
glucose and citrate, and glycoproteins with lipids subfractions. Two examples for the use of the approach in systems biology 
of lipoproteins are presented.
Conclusions Genetic variation can be used to infer the underlying mechanisms for the associations between lipoproteins for 
hypothesis generation and confirmation, and, together with biological information, to map complex biological processes.
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1 Introduction

Metabolomics is the study of the quantitative complement 
of small molecules in biological systems. The metabolic 
measures obtained are mostly organic compounds involved 
in the biochemical reactions of the organism and represent 
the final stage of the flow of information from the genome 
to the biological phenotype (Dunn et al., 2011a). One of 
the main characteristics of metabolomics approaches is 
their ability to obtain multiple measures from a biological 

pathway, representing its intermediate steps and chemi-
cal compounds involved. As expected, these measures are 
usually tightly correlated with each other and as metabolic 
pathways intersect, these correlations can be extensive 
among metabolomics data (Camacho et al., 2005). For lipo-
proteins measures the interactions of the particles during 
lipids metabolism give rise to a large number of correlations 
that complicate our understanding of their impact on health 
(Holmes et al., 2015). Understanding the nature of these cor-
relations and the flow of information between them leading 
to the observed phenotype is a challenging problem and the 
focus of systems studies (Dunn et al., 2011b). Distinguishing 
between lipoprotein measures belonging in the same pro-
cess and those that are correlated due to other reasons has 
implication on our understanding of the underlying causes 
for disease and the identification of relevant interventional 
strategies (Steuer, 2006).
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In contrast to phenotypic correlations between biologi-
cal measures, genetic correlations suggest the presence of a 
partially shared underlying genetic mechanism (Bulik-Sul-
livan et al., 2015a; Lee et al., 2012). Genetically correlated 
metabolic measures can be considered as taking part in the 
same biological process, though each one might also affect 
other pathways and processes in the system. In addition to 
the existence of common mechanisms between metabolic 
measures, we are also interested in the flow of information 
between them. Mendelian randomization (MR) is a popular 
method able to assess the direction of effect between two 
correlated traits (Davey Smith & Hemani, 2014). In this 
case, genetic polymorphisms are used as instruments to esti-
mate the causal effect between the two measures and identify 
pairs of metabolic traits that are part of the same chain of 
effects from those correlated through other mechanisms.

Here, using a well characterised European population 
cohort, of children and their mothers, and metabolomics 
measures from a targeted NMR approach focusing mainly 
on lipoproteins, fatty acids, and amino acids, I aimed to 
elucidate the relationships between the available metabolic 
measures. Understanding of the relationships between the 
metabolic measures can then be used to test hypotheses.

2  Methods

2.1  Study population

The Avon Longitudinal Study of Parents and Children 
(ALSPAC) is a population based, prospective birth cohort 
(www. bris. ac. uk/ alspac). The study recruited 14,541 preg-
nancies and has since followed participants in a number of 
phases during development and maturity. Full details of the 
study have been published previously (Boyd et al., 2013; 
Fraser et al., 2013). Here we use the unrelated offspring of 
this study at age 7, as the discovery sample, and mothers 
from the first focus on mothers sample collection, as rep-
lication. The study website contains details of all the data 
that is available through a fully searchable data dictionary 
http:// www. bris. ac. uk/ alspac/ resea rchers/ data- access/ data- 
dicti onary/. Ethical approval for the study was obtained from 
the ALSPAC Ethics and Law Committee and from the UK 
NHS National Health Service Local Research Ethics Com-
mittees. Participants have provided informed consent for the 
use of the data.

2.2  Serum NMR metabolomics

A high-throughput serum nuclear magnetic resonance 
(NMR) metabolomics platform was used to quantify 230 
metabolic measures representing a broad molecular signa-
ture of systemic metabolism (Soininen et al., 2015). The 

measured set covers multiple metabolic pathways, includ-
ing lipoprotein lipids and subclasses, fatty acids and fatty 
acid composition, as well as amino acids and glycolysis 
precursors. This applied NMR-based metabolic profiling 
platform has recently been used in various epidemiological 
and genetic studies (Beaney et al., 2016; Drenos et al., 2016; 
Würtz et al., 2016a). Applications of this high-through-
put metabolomics platform has been reviewed (Soininen 
et al., 2015) and details of the experimentation have been 
described elsewhere (Soininen et al., 2009). Previous work 
(Würtz et al., 2017) has shown excellent correlation between 
the NMR determined measures and their respective clini-
cally assessed values.

