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Abstract
In this paper, a novel proportion-integral-derivative-like particle swarm optimization (PIDLPSO) algorithm is presented with
improved terminal convergence of the particle dynamics. A derivative control term is introduced into the traditional particle
swarm optimization (PSO) algorithm so as to alleviate the overshoot problem during the stage of the terminal convergence.
The velocity of the particle is updated according to the past momentum, the present positions (including the personal best
position and the global best position), and the future trend of the positions, thereby accelerating the terminal convergence and
adjusting the search direction to jump out of the area around the local optima. By using a combination of the Routh stability
criterion and the final value theorem of the Z -transformation, the convergence conditions are obtained for the developed
PIDLPSO algorithm. Finally, the experiment results reveal the superiority of the designed PIDLPSO algorithm over several
other state-of-the-art PSO variants in terms of the population diversity, searching ability and convergence rate.

Keywords Particle swarm optimization · Terminal convergence analysis · Proportional-integral-derivative strategy ·
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Introduction

With the breakthroughs in both theory and applications of the
evolutionary computing (EC), the evolutionary optimization
algorithms have attracted a great deal of research interest, and
a large amount of research results have been published in the
literature [1,31,39,41]. Generally, the EC algorithms can be
roughly divided into the categories of genetic algorithms,
genetic programming, evolution strategies, and evolution
programming. Through simulating the interactions among
the individuals in the fish schooling or bird flocking, the parti-
cle swarm optimization (PSO) algorithm has been presented
in [16] with the purpose of exploring the searching space,
which ismade possible by automatically adjusting the current
velocities and the current positions of the particles according
to the competition and cooperation among the particles. Serv-
ing as a powerful evolutionary technique, the PSO algorithm
is capable of discovering the globally optimal solution in an
efficient yet effective way in the research areas of parame-
ter optimization, neural network training, clustering analysis,
combination optimization, pattern recognition, image pro-
cessing and so forth [1,5,6,8,17,20,22,30,32,36,41,46,50].

Unfortunately, like other population-basedECapproaches,
the PSO algorithm still has the issue of easily getting trapped
in the local optima when dealing with large-scale complex
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optimization problems. As such, it is of vital importance
to develop advanced strategies/variants to improve the opti-
mization capability of conventional PSO algorithm [44]. Up
to now, many researchers have devoted tremendous efforts
in improving the searching ability of the existing PSO algo-
rithms and developing advanced PSO variants with aim to
alleviate premature convergence, see, e.g., [28,41,42]. To be
more specific, a PSO algorithm with saturation and time-
delay has been developed in [42] to ensure the convergence
and increase the possibility of escaping from local optimum.
Recently, an N -state Markovian jumping PSO variant has
been presented in [28] to adjust evolutionary state accord-
ing to the N -state Markov chain [4,7,18,21,56,57], showing
better exploration ability than that of other algorithms. It is
noted that the competitiveness of these advanced variants (in
terms of both the convergence rate and the searching ability)
have mostly been demonstrated via numerical simulations,
and there is a lack of rigorous proof of the performance
from the theoretical viewpoint. The objective of this paper
is, therefore, to further improve the performance of the PSO
algorithm from both aspects of theory and simulation.

Over the past few decades, much research effort has
been made to the analysis of the convergence of the PSO
algorithms, and a variety of efficient approaches have been
presented in the literature [13,19,24,29,33,39]. To be more
specific, in [33], the first and most important empirical study
has been reported by Eberhart and Shi regarding the PSO
algorithm. The convergence analysis of the PSO algorithm
has been studied in [24] from the theoretical aspect, and fur-
ther insights have been provided in [13,19,29,39]. Based on
these existing results, we can draw the following conclusions
on the performance of the PSO algorithm: 1) the exploration
and exploitation ability of the PSO algorithm to control the
population diversity are vitally important for its efficiency
as an optimizer; and 2) as with the other population-based
optimizers, higher population diversity is desirable in the
early exploration stage, while lower population diversity is
preferable in the later/terminal convergence stage. These con-
clusions, without any doubts, provide some insights into the
mechanism of how the PSO algorithm behaves well. Nev-
ertheless, there is still room to further improve the terminal
convergence of the PSO algorithm. It is noticed that, in [49],
the traditional particle swarm optimizer has been interpreted
as a proportional-integral controller. Following this line, in
this paper, we endeavor to develop the PSO algorithm based
on the proportional-integral-derivative (PID) strategy and
also analyze the terminal convergence of this PID-like PSO
(PIDLPSO) algorithm.

