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Abstract

Brain Computer Interface (BCI) has the potential to offer a new generation of applications independent of
muscular activity and controlled by the human brain. Brain imaging technologies are used to transfer the
cognitive tasks into control commands for a BCI system. The electroencephalography (EEG) technology
serves as the best available non-invasive solution for extracting signals from the brain. On the other hand,
speech is the primary means of communication, but for patients suffering from locked-in syndrome, there
is no easy way to communicate. Therefore, an ideal communication system for locked-in patients is a
thought-to-speech BCI system.

This research aims to investigate methods for the recognition of imagined speech from EEG signals
using deep learning techniques. In order to design an optimal imagined speech recognition BCI, va-
riety of issues have been solved. These include 1) proposing new feature extraction and classification
framework for recognition of imagined speech from EEG signals, 2) grammatical class recognition of
imagined words from EEG signals, 3) discriminating different cognitive tasks associated with speech in
the brain such as overt speech, covert speech, and visual imagery. In this work machine learning, deep
learning methods were used to analyze EEG signals.

For recognition of imagined speech from EEG signals, a new EEG database was collected while the
participants mentally spoke (imagined speech) the presented words. Along with imagined speech, EEG
data was recorded for visual imagery (imagining a scene or an image) and overt speech (verbal speech).
Spectro-temporal and spatio-temporal domain features were investigated for the classification of imag-
ined words from EEG signals. Further, a deep learning framework using the convolutional network
and attention mechanism was implemented for learning features in the spatial, temporal, and spectral
domains. The method achieved a recognition rate of 76.6% for three binary word pairs. These experi-
ments show that deep learning algorithms are ideal for imagined speech recognition from EEG signals
due to their ability to interpret features from non-linear and non-stationary signals. Grammatical classes
of imagined words from EEG signals were also recognized using a multi-channel convolution network
framework. This method was extended to a multi-level recognition system for multi-class classifica-
tion of imagined words which achieved an accuracy of 52.9% for 10 words, which is much better in
comparison to previous work.

In order to investigate the difference between imagined speech with verbal speech and visual imagery
from EEG signals, we used multivariate pattern analysis (MVPA). MVPA provided the time segments
when the neural oscillation for the different cognitive tasks was linearly separable. Further, frequencies
that result in most discrimination between the different cognitive tasks were also explored. A framework
was proposed to discriminate two cognitive tasks based on the spatio-temporal patterns in EEG signals.
The proposed method used the K-means clustering algorithm to find the best electrode combination and
convolutional-attention network for feature extraction and classification. The proposed method achieved
a high recognition rate of 82.9% and 77.7%.

The results in this research suggest that a communication based BCI system can be designed using
deep learning methods. Further, this work add knowledge to the existing work in the field of communi-
cation based BCI system.
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Chapter 1

Introduction

The electroencephalogram (EEG) technology have made it possible to measure brain activity in a non-
invasive manner, which can be used for communication especially by people with motor disabilities.
A speech-based brain computer interface (BCI) would provide a mean of communication to the people
unable to speak. However, EEG signals are difficult to interpret due to low signal-to-noise ratio (SNR),
which limits the ability of EEG-based BCI system for real world application. On the other hand, ad-
vancement in deep learning techniques have made it possible to solve complex problems in many areas
such as natural language processing, speech recognition, and computer vision (Zhang et al., 2019c).
The unique ability of deep learning to learn high-level complex patterns makes it an ideal candidate for
analyzing EEG signals and for designing a “thought-to-speech” BCI system.

1.1 Research Problem

Speech recognition is one of the most remarkable achievements in past few years, it has been intensively
used by lawyers, doctors, and is available in commercial devices such as phone, laptops, and computers.
In addition, speech recognition is faster than human typing on a keyboard (29 bits per second on average)
(Herff & Schultz, 2016). However, there are certain problems that even speech recognition cannot solve.
In America alone, 7.5 million people suffer from some sort of communication disability (on Deafness &
communication Disorder, 2019), some of them can neither communicate vocally nor physically, being
totally locked in. Locked in patients have healthy cognitive abilities to think and reason but are unable
to move or speak. On the other hand, an EEG based brain computer interface (BCI) technology does not
need speech input to produce a response as it can be controlled by thoughts. Brain computer interface
is a technology which does not require input from muscles, rather it uses brain signals to command an
electronic device. A thought-to-speech interface would be able to serve as a mode of communication
for people with severe motor disability. Applications of thought-to-speech BCI can also be used in
situations where making sound is not an option, for example, answering an important phone in a library
or a meeting. Further, EEG signals of a person can also be used as bio-metric which cannot be forged.
BCI technology offers several possibilities to change the way humans interact with their environment
and have become one of the most exciting area of research in the last few years.

Regardless of these abilities, practical implementation of this technology in the real world has been
limited to monitoring sleep and improving learning rate with products like Dreem and Halo Sport (In-
sights, 2019). This is because of the non-stationary and non-linear nature of EEG signals making them
difficult to interpret. The non-stationary nature refers to the inter and intra-trial variability of EEG sig-
nals. Most of the machine learning techniques are designed for stationary data and are not optimal for
learning non-linear trends in EEG signals. Therefore, a classifier trained on data from one session would
be ineffective on recognizing EEG data recorded from another session (Alsaleh, 2019). Further, EEG
signals have low signal-to-noise ratio with several noise sources such as muscle movement, eye move-
ment or blinks and environmental noise. Apart from these, there are several factors causing deformations
in EEG signals, such as variation in spatial information due to subjects having slight difference in head
size and shape (Bashivan et al., 2015). Brain signals variations are also result of neurophysiological
state during recording such as level of attention and emotional state. This is also followed by the type
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of modality (cognitive activity) used to elicit brain signals e.g. hand movement, showing images and/or
covert speech. Traditional BCI uses event related potentials (ERP) signals or EEG signals of motor im-
agery as input to the system, which have been the point of interest for research (Bashivan et al., 2015;
Lawhern et al., 2018; Tabar & Halici, 2016). There are ERP based BCI systems such as P300 spellers,
that allow text entry with a virtual keyboard using eye gaze (Nijboer et al., 2008). A P300 response is an
positive deflection of the brain wave 300ms after the stimulus onset (Picton, 1992), these spellers have
achieved good accuracy and a reliable speed (Chen et al., 2015; Guger et al., 2009). However, these
systems are still relatively slow and does not recognize the word directly. Also, there are BCI systems
that use electromyography (EMG) signals (Bocquelet et al., 2016; Guenther et al., 2009; Maier-Hein
et al., 2005) to recognize silent speech, but this technique is not very effective with locked-in patients as
it uses facial muscles movement.

Silent speech communication systems have been implemented using video recording of tongue and
lip movement, but the method is only effective with smaller number of classes (Schultz et al., 2017).
There is a need to develop a more intuitive brain computer interface, hence, the idea of using covert
speech (also referred as: imagined speech, mentally spoken speech, silent speech) as input to the BCI
may improve the speed and reliability of the system. Imagined speech has been defined by (Schultz et al.,
2017) as “internalised process in which one thinks in pure meaning” which makes it even more difficult
to work with. Therefore, this thesis focus on developing methods that can be used to design an EEG
based BCI, for recognizing thoughts from the brain without any overt action.

1.2 Motivation

The motivation for this work initiates from the limitations and gap in knowledge identified in the previous
imagined speech and brain computer interface studies.

1.2.1 Limitations of Speech Imagery Research

Speech production and processing in the brain is widely investigated using brain imagining methods such
as the functional magnetic resonance imaging (fMRI), electrocardiography (ECOG), electroencephalog-
raphy (EEG), and magnetoencephalography (MEG) (Angrick et al., 2019; Dash et al., 2020; Fonken
et al., 2020; Palmer et al., 2001). Although, a large body of research has been done on language in brain,
research in speech-based BCI system using non-invasive technology, for example EEG, is still in its in-
fancy (Alsaleh, 2019). The work done so far suffer from several limitations and gaps in the area building a
speech-based BCI system. One of the main problem is limited publicly available EEG datasets for covert
speech, which leads to limited research as recording EEG signals requires proper recording equipment,
human participants, and designing an optimal data recording protocol. Further, most studies on language
based BCI model have focused on EEG signals produced by mentally spoken syllables, phonemes, and
vowels (Arjestan et al., 2016; Matsumoto & Hori, 2014), which are not practical for implementing a lan-
guage based BCI system because in daily life we do not use syllables and phonemes to construct words.
Even the publicly available datasets contain imagined phonemes/syllables from EEG signals with only
few words (Nguyen et al., 2017; Zhao & Rudzicz, 2015). Moreover, lack of research with words has led
to an unexplored area of recognizing grammatical classes of words using EEG signals. This could help
in building an hierarchical language model for a thought-to-speech BCI. In addition, several studies have
used block recording for data collection (Torres-García et al., 2013; Wester, 2006), however previous
studies have suggested that this approach leads to temporal correlation in the EEG signals (Porbadnigk
et al., 2009).

The Majority of studies investigated EEG signals for covert speech (imagined speech) using tradi-
tional feature extraction methods, these methods although powerful suffer from some limitations such
as inability to lean features and trends automatically in the input data. On the other hand, EEG sig-
nals are a produced by non-linear interactions between neurons in the brain (Hornero et al., 2009) and
have low signal-to-noise ratio (SNR), therefore it is difficult to untangle the component of interest from
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background activity in the EEG activity. Traditional machine learning techniques have been successful
in recognition of motor imagery tasks from EEG signals, however their performances have been low in
recognition of covert speech compared to the deep learning techniques (Saha & Fels, 2019; Sharon &
Murthy, 2020; Zhao & Rudzicz, 2015). The deep learning methods have state-of-the-art performance
in many areas, especially in recognition even with EEG-based BCI systems (Antoniades et al., 2016;
Bashivan et al., 2015). Further, deep learning can be used to capture high-level representations in EEG
signals which can help increase EEG-based BCI performance due to inter-trial variability. Further, the
combination of non-linear activation functions and depth of deep learning models makes them suitable
for BCI systems. So far, deep learning methods used with speech imagery EEG signals have been ex-
plored in time-domain or traditional features created using techniques such as wavelet transform and
representing information as a vector (Panachakel et al., 2019; Sereshkeh et al., 2017). This vector pre-
sentation reduces the local component of the information processed in different regions of the brain.
Processing of raw EEG data from multiple electrodes offer many advantages, like end-to-end learning
and requires no prior feature selection. However, EEG signals have multiple channels and in order to ex-
tract useful information from the multi-dimensional imagined speech signal, complicated structures have
been employed so far with large number of parameters (Saha & Fels, 2019; Sharon & Murthy, 2020).
Majority of studies have implemented their methods under binary classification techniques, whereas a
language based BCI system should have a larger vocabulary of words for efficient communication.

In the studies mentioned above a based BCI have always be associated with covert speech. On the
other hand, research on thinking has associated verbal representation with mental imagery (Guo et al.,
2020; Petsche et al., 1992) which suggests that imagined speech in the brain might accompanied by
visual imagery. Moreover, imagined speech of an object such as “orange” might lead imagination of
spatial information of the object itself (Lee et al., 2019). EEG signals for imagined speech are acquired
while the subject attend to a visual cue (DaSalla et al., 2009a; Nguyen et al., 2017), which may be re-
garded as performing imagined speech and/or visual imagery (Clevert et al., 2015). Therefore, there is a
need to study visual imagery as a potential cognitive input to a language based BCI system.

Based on the limitations and research gaps outlined above, the research question of this thesis is:

“How to achieve high recognition rate for mentally spoken words from EEG signals using machine
learning techniques?”

1.3 Objective

The aim of this thesis is to develop a robust and efficient method for recognition of imagined speech from
EEG signals. The most reliable form of communication is speech; therefore this study investigates about
word processing in humans under different modalities (cognitive activities), using EEG and machine
learning technology. There is a need to develop a more intuitive brain computer interface, hence, the
idea of using EEG signals for covert speech (inner speech) as input to the BCI may improve the speed
and reliability of the system. In order to recognize covert (imagined) speech from EEG signals there are
certain factors that are to be explored, such as EEG datasets for imagined speech and machine learning
(deep learning framework) methods are needed to be implemented. However, in order to explore a robust
language based BCI system, certain objectives need to be achieved:

1. To design an experimental protocol to acquire EEG signals for imagined speech belonging to
different grammatical classes and build an EEG database for variety of words. EEG signals were
also acquired for other modalities (tasks) such as visual imagination of image associated with
mentally spoken words.

2. To investigate methods for feature extraction and classification of EEG signals for imagined speech.
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3. To develop machine learning and deep learning framework that can be used for recognition of
imagined speech from EEG signals.

4. To develop a framework for recognizing the grammatical class of the imagined words (covertly
spoken) from EEG signals.

5. To discriminate EEG signals produced by imagined speech task with EEG signals from other
language based tasks such as visual imagery and overt speech.

1.3.1 Ethical Approval

EEG recording in itself is invasion of human thoughts, in other words the recorded data consist of per-
sonal information about the subject. EEG can be used to detect any brain conditions such as dementia,
sleep disorder, epilepsy, and encephalopathy, but this research does not aim to detect any brain dis-
order. All the subjects were informed that their identity will be confidential, their name will not be
mentioned anywhere and will be referred to as subject number. Research Ethics Committee of Brunel
University, College of Engineering, Design, and Physical Sciences reviewed and approved this research,
by approving the participant information sheet and subject's informed consent under reference number
7361-LR-Sep/2017-8301-1. The letter of approval has been attached in Appendix A.