For 5645 of the ALSPAC young participants, 48.5% 
females, metabolic measures were obtained from serum 
under non-fasting conditions. For 4530 ALSPAC mothers, 
at a median age of 48 years (IQR 45-51), the measures were 
obtained from overnight, or at least 6 h, fasted samples.

2.3  Genotyping

The ALSPAC children were genotyped using the Illumina 
HumanHap610 array. The ALSAPC mothers were geno-
typed with the Illumina HumanHap550 array. Standard 
metrics were employed to assess the quality of these data: 
individual call rate > 97%; heterozygosity threshold: 0.34; 
minor allele frequency of < 0.005%; SNP call rate of > 97%; 
and Hardy–Weinberg equilibrium (HWE) (p < 5 ×  10−7) 
(Bønnelykke et al., 2013).

2.4  Statistical analysis

The metabolomics measures were transformed using a 
rank-based inverse normal transformation (Blom, 1958). 
The SNPs effects on the metabolites were obtained through 
PLINK (Purcell et al., 2007) using a linear model adjusted 
for age or sex, as appropriate. Independent SNPs were 
obtained using a pairwise linkage disequilibrium of  r2 < 0.01 
per chromosome through PLINK. When a pair of siblings 
was present in the data, one of them was randomly removed 
from the sample. The phenotypic correlation between meta-
bolic measures was represented by the Pearson’s correlation 
coefficient of their transformed values. Pearson’s correla-
tion coefficients and their respective p-values were estimated 
through the cor.test in R (Team, 2008). The genetic cor-
relation was estimated through (1) the LD score regression 
(Bulik-Sullivan et al., 2015b), as found in LD Hub (Zheng 
et  al., 2017), for measures with previous genome wide 
association study (GWAS) results available, (2) Bivari-
ate REML on individual level data, for measures with no 
published GWAS (Lee et al., 2012), and (3) approximated 
by the inverse variance weighted regression between the 
normalised beta coefficients of the independent SNP-trait 

http://www.bris.ac.uk/alspac
http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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associations, for a small number of pairs where both LD 
score and GCTA algorithms failed to converge. Principal 
component analysis (PCA) was performed through the caret 
package in R (Kuhn, 2008). Only independent SNPs with 
an effect > 3 standard deviations from zero were used for 
Mendelian randomisation analysis. We used individual SNPs 
estimates in the weighted inverse variance and MR-Egger 
methods, as described elsewhere (Bowden et al., 2015), to 
obtain the causal effects between the traits and test for plei-
otropy. The tree and network of lipoproteins characteristics 
presented were constructed through igraph in R (Csardi & 
Nepusz, 2006). The rooted tree was based on an algorithm 
starting with the largest particle and selecting the next par-
ticle based on the -log of the association p-value. P-values 
higher than the threshold were considered as equal to 1. All 
plots were constructed in R using either the corrplot (Simko, 
2016) or ggplot2 packages (Wickham, 2016).

3  Results

3.1  Samples characteristics

In the Avon Longitudinal Study of Parents and Children 
(ALSPAC), excluding all subjects with missing values, 
resulted in 5353 unrelated children at age 7 and 4120 moth-
ers with available metabolomics measurements. In the 
ALSPAC offspring, principal component analysis showed 
that 44 principal components (PCs) accounted for 0.99 of 
the metabolic measures variance. The corresponding figure 
in the mothers sample was 0.98. Based on this, our Bonfer-
roni adjusted p-value threshold for the pairwise correlations 
was set at 5.28 ×  10–5 for correlation tests and 2.64 ×  10–5 
for regression based tests. In total 465,740 genotyped SNPs 
passed the quality control criteria in the two samples, with 
12,516 SNPs found to be independent (LD  r2 < 0.01) and 
used to estimate the correlation of SNP effects between the 
traits and in selecting MR instruments.