As is well known, the proportional-integral-derivative
(PID) control strategy has been widely applied in indus-
try (e.g. aerospace and industrial robotics) owing to its
advantages of simple structure, few tuning parameters, out-
standing control performance and so on, see [2,52] and the

reference therein. Proportional control can be easily imple-
mented where the output of the controller is proportional to
the error signal of the input. By using proportional control
alone, the controlled system would suffer from the steady-
state error that cannot be eliminated. As such, the integral
control is introduced to form the proportional-integral (PI)
control strategy, which ensures that the output of the con-
trolled system traces the input precisely. In addition, the
derivative control strategy has the advantages of quick action
and advanced adjustment, which is conducive to improving
the performance of controlled object with large time-delays
effectively, though it cannot easily remove the residual error.
Therefore, the PID control strategy has become more and
more popular in practice because it combines the merits of
(1) timeliness and rapidity of the proportional control; (2)
the residual elimination ability of the integral control; and
(3) the advanced adjustment ability of the derivative control.

Inspired by the insight that the particle swarm opti-
mizer could be approximately a PI controller [48], in this
paper, the derivative control strategy is introduced into the
PSO algorithm with aim to further enhance the optimiza-
tion ability and improve the convergence rate. As compared
with the traditional PSO algorithm, such a PID-like PSO
(PIDLPSO) algorithm owns the following two advantages:
(1) the overshoot problem during the stage of the termi-
nal convergence of the particle dynamics can be adequately
resolved through adjusting the change of deviation signal;
and (2) more historical information can now be utilized
that is beneficial for explore the problem space more thor-
oughly.

In connection with the discussions made so far, the main
objective of this paper is to put forward a novel PIDLPSO
algorithm with rigorous mathematical proof of the terminal
convergence. The main contributions of this paper are sum-
marized in threefold as follows.
(1) A novel PIDLPSO algorithm is proposed to alleviate the

overshoot problemand accelerate convergence during the
later/terminal stage of the particle dynamics, where the
velocity of the particle is updated according to the past
momentum, the present positions (including the personal
best position and the global best position), as well as the
future trend of the positions.

(2) For the proposed PIDLPSO algorithm, the convergence
conditions and the final positions are obtained by means
of theRouth stability criterion and the final value theorem
of the Z -transformation.

(3) The proposed PIDLPSO algorithm is comprehensively
verified from the aspects of population diversity, search-
ing ability and convergence rate. Also, it is demonstrated
that the PIDLPSOalgorithmhasmore competitive ability
in achieving the global optimum than five other popular
PSO algorithms.
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The structure of this paper is outlined as follows. Section
2 formulates the problem to be studied for the PSO algo-
rithm. Section 3 puts forward a novel PIDLPSO algorithm
and analyze its convergence conditions. Experimental results
are presented in Sect. 4 with detailed discussions, and Sect.
5 outlines the conclusions and future directions.

Notation. The Z -transform of a vector implies that every
element of this vector has taken the Z -transform.

Problem formulation

In the typical PSO algorithm developed [16], the parti-
cles, referred to as the feasible candidates, are employed to
explore and exploit in the D-dimensional searching space
by continuously adjusting the velocity vector vi (k) =
(vi1(k), vi2(k), ..., vi D(k)) and the position vector xi (k) =
(xi1(k), xi2(k), ...xiD(k)), respectively. According to the
competition and cooperation among the particles, the posi-
tion of the i-th particle is justified towards two directions,
where one direction is the personal best position pbest rep-
resented by pbest = (p1, p2, . . . , pD), and the other one is
the globally optimal position gbest represented by gbest =
(g1, g2, . . . , gD). Specifically, the velocity and the position
of the i-th particle at the (k + 1)-th iteration are updated as
follows:

⎧
⎪⎨

⎪⎩

vi (k + 1) = ωvi (k) + c1r1(pbest − xi (k))

+ c2r2(gbest − xi (k)),

xi (k + 1) = xi (k) + vi (k + 1),

(1)

where k is the number of recent iterations of the i-th particle
in the D-dimensional problem space, ω is the inertia weight,
c1 and c2 called the cognitive and social parameters are the
acceleration coefficients, and r1, r2 are constants selected on
the interval [0, 1].