1.4 Structure of the Report

The structure of the thesis is as follows:

• Chapter 2 provides an in-depth review of brain computer interface (BCI) systems for communica-
tion application and deep learning methods. This chapter includes a discussion about the produc-
tion and processing of language in brain areas. Further, literature on imagined speech recognition
with EEG signals is provided along with state-of-the-art methods. A short discussion about asso-
ciation of imagined speech and visual imagery. Finally, gaps in previous studies and possible areas
of improvement are discussed.

• Chapter 3 discusses the experimental setup used for recording EEG signals from human partici-
pants (subjects). The motivation of recording the a new EEG dataset is discussed in this chapter
along with reasons what is different from previous studies that recorded EEG dataset for imag-
ined speech. The chapter also discusses the time-frequency feature used throughout the thesis and
reasons for choosing it over other features.

• Chapter 4 provides an analysis to differentiate between EEG signals of imagined (covert) speech
with respect to visual imagery and overt speech. The chapter also propose a electrode selection
methods along with deep learning structure for spatio-temporal feature learning from EEG signals.

• Chapter 5 presents classification results for imagined words from EEG signals under binary con-
dition. The chapter shows the analysis with linear features and discusses their limitations. Further,
a method is proposed to overcome the drawbacks of linear features by using dynamic time warping
(DTW).

• Chapter 6 presents and evaluate an electrode selection method for EEG signals. This chapter
investigate the performance of deep learning techniques for recognition of imagined words from
EEG signals under binary conditions. This chapter also perform classification between imagined
speech and non-speech activity.

• Chapter 7 first, presents with recognition of grammatical class of imagined words from EEG
signals. Second, a multi-stage recognition method is proposed for recognition of imagined words
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from EEG signals under multi-class classification task. The chapter also presents the performance
of proposed method on publicly available EEG dataset.

• Chapter 8 discusses the contributions of this research. It also discusses the limitations of the
present study and possible future work.
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Chapter 2

Background and Literature Review

2.1 Introduction

This chapter provides a detailed overview of brain computer interface (BCI) system for silent speech
communication. This chapter contains a background of basic concepts and techniques used in brain
computer interface technology. This chapter provides an overview of the brain region involved in lan-
guage processing. Then stages of BCI system are discussed along with the brain imagining technique
EEG used in this thesis. Then the description is provided about machine learning and the deep learning
techniques. This is followed by the literature on imagined speech recognition using electroencephalog-
raphy (EEG) signals and techniques used in past studies.

2.2 The Human Brain

2.2.1 Neurons in The Brain

In the human brain, neurons are the nerve cells that process and transfer, electrical and chemical signals.
EEG captures signals that are produced by the firing of neurons in the brain, a neuron has a dendrite that
receives electrical potential from other neurons and axons that transport electrical signals to other neu-
rons. Each neuron is linked to the other by a connection of axon and dendrite, which acts as transmitter
and receiver in a neuron. This link is known as a synapse, these synapses are of two kinds excitatory
synapses which tend to increase the potential in the neuron, and inhibitory synapses which tend to reduce
the potential of a neuron.

FIGURE 2.1: Structure of a Neuron (khan academy, 2016).
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An action potential is evoked in case the excitatory potential which is positive potential exceeds a
certain threshold. This potential is then transferred to other neurons. The potential inside a neuron is
negative as its cell contains ions guarded by a membrane that does not let the ions go out of the cells or
inside it. There are two ways by which the cell maintains a negative potential; active and passive. The
cell body has protein which opens and closes for Na+ and K+ ions, because of diffusion the K+ ion
moves out of the cell body changes the electric potential to positive. In active strategy, Na+ is pumped
out which makes the cell more negatively charged. During an action potential, this transfer of ion takes
place making cell membrane positive caused by the flow of Na+ into the cell, shown in figure 2.2. This
activity is believed to be measured with EEG.

FIGURE 2.2: Permeability of potassium and sodium ions during an action potential.

2.2.2 Speech in The Brain

Speech can be thought of as a continuous flow of words. Phenomena of speech production and areas
involved in the human brain are still controversial topics, although the Perisylvian language area is
considered to play an important role in speech production. It is known to be more dominant (96%)
in right-handed people, than (70%) left-handed people (Alsaleh, 2019). The Perisylvian area consists
of regions around the Sylvian fissure on the left hemisphere of the brain, it includes the Broca’s area,
Wernicke’s area, the temporal lobe (auditory cortex), and the parietal lobe (the angular gyrus).

• Broca’s area: Paul Broca was the first to investigate the word production in the inferior frontal
gyrus of the brain. Broca’s area is on the left side of the brain, it is responsible for the formation of
sound, shown in the figure 2.3. Broca’s area is believed to be recruited during different stages of
word production such as phonological processing, phonetic encoding, and articulator coordination
(Flinker et al., 2015). Broca’s area has been found to be most active prior to the production
of speech, which has been associated with the planning of speech articulation and information
transfer to different regions such as motor area (Herff et al., 2015).

• Wernicke’s area: Another important part involved in speech processing is Wernicke’s area which
was discovered by German scientist Carl Wernicke which is situated on the left side of the brain
as shown in figure 2.3. Broca’s and Wernicke’s area are connected by a junction of nerves known
as arcuate fasciculus. The Wernicke’s area plays an important role in translating auditory input to
overt and also covert speech output (Pei et al., 2012). Though, the participants differed in both the
conditions. The superior temporal gyrus and superior temporal sulcus (Wernicke’s area) are said
to be involved in the understanding and production of speech.

• Frontal and Temporal lobes: Although, Broca’s and Wernicke’s areas are considered as the clas-
sical language regions of the brain. There are studies suggesting the involvement of brain areas
outside these two areas in the processing of words belonging to different grammatical classes i.e.,
nouns and verbs (Preissl et al., 1995). The frontal lobe has been associated with verb processing



2.2. The Human Brain 9

FIGURE 2.3: The Human Brain with important speech processing regions (Encyclopae-
dia Britannica, 2020).

(Shapiro et al., 2001), apart from that frontal lobe is also known to play a role in language process-
ing (Demb et al., 1995; Gernsbacher & Kaschak, 2003). Neural activity in the frontal and temporal
lobe have been found to be most activated during the processing of nouns and verbs (Schilling et
al., 2020). Also, the frontal and temporal region have been found to be activated during spoken
and imagined vowels and consonants (Pei et al., 2012). The motor cortex has also been associ-
ated with language, speech, and sound, transformation of motor commands into speech occurs in
the primary motor cortex (Al-Fahoum & Al-Fraihat, 2014). The motor cortex and temporal lobe
(auditory area) have been linked to being activated by action verbs (Popp et al., 2019). Behavior
such as planning, sequencing of behaviour and cognition occurs in the frontal region of the brain.
One of the functions of the frontal lobe is to memorize the result of each step in cognitive task in
order to decide how to further execute the task. The left anterior quadrant is known for its role in
language production, the right anterior quadrant that is involved in non-verbal function (Petsche
et al., 1992). During the verbal tasks, power is observed to be distributed mainly in the frontal
and parietal regions (Hwang et al., 2005). Sensorimotor cortex and some regions in the superior
temporal gyrus related to language and auditory function have also shown activity after speech
onset (Herff et al., 2015). Further, speech comprehension in the brain is known to be processed by
Heschl’s gyrus also known as primary auditory cortex (Martin et al., 2014). Speech perception and
production integration can be represented by sensorimotor integration (SMI) which is the founda-
tion of verbal communication (Jenson et al., 2014). However, the SMI involved in imagined and
actual speech activities is different, which is evidence for different neurophysiological phenomena
(Jenson et al., 2014).

• Parietal and Occipital lobe: Often imagination has been associated with verbal thinking (speech),
according to the proportional theory the verbal thinking and imagination in the brain take abstract
proportions which have neither verbal nor imagination form (Petsche et al., 1992). Therefore, it is
important to consider brain areas involved in the perception of visual information such as images
and mental imagery. These brain areas are the frontal lobe, temporal lobe, and parieto-occipital
lobe. When information is presented visually there is often synchrony between parietal and oc-
cipital region (von Stein et al., 1999). Visual speech interaction and visual speech information is
processed in Occipital lobe (Alsaleh, 2019). The occipital region is also known to play an impor-
tant role in the processing of nouns (Preissl et al., 1995). Further, the visualization condition has
shown coherence changes in left occipital and posterior temporal region of the brain. Mental im-
agery is lateralized to the left hemisphere of the brain, whereas rotation of the images involves the
posterior part of the brain (Petsche et al., 1992). Although there is a conflict about the lateralized
effect of mental imagery, some studies found that the left posterior was more involved than the
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right posterior when analyzing verbally elicited mental imagery (Petsche et al., 1992). However,
mental tasks that can affect local coherence are more in the anterior region of both the left and
right hemisphere (Pei et al., 2011). Thinking with language has been linked to left frontal activity,
whereas thinking with images implies a right frontal contribution (Petsche et al., 1992).

2.3 Brain Computer Interface

A brain computer interface (BCI) is a technology that uses mental activity (thoughts) to communicate or
send commands to an external device such as a computer. BCI is a direct interface between an external
device and the human brain, its objective is to provide an alternative mode of communication without
any physical movement. Therefore, BCIs can provide means of communication for people with motor
disabilities. For example, people with less severe motor disabilities can use it to control a wheelchair
(Graimann et al., 2008), and it is useful in cases where healthy users find conventional means of commu-
nication difficult (Allison et al., 2007). Further, symptoms from autism, stroke, attention, and emotional
disorder could also be reduced with the help of BCI technology (Gadhoumi et al., 2016; Kouijzer et al.,
2009). People with sever motor disabilities have been able to communicate (Nijboer et al., 2008), draw
pictures (Münßinger et al., 2010), and control robots (Tonin et al., 2011). BCI system takes brain signals
induced by specific tasks such as speech imagery (internal speech) which are recorded from electrodes
on the head and these signals are classified into different commands to control the external device. BCIs
are mainly of two types; invasive in which electrodes recording the brain signal are implanted over the
brain (through surgery) and non-invasive where the electrodes are placed on the scalp (Wolpaw et al.,
2002). In this research non-invasive, EEG method is used for recording the brain signals. A BCI system
has four stages:

1. Brain Signal Acquisition: Measuring brain activity is first and most critical part of BCI system.
There are many ways of recording the brain signals, many BCI have been developed using non-
invasive methods such as magneto-encephalogram (MEG), functional magnetic resonance imaging
(fMRI) (Bocquelet et al., 2016; Guenther et al., 2009; Maier-Hein et al., 2005).

2. Pre-processing: Pre-processing enhances the signal quality without loss of information. Physio-
logical signals can be contaminated due to many factors during recording, therefore, this stage is
important to clean the data.

3. Feature Extraction: At this stage important characteristics of the recorded signals are extracted.
In other words, information which encodes a particular command is extracted from the brain sig-
nals. Examples of features are event-related potentials (ERP), or time and/or frequency domain
features (Bashashati et al., 2007; Bostanov, 2004; Farina et al., 2007).

4. Classification: After pre-processing and feature extraction final step is classification. At the clas-
sification stage, a particular set of features is assigned a class that refers to a particular mental
state or command. There are many classification methods used in BCI system such as K-nearest
neighbor (KNN), support vector machines (SVM), linear discriminant analysis (LDA), and neural
networks.
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FIGURE 2.4: Stages of BCI system for imagined speech communication. At the first
stage, the EEG signals are acquired from the user. These signals are further pre-processed
using filters and artifact rejection techniques. At the third stage, features are extracted
from the filtered signals which are used for classification. At the last stage, the BCI

produces synthetic speech or text output.

2.4 Electroencephalogram (EEG)

Electroencephalogram (EEG) is the technology that measures the electrical activity of the brain. The
recorded activity is the increase in potential due to information transfer between the neurons in the brain.
EEG was invented by Hans Berger in 1929 (Wester, 2006), where he performed the first human EEG
recording, although similar work had been done on animals since 1870. Currently, EEG is used by
scientists and physicians to perform neurological diagnoses in order to detect neurological diseases, such
as epilepsy, head injury, and sleep disorder (Siuly, 2012).

EEG signals are recorded using non-invasive electrodes usually made of silver-silver chloride (Ag-
AgCl), with the advancement of technology, some EEG recording equipment has wireless data trans-
mission facilities. Mostly, Ag-AgCl disc electrodes approximately of 1cm diameter are used, for better
performance, the electrode disc is filled with conductive gel which bonds the scalp and electrode through
hair, this also helps in reducing the impedance of the recorded signal. These electrodes are connected to
an amplifier. Electrodes are distributed by a standard 10-20 system for electrode placement on the scalp
(Herwig et al., 2003). This was developed by International EEG Federation in order to reproduce the
recorded data, 10 and 20 here refer to the fact that electrodes are at either 10 or 20 percent distance of
front-back or left-right of the skull. The EEG recording system mainly has an EEG cap, amplifier, and
software where the digitized signals are filtered. EEG recording can have multiple electrodes spread at
different locations on the scalp, most commonly ranging from 14 to 64 electrodes, where each electrode
is called a channel. During an EEG recording each channel capture an electrical signal, therefore EEG
signals are also referred to as multi-channel or multi-dimensional signals.