3.2  Phenotypic correlations

Of the 26,335 Pearson’s correlation coefficients tested 
between the metabolic measures, 23,032 showed evidence 
of phenotypic association. A table showing all correlation 
coefficients and their respective p-values can be found in 
the Supplementary material (Table S1) and plotted in Fig. 
S1. When the lipoprotein measures were ordered by size, 
as the current understanding links size to function, four 
clusters of high correlation were evident in their concentra-
tion measures, two major and two minor. The first major 
cluster included Chylomicrons and extra-large very low 
density lipoprotein (VLDL) and extended to very-large, 
large, medium and small VLDL particles. The second major 

cluster included very-small VLDL, intermediate density 
lipoprotein (IDL) and the various sizes of low density lipo-
protein (LDL). The majority of measures were associated 
across the two clusters except triglycerides and free choles-
terol measures. Both of the minor clusters of strong correla-
tions were in the high-density lipoprotein (HDL) measures, 
with one cluster including particles of very-large and large 
size and the second measures of very-small HDL. Medium 
size HDL measures were associated with both. Again, cross 
cluster correlations were present throughout. The other 
prominent feature of the phenotypic correlations matrix was 
the complex correlations pattern between glycolysis, amino 
acids, ketone bodies, fluid balance, and inflammation mark-
ers with lipids, although most were consistently associated 
with the larger VLDL particles measures. Results from the 
mothers were similar, replicating 20,758 of the associations, 
and showed the same major features. The results can be seen 
in Table S2 and Fig. S2.

3.3  Genetic correlations

Of the 26,335 possible pairs of metabolic measures, 5050 
were tested through LD score regression (Bulik-Sullivan 
et al., 2015a) in LD Hub (Zheng et al., 2017) from external 
data (Kettunen et al., 2016) with 1551 showing evidence 
of genetic correlation, 24,484 were estimated using bivari-
ate REML (Lee et al., 2012) in the children sample with 
2330 showing evidence of genetic correlation, while 24,121 
had evidence of correlation when the beta coefficients of 
the independent SNPs were considered. Tables S3 and Fig. 
S3, show the correlation coefficients and their p-values 
obtained for all pairs of measures. The Pearson correlation 
between the estimates of the three methods were: 0.753 (CIs 
0.740–0.766) between LD score and bivariate REML, 0.827 
(CIs 0.818–0.835) between LD score and the correlation 
of SNP effects and 0.836 (CIs 0.832–0.839) for bivariate 
REML and the correlation of SNP effects. The main clusters 
of high correlations present in the phenotypic level were 
also evident for the genetic correlations, but in this case, the 
pairwise associations tended to be confined mostly within 
the observed clusters. The majority of VLDL measures 
were associated with each other. IDL and LDL measures, 
formed another cluster of genetic correlations and they were 
also correlated to some of the medium and smaller VLDL 
measures. Very large and large HDL measures had evidence 
of genetic correlations between them, which were less pro-
nounced for medium HDL and mostly absent for small HDL 
measures. Measures of large HDL showed evidence of cor-
relation with VLDL measures. Fatty acids were correlated 
to the measures of IDL, LDL and the larger HDL, while 
the unsaturated fatty acids were also correlated with VLDL 
measures. Finally, both isoleucine and glycoproteins ace-
tyls had evidence of correlation with VLDL measures. The 
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main patterns of correlation were replicated in the mothers 
sample, where bivariate REML identified 5040 pairwise cor-
relations while 24,459 pairs of metabolites had correlated 
SNP effects (Table S4 and Fig. S4).

In general, the magnitudes of phenotypic correlations and 
genetic correlations between the measures had similar pat-
terns (Fig. 1), though their statistical significance evidence 
differed. There were 3579 correlation pairs where both phe-
notypic and genetic correlations were evident and 19,543 
pairs of measures that were correlated in the phenotypic 
level but not the genetic level. In the mothers sample, 1966 
of the 3579 and 15,692 of the 19,543 relationships were 
replicated. These 1966 pairs can be found in Table S5.

3.4  Mendelian randomisation

To better assess the nature of correlations seen between the 
metabolomics measures, we performed MR analysis for 

all pairs in both directions. The number of SNPs used for 
each of the metabolic measures can be seen in Table S6. 
Of the 52,670 associations tested 26,909 had evidence of a 
causal effect. The full list of results can be seen in Tables S7 
and their respective p-values in Table S8. From the 26,909 
relationships observed in the offspring data, 20,663 were 
replicated in the mother’s sample. Of these, 9297 were bidi-
rectional associations, out of the 12,188 observed in the dis-
covery sample (Table S9), and 199 one-directional causal 
effects, from the 2533 observed initially (Table S10), with 
the rest being bidirectional associations replicated in one 
direction. Figure 2, summarises all the replicated p-values. 
The three major clusters evident in the genetic correlation 
results around VLDL, IDL and LDL, and larger HDL par-
ticles were again visible as bidirectional associations. The 
VLDL cluster included measures of the largest lipoprotein 
particles, such as chylomicrons and very large VLDL par-
ticles, to smaller VLDL. The small VLDL measures were 