Themain objective of this paper is to 1) put forward a novel
PIDLPSO algorithm; 2) analyze its terminal convergence by
means of the Routh stability criterion and the final value
theoremof the Z -transformation; and3) obtain the conditions
for convergence and the position of the final particle of the
proposed PIDLPSO algorithm.

The PIDLPSO algorithm and its terminal
convergence analysis

Motivated by interactions among the individuals in the fish
schooling or bird flocking, the PSO algorithm has been pro-
posed in [16] with the purpose of exploring the searching
space by updating a linear summation of the particle’s past
momentum and current search direction. To the best of the

authors’ knowledge, in the later/terminal stage of the evolu-
tion of the particle dynamics. Very little attention has been
paid to the overshoot problemof the particle dynamics caused
by the past momentum, and such an overshoot phenomenon
could lead to oscillations which, in turn, slow down the
convergence significantly especially for high-dimensional
complex optimization problems [48].

According to the similarity between the PSO algorithm
and the PI strategy [49], in this paper, we would like to pro-
pose a novel PIDLPSOalgorithm,which is a yet another PSO
variant, to better keep the tradeoff between the exploration
and the exploitation with hope to alleviate the overshoot
problem during the terminal stage of the convergence of the
particle dynamics, where the PIDLPSO updates the veloc-
ity and position based on three factors, namely, the past
momentum, the present positions (including the personal best
position and the global best position), and the future trend of
the position. Meanwhile, by combining the Routh stability
criterion and the final value theorem of the Z -transformation,
we shall obtain the convergence conditions of the PIDLPSO
algorithm to be developed. The framework and convergence
proof of the proposed PIDLPSO algorithmwill be illustrated
in details.

As discussed previously, the traditional PSO algorithm
could be interpreted as a PI strategy and, in this context, a
novel PSO variant is developed by introducing the following
derivative term

ξi (k) = kD(ei (k) − ei (k − 1)), (2)

where kD is control coefficient and

ei (k) = c1r1 pbest + c2r2gbest − c1r1xi (k) − c2r2xi (k).

In the proposed PIDLPSO algorithm, the velocity and
position of the i-th particle at the (k + 1)-th iteration are
updated as follows:

⎧
⎪⎨

⎪⎩

vi (k + 1) =ωvi (k) + c1r1(pbest − xi (k))

+ c2r2(gbest − xi (k)) + ξi (k),

xi (k + 1) =xi (k) + vi (k + 1),

(3)

The following lemma will be used in obtaining our main
results.

Lemma 1 [14] (1) The PSO system does not have an equi-
librium point if pbest �= gbest. (2) If pbest = gbest = x is time
invariant, then there is a unique equilibrium point at v∗ = 0
and x∗ = gbest.

Remark 1 Compared to the conventional PSO algorithm, a
new term ξi (k)has been added to the particle dynamicswhose
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coefficient, the derivative control gain kD , will be adequately
designed to alleviate the overshoot problem by smoothening
the terminal convergence of the particle dynamics. The con-
vergence conditions and the position of the final particle are
to be investigated in a mathematically rigorous way, and this
constitutes the main contribution of this paper.

Theorem 1 The novel PIDLPSO algorithm is convergent if
the following inequality holds

⎧
⎨

⎩

ω − 1

c1r1 + c2r2
< kD <

ω + 1

c1r1 + c2r2
− 1

2
,

0 < c1r1 + c2r2 < 4.
(4)

Moreover, the final position of the i-th particle in the
PIDLPSO algorithm is

xi (∞) = gbest. (5)

Proof Considering (2) and (3), we have immediately that

xi (k + 1) = xi (k) + ωvi (k) + ei (k) + ξi (k). (6)

Letting k = k + 1, it follows that

xi (k + 2) =xi (k + 1) + ωvi (k + 1)

+ (kD + 1)ei (k + 1) − kDei (k).
(7)

According to (2), we obtain

xi (k + 2) = c1r1 pbest + c2r2gbest − ei (k + 2)

c1r1 + c2r2
, (8)

xi (k + 1) = c1r1 pbest + c2r2gbest − ei (k + 1)

c1r1 + c2r2
, (9)