There are certain reasons that make EEG most suitable for a though to speech BCI system. Primarily,
EEG have a high temporal resolution, although some other technologies such as positron emission to-
mography (PET) or magnetic resonance image (MRI) have a high spatial resolution, however, they have
a low temporal resolution. This is an important property for recording covert speech which requires cap-
turing changes over time (Wester, 2006). Another advantage is that EEG is easy to use and non-invasive,
unlike some other technologies such as ECOG it does not require the subject to undergo any electrode
implant in the brain.

The potential of the EEG activity is very small in a range of µV because of which the component
of interest is easily contaminated by high potential artifacts. These artifacts can be produced by many
reasons for example electromagnetic interference from computers, or other electronic devices present
at the place of recording. Another source of artifacts can be subjects themselves, movements such as
eye blinks, muscle movement, heartbeat produce artifacts. Therefore, raw EEG signal does not allow
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quantitative analysis which requires EEG signals to be processed using filters. EEG measures brain
signals at different points in the brain which comprise of different frequencies.

2.4.1 Brain Waves in EEG

As mentioned above there are five main brain frequencies (also referred to as brain waves) namely delta
δ (0.5-4Hz), theta θ (4-8Hz), alpha α (8-13Hz), beta β (13-30Hz) and gamma γ (30-200Hz). These
brain waves are generalized to play a major role in specific activities, but studies over the years have
shown them to behave distinctly in different activities eradicating the misconception of generalization
of their behavior to particular activities. Knowledge regarding the brain and its behavior is still in its
infancy, phenomena like brain plasticity make it even more difficult to understand the complexities of
the human brain and the underlying brain waves. Hence, after thoughtful consideration discussion on
role of frequencies has been restricted to speech activity, which is the subject of interest in this study.

Role of brain waves in speech: We studied the role of different frequencies in language and speech
processing as they play a specific part at different stages, this eventually helped us understand the im-
portance of different frequencies during this research. Following is a literature survey of the frequencies
involved in speech processing:

Delta : Its power is more during the verbal response task, which indicates that delta might play a criti-
cal role in perceptual and cognitive processing verbal and non-verbal linguistic tasks (Ding et al.,
2016). The significant role of delta oscillation (0.1-4Hz) in decoding imagined speech have been
observed in (Dash et al., 2021), however, the best performance was achieved using all the frequen-
cies. Further, increased power in delta band is also associated with drowsiness (Majumder et al.,
2019).

FIGURE 2.5: Delta band in EEG signal.

Theta : A recent study (Kösem & Van Wassenhove, 2017) mentioned that theta waves (4-8Hz) are re-
active to phonetic features of speech, they also play role in the reconstruction of phonemes and
processing co-articulation cues which helps in the construction of word within a speech.

Alpha : ERD (event related de-synchronisation) has been indicated as a sign of feedback to primary mo-
tor cortex (PMC) during speech production. It is considered to represent somatosensory activity.
In the study (Jenson et al., 2014), it has been shown to represent auditory feedback, which makes
sense about how auditory and somatosensory region provides feedback to PMC while speech is
being produced. Alpha ERS/ERD phenomena are observed during speech perception, in the study
(Jenson et al., 2014) ERS activity was observed before the onset of the auditory stimulus which
was followed by ERD in low alpha (8-10Hz) and high alpha (11-13Hz). Increased alpha activity
is often related to concentration tasks and memory workload, which helps in processing the audi-
tory speech and reproducing it as spoken language. Alpha waves during covert speech are weak
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FIGURE 2.6: Theta band in EEG signal.

compared to during overt speech (Jenson et al., 2014). Further, alpha waves also play an important
role in attention

FIGURE 2.7: Alpha band in EEG signal.

Beta : Beta waves in speech can be considered as a result of muscle movement, it is also speculated to
play a role in the generation of feed forward control through PMC and internal modeling (feed-
back) in addition to motor activity. In other words, it is used in discrimination of speech (Bowers
et al., 2013) which is then transferred to auditory region for further processing and speech produc-
tion. The work in (D’Zmura et al., 2009) mentioned that beta waves provided the most information
about the EEG signal of imagined speech (syllable).

FIGURE 2.8: Beta band in EEG signal.
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Gamma : Overt speech production is associated to high gamma changes (70-150Hz) in the temporal lobe
(middle and superior parts), supramarginal gyrus, Broca’s area, Wernicke’s area, premotor cortex,
and primary motor cortex (Pei et al., 2011). Whereas the covert speech is also associated with
changes in high gamma frequency in the superior temporal lobe and supramarginal gyrus (Pei et
al., 2011). The study (Hwang et al., 2005) showed that stimulus present interval (SPI) and inter
stimulus interval (ISI) has a rapid effect on gamma frequency; it decreases below the baseline and
then very rapidly return to the baseline level.

FIGURE 2.9: Gamma band in EEG signal.

2.4.2 Event Related Potentials (ERP)

EEG signals recorded from the scalp are sum of local field potentials (source activity), and non-source
activity such as scalp muscle, eye movement, heartbeat, electrode, and environmental noise (Coles &
Rugg, 1995). In other words, recorded EEG does not comprise of all the activity from the neurons
activated by particular tasks, but also comprises of background activity having weak coherence with task
related activity. As mentioned above EEG recording is electrical activity produced by neurons, these
signals in passing from one neuron to another suffer conduction by interceding conductive media such
as skull, skin, membrane, grey, and white matter, which attenuate the signals (Coles & Rugg, 1995).
Therefore, signal averaging over many trials and electrodes is used to eliminate the sources that does
not directly contribute to time-locked events (Coles & Rugg, 1995). When a stimulus is presented, then
the voltage change occurs in the EEG signal which is known as event related potential (ERP) (Coles &
Rugg, 1995). The stimulus which gives rise to an ERP, signifies the action generated in the neurons i.e.,
change of potential by the stimulus. The electrical field activity of a sizable population of neurons is
represented by the ERP.

A time domain representation of ERP is a plot of voltage at each time point. Voltage changes that are
time locked to certain events within an epoch are called ERP. The advantage of averaging over behavioral
study is that it can observe and monitor the unattended stimuli (Luck, 2005). Averaging of trials offer
another advantage i.e., it reduces the residual noise in the averaged signal as compared to the single trail,
but this works to a certain extend. ERPs have been used to control communication-based BCI systems,
some of the ERPs used in BCI applications are SSVEP, N200, P300, N400.

• SSVEP: Steady state visually evoked potentials are brain responses and occur at the same funda-
mental frequency as the presented stimulus. In other words, if a visual stimulus at a frequency
ranging from 3.5Hz is presented, the brain will produce an event at a similar frequency (Al-
saleh, 2019). Text-based BCI using SSVEP have been explored in past and recent research has
achieved text classification based on SSEVP up to 90% (Abdelnabi et al., 2019). However, despite
the success SSVEP induced by visual stimulus can cause fatigue and makes it impractical for a
communication-based BCI application.
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• P300: The P300 is an event related potential that can be detected 300ms after the stimulus onset
(Picton, 1992). This ERP depends on the level of attention and confusion (when an unexpected
order stimulus is presented), it is mainly observed at the parietocentral region of the brain. It is
known to be the neural signature of required change by the mental model to make an appropriate
response (Linden, 2005). The P300 speller is a widely used BCI, however, suffers from certain
limitations such as low real-time P300 detection accuracy and has shown difficulty for people who
cannot control gaze (Linden, 2005).

• N200: Motion related visually evoked N200 is another ERP that has been used for controlling a
BCI (Hong et al., 2009). The author developed a speller based on N200 ERP which is a negative
deflection around 180 to 300ms after the stimulus onset. The accuracy of the N200 speller was
comparable to the P300 speller with a smaller number of training data.

• Hybrid BCI: A BCI should be able to detect multiple mental activities making it more suitable.
Hence, hybrid BCIs that can detect multiple activities or combination of activities have been pro-
posed (Alsaleh, 2019). A combination of P300 and SSVEP was proposed as a hybrid BCI system,
where the system detects the level of attention by checking SSVEP activity (Linden, 2005). Fur-
ther, some hybrid BCIs have combined P300 and MI where the user has navigated through a virtual
house by imagining left or right hand movement (Su et al., 2011).

2.5 Machine Learning

Machine learning techniques provide computers the ability to learn patterns from the given dataset. Many
problems can be solved using machine learning techniques such as classification, regression, clustering
etc. In BCI systems it plays an important role by extracting information from EEG recording and make
predictions. Machine learning techniques have been used widely in neuroscientific research (Das et al.,
2010; Herff et al., 2015; Knops et al., 2009; Sturm et al., 2016). There are mainly three types of machine
learning algorithms:

1. Supervised Learning: In this type of learning, a data-set known as training data along with labels
which refer to outcomes are fed to the algorithm. Using this data, a training process starts where the
algorithm learns to differentiate characteristics between different labels (outcomes). The learning
process continues till a desired level of accuracy is achieved, then the algorithm is fed new and
unlabeled data to predict the label. Example of supervised learning algorithms are K-NN, logistic
regression, and decision tree.

2. Unsupervised Learning: The data does not have known labels. The algorithm looks for a structure
in the data and organizes similar looking data together. Examples of this kind of problem are
clustering, dimensionality reduction algorithms are K-means, and the Apriori algorithm.

3. Reinforcement Learning: This type of learning is focused on goal-directed learning through in-
teraction. Reinforcement learning is the process of determining what to do—how to map situations
to actions—in order to maximise the magnitude of a reward. The algorithm is not taught which
activities to do, but must determine which behaviours produce the greatest reward through trial
and error (Sutton & Barto, 2018).

In this thesis, we used all three types of learning. For classification purposes we used supervised
learning algorithms like support vector machines (SVM), and K-nearest neighbor (K-NN). Further, di-
mensionality reduction were implemented as linear discriminate analysis (LDA) and deep neural net-
works (DNN). Linear classifiers such as K-NN and SVM were used because these methods seem ideal
with limited data and easier to implement (Muller et al., 2003). However, EEG signals are non-stationary
and complex in nature making it difficult to recognize, therefore deep learning methods were also used
in this work.
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FIGURE 2.10: The architecture of a feed forward network.

2.6 Deep Learning

BCI using traditional feature extraction and machine learning methods have been successful such as
recognition of motor-imagery tasks from EEG signals, however, the classification accuracy using stan-
dard techniques remains between 60-80% (Zhang et al., 2019c). Further, recognition of imagined speech
from EEG signals is more difficult due to the fast processing of speech in the brain (Alsaleh, 2019). In
addition, EEG signals suffer from a low signal-to-noise ratio due to the non-stationary nature of EEG
signals, which cannot be dealt with using standard feature extraction methods (Zhang et al., 2019c). On
the other hand, deep learning has performed better than standard machine learning techniques in different
areas. Also, in recent years it has been used to analyze and interpret EEG signals (Hartmann et al., 2018;
Zhang et al., 2019b).

Deep learning is a branch of machine learning that is based on the idea of artificial neural networks.
The basic building block of neural networks nodes, which is inspired by the biological neurons in the
human brain. The basic operation of these nodes is to transfer information to other nodes present in the
network. It is a technique that learns high-level features contained in the data. Deep learning models
contain several layers, where each layer process features from the previous one. A deep neural network
contains non-linearities in form of activation functions which makes them robust towards learning non-
linear trends in the given dataset. In this thesis, three types of neural networks are used, that are discussed
in the following subsections.

2.6.1 Feed Forward Neural Network

The feed forward neural network is also known as artificial neural network (ANN) is inspired by the
way the human brain works (Rosenblatt, 1958). Multiple “neurons” are connected to each other, where
neurons are the building blocks of a neural network, these are computational units that perform basic
functions such as applying non-linearity to the input. The feed forward network is shown in figure 2.10.
The feed forward networks mostly consist of an input, output layer one or more hidden layer. The layers
beyond the input layers are called the hidden layers and are made up of neurons, each neuron weights
its input. An activation function is used to sum the weighted input to provide a mapping of the input
to the output of the neuron. The threshold at which a neuron is activated depends on the strength of
the output of the activation function. The weights of the neurons are updated using back-propagation
algorithm which reduces the error between target and predicted outcome. The feed forward network
although a very powerful algorithm is not effective in solving complex problems requiring spatial and
temporal precision.
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2.6.2 Convolutional Neural Network

FIGURE 2.11: The architecture of a convolutional neural network showing feature map
creation from the input matrix followed by pooling layer and fully connected (dense)

layer.

The convolutional neural network (CNN) (LeCun et al., 1998) learn the pattern in the data using
convolutional operation. The CNN architecture can vary in the number of layers, ranging from single
layer (shallow) architecture to a very deep network with several consecutive layers (Abdel-Hamid et al.,
2014; Simonyan & Zisserman, 2014). The CNN’s initial layers capture low level features and more
complex high-level features are learned in the deeper layers. The CNNs mainly has three main hyper-
parameters: filters, strides, and padding.