Fig. 1  Correlations between 230 metabolites measured through a tar-
geted metabolomics NMR platform. Red for positive correlation and 
blue for negative. The lower left part of the square shows the correla-
tion between the levels of the metabolic measures. The upper right 

part shows the correlations of their genetic effects. High degree of 
similarity is evident in the two triangles in terms of the sign and level 
of correlation. Only some of these correlations are statistically signifi-
cant for both levels of correlation 



Systems epidemiology of metabolomics measures reveals new relationships between lipoproteins…

1 3

Page 5 of 11     1 

associated with both the VLDL cluster and the remnant and 
LDL cluster of associations. The VLDL cluster was also 
bidirectionally associated with triglycerides levels in rem-
nant particles and medium and small HDL, but not with 
triglycerides in large and very large HDL. Phospholipids 
on LDL, and the large and very large HDL subclasses were 
associated with the VLDL cluster. Large HDL particle meas-
ures also had multiple associations with the VLDL cluster 
for total, esterified and free cholesterol measures. The rem-
nant lipoprotein and LDL measures cluster were associated 
with overall esterified and free cholesterol as well as total 
and esterified cholesterol in small HDL particles. The MR 
results support a clear distinction between the larger HDL 
lipoproteins (extra-large and large) and small HDL. Medium 
HDL measures are more similar to the larger HDL measures, 
though they also have overlapping effects with total lipids 
and triglycerides measures of small HDL. Fatty acids asso-
ciations with both the VLDL and remnant and LDL clusters 
were observed, though the degree of unsaturation, length of 
fatty acid chain and ratios of fatty acids were associated only 

with the VLDL cluster, while omega-3 measures were asso-
ciated with the remnant and LDL cluster. Of note, isoleu-
cine and alpha-1-acid glycoprotein were linked to the VLDL 
measures cluster, with the later also showing bidirectional 
associations with the larger HDL measures.

3.5  Adjusting for pleiotropy

Using the MR-Egger approach, as a sensitivity analysis for 
the effect of pleiotropy in our estimates, resulted in 7074 
associations, in accordance with the lower statistical power 
of the method, with 2224 pairs being bidirectional asso-
ciations and 2626 in one direction only (Tables S11 and 
S12). Of the MR-Egger observed associations 6000 were 
also observed when the standard approach was used. In the 
children sample, 1719 associations also had evidence for the 
presence of pleiotropy based on their intercept (Table S13 
and S14). MR-Egger analysis of the ALSPAC mothers 
revealed 176 pairs of bidirectional associations and 305 in 
one direction, with 137 of these also showing evidence of 

Fig. 2  Evidence of MR effects of the row metabolic measure on the column metabolic measure obtained from a targeted metabolomics NMR 
platform. Grey for a causal association, white for associations not reaching the pre-specified p-value threshold
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pleiotropy (Tables S15–S18). Compared to the standard 
approach 521 pairs of metabolites also had evidence of 
association in the MR-Egger analysis. In total, the mothers 
sample provided replication for 486 associations seen in the 
children.

3.6  Examples

To demonstrate the potential use of the results in trying to 
infer the mechanistic relationships between the metabolic 
measures, we focused on two examples. VLDL is the main 
transport form of endogenous triglycerides in the body. It 
is produced in the hepatocytes and released into circula-
tion progressively losing its triglyceride content to give rise 
to remnant VLDL, IDL and LDL particles of smaller sizes 
(Marshall et al., 2012). Using the nine measures for the tri-
glycerides to total lipids ratio in VLDL (except chylomicrons 
and extremely large VLDL which can carry triglycerides 
from diet), IDL and LDL lipoproteins, a very-large VLDL 
one directional routed tree (see methods) was constructed, 
recreating the process of lipoproteins metabolism relatively 

accurately (Fig. 3). The second example focused on the rela-
tionships of the small HDL measures with the rest of the 
lipoproteins measures (Fig. 4). The triglyceride content of 
small HDL particles vertex was located within the VLDL 
measures cluster, while total and esterified cholesterol were 
closely related with the remnant and LDL cluster, which 
were the main cholesterol carrying particles. Small HDL 
total lipids and free cholesterol showed a small number of 
connections and were situated away from other clusters. The 
phospholipids in the small HDL vertex had an equal distance 
from other clusters. Finally, the concentration of small HDL 
particles was mostly associated and located close to the area 
of the larger HDL particle measures.