ωvi (k + 1) = ω
ei (k) − ei (k + 1)

c1r1 + c2r2
. (10)

Substituting (8)–(10) into (7), one has

ei (k + 2) + ((kD + 1)(c1r1 + c2r2) − ω − 1)ei (k + 1)

+ (ω − kD(c1r1 + c2r2))ei (k) = 0.
(11)

Taking the Z -transform of (11), we obtain

ei (z) = Az2 + Bz

Cz2 + Dz + E
(12)

where

A = ei (0),

B = 2ei (1) + ((kD + 1)(c1r1 + c2r2) − ω − 1)ei (0),

C = 1,

D = (kD + 1)(c1r1 + c2r2) − ω − 1,

E = ω − kD(c1r1 + c2r2).

Taking the linear difference transformation

z = μ + 1

μ − 1
,

we arrive at

ei (μ) = A(
μ+1
μ−1 )

2 + B μ+1
μ−1

C(
μ+1
μ−1 )

2 + D μ+1
μ−1 + E

(13)

The characteristic equationof (13) is calculated as follows:

(c1r1 + c2r2)μ
2 + (2 − 2ω + 2kD(c1r1 + c2r2))μ

+ 2 + 2ω − (2kD + 1)(c1r1 + c2r2) = 0.
(14)

By utilizing the Routh stability criterion, we obtain the
system stability conditions as follows:
⎧
⎪⎨

⎪⎩

c1r1 + c2r2 > 0,

2 − 2ω + 2kD(c1r1 + c2r2) > 0,

2 + 2ω − (2kD + 1)(c1r1 + c2r2) > 0,

(15)

and therefore

⎧
⎨

⎩

ω − 1

c1r1 + c2r2
< kD <

ω + 1

c1r1 + c2r2
− 1

2
,

0 < c1r1 + c2r2 < 4.
(16)

By means of the final value theorem of the Z -transform,
we obtain that

ei (∞) = lim
z→1

(z − 1)ei (z) = 0. (17)

Hence, the PIDLPSO algorithm will converge to

xi (∞) = c1r1 pbest + c2r2gbest
c1r1 + c2r2

. (18)

Finally, it follows from pbest = gbest that

xi (∞) = gbest (19)

which ends the proof. ��
Remark 2 So far, a novel PIDLPSO algorithm has been pro-
posed in which a new derivative control term is introduced so
as to govern the smoothening process of the terminal conver-
gence during the final stage of the dynamics evolution of the
particles, thereby alleviating the overshoot/oscillation prob-
lems. In this PIDLPSO algorithm, the new derivative control
term is mainly to fine-tune the future trend of the positions
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and hence provides yet another design freedom (in addition
to the past momentum and the present positions) for improv-
ing the transient behaviors of the terminal convergence of the
particle dynamics.

Remark 3 Comparing to the numerous versions of the PSO
variants, our proposed PIDLPSO exhibits the following dis-
tinctive features: 1) a derivative control term is introduced to
alleviate the overshoot problem and accelerate convergence
during the later/terminal stage of the particle dynamics; 2) the
convergence conditions and the final positions are obtained
by means of the Routh stability criterion and the final value
theorem of the Z -transformation; and 3) the PIDLPSO algo-
rithm is more competitive (in achieving the global optimum)
than several other popular PSO algorithms as demonstrated
in the next section.

Simulation Experiments

In this section, the superiority of proposed PIDLPSO algo-
rithm is demonstrated by comparing with five widely
employed PSO variants in terms of population diversity, con-
vergence rate and searching ability.

In the experiments, the population size is set as m = 20
and the dimension of the searching space is D = 20. For
the PIDLPSO algorithm, the inertia weight ω = 0.729, the
acceleration coefficients c1 = c2 = 1.5, r1 = r2 = 0.5.
The performance of the PIDLPSO algorithm with different
settings of the derivative control KD is shown in Table 1.
It can be seen that the PIDLPSO algorithm demonstrates
competitive performance when kD = 0.155.

Population Diversity

In this paper, the variance (population spatial distribution)
and the entropy (particle activity) are employed to describe
the population diversity. The variance of the population in
the k-th iteration is defined as follows

Si (k) = 1

m

m∑

i=1

D∑

j=1

(x j
i (k) − x̄ j (k))

2
, (20)

where D denotes the dimension of the searching space, m is
the number of the particles in the population, x j

i (k) indicates
the i-th particle in the j-th dimension, and x̄ j (k) denotes
the mean of the j-th dimension over all particles in the k-th
iteration.