Filter: At the first stage, the filter captures spatial information from a multi-dimensional input (e.g.,
image, spectrogram) by performing a convolution operation between the region of the input matrix and
the filter (also known as receptive field). The values inside the filter are known as weights. The filter
slides over the entire input matrix (image) to extract features, each position of the filter corresponds
to activation of the neuron and is collected on a two-dimensional feature map. If the input is a multi-
dimensional matrix for example an image with multiple channels, then a neuron is the summation of
convolutional operation across all the channels for the same region. The ability of the CNN to extract
features using filters is particularly useful, as different feature maps can represent activity at different
spatio-temporal windows. The value of the feature on the ith row and jth column of the kth feature map
at a given layer is obtained as (Tabar & Halici, 2016):

yk
i j = h(a) = h((W k∗x)i j + bk) (2.1)

where x refers to the input, h to the activation function, ∗ denotes the convolutional operation, bk refers
to the bias value, and W k is the weight matrix of filter k, with k = 1,2, ...,K, K = 32, 64 or 128.

Stride: Stride specifies how far our sliding filter window will travel when the filter function is ap-
plied. Each time the filter function is applied to the input, a new depth column is created in the output
map. Lower stride values results in more strongly overlapping receptive fields between the columns, re-
sulting in increased output volumes (Patterson & Gibson, 2017). On the other hand, higher stride values
result in reduced spatial overlap and smaller output volumes.

Padding: For the convolution operation, zero padding was used in order to preserve the spatial
resolution of the input. Zero-padding is defined as:

p =
hr−1

2
(2.2)

where p is padding and hr is receptive field size. Here, h refers to the activation function. The third
stage is the pooling or sub-sampling calculates the summary statistic of the local patch in the feature
map. The summary statistic is usually average or maximum and creates a lower-level perception of the
features by reducing high level details in the feature map which helps avoid over-fitting in the network.
The architecture of the CNN is shown in figure 2.11.
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2.6.3 Activation Functions

In deep learning models an activation function specifies how the weighted sum of the input is converted to
an output from a node or nodes in a layer of the network. The network performance is largely impacted by
the choice of activation functions. The activation functions have improved the ability of neural networks
to learn complex features (Qian et al., 2018). In this work CNNs were implemented with non-linear
activation functions. In CNNs non-linearity is applied to the feature maps using the non-linear activation
function, this stage is often called the detector stage (Goodfellow et al., 2016). There are many different
types of activation functions; however, this work used four activation functions, defined as follows:

• ReLU: The rectified linear unit (ReLU) (Nair & Hinton, 2010) is the most widely used activation
function. The ReLU are effective in alleviating the vanishing gradient problems in the neural
networks (Clevert et al., 2015). The values The ReLU is defined as:

R(a) =

{
a if a > 0

0 if a≤ 0
(2.3)

where a refers the input to the activation function.

• ELU: The exponential linear unit (ELU) (Clevert et al., 2015) is defined as:

ELU(a) =

{
a if a≥ 0

c(ea−1), otherwise
(2.4)

where c is a parameter.

• Sigmoid: The sigmoid activation function is usually used in deep learning models for binary pre-
diction. When used in the hidden layer activation function can cause network gradient to saturate
(Nielsen, 2015). The sigmoid activation is given as:

sigmoid(a) =
1

1+ e−a (2.5)

where a is defined in (2.1).

• Softmax: The so f tmax activation is used in deep learning models to make classification prediction.
The softmax activation normalizes the input vector such that the sum of all values in the vector is
one. The so f tmax function is define as:

αa =
exp(ai)

∑
K
i=1 exp(ai)

(2.6)

where α is the so f tmax, ai is the input vector, K is the number of classes.

2.6.4 Recurrent Neural Network

The recurrent neural networks (RNN) (Bishop, 2006; Schuster & Paliwal, 1997) are powerful neural
networks for processing sequential data. The RNNs have loops, feedback, and memory which makes
them robust when working with temporal data. The RNN can be considered as an extension of the
feed forward network where the output of each neuron is also passed latterly to the next neuron in the
same layer which is known as recurrent connections. This adds memory to the network and allows the
network to learn features across the sequence of the input, therefore the future hidden state of the network
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is dependent on the current state. The long-short memory units (LSTM) (Hochreiter & Schmidhuber,
1997) are the most widely form of RNNs, which are trained using backpropagation algorithm. The
LSTM cell architecture can be described mathematically (Zhang et al., 2019b) as:

it = σ(Wi · [ht−1 + bi], (2.7)

ft = σ(Wf · [ht−1 + b f ]), (2.8)

Ct = ft ∗Ct−1 + it ∗ tanh(Wc · [ht−1,xt + bc]), (2.9)

ot = σ(Wc · [ht−1,xt + bo]), (2.10)

ht = ot ∗ tanh(Ct), (2.11)

where ht is the output of LSTM hidden state vector for tth cell which corresponds to the tth time point,
Ct−1 is cell state at time t, xt is the input to the cell, ht is the hidden state of LSTM at time t, Wi,Wf ,Wo,Wc

are the weights, and bi,b f ,bo,bc are the biases. The output from LSTM from all the hidden states was
calculated as:

ht = LST M(st), t ∈ [1,T ] (2.12)

2.6.5 Attention Mechanism

The concept of attention mechanism is inspired by the human brain’s ability to focus on selective things.
It was initially introduced to overcome the problem of processing long sequences (Bahdanau et al., 2014).
However, it has been implemented to improve performance of deep learning models for several tasks
such as natural language processing, image captioning, and computer vision (Vaswani et al., 2017; Woo
et al., 2018; Xu et al., 2015). In representation learning models like the ones used in this work, attention
mechanism is used to provide more weights to certain features which provides the most discriminative
information.

To implement the attention in our work, we used the self-attention layer, where the output from
parallel dense layers were used as input to attention layer to create a more informative global feature
map g. The resultant global feature map has more weights assigned to discriminative information which
contributes to classification of imagined words. The output from parallel dense layers from all the hidden
states was calculated as:

dt = Dense(st), t ∈ [1,T ] (2.13)

where dt is the output of single dense layer which corresponds to the tth time point, st is the hidden
state (features) at time t and T is the number of nodes in a dense layer. The attention mechanism was
implemented using a dense layer, where the first layer had one neuron and the tanh activation function.
The output of first layer is defined as:

ut = tanh(Wsdt + bs) (2.14)

where Ws is the weight and bs is the bias of the fully connected layer with single neuron. The output ut

was passed through a the so f tmax activation function to estimate αt known as the normalized importance
vector, which was calculated as follows:

αt =
exp(ut)

∑
T
t=1 exp(ut)

(2.15)
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g = ∑
t

αtdt (2.16)

where g is the global feature vector produced by the attention layer. The self-alignment layer is trained
using back-propagation algorithm and learn important time points in the feature-map using the gradient
of the cost function (Bahdanau et al., 2014).

2.6.6 Network Training

Training is a process, where a deep learning algorithm adjust the weights and biases (initialized randomly
or using some other method), making some smaller and others larger, so assigning significance to certain
features and reducing importance of others. This assists the network in determining which features are
associated with particular outcomes and adjusts the network’s weights and biases appropriately (Patter-
son & Gibson, 2017). The weights and biases are adjusted with the help of optimization algorithm such
as the stochastic gradient descent (SGD).

All the networks in this research were trained on NVIDIA Tesla T40 GPU, using the Keras library
(Chollet et al., 2015) with Tensorflow backend (Abadi et al., 2016). The networks were trained with
the Adam optimization algorithm. Due to weight sharing in convolutional networks, the gradient at
different layers can vary widely (Bashivan et al., 2015). Therefore, networks were implemented with a
slower learning rate for training. Further, in order to avoid the problem of unstable gradient (Simonyan
& Zisserman, 2014), the network implemented in this research used He weights initialization method
(He et al., 2015).

2.7 Silent Speech Processing in Literature

Speech is the primary means of human communication and it is an ideal modality for a BCI commu-
nication system. A silent speech interface or brain-to-text interface would be able to serve as a mode
of communication for people with severe motor disability, for example locked-in patients (section 1.1)
(Herff & Schultz, 2016). Analysis of neural mechanism for imagined speech has been studied using
different brain imaging techniques such as fMRI, fNRI, ECOG, MEG, and EEG have been used for
recognition and analysis (Dash et al., 2021; Heger et al., 2015; Huang et al., 2002; Stephan et al., 2020).
Analysis and interpretation of EEG signals produced during speech has been the topic of interest for the
scientific community for a long time. Studies more than two decades ago (Suppes et al., 1998; Sup-
pes et al., 1997) combined MEG and EEG attempting to classify averaged EEG signal produced during
speech. EEG offer more advantages compared to other brain imagining techniques, EEG devices are
cheap, portable, and easy to use. In addition to costs, EEG headsets are available with dry electrodes and
wireless communication ability which are more practical in daily use applications. This section provides
an literature review of studies done in imagined speech recognition using EEG signals.

2.7.1 Recognition of Syllables

Different aspects of speech have been investigated, the study in (D’Zmura et al., 2009) recorded EEG
signals for imagined syllables “/ba/” and “/ku/” from six subjects to understand the contribution of
different frequency bands involved. The study was focused on distinguish the role of alpha, beta, and
theta frequency bands in language processing and comprehension in the brain. In order to achieve this,
EEG signal envelopes were analyzed for each electrode in Theta (3-8Hz), Alpha (8-13Hz) and Beta (13-
18Hz). These envelopes were used to construct the matched filters by averaging the trials for an envelope
and condition. Also, the study computed power spectral density (PSD) for all the conditions in different
frequency bands. Using two different approaches the author concludes beta band activity to be most
informative in comparison to the alpha and theta bands. However, the inter-subject study did not provide
accurate information indicating variation in information between subjects and condition. Similarly, the
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study in (Brigham & Kumar, 2010a) performed recognition of EEG signals recorded for mentally spoken
syllables “/ba/” and “/ku/” and achieved above chance level accuracy.

EEG signals for speech imagery syllables have not only been studied for a though-to-speech inter-
face, but also have been proposed as an alternative to motor imagery. The work in (Brigham & Kumar,
2010b) suggests that speech imagery EEG signals are a better alternative to EEG signals of motor im-
agery for bio-metric identification. They aimed to use EEG signals produced during imagined speech of
two syllables “/ba/” and “/ku/” for subject identification. The author mentioned that using syllables in-
stead of words as stimulus would avoid semantic effects in EEG signals. The author used auto-regressive
coefficients for feature learning and linear SVM to achieve an accuracy of 99.7%.

The study (Wang et al., 2013a) aimed to distinguished EEG signals for speech imagery of Chinese
characters and proposed speech imagery to be suitable for asynchronous BCI system. EEG signal were
recorded for mentally spoken Chinese language characters. For feature extraction purpose the study used
common spatial patterns (CSP) and cross-correlation function to calculate the eigenvalues of the EEG
signals. The extracted eigenvalues from CSP and cross-correlation were classified using SVM classifier.

2.7.2 Recognition of Vowels

Along with syllables, EEG signals produced during mentally spoken vowels have also been studied.
The work in (DaSalla et al., 2009a) proposed an algorithm for the purpose of speech prosthetic. EEG
signals were recorded for vowel (speech) “/a/” and “/u/” imagery task and resting state as control task.
Grand averaging of the EEG signal was performed in time domain to visualize speech potentials (ERP),
common spatial patterns were used for feature extraction and non-linear SVM was used for classification,
with classification rate ranging between 68% to 78%.

The work in (Chi et al., 2011) investigated phonemes production using different vocal articulation
(tongue, lips, nasal, jaw, and fricative), EEG signals were recorded on different days from the same sub-
ject. Five classes were classified in pairwise manner, for classification of imagined phoneme production
author used naive Bayes and linear discriminant analysis (LDA). The method achieved a recognition rate
of 80%.

Apart from English language, EEG signals produced during mentally spoken vowels in Japanese
language have been investigated (Matsumoto & Hori, 2014). The study used two different classification
algorithm SVM with Gaussian kernel (SVM-G) and RVM with Gaussian kernel (RVM-G), common
spatial patterns (CSP) and adaptive collection (AC) were used for feature learning. The recognition
accuracy rate achieved by both the SVM-G and RVM-G were in the same range 77%-79%. The study
concluded SVM-G as a better choice because RVM-G had a higher calculation cost and required more
training data.

On the other hand, some studies used both vowels and syllables to this topic, (Arjestan et al., 2016)
used three syllables, six vowels, and no-activity as a control state to decode the covert and overt speech
from EEG signals. In this study the authors further point out the advantages of using covert speech for
recognition of speech.

The work with phonetics was taken a step ahead in (Zhao & Rudzicz, 2015) by checking the pres-
ence of different phonological categories like presence of nasal, bilabial, high-front vowel and high-back
vowel, using EEG signals along with six other modalities. EEG signals were recorded while subjects
mentally spoke seven phonemes (/uw/ , /iy/ , /tiy/ , /diy/ , /m/ , /n/ , /piy/ ) and four words (pat, pot, knew,
gnaw). Statistical features like (mean, variance, median, standard deviation) along with entropy, skew-
ness, kurtosis, and energy were calculated. The author used SVM with quadratic kernel (SVM-quad) and
radial basis function (SVM-rbf) to perform classification for five tasks, achieving an accuracy of above
chance level for four out of five tasks.
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2.7.3 Recognition of Words

The first attempt of recognizing imagined speech for mentally spoken words from EEG signals was
in (Suppes et al., 1997). However, no new work was done until (Wester, 2006) acquired EEG signals
for silent speech and speech gestures such as mumbling and whispering. This author used short time
Fourier transform (STFT), delta coefficients for feature extraction, linear discriminant analysis (LDA)
for dimensionality reduction, and hidden Markov models (HMM) for classification achieving an above
chance accuracy. Additionally, results from electrodes over Broca’s, Wernicke and Homunuculus areas
were also evaluated, but the results using all the electrodes achieved better recognition rates.