4  Discussion

Using two samples of mothers and young participants from a 
European population cohort and data from a targeted metab-
olomics platform, predominately of lipoproteins, I illustrate 
the use of popular epidemiological approaches to assess the 

Fig. 3  A one directional routed tree representing the strongest (smaller p-value) associations between the nine measures of triglyceride concen-
tration in lipoprotein particles
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relationship between metabolic measures. The results show 
the presence of strong correlations between the lipoproteins 
and other measures, at both the phenotypic and genetic lev-
els, and a wide range of causal effects between them, includ-
ing bidirectional associations. Three main causal clusters 
of lipoprotein relationships were evident in the results. Het-
erogeneity of links between HDL lipoprotein particles of 
different sizes was also observed. Additional insights were 
obtained for the relationships between CLA, glycolysis 
markers, and glycoproteins with lipids subfractions.

As the metabolomics platform used is focused mainly on 
lipoproteins measures, the large number of phenotypic cor-
relations is of no surprise, though similar levels of correla-
tion should be expected within most metabolomics datasets. 
Except the more obvious reasons of correlations between the 

metabolic measures, such as the mathematical relationship 
between them, were ratios are considered, and their proxim-
ity in biological processes, more complex mechanisms such 
as chemical equilibrium, mass conservation, confounding 
from other internal or external modifiers, and global pertur-
bations due to the conditions of the sample measurement, 
can also contribute to the correlations observed between 
metabolites (Camacho et al., 2005; Steuer, 2006).

In the present study, measures of the triglyceride rich 
VLDL particles made up a distinct group, while the products 
of their remodelling, triglyceride poor and depleted particles 
of very small VLDL, IDL and LDL, formed another closely 
correlated group. These phenotypic correlation features were 
also present when the genetic correlations were considered, 
while the MR analysis provided further evidence for both 

Fig. 4  A network of MR replicated associations highlighting the 
relationships of small HDL measures with other lipoprotein subfrac-
tions measures. The size of the node is proportional to the number of 

connections to the node. The log p-value was used as weights for the 
edges of the network



 F. Drenos 

1 3

    1  Page 8 of 11

bi-directional and one-directional effects within the two 
clusters, but very few associations between the clusters. A 
study on the metabolic profile of statins and the rs12916 
HMGCR  gene polymorphism, identified that disruption of 
the mevalonate pathway, in addition to the expected LDL 
lowering effect, also produces large changes on the very-
small VLDL and IDL concentration measures and only 
modest changes on the larger VLDL particles (Würtz et al., 
2016b). These results fit very well with the idea of two dis-
tinct clusters of associations and the two-way causal effects 
observed.

The correlations between HDL subfractions were also 
arranged in two blocks, one for larger and medium and one 
for small HDL particles. The sub-speciation of HDL to a 
number of distinct proteins and lipids combinations sharing 
a similar density has been previously suggested based on 
proteomics analysis (Davidson et al., 2009) and has been 
used to explain the large number of properties associated 
with HDL (Rosenson et al., 2012). The majority of causal 
associations were between and within the measures of very 
large and large HDL particles, suggesting that these are 
quite different from the smaller HDL particles. Interestingly, 
triglycerides in small and medium, but not large and very 
large, HDL particles were causally associated with the larger 
VLDL particles measures and only the smallest HDL par-
ticles, corresponding to HDL3, showed evidence of causal 
effects with the triglyceride depleted, cholesterol rich, low 
density lipoprotein particles. The observed relationships cor-
respond well to our current understanding of the molecular 
exchanges taking place during lipoproteins metabolism, with 
triglycerides moving from VLDL particles to HDL particles, 
with esterified cholesterol following the opposite direction 
through the action of the cholesteryl ester transfer protein 
(Marshall et al., 2016), though now we can provide further 
information on the size of particles involved.