Figures 1 and 2 depict the variance of the population
dynamics of the typical PSO algorithm and the proposed
PIDLPSO algorithm when the iterations are set to 5000 and
20000, respectively. It is clearly seen from the figures that,
with the number of iterations increasing, the population vari-
ance gradually decreases until it converges, which indicates
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Fig. 1 Variation curves of population variance, when the maximum
number of iterations is 5000
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Fig. 2 Variation curves of population variance, when the maximum
number of iterations is 20000

that all the particles are dispersed to explore the whole space
with the purpose of discovering globally optimal solution
in the global exploration stage. Contrarily, during the local
exploitation process, the others are inspired to move towards
the globally optimal particle until convergence. Note that the
population variance of the PIDLPSO is higher than that of
the typical PSO algorithm, which illustrates the particle dis-
tribution of the PIDLPSO algorithm is more dispersed so as
to search the whole space more thoroughly.
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In the k-th iteration, the particles are divided into Q sub-
sets denoted by {S1(k), S2(k), . . . , SQ(k)}. For ∀p, q ∈
{1, 2, . . . , Q}, we have

Sp(k) ∩ Sq(k) = ∅,

Q⋃

q=1

Sq(k) = A(k),

where A(k) is the whole swarm set. The number of the par-
ticles in each subset is represented by

{|S1(k)|, |S2(k)|, . . . , |SQ(k)|},

and then the population entropy is defined as follows

Ep = −
Q∑

j=1

p j lg(p j ), (21)

where

p j = |S j (k)|
m

with m denoting the number of individuals in the whole
swarm.

The dynamic curves of the population entropy with the
number of iterations are depicted for the PSO algorithm and
the PIDLPSO algorithm in Fig. 3.We can see that the popula-
tion entropy is higher during the early stage of the iterations,
the particles are distributed into the whole space to explore
the globally optimal solution, and the curves of population
entropy contain a large number of particle exploration infor-
mation. While the population entropy is lower in the last
stage of the iterations, which illustrates that other particles
are encouraged to move towards the globally optimal parti-
cle. Therefore, the population entropy of the final curve is
lower and more stable, which indicates that the PIDLPSO
algorithm is convergent.

Optimization Performance

In this subsection, the searching ability of the PIDLPSO
algorithm is tested and verified through a large number of
simulation and comparison experiments. Note that the details
of all the test functions are given in Table 2, which includes
the dimension, the threshold, and etc.

In order to demonstrate the optimality of the PIDLPSO
algorithm, in this paper, various improved PSO variants
reported in recent literatures are employed for optimization
capability evaluation via four widely-used test functions. In
the consideration of evaluation factors, the comparisons are
conducted from the following four aspects: (1) minimum; (2)
mean; (3) standard deviation; and (4) success ratio.
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Fig. 3 Variation curves of population entropy

Table 3 lists the statistical results for various PSO vari-
ants. It is seen from Table 3 that, compared with other
PSO variants, the PIDLPSO algorithm has the smallest or
near the smallest minimum, mean and standard deviation,
which illustrates that the proposed PIDLPSO algorithm is
more competitive in searching performance. In addition, it
should be noted that the success ratio is another significant
indicator to assess the convergence characteristics, which
illustrates the capability of jumping out of the local opti-
mum. It is demonstrated from Table 3 that the success ratio
of our PIDLPSO algorithm is the biggest reaching 100% for
four benchmark functions, which is further verified that the
PIDLPSO algorithm is better than other algorithms, espe-
cially in getting rid of local optimum.