In the study (Porbadnigk et al., 2009) the author suggests that the order in which the stimulus is pre-
sented can impact the recognition rate of imagined speech. EEG signals were recorded by presenting the
visual stimulus in different orders (random, blocks). It was concluded that presenting words in sequence
( blocks ) during EEG recording leads to better recognition rate, the author mentioned that this increased
the concentration and hence reduce the noise in the signal. It was also mentioned that better recog-
nition rate could be due to temporal correlated artifacts in the signals, as the recognition rate reduced
when the words are presented in random order. The study in (García et al., 2012) proposed a channel
selection method for recognition of unspoken speech from EEG signals. The author used EEG sig-
nals produced during covertly spoken Spanish words: “arriba (up)”, “abajo (down)”, “izquiedra (left)”,
“derecha (right)”, “slecciobar(select)”, similar to past studies (Porbadnigk et al., 2009; Wester, 2006)
presented the stimulus in blocks. The proposed technique produced recognition rate of 68% with seven
electrodes compared to 70% with all the electrodes. Also, the author mentioned that the unspoken speech
window for each speaker and for each word can vary, therefore during recording and pre-processing all
the signals in the EEG dataset should be transformed to equal length.

Further, EEG signals are affected by the length of signal recording (Levy, 1987), and therefore an
appropriate window size should be chosen for a trial. In addition, overt speech-based EEG signals
accompanied by muscle movement makes it even more difficult to understand the underlying neural
mechanism. EEG signals from the same subject can vary from one day to the other leading to change in
recognition rate (Chi et al., 2011), making experiments with longer imagined words or speech difficult.

Despite these drawbacks studies have shown to successfully analyze and classify unspoken speech
for an online BCI. The work in (Sereshkeh et al., 2017) used EEG signals for mentally spoken words:
“yes”, “no” and no-activity as control state for binary classification task as a preliminary step towards a
covert speech based online BCI system. The study recorded EEG signals in two sessions, the first session
was the training session, and the second session was the online testing session. Statistical features using
DWT were calculated and artificial neural network (ANN)- multi-layer perceptron (MLP) was used for
classification. The results were evaluated under binary setting for word “No” and control condition with
average accuracy for 12 subjects of 75.7%. For “No” and “Yes” an accuracy rate of 63.2% was achieved.
These results were reported to be higher than results obtained using K nearest neighbor (KNN), SVM,
and Naive Bayes.

Work with internal speech was further extended to bilingual unspoken speech by (Balaji et al., 2017),
EEG signals from five subjects were recorded during imagined words in Hindi: “Haan” and “Na” and
English words:“Yes” and “No”. In the experiment subjects were asked ten questions in both the languages
and subjects had ten seconds to answer the questions. Subjects were proficient in both Hindi and English
languages. EEG data was subject to dimensionality reduction using principle component analyses (PCA)
and trained different classifier: SVM, random forest (RF) artificial neural network (ANN), and AdaBoost
for Hindi and English language. ANN outperformed other classifiers and achieved an average recognition
rate of 75.3%.

Similarly, advanced work was done by (Nguyen et al., 2017) which recorded EEG signals for imag-
ined speech from words of varying length from 15 subjects. Covert speech was recorded for vowels:
“/a/”, “/i/”, and “/u/”, short words: “in”, “out” and long words: “Cooperate” and “independent”. This
was the first time EEG signals produced by imagined speech for words of varying length. The study
proposed an algorithm based Riemannian manifold for features extraction and used relevance vector
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machines for classification. The results were evaluated under four binary conditions: classification of
vowels, short words, long words and short long words, and proposed method achieved an accuracy of
49%, 50.1%, 66.2% and 80.1%. The study achieved best recognition rate with classification between
words of varying length (“Short-Long words”). Further, the authors suggested that recognition of imag-
ined speech for shorter words is difficult in comparison to imagined speech for longer words.

The work in (Saha & Fels, 2019) proposed a hierarchical deep feature learning method by combining
CNNs, RNNs, and auto-encoder to recognize the long words dataset used in (Nguyen et al., 2017).
The author proposed that imagined speech related cognitive processes could be captured by a channel
cross covariance matrix and used it as feature in order to have better spatio-temporal representation of
EEG data. The CNN and RNN were trained in parallel for extracting spatial and temporal information,
the features from these two networks were combined and fed to an auto-encoder for dimensionality
reduction. The proposed method achieved an average accuracy of 79%, which is an increase of 13%
compared to previous work in (Nguyen et al., 2017) on the same EEG database. Further, in (Saha et
al., 2019) this method was also applied on another publicly available dataset Kara One from the study
(Zhao & Rudzicz, 2015). The proposed technique outperforms past methods by 67.15% in one of the
five recognition task and achieving highest accuracy on the dataset. This shows ability of deep learning
techniques in effectively learning behavior of EEG signals.

(Krishna et al., 2019) proposed automatic speech recognition model using EEG signals for vowels
and speech signals. The author used three different set of features acoustic features, acoustic and EEG
features combined, and EEG features only. Mel-frequency cepstral coefficients (MFCC) were used as
acoustic features and gated recurrent units (GRU) was used for classification. Distillation technique was
used for training the GRU. Best recognition rate of 96.3% was achieved when features from EEG and
MFCC were combined. Further, the author proposed electrodes T7, T8, FC5 and P7 showed to be the
most informative electrodes. However, the application of the method is limited for people suffering with
locked-in syndrome due to use of speech/audio signals.

(Sharon & Murthy, 2020) proposed a method that uses multi-phasal information in the EEG data as an
alternative to multi-modalities information such as speaking, imagination and speech related articulately
movement. The work used inter-phase information by using common representative learning (CRL)
which integrates information from multiple models of the EEG data. In order to achieve this correlation
network (CorrNet) which maximizes correlation between different modes were used along with DNN to
achieve state-of-the-art recognition rate on publicly available EEG dataset Kara One.

Most of the work in the literature have been focused on binary classification of words or phonemes.
However, in recent years there has been a growing body of research performing multi-class classifica-
tion of EEG signals of unspoken speech. The work in (Panachakel et al., 2019) used discrete wavelet
transform with deep neural network to classify publicly available Kara-One EEG dataset (Zhao & Rudz-
icz, 2015) and achieve a classification accuracy of 57.1%. Another work (Pawar & Dhage, 2020) also
used Kernel based machine learning method to classify EEG signals from mentally spoken words under
multi-class setting.

2.8 Methods proposed for recognition of Imagined speech

In order to design a BCI for imagined speech recognition it is important to learn the discriminative
features representing different classes. In the literature many methods have been proposed to learn dis-
criminative features from EEG signals. A popular technique that many studies have used is the Discrete
Wavelet Transform (DTW) to decomposed the signals and extract features such as energy, entropy, and
power spectral density to perform classification (Balaji et al., 2017; Panachakel et al., 2019; Sereshkeh et
al., 2017). The work in (García et al., 2012) classified EEG signals for imagined speech for five Spanish
words using different classifiers. The results were obtained for five classes using discrete wavelet trans-
form (DWT) feature extraction method, for classification purposes naive Bayes (NB), Random forests
(RF), SVM and bagging RF were used. In (Dash et al., 2021) MEG signals for mental speech were
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decomposed to seven levels using DWT, which were reconstructed using high pass coefficient from level
two to seven. From the decomposed signals root mean square (RMS) features were extracted and con-
catenated from different frequency bands. The study proposes the delta frequency band to be the most
discriminative, however the best results were obtained when features from all the bands were concate-
nated.

Similarly, common spatial patterns (CSP) (Koles et al., 1990) have been very successful in learning
spatial patterns from multi-dimensional EEG data. CSP have been used along other techniques for feature
learning of imagined speech, the work in (Wang et al., 2013a; Wang et al., 2013b) used CSP along with
cross-correlation matrix to recognize mentally spoken Chinese characters. Further, the study in (Arjestan
et al., 2016) performed classification of EEG signals for overt and covert speech, ad the features were
extracted using intrinsic mode functions (IMF). Further, eigen vectors were extracted from IMFs using
common spatial pattern (CSP) and two different feature vectors were used for classification purpose.

Machine learning techniques such as SVM have also been widely used for classification of imagined
speech EEG signals. The studies in (Arjestan et al., 2016; Matsumoto & Hori, 2014) used combination of
CSP for feature extraction and SVM for classification of EEG signals produced during mentally spoken
vowels. Other techniques such as auto-regressive (AR) modeling, Riemannian manifold, and empirical
mode decomposition (EMD) have achieved above chance level recognition rate (Brigham & Kumar,
2010a; Nguyen et al., 2017).

However, most feature extraction methods suffer from limitations, for example CSP performs better
with two classes (Sun & Zhang, 2006). Auto regressive modeling can suffer from poor spectral estima-
tion of signal (Al-Fahoum & Al-Fraihat, 2014) and are unable to adapt to variations within a given class.
Adaptation to variations is particularly important in imagined speech recognition, where the semantic
variations lead to changes in the processing of words in the brain (Vigliocco et al., 2011).

On the other hand, deep learning has exhibited excellent performance in various recognition tasks
(Graves et al., 2013; Jiang & Yin, 2015; Krizhevsky et al., 2012), including the recognition of imag-
ined speech from EEG signals. The work in (Panachakel et al., 2019) used deep learning to perform
multi-class classification of mentally spoken phonemes and words to achieve 57% accuracy rate. An
Artificial Neural Network (ANN) was used to classify bilingual unspoken speech in (Balaji et al., 2017)
from 11 classes and recognition rate was above chance level. The accuracy of recognizing long words
was improved by a 23% in (Saha & Fels, 2019) using a hybrid network designed of CNN, recurrent
neural network (RNN) and auto-encoder. Likewise, the work in (Sharon & Murthy, 2020) proposed a
classification framework that uses inter-phasal information by implementing the common representation
learning (CRL) in neural network to recognise imagined speech using publicly available “Kara One”
EEG dataset. This study achieved state-of-the-art results under binary classification task. Studies in
literature and methods used are shown in Table 2.1 and Table 2.2.
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TABLE 2.1: Studies in the literature that used EEG signals for imagined speech recogni-
tion.

Reference Task Brain Area Method Performance

(Suppes et al., 1997)
Recognition of 7 words: First,
second, third, yes, no, right,

and left

F7, T3, T5,
FP1, F3, C3,
P3, FZ, CZ,
FP2, F4, C4,

P4, F8, T4, T6

Averaging and prototyping and
least square criterion

Above chance
level of 1/7

(Wester, 2006)
Different modalities: i.e.

imagined speech, and silent
mumbling

Primary motor
cortex, the

Broca’s and
Wernickes area

LDA and HMM
Above chance
of 50% level

(D’Zmura et al., 2009)
Binary classification between

/ba/ and /ku/
All Matched Filter not mentioned

(Porbadnigk et al.,
2009)

Classification of words to
access order of word

presentation during EEG signal
recording

Broca’s area Hidden Markov Model (HMM)

Above chance
level (Block

mode), Chance
level (other

modes)
(Brigham & Kumar,

2010a)
Binary classification between

/ba/ and /ku/
not mentioned

Auto regressive modeling and
K-NN

61%

(Brigham & Kumar,
2010b)

Binary classification between
/ba/ and /ku/ for subject

identification
Not mentioned

Auto regressive modeling,
Power spectral density (PSD)

and SVM classifier
99.76%

(Yoshimura et al.,
2011)

Classification between vowels
/a/, /u/ and control state

Brodmann ares
1, 2, 3, 4, 6, 9,
22, 39, 40, 41,
42, 44, and 45

Sparse logistic regression and
Variation approximation

(SLR-VAR)
61.2%

(Chi et al., 2011)
Classification of articulation
class of imagined phonemes

All except
occipital and

far frontal
regions

naive Bayes and linear
discriminant analysis (LDA)

Significantly
above chance

rate

(García et al., 2012)
Multi-class classification
between 5 Spanish words

F7, FC5, T7,
P7 (Wernickes

area)

Naive Baye classifier, Random
Forest, SVM and Bagging-RF

Above chance
level

(Wang et al., 2013a)
Classification of Chinese

characters

ALL areas, left
hemisphere
(two setups)

Common spatial patterns
(CSP), cross-correlation, and

support vector machines
(SVM)

Between
79.33% to

88.26%

(Wang et al., 2013b)
Classification of Chinese

characters

ALL areas, left
hemisphere
(two setups)

Common spatial patterns
(CSP) and support vector

machines (SVM)

Between
73.25% to

95.56%

(Matsumoto & Hori,
2014)

Classification between
Japanese vowels /a/, /e/, /i/, /o/,

and /u/
All

CSP, support vector machine
with Gaussian kernel

(SVM-G), Relevance vector
machine with Gaussian kernel

(RVM-G)

SVM: 77%,
RVM: 79%

(Sarmiento et al., 2014)
Classification between /a/, /o/
(open), /e/ mid, /i/, /u/ (closed)

vowels

Broca’s and
Wernickes area

Support Vector Machines
(SVM)

84%-94%

(Zhao & Rudzicz,
2015)

Binary classification to check
presence of C/V,

±Nasal,±Bilab,±/uw/,±/iy/

T7, FT8, FC6,
C5, C3, CP3,

C4, CP5, CP1,
P3

deep-belief network (DBN)
and support vector machine

quad (SVM-q)

SVM-q:
C/V:18%,
±Nasal :

63.5%,±Bilab :
56.6%,±/iy/ :
59.6%,±/uw/ :

79.1%

(Yamaguchi et al.,
2015)

Classification between: rock,
paper or scissors and spring,

summer, autumn, winter

Pre-motor
cortex,

supplementary
and Broca’s

area

Hidden Markov model (HMM)
and Gaussian mixture model

29%-100%
difference

between words.
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TABLE 2.2: Studies in the literature which performed recognition of imagined speech
using EEG signals in the last five years.