Other interesting relationships included the associations 
of conjugated linoleic acid (CLA). CLA is a popular dietary 
supplement associated with a number of suggested beneficial 
effects on common diseases and BMI, while recent studies 
correlated CLA with a decrease of LDL (Derakhshande-
Rishehri et al., 2015) and HDL (Kim et al., 2016). We did 
not find any evidence for a causal effect of CLA on either 
LDL- or HDL-cholesterol concentrations in the present 
study. In contrast, we found positive bidirectional associa-
tions of CLA with measures of esterified and total choles-
terol, as well as triglycerides, in large and very large VLDL 
particles.

No causal associations between glycolysis markers and 
lipids were observed. Previously, insulin has been impli-
cated in lipogenesis and VLDL production (Brown & Gib-
bons, 2001) but a second study looking at the effect of glu-
cose metabolism on the transcriptional regulation of genes 
involved in VLDL assembly and secretion, did not find any 

major effects (Morral et al., 2007). The current results do not 
support the existence of a causal effect between glucose and 
VLDL concentration and composition measures. Similarly, 
Citrate, a popular additive to foods and an intermediate prod-
uct of the Krebs cycle, has been described as a “fundamen-
tal precursor” for the endogenous production of cholesterol 
(Leandro et al., 2016). The observed results do not support 
any causal associations between plasma measured citrate and 
lipoprotein measures or glucose.

Evidence for the causal effect of Glycoprotein acetyls, 
mainly a1-acid glycoprotein (AGP), on large and medium 
VLDL concentration measures and particle diameter were 
observed. AGP is an acute-phase protein believed to be 
involved in a wide range of biological processes, including 
immuno-modulation, drug compound transport, maintain-
ing capillary function, sphingolipid biosynthesis and glu-
cose and insulin metabolism (Luo et al., 2015). AGP has 
been suggested as a marker for all-cause mortality (Fischer 
et al., 2014). The complete function of the protein and how 
it can interact with VLDL concentration is not known, but 
our results suggest a role in lipoprotein metabolism that has 
not previously been identified.

Two examples for the use of the results towards under-
standing and mapping metabolic networks have been illus-
trated. The first example looking at the metabolism of tri-
glyceride rich VLDL fits almost perfectly with the current 
understanding of the process (Marshall et al., 2016). The 
second example is mapping the characteristics of the small 
HDL particles in relation to other lipoproteins. Accord-
ing to our results, most of the cholesterol exchange, in the 
form of esterified cholesterol, is taking place between small 
HDL and remnant and LDL particles. In contrast, the node 
of triglyceride concentration of the small HDL particles is 
embedder within the VLDL cluster of measures. Both fea-
tures of the network are well established (Marshall et al., 
2016). Phospholipids and free cholesterol in small HDL 
particles are believed to be obtained by the interaction of 
the early HDL particle with cell membranes (Gurr et al., 
2016). This can explain the lack of associations seen with 
the free cholesterol measure, but the associations with both 
the VLDL and the remnant and LDL clusters of measures 
suggests the existence of additional mechanisms.

A number of limitations are evident in this work. The dis-
covery sample was of unfasted children aged 7 with 51.5% 
of them boys, while the replication sample was of partially 
related adult fasted women with a mean age of 47.9. This 
means that the replication sample could confirm the com-
mon observed associations, but false positives are indistin-
guishable from changes due to age and sex. The selection of 
SNPs to be used as instruments were from the same sample 
where the MR was performed. This can introduce bias in the 
analysis resulting in the identification of associations that are 
not causal (Taylor et al., 2014), but the use of replication and 
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previous biological evidence, suggest that the main associa-
tions observed are indeed causal. Finally, we treat each meta-
bolic measure as an independent variable without model-
ling their potential interactions which will require the use of 
pathway analysis and latent variables (Burgess et al., 2015), 
but this will shift the focus of the analysis from hypothesis 
generating to modelling mediation between a small number 
of preselected measures.

Focus areas for the use of metabolomics are the under-
standing and reconstruction of the molecular processes 
underpinning health and disease and the identification of 
new risk factors. Genetic variation can be used to provide 
the direction of effects in a correlation network and disen-
tangle the flow of information in such systems. Here we 
used measures from a targeted metabolomics platform to 
explore the correlations between the metabolic measures in 
the context of common underlying mechanisms with the help 
of genetic variants. The results of this work provide evidence 
for, or against, a number of interesting phenotypic associa-
tions between the lipoprotein measures and other metabo-
lites and illustrate the challenges and potential uses of this 
kind of approaches in metabolomics data.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11306- 021- 01856-6.
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