Convergence analysis

Convergence rate

It is worth noting that the convergence rate is a crucial metric
to assess the convergence of the PSO algorithms. The con-
vergence rate of various PSO variants is illustrated in Figs. 4,
5, 6 and 7, where the abscissa and the ordinate respectively
represents the iteration number and the mean fitness values
of various PSO variants. It is clearly shown that the con-
vergence rate of the proposed PIDLPSO algorithm is more
competitive than that of other algorithms on the most test
functions. In detail, it can be seen from Figs. 5, 6 and 7 that
the convergence rate of the PIDLPSO algorithm is the fastest
than that of other PSO variants. Although, in Fig. 4, the pro-
posed PIDLPSO algorithm is not the best in convergence

123



Complex & Intelligent Systems (2022) 8:1217–1228 1223

Table 1 Statistics results of the
PIDLPSO algorithm under
different KD conditions

f1(x) f2(x) f3(x) f4(x)

kD = −0.181 Min 1.28 × 10−10 1.16 × 10−3 1.88 4.00

Mean 6.58 × 10−4 2.65 8.13 6.35 × 101

Std.Dev 1.82 × 10−3 2.29 4.20 1.09 × 102

Ratio 100% 100% 0% 0%

kD = −0.155 Min 8.64 × 10−12 5.68 × 10−5 1.55 4.00

Mean 1.22 × 10−2 2.44 6.25 5.21 × 102

Std.Dev 5.03 × 10−2 3.12 3.41 2.23 × 103

Ratio 90% 100% 0% 0%

kD = −0.055 Min 0 2.35 × 10−32 5.39 × 10−38 0

Mean 4.94 × 10−324 5.06 × 10−1 6.03 × 10−29 6.10

Std.Dev 0.00 9.53 × 10−1 2.63 × 10−28 1.84 × 101

Ratio 100% 100% 100% 40%

kD = 0.055 Min 0 2.35 × 10−32 2.22 × 10−51 0

Mean 0 1.24 × 10−1 3.97 × 10−46 5.00 × 10−2

Std.Dev 0 2.88 × 10−1 1.19 × 10−45 2.23 × 10−1

Ratio 100% 100% 100% 95%

kD = 0.155 Min 3.16 × 10−317 3.24 × 10−96 4.45 × 10−74 0

Mean 5.01 × 10−294 6.39 × 10−66 8.02 × 10−65 0

Std.Dev 0 2.85 × 10−65 3.16 × 10−64 0

Ratio 100% 100% 100% 100%

kD = 0.255 Min 6.59 × 10−109 2.35 × 10−32 3.09 × 10−6 0

Mean 7.04 × 10−102 2.35 × 10−32 5.65 × 10−4 0

Std.Dev 2.82 × 10−101 2.80 × 10−48 8.69 × 10−4 0

Ratio 100% 100% 100% 100%

kD = 0.355 Min 1.75 × 10−14 3.44 × 10−18 4.83 × 10−1 0

Mean 2.60 × 10−11 3.05 × 10−13 1.04 0

Std.Dev 4.00 × 10−11 8.51 × 10−13 3.94 × 10−1 0

Ratio 100% 100% 0% 100%

kD = 0.455 Min 6.65 8.68 × 10−3 3.46 3.00

Mean 1.94 × 101 1.70 × 10−1 5.07 2.22 × 101

Std.Dev 9.32 2.20 × 10−1 7.64 × 10−1 1.29 × 101

Ratio 0% 100% 0% 0%

kD = 0.555 Min 5.92 × 101 3.15 × 10−1 5.39 3.30 × 101

Mean 1.45 × 102 2.24 7.92 1.14 × 102

Std.Dev 3.87 × 101 1.10 1.16 6.94 × 101

Ratio 0% 100% 0% 0%

kD = 0.653 Min 7.75 × 101 9.13 × 10−1 4.80 7.80 × 101

Mean 1.30 × 102 2.10 6.58 1.34 × 102

Std.Dev 3.57 × 101 6.83 × 10−1 1.01 3.11 × 101

Ratio 0% 100% 0% 0%

Table 2 The test function
configuration

Functions Name Dimension Search space Threshold Minimum

f1(x) Sphere 20 [−100 100] 0.01 0

f2(x) Penalized1 20 [−50 50] 0.01 0

f3(x) Schwefel2.21 20 [−100 100] 0.01 0

f4(x) Step 20 [−100 100] 0.01 0
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Table 3 Statistical results of six PSO algorithms

PSO PSO-LDIW PSO-TVAC PSO-CK SDPSO PIDLPSO

f1(x) Min 8.15 × 10−23 2.29 × 10−205 5.26 × 10−139 0 1.10 × 10−12 3.16 × 10−317

Mean 8.20 7.61 × 10−188 1.07 × 10−82 0 4.11 × 10−9 5.01 × 10−294

Std.Dev 4.09 × 10−16 0 5.86 × 10−82 0 1.17 × 10−8 0

Ratio 100% 100% 100% 100% 100% 100%

f2(x) Min 1.10 × 10−18 3.95 × 10−119 3.03 × 10−40 5.74 × 10−56 1.56 × 10−7 3.24 × 10−96