Reference Task Brain Area Method Performance

(Arjestan et al., 2016)
Classification of vowels,
syllables and resting state

Not mentioned
common spatial pattern (CSP),
empirical mode decomposition

(EMD) and SVM

Syllables:
76.4% (best),
Vowel: 76.6%

(best)

(Sereshkeh et al., 2017)
Binary Classification between

“yes”, “no” and rest state
ALL

discrete wavelet transform and
multi-layer perceptron (MLP)

“yes” vs “no”:
63.2%, covert
speech vs rest:

75.7%

(Nguyen et al., 2017)
Classification of vowels, short,

and long words

F5, FT7, FC5,
FC3, TO7,

CP5, CP3, P5
(Broca’s and
Wernickes

area)

Riemannian manifold, and
relevance vector machine

classifier

Vowels: 49%,
Short words:
50.1%, Long

words: 66.2%,
S-L: 80.1%

(Paul et al., 2018)
Recognition of vowels in Hindi

language

F3, F4, F7, F8,
T3, T4, T5, T6,
C3, C4, P3, P4

time domain features and
support vector machine (SVM)

82.8%, 75.8%
and 59.4%

(Saha & Fels, 2019)
Classification of Long words:

Independent, Cooperate
All Hierarchical Deep learning 79%

(Saha et al., 2019)
Binary classification to check

presence of C/V,
±Nasal,±Bilab,±/uw/,±/iy/

All Hierarchical Deep learning

C/V:85.2%,
±Nasal :

73.4%,±Bilab :
75.5%,±/iy/ :
73.3%,±/uw/ :

81.9%

(Panachakel et al.,
2019)

Classification of 7 phonemic
prompts and 4 words

C4, FC3, FC1,
F5, C3, F7,

FT7, CZ, P3,
T7, C5

Discrete Wavelet Transform
(DWT) and deep neural

network (DNN)
57.15%

(Sharon & Murthy,
2020)

Binary classification to check
presence of C/V,

±Nasal,±Bilab,±/uw/,±/iy/
All Correlation network

C/V:89.3%,
±Nasal :

76.5%,±Bilab :
75.6%,±/iy/ :
80.3%,±/uw/ :

82.5%

(Bakhshali et al., 2020)
Recognition of 4 words: pat,

pot, knew and gnaw

T7, C5, C3,
C1, CP5, FC1,

FC3, FC5,
FC6, FT7, F1,

F3, F5, F7,
FT8, TP7

Cross-spectral density and
Riemannian distance

90.2%

(Pawar & Dhage, 2020)
Recognition of words: left,

right, up and down

Prefrontal
cortex, Broca’s

area,
Wernickes area
right inferior
frontal gyrus

Kernel Based extreme machine
learning

multi-class:
49.77%,

binary: 85.5%
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2.9 Grammatical Classes in the Brain

It is known that grammatical classes of words used in a sentence effects its processing, moreover, in
all languages words belong to the two most fundamental classes of nouns and verbs (Vigliocco et al.,
2011; Yu et al., 2012). There have been many studies aiming to distinguish between nouns and verbs in
the brain. For example, the work in (Tsigka et al., 2014) aimed to differentiate between processing of
nouns and verbs in the brain during silently reading of noun/verb homonyms. In this study the author
recorded MEG signals from participants while they read noun/verb homonyms. The processing of noun
and verbs was associated with four components or events between 0-725ms after the stimulus onset.
Neural activation of noun and verbs have also been investigated using even related potentials (ERPs),
which are used in neuroscience to detect the onset of an event produced by a particular activity (Luck,
2005). Investigation using ERP reported verbs to be processed faster in the left-hemisphere compared to
in the right hemisphere, while processing of nouns showed no such behavior (Xiang & Xiao, 2009).

The processing of verbs in the brain produced greater activation in comparison to processing of nouns
mainly in two brain regions: the right posterior parietal areas and the centro-parietal regions. Some work
has proposed stronger activation elicited by processing of verbs could be because of its association with
motor activity (Preissl et al., 1995). Also, verbs are known to evoke stronger events (high amplitude)
in the frontal and central cortical region of the brain which have motor cortices (Yang et al., 2017). On
the other hand, nouns have been reported to have stronger visual association (object words) and activate
left anterior, left temporal, and occipito-parietal cortices (Damasio & Tranel, 1993; Yang et al., 2017).
Further, processing of nouns depends on a stream of neural substrate at the anterior temporal region
(Preissl et al., 1995). Therefore, differences in processing of nouns and verbs have been associated with
meaning of the words being processed. Processing of nouns and verbs in the brain at early stage (106-
329ms) occurs at lower frequency range (24-98Hz) while higher frequencies (116-137Hz) are involved
at later stage (411-430ms).

Although, many studies have investigated in order to distinguish between brain activities produced
by nouns and verbs, to the best of our knowledge no work so far has tried to distinguish between EEG
signals for mentally spoken nouns and verbs using machine learning techniques. Since the problem has
not been solved using machine learning techniques, further research is crucial in order to discover more
effective ways to distinguish between brain responses produced by these two main grammatical classes.

2.10 Thinking with Images

Do we think with speech or images ? Often visual imagination has been associated with speech and
language. According to the proportional theory, the verbal processing and imagination in the brain takes
abstract proportions which have neither verbal nor imaginary form (Petsche et al., 1992). Mental imagery
is an ephemeral (short termed) internal visual portrayal (representation) of an object or activity using the
information stored in the long termed memory (Li et al., 2010). Imagery of an object is said to activate the
same part of the brain as the word for the given image (Xie et al., 2020). The neuro-anatomical regions
used for visual perception and mental imagery have been found to be similar: the occipital, temporal,
parietal cortices. However, different hemisphere specializes in activities associated with mental imagery.
Conceptually, speech in mind can be considered as impression or visual imagery of sentences, this had
been proven by the study (Suppes et al., 1999) which investigated about brain waves produced by visual
images and their names. The study showed that for visual words and images, the brain produced EEG
signals that are almost identical.

Recent study argued that thought production is comprised by meaningful linguistic and/or visual
imagery representations (Amit et al., 2017). Whether written words, perceived images, imagined images,
or pictures activate the same area in the brain or not has been subject of interest for several studies.
Research around the brain’s ability to change and re-enact spoken words and images has been proposed
as mechanisms of larger scale neural network and complex top-down processes (Ganis et al., 1996;
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Kosslyn et al., 2001). It has been shown that covert speech (imagined speech) is accompanied by visual
imagery (Amit et al., 2017). Further, it is known that images placed towards the end of a sentenced
are processed similarly to words (Ganis et al., 1996). However, this study also suggested a partial non-
overlap of underlying neural mechanism activated during the two tasks (Ganis et al., 1996).

According to (Esfahani & Sundararajan, 2012), visual imagination can be divided into two important
processes; creating the image and holding the image in the mind. In the work (Petsche et al., 1992),
it has been suggested that the inter-hemispheric and the right fronto-temporal coherence occur in order
to maintain the image during the visualization of a concept. Studies have shown that there are two
types of imagery; holistic which refer to an overall representation of the object (an outline) and partial
which is more difficult to restore or recreate as it focuses on certain features of the object. According
to (Li et al., 2010), holistic imagery is more easily evaluated compared to partial imagery. Speech is a
complex activity which involves different tasks simultaneously such as vision, mental imagery, auditory
feedback of own speech and/or other’s speech. It is important to understand that some parts of the brain
are involved more in visual perception, whereas others, such as the anterior temporal cortex, is more
related to complex visual memory (von Stein et al., 1999). This can influence the brain waves which
are accompanied by these tasks. Therefore, in this theses speech in mind is studied under different
modalities, such as covert speech and visual imagery i.e., mental imagery of an object.

2.11 Limitations of Previous Research

Despite the increasing interest from the research community regarding speech-based BCI systems, the
area of silent speech interface is still in its infancy. Recognition of imagined speech using EEG signals is
a difficult task and to design a BCI for communication there is a need to address gaps in the literature that
have been highlighted i this section. The limitation of the past research have been discussed as follows:

• Low accuracy: Despite the increasing interest from the research community regarding speech
based BCI system, the area of silent speech interface is still in its infancy. There are ERP based
BCI systems such as P300 spellers, that allow text entry with a virtual keyboard using eye gaze,
these work on P300 ERP. These spellers can be providing reliable speed with a information transfer
rate of 5.32 bits per second (Chen et al., 2015). However, these systems are still relatively slow,
does not recognize the word directly, and require high attention level.

• Limited Vocabulary: Most of the previous studies that used EEG signals of covert speech, focused
mostly on imagined vocalization of phonemes, vowels /a/ and /u/ and/or syllables /ba/ and /ku/
(Arjestan et al., 2016; Brigham & Kumar, 2010a). Recognition of imagined syllables and vowels
is motivating however, it cannot be used for a thought to text BCI application. Recent experiments
have focused on recognition of mentally spoken words (Hwang et al., 2016; Nguyen et al., 2017;
Sereshkeh et al., 2017; Wang et al., 2013b). However, these studies have used a smaller set of
words to be vocalized covertly while recording EEG signals, limited to two or three words such as
“Yes” and “No”.

• Experimental Design Choices: The experimental design for some studies included mental rep-
etition of the same word multiple times (Nguyen et al., 2017). There are two issues with this
approach. Mental repetition creates temporal effects (Porbadnigk et al., 2009) and daily conversa-
tion does not include repetition of the same word multiple times. In addition to mentally repetition,
the length of recording an EEG trials have been longer (Sereshkeh et al., 2017; Zhao & Rudzicz,
2015). In EEG activity, a longer epoch length provides better resolution to identify the small
changes in the EEG signal (Levy, 1987), but longer epochs causes time delay before the new in-
formation is presented, reducing the response time of a BCI. This questions the reliability of the
proposed methods, when it comes to analyzing the complex nature of imagined speech from EEG
signals.
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• Lack of work with Grammatical Classes: Studies have focused on recognition of individual
words; however, these words belong to different grammatical classes such as nouns and verbs. All
verbal communication have a primary object and characteristics associated with the object, which
are linguistically reflected in nouns and verbs (Crepaldi et al., 2011). A communication based BCI
could benefit from having a larger dictionary of words belonging to different grammatical classes.
Therefore, there is a need for discriminating imagined speech EEG signal belonging to different
grammatical class. To the best of our knowledge no work so far has used machine learning methods
to distinguish between grammatical classes.

• Recognition Methods: In the area of Brain Computer Interface many techniques have been sug-
gested in order to recognize the covertly vocalized speech. Further, most of the other research has
been done as binary classification task, where recognition was performed between two covertly
spoken words (Balaji et al., 2017), and (Sereshkeh et al., 2017). Even under such circumstances
some techniques work better in recognizing words of varying length (long words vs short words),
but the accuracy reduces when trying to recognize words of same length (Nguyen et al., 2017).
Further, due to complex nature of EEG signals a more robust feature learning and classification
techniques are required (Zhang et al., 2019c). As a result, it becomes apparent that a technique
is required that recognize mentally spoken words irrespective of their length and which can be
practically implemented to recognize multiple-classes.

2.12 Research Design and Methodology

This work aims to overcome the limitations of the previous studies. In order to achieve this, we conducted
this research study in following stages:

• Literature Survey: To begin, a comprehensive literature analysis was undertaken on the imagined
speech recognition from EEG signals evaluating previous studies in order to gain a thorough un-
derstanding of the experimental design for EEG experiment and techniques used in literature for
analysis of EEG signals.

• Recording New EEG Database: We designed an experiment to record EEG signals for men-
tally spoken words. In the experiment participants were presented with only “words” rather than
syllables and phonemes. The experiment contained larger vocabulary of words, with the words
presented as stimulus belonging to two main grammatical classes of nouns and verbs. This made
it possible to analyze of grammatical classes of mentally spoken words. Further, in the experiment
subjects were asked to mentally speak the words only once as soon as the stimulus appeared on
the screen, in comparison to multiple repetition of the words (Nguyen et al., 2017).

• Deep Learning for Recognition: Deep learning has achieved state-of-the-art performance in most
recognition tasks and have the ability learn representations in the data automatically (Goodfellow
et al., 2016). Therefore, in this work we have investigated deep learning methods for recognition
of imagined speech from EEG signals. We also used other methods for recognition and shown
improvement on those results using deep learning frameworks. High recognition rate was achieved
by the proposed deep network and the response time of these algorithm is fast enough to be used
in real world applications.

2.13 Summary

The background and literature review chapter presents a comprehensive overview of existing research
on the BCI, language processing in brain, EEG signals, and machine learning methods. The chapter
begins by an overview on signals produced in the human brain and language processing within the brain.
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Further, the chapter provides a comprehensive background on brain computer interface and its application
in the area of thought-to-speech technology. Following this brief overview of machine learning and deep
learning methods was provided. This section of the chapter outlines deep learning techniques used
in some of the past studies and more importantly in this research. In addition, the chapter discusses
in detail previous studies and methods employed for recognition of imagined speech from EEG signals.
Limitations of past research have been highlighted with respect to EEG experimental design and methods
used for recognition of speech from EEG signals.
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Chapter 3

Brain Signal Acquisition and
Pre-Processing

This chapter presents a new EEG data compiled for overt speech, covert speech, visual perception, and
visual imagination tasks. The chapter discusses factors taken in consideration when designing the ex-
perimental paradigm to record EEG signals from human participants. Further, pre-processing steps and
feature extraction method are discussed. The feature extraction section highlights the importance of pre-
senting information in time-frequency domain. The chapter is structured as follows; section 3.1, provides
an overview of the guidelines followed for experimental design, hardware, and software setup. Section
3.2, provides an overview of the experimental procedure and different tasks involved in it. Section 3.3,
provides an overview of the pre-processing, artifact reduction, electrode interpolation and EEG signal
filtering. In section 3.4, feature extraction and time-frequency analysis is discussed.

3.1 Motivation

A thought-to-speech BCI can be means of communication for people suffering from neuro-muscular
disabilities such as paralysis and locked-in syndrome. Furthermore, recent advances in invasive BCI
technology have shown promising results with monkey playing computer games with thoughts (gaurdian,
2021). Language is the most common mode of communication among humans, therefore a language
based BCI is most intuitive for communication. In addition, a language based BCI offers the user with
more options compared to cognitive task such as motor imagination or selective attention (Alsaleh, 2019).
In the past there have been many studies which explored the recognition of language in the brain using
neural time series data (EEG, ECOG signals) (Alsaleh, 2019; Herff, 2016). Some have tried to investigate
differences and similarities between speech modalities such as overt speech and imagined (covert) speech
(Martin et al., 2014). Most of the studies so far have recorded brain activity during mental repetition of
phonemes, and/or syllables. Whereas studies with complete words has been limited to mental repetition
of words like “Yes” and “No” (Sereshkeh et al., 2017). From a linguistic point of view each word can be
further categorize as a noun or verb, therefore investigating grammatical class of words can be helpful
in designing an efficient language-based BCI system. However, due to lack of publicly available EEG
database and limited studies with words, grammatical classes of mentally spoken words has not been
investigated in BCI research. On the other hand, verbal thinking (imagined speech) have been linked to
visual imagery (imagination) (Xie et al., 2020). Further, investigation of verbal thinking, and imagination
is limited only to discriminating EEG signals during visual perception and imagined speech (Alsaleh,
2019). Past studies have proposed visual imagery as a potential input for a language based BCI system
(Lee et al., 2019). However, to the best of our knowledge no EEG database is publicly available for
visual imagery and imagined speech task.

Therefore, this chapter presents a new EEG database for investigating brain activity during imagined
speech and visual imagination. The study recorded EEG signals for four modalities: overt speech (verbal
thinking), covert speech (imagined speech), visual perception, and visual imagination tasks. In contrast
to previous studies EEG signals for imagined and overt speech were recorded from a larger dictionary
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of 10 words, containing five nouns and five verbs. This was done because in almost all the languages
have nouns and verbs as the two most basic grammatical categories. To discriminate between words be-
longing to different grammatical classes, we choose 10 words shows in Table 3.2. Further, to investigate
comparison between verbal thinking and mental imagery, EEG signals were recorded while the subject
performed imagination an object or a picture. The presented imagined picture where similar to object
previously presented as a word during imagined speech task. Furthermore, compared to previous studies
(Nguyen et al., 2017; Sereshkeh et al., 2017), the present work used a more natural method for record-
ing imagined speech by mentally speaking the presented words only once rather than repeating multiple
time. This chapter discusses the experimental paradigm, and the system used in recording the EEG sig-
nals. This chapter also focus on feature extraction method used in order to obtain a more informative
representation of the raw EEG signals (separated trials).

A well recorded EEG data is considered as half study completed. In order to design the experiment
for recording brain signals for imagined speech, we followed certain guidelines to get rid of influences
during recording such as environmental disturbance, body movements, and additional thoughts. The aim
of the research is recognition of covert (imagined) speech from EEG technology. In order to achieve
this goal, there were certain influential factors which were taken into consideration such as recording
environment, length of a trails, and tasks to performed. Recording the EEG data is the most important
task of any EEG based research, “a good data set has no substitute” (Luck, 2005). Pre-processing is only
useful if the recorded data is of good quality. Following were the factors considered while designing and
conducting the EEG recording experiment:

1. In order to maintain consistency of the psychological conditions, same words were used in both
overt and covert speech tasks. The Psychological condition changed, but not the stimuli. This was
done because different stimulus can lead to variation in psychological response and comparing two
different cognitive task (imagined and verbal speech) becomes difficult.

2. The experimental conditions were varied within the trial blocks rather than changing them between
the trial blocks. In other words, the stimulus was presented in random order rather than presenting
the same stimulus (word) several times which have been suggested by the previous studies to
produces temporal effects (Porbadnigk et al., 2009).

3. The EEG lab used for recording the brain signal had a moderate temperature, this was done because
high temperature could lead to sweating, increasing in potential of the recorded signals.

4. There was a gap of one second between each stimulus presentation, this was done in order to avoid
overlapping of the EEG waveform from individual trials. If the interval between stimulus is too
short, then potentials from the previous stimulus might contribute to the reaction (potential) evoked
by the new stimulus (Luck, 2005).

5. In order to reduce the number of eye blinks in the EEG signal, short duration trials were designed.

3.1.1 Recording Setup

Recording was performed during both the day and night times, in a LAB specifically designed for EEG
based experiments. The room was maintained dark during all the recording sessions, lab was based in
Brunel University London, United Kingdom. The subjects were asked to sit on a chair approximately one
meter away from a computer screen, the screen was connected to two computers. One computer was used
to present stimulus to the screen in front of the subject using the E-prime software, and the other system
was connected to the EEG head-cap recording the EEG signals using Neuroscan Curry-8 software. The
signals were recorded using the Neuroscan 64 channel Quik cap of extended 10-20 system. The subjects
were asked not to make any kind of moment during the recording, if subject made any mistake or did not
perform the task correctly, recording was restarted. Subjects were free to withdraw from the study at any
time during the recording.
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3.1.2 EEG Headset and Software

The E-prime software, available for behavioral research was used for designing the stimulus presenta-
tion for the experiment, labelling different classes, and activities. E-prime was used to presenting data
in random order to subjects and timing the gap between two stimulus presentations. The stimulus was
presented in random order to avoid impact of the temporal effects (Porbadnigk et al., 2009). The Neu-
roscan 64 channel Quik cap had 64 EEG electrodes (Ag/AgCL) and four non-EEG electrodes: VEOG
(vertical electrooculograph), HEOG(horizontal electrooculograph), EKG (electrocardiogram), and EMG
(electromyograph), which were used to detect and remove artifacts. The electrodes in the headset are
conductive plates which picks up the electrical activity from the scalp. Further, to ensure good contact
between scalp and the electrodes, an abrasive gel (conductive electrolyte) was injected in the electrodes
which also helps in lowering the impedance of the recorded signal.

(a) (b)

FIGURE 3.1: (a) 64 channel Quik cap (b) Position of 64 electrodes on the scalp.

In order to reduce noise in the EEG signals and extract important events, the impedance of the skin
should be reduced below 5KΩ before attaching the electrodes (Luck, 2005). To achieve this, the outer
layer of the dead skin cells was removed using alcohol pads from the face and head regions; mastoids,
above & below the eye, and the temples. At the skin below and above the left eye electrodes VEOG and
HEOG were placed, these vertical and horizontal channels were used to detect and remove eye blinks
from the recorded EEG signals. Two reference electrodes (M1 and M2) were place at mastoid. It is
difficult to remove dead skin using alcohol pads from the scalp because of the hair, therefore abrasive
needle was rubbed gently on the scalp to displace the top layer of the dead skin cells. The EEG cap was
connected to the synamp amplifier (shown in figure 3.2) which amplified and digitized the EEG data at
1000 Hertz sampling rate, specification of the amplifier is mentioned in Table 3.1. Faraday cage was not
used during EEG signals recording. The amplifier was connected to the system where signals were being
recorded.

TABLE 3.1: Specifications of the amplifier used for recording.

Bandwidth DC 3500Hz
Resolution 24 Bit

Common Mode Rejection (CMRR) > 110 dB
Noise (peak-to-peak) < 0.5µV (DC mode)

Input Range 400mV (DC mode),1.9mV (AC mode)
Sampling Rate (Hz) 1000Hz
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FIGURE 3.2: The amplifier (left) and power supply (right) that were used in digitization
of the EEG data.

3.2 Experimental Protocol

3.2.1 Subjects

A new database was compiled by studying 17 healthy subjects, 10 male and 7 female. All subjects were
fluent in English, 12 of them were not native English speakers. A subject can be regarded as a parameter
which needs to be in an ideal position to produce noiseless EEG signal. All subjects finished recording
without using any medication or drug. All the subjects were aged above 18 years, youngest subject was
22 years old and oldest was 70 years. None of the subject had any neurological or speech related disorder.
Subjects were told in advance not to make any physical movement, because slightest movement made
causes fluctuation in the EEG recording and muscle movement causes electrode amplitude to increase.
Movement during overt speech were suggested to be minimized, eyes should be focused on the screen,
eye blinks and horizontal eye movements were detected using VEO and HEO electrodes, clinching of
teeth was also asked to be avoided. Any movement made during the recording session was noted, subjects
were asked to stay relaxed, but alert during the recording. A subject sat on a wooden chair, 1 meter away
from a computer screen where the stimulus was presented. Faraday cage was not used in the experiment.
Participants were instructed to keep a normal pitch of their voice during overt production was told to be
normal, but it varied for every subject. Intensity of pitch decreased as the trial progressed, but not in all
cases. All the subjects provided feedback about the experiment and if they made any mistake during the
covert tasks, the particular trials were removed. Some subjects mentioned problems with imagining the
concepts, although there was no specific concept in particular. Due to noisy and artifact contaminated
data for 5 subjects only 12 subjects were used in the analysis throughout this thesis.

3.2.2 Experimental Design and Task Performed

EEG signals for four different modalities (activities) were recorded from 17 participants between the age
of 21 to 70 years. All the subjects were asked to perform four tasks in each session, each session lasted
13 seconds (shown in figure 3.3). For one subject, ten such sessions were recorded for ten different
stimulus (words and images), with a break after five sessions. Therefore, recording for each subject
lasted approximately 45 minutes. Every session was divided into four modalities (tasks). The modalities
correspond to different categories which are most appropriate for a communication based BCI system:
speech and visual imagery of the object/scene. However, most of the work in this thesis focus on speech
imagery. The four task (modalities) participants performed were:
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FIGURE 3.3: The sequence in which stimulus for four modalities was presented to the
subjects. The figure represents a session in the experimental paradigm for a given word.

1. Overt Speech: This was the first task in each session which involved subjects to speak the word
out loud as it appeared on the computer screen.

2. Covert Speech1: In this task, the subjects were asked to mentally read the word as soon as it
appeared on the screen.

3. Image Perception: Subjects saw a picture of object or activity represented by the word presented
in the earlier tasks (over and covert) of the same session. For example, if the word appeared in
overt and covert speech task was “Apple”, then image of an apple was presented on the screen for
2 seconds.

4. Visual Imagery: Subjects had to imagine the picture shown in the "Image Perception" task on the
blank computer screen.

The Sequence of tasks

• First, a blank screen appeared for one second before the stimulus onset and then word was pre-
sented for two seconds, subjects were told to perform overt speech task. The word appeared in
capital letters, black in color with white background presented on a computer screen 1 meter away
from the subject.

• It was followed by blank screen for 1 seconds and the subject had to perform covert speech task.

• The covert speech task was followed by a blank screen for 1 second and image perception task,
where the picture of the object appeared for 2 seconds with white background.

• The perception was followed by a blank screen and then the participants performed visual imagery
task. The sequence in which the tasks were performed is shown in figure 3.3.

White background was chosen for the stimulus presentation to avoid potential due to visual stim-
ulus (Luck, 2005). Ten different words and object/scene pictures were presented in total, each word,
scene/object was presented 10 times, a total of 100 trials for each modality was recorded for a given
subject. The words (stimuli) used in the experiment are shown in Table 3.2. The selected words were
randomly chosen from the list of most frequently used words in spoken and written English (Leech,
Rayson, et al., 2014).

1In some chapters of the thesis covert speech is also referred to as imagined speech and silently spoken speech.
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TABLE 3.2: List of words used as stimulus.