Mean 8.20 1.42 × 101 1.59 × 10−20 4.20 2.80 6.39 × 10−66

Std.Dev 8.96 1.34 × 101 5.90 × 10−20 6.09 5.73 2.85 × 10−65

Ratio 44% 36% 100% 64% 78% 100%

f3(x) Min 2.68 × 10−1 8.03 × 10−28 6.31 × 10−29 3.56 × 10−105 2.02 × 10−1 4.45 × 10−74

Mean 1.67 × 103 2.86 × 103 1.00 × 102 1.80 × 103 2.05 × 102 8.02 × 10−65

Std.Dev 2.85 × 103 3.98 × 103 7.07 × 102 3.31 × 103 9.88 × 102 3.16 × 10−64

Ratio 0% 56% 98% 72% 0% 100%

f4(x) Min 1.49 × 10−24 2.35 × 10−32 2.35 × 10−32 2.35 × 10−32 6.93 × 10−14 0

Mean 5.08 × 10−19 2.35 × 10−32 3.11 × 10−3 2.92 × 10−1 1.27 × 10−8 0

Std.Dev 2.10 × 10−18 8.29 × 10−48 2.19 × 10−2 6.31 × 10−1 7.53 × 10−8 0

Ratio 100% 100% 98% 50% 100% 100%
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Fig. 4 PSO algorithms convergence characteristics of Sphere

rate, its fitness values are small enough to satisfy the conver-
gence performance. In general, the convergence rate of the
PIDLPSO algorithm is more excellent than that of others.

Step response

In essence, the particle swarm optimizer could be approx-
imately regarded as the PI strategy, similarly, the proposed
PIDLPSO algorithm could be considered as a PID strategy in
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Fig. 5 PSO algorithms convergence characteristics of Schwefel 2.22

this paper. The step response curves of the two methods are
shown in Fig. 8. It can be clearly seen that, compared with
the typical PSO algorithm, the proposed PIDLPSO algorithm
provides better control performance and reduce the overshoot
problem. It owes the introduction of derivative control, which
expands the search space of the particles and increases the
probability of escaping from the local optimum.
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Theoretical simulation

According to Theorem 1, all the particles will eventually
converge to

xi (∞) = gbest. (22)

Figures 9 and 10 plot the tendencies of xi (k) and gbest
when the maximum number of iterations is 4000 and 20000,
respectively. It can be seen from the figures that, as the num-
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Fig. 8 The step response curve of the algorithms
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Fig. 9 The convergence curve of the PIDLPSO algorithm, when the
maximum number of iterations is 4000

ber of iterations increases, the two curves of xi (k) and gbest
will coincide, that is, the particles will converge.

Conclusion

In this paper, motivated by the similarity in traditional
PSO algorithm and PI control strategies, a novel PIDLPSO
algorithm has been designed by introducing the derivative
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Fig. 10 The convergence curve of the PIDLPSO algorithm, when the
maximum number of iterations is 20000

item with the purpose of alleviating the overshoot prob-
lem caused by past momentum. With this novel tactics,
the PIDLPSO algorithm has not only maintained the accu-
racy of the solution but also enhanced the convergence
rate. Furthermore, with the help of Routh stability crite-
rion and final value theorem of the Z -transformation, the
convergence conditions and the final positions have been
gained for the PIDLPSO algorithm. The superiorities of
proposed algorithm have been evaluated from the perspec-
tives of population diversity, convergence rate and searching
ability. Experimental results have exhibited the superiorities
of designed PIDLPSO algorithm over other state-of-the-art
PSO variants on four wide-ranging benchmark functions
including both one-peak and multi-peak cases. In the future,
we will research into some new directions which include, but
are not limited to, the investigations on (1) how to analyze
the convergence of the modified PSO algorithms with time-
varying parameters [55] and (2) how to apply the PIDLPSO
algorithm to other research fields such as deep learning
[10,15,26,38,43,54,58], fault detection [3,11,12], signal pro-
cessing [23,25,27,34,35,37,40,45,47,51] andmulti-objective
optimization [9,53].
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