Noun “Apple” “Orange” “Bottle” “Football” “Laptop”
Verb “Carry” “Laugh” “Run” “Swim” “Write”

3.2.3 Characteristics of the Recorded EEG Data-set

TABLE 3.3: Characteristics of the recorded EEG data.

Parameters Details
No of Subjects 17 (10 Males & 7 Females)
No of Electrodes 64
Sampling Rate 1000Hz
Tasks per Subject Overt Speech Covert Speech Image Perception Visual Imagery
Trials 100 100 100 100
Classes 10 10 10 10
Class Type Spoken Words Imagined Words Watching Pictures Visual Imagery
Stimulus Words Words Pictures Blank Screen
Order of Presentation Random Random Random Random
Trials per Class 10 10 10 10
Trial Length 3 sec 3 sec 3 sec 3 sec
Grammatical Classes 2 2 - -
Grammatical Class Type Noun & Verb Noun & Verb - -
Words for Noun Class 5 5 - -
Words for Verb Class 5 5 - -
Trials per Grammatical Class 50 50 - -
Reading of Word Once Once - -

This section presents Table 3.3, which summarizes important parameters of the recorded EEG data.
As shown in the table four tasks were performed by the subjects during EEG recording. Each task had
10 different stimulus presentation, therefore each task had 10 classes. The stimulus for each task was
presented randomly as mentioned in section 3.1.

3.3 Public Database

In this thesis, analysis in Chapter 7 used a publicly available Kara-One EEG dataset (Zhao & Rudzicz,
2015). The data set contained EEG signals for four imagined words. The work in (Zhao & Rudzicz,
2015) recorded EEG signals along with the audio and facial information for imagined speech from 12
participants, of which 10 participants were native English speaker. EEG signals were acquired using 64
channel Neuroscan Quik cap with electrodes placed in the 10-20 system. Conductive electrolyte was
injected in the electrodes to improve connectivity. All the EEG signals were recorded at a sampling rate
of 1000Hz using the SynAmps RT amplifier. Further, a Microsoft Kinect camera was used to record
participant’s facial information and speech. Subjects were presented with 11 prompts (stimulus) with 7
phoneme/syllables (/iy/, /uw/, /piy/, /tiy/, /diy/, /m/, /n/ ) and 4 words (pat, pot, gnaw, and knew). For each
word and phoneme/syllable, 12 trials were recorded. The EEG dataset was recorded from 12 participants,
however data from four participants was discarded due to corrupted signals. Each trial consisted of four
stages:

1. Resting state, where the participant was instructed to relax for 5 seconds.

2. Next the stimulus appeared (text) on the computer screen and auditory utterance associated with
the stimulus.

3. Imagined speech stage where the participant imagined speaking the prompt for 5 seconds.
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4. Speaking stage where the subject read the stimulus out load (overtly).

As this work focus on recognizing imagine speech from EEG signals, therefore audio and facial
information present in the database were discarded. More information about the database can be found
in (Zhao & Rudzicz, 2015). The words used as stimulus to record EEG signals are presented in Table
3.4.

TABLE 3.4: Words presented as stimulus during recording of EEG signals for covert
speech.

Noun: “Pat” “Pot”

Verb: “Gnaw” “Knew”

3.4 Pre-processing

Recorded signals are contaminated by noise and artifacts, such as eye blinks, eye movements, breathing
and muscle movement. In order to avoid physiological noise caused by muscle movement, subjects
were asked to refrain from any kind of moment during the recording. However, some noise due to eye
movement and eye blink cannot be avoided when a visual stimulus is presented. Hence, pre-processing
was applied to avoid noise in the data. Further, the recorded EEG data is continuous, therefore another
objective of pre-processing is to separate the data into sets of trials. Pre-processing was done in following
steps:

3.4.1 Baseline Correction

To represent a signal in two dimensions a constant base level is required, experimental procedure of
recording the data takes hours, which can result in change in noise level, environmental or brain activity
(Staljanssens, 2013). Baseline of the raw data was corrected in real time and during offline processing,
using Neuroscan Curry 8 software. The mean per trial for each channel was calculated of the pre-trial
data and the mean value was subtracted from the all the points in the data. This was done because the
values prior to the stimulus onset are considered to have no event related activity. Although, it is essential
to recognize that the pre-stimulus values are not completely neutral. Baseline correction was the first step
in pre-processing. If it is performed after filtering or artifact rejection as it can impact important events
in the signal.

3.4.2 Filtering

In EEG research, time domain information has always been point of interest, but temporal information
of the EEG signal may get distorted by filtering. Filters can affect the timing and the amplitude of the
EEG by adding artificial peaks. Therefore, we avoided using analog filters because the analog filters tent
to change the latency of different frequencies by different amount, but this is not the case with digital
filters (Luck, 2005). For this reason no filtering was performed before digitization of EEG signals. It is
important to find an appropriate method to eliminate noise from the EEG signals.

Noise or artifacts, such as slow voltage shifts, occurs at low frequencies below 0.1Hz, hence a high-
pass, zero-phase, finite impulse response (FIR) filter of order 62 of 0.01Hz was used to filter the raw
EEG signal. Similarly, a notch filter was used to remove the harmonics of the 50Hz line (shown in figure
3.4). Most of the noise at the higher frequencies, such as noise due to muscle movement, was eliminated
by means of EMG electrode. Artifacts due to eye movements, were corrected by measuring the peak-to-
peak voltage of the VEOG signal along with the threshold voltage of ±100 µV and created an average
artifact corresponding to eye blink. The averaged artifact from the VEOG channel is subtracted by eye
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(a) (b)

FIGURE 3.4: Removal of 50Hz line noise using notch filter from the EEG signal: (a)
before (b) after.

blink contaminated EEG channels, for the same time points when the VEOG peak-to-peak voltage was
above the threshold, (shown in figure 3.5).

3.4.3 Electrode Interpolation

All the noisy electrodes were marked during the time of recording and later were inspected visually.
Electrodes with poor connection to the scalp and presence of very high voltage around ±100 µV were
interpolated i.e., the information in the noise contaminated electrode was estimated based on the EEG
activity from two neighboring electrode.

3.4.4 Artifact Detection and Correction

Another artifact correction method was removing or correcting the bad sections of the continuous raw
signal, which was corrected in the Curry 8 software. A threshold of ±100 µV was used to detect artifact
in all channels and by checking the voltage in all the channels with respect to threshold voltage. The
artifact contaminated region of the signal (from all electrodes) was corrected using principal component
analysis (PCA). The data from several EEG epochs is averaged to create average artifact and PCA is
performed on the averaged artifact which reveals components representing the artifact. Components
contributing to artifact were removed to acquire the corrected EEG signal.

(a) (b)

FIGURE 3.5: Continuous data with: (a) Eye blink; (b) Corrected using VEOG electrode.
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3.4.5 Trial Extraction

The continuous data contained labels and markers, where markers show the start of a trial. Labels
revealed the task (section 1) performed and class (here class refers to the different stimulus (words))
presented in the given trial. Using these markers and labels the continuous data can be divided into
separate trials. Trials belonging to a particular task and class were used as a set as shown in figure
3.6. Each class (word) had a total of 10 trials for a given subject. However, due to artifact reduction
some of the subjects had less than ten trials. Each trial length was three seconds, with 0.5 seconds pre-
stimulus and 2.5 seconds post-stimulus onset time. The trials were extracted using the MNE-Python
library (Gramfort et al., 2013).

FIGURE 3.6: The process shows separate trails extracted from continuous data. This
method was done separately for all the four tasks (section 1), class here refers to the word

and object/scene picture presented as stimulus during the experiment.

3.5 Feature Extraction

Feature extraction is the process of extracting important features (characteristics) containing the informa-
tion of interest from the original signal. The objective of feature extraction is compression of information
contained in the EEG signal by eliminating information not relevant to the task or to the imagined word.
It is most essential part of a BCI system to achieve high recognition because recognition rate of the
system will degrade if useful features are not chosen. This work mainly used two types of features: Tem-
poral features in chapter 4, 5 & 6, and Time-Frequency features in chapter 5, 6, & 7. Although frequency
features have not been directly used for classification, we used frequency features for electrode selection
in chapter 6.

There are many methods available to extract features from the given signal in order to achieve better
classification rate. Feature extraction methods can be divided into three main categories:

1. Temporal: Signal amplitude can be considered as the most standard form of temporal feature
(Lotte, 2008). This feature can be used after preprocessing of the raw signal using digital filters
such as FIR and IIR filters. In many studies mean of the data from different trials is used to create
the ERP and understand the underlying effects such as P300, N400 and ERD-ERS in case of motor
imagery.

2. Frequency: Power spectral density (PSD) is a frequency domain feature; it is one of the most
widely used methods in the field of BCI-EEG. Fourier transform of the raw signal is taken and
power at specific frequency can be used as input to the classifier.
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3. Time-Frequency: Wavelet transform, short time Fourier transform (STFT) and Hilbert Huang
transform (HHT) are some examples of T-F methods to extract features from the signals. Properties
such as energy, entropy, mean, and median can be evaluated from the different frequency bands at
specific time instances, reducing the information of signal for classification.

Temporal features alone can suffer several limitations due to the non-stationary nature of EEG sig-
nals. For example, signals produced by different stimulus (different words in this research) may be
similar in terms of head maps and neural activity, but dissimilar in terms of frequency characteristics
(Roehm et al., 2004). On the other hand, frequency information alone does not provide any information
about the temporal characteristics of the signal. Therefore, in this study EEG signals were transformed
into time-frequency domain.

3.5.1 Time Frequency Analysis

Representation of EEG signals in a desired form allows for more accurate analysis. Characteristics
of EEG signals can be studied using time-frequency analysis which provides information in both time
and frequency domain. STFT is one of the most popular time-frequency analyses, it provides spectral
information of the EEG signal at each time point. To calculate the STFT the original signal is segmented
into short-time frames by performing temporal overlapping (Zabidi et al., 2012). Transforming raw EEG
signals to spectrograms offer advantage because STFT provide important time-frequency information
about the underlying activity. Spectrograms are capable of capturing energy modulation across spectro-
temporal patterns which can be used to distinguish between different cognitive responses (Cohen, 2014).
Spectrograms are the most common form of time-frequency representation, they can be calculated by
applying STFT on the raw EEG signal and mapping it into the two-dimensions of frequency and time.

The data needs to be tapered during STFT, this is done in order to avoid the discontinuities in the
signals or otherwise known as leakage. There are several windowing options, however Hann window
was chosen because it tapers the data from zero at the beginning and at the end (Cohen, 2014). Figure
5.3 is produced from STFT method, length of the window is taken to be 256. Two consecutive windows
had a temporal overlap of 87%. Shorter window length enhances temporal resolution however reducing
the frequency resolution, therefore lower frequencies below 5Hz were not included in the analysis. Also,
better temporal resolution will help detect onset or events that might be present in the signal. The STFT
equation is given as:

S(t, f ) =
N−1

∑
n=0

s(n+ tN′w(n))− j 2π

N n f (3.1)

where f = 0,1, ....,N− 1, S(t, f ) is the time-frequency spectrogram, N is the window length, N′ is the
overlapping of the time window, w(n) window method of N point sequence. Spectrograms can be calcu-
lated from (3.1) as:

A(t, f ) =
1
N
|S(t, f )|2 (3.2)

where A(t, f ) is the magnitude of S(t, f ) obtained in (3.1).

3.5.2 Baseline Normalization

EEG signals suffer from the 1/f phenomena, which means low power representation at the higher fre-
quencies. This is due to the structure of neural network in the brain and slow speed at which neurons
communicate (Demanuele et al., 2007). There are several limitations caused by it:

1. Incorrect power representation across the different range of frequencies.
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(a) (b)

FIGURE 3.7: Spectrogram before and after baseline normalisation. Spectrogram before
normalization (a) provide no useful information. However, (b) after baseline normaliza-
tion, energy at different frequencies can be used to discriminate between mentally spoken

words.

2. Comparison between two different frequency bands become difficult and probably incorrect due
to lower power representation at higher frequencies.

3. Computing results over different trials and subject could be difficult.

4. Events can be misclassified based on background activities.

There are several methods to overcome the problem of low power representation at high frequencies
(Demanuele et al., 2007; Hu et al., 2014). In this work, the 1/f phenomena were resolved using a short
time window of 0.3 sec from pre-stimulus time period 0.5 sec, from -0.4 sec to -0.1 sec was averaged
over all trials of the given word. Pre-trial time-period was considered to be the time-period with no event
related activity, but due to the effects of windowing (overlapping pre-trial and post-trail time periods) a
safer time window (-0.4 to -0.1 sec) was chosen. Baseline activity was divided with spectrogram overall
time points and decibel conversion was performed. A baseline vector was calculated, comprising of
frequencies averaged over the baseline time window.

B( f ) =
1

t2− t1

t2

∑
t1

Sx(t, f )

where B( f ) is the baseline vector averaged across time axis in spectrogram, and the normalized spectro-
gram (in decibels) is defined as

SdB(t, f ) = 10log10(
Sx(t, f )
B( f )

) (3.3)

As seen in figure 3.7 (a), spectrogram that has not been normalized shows low power at higher
frequencies (blue region). On the other hand, the normalized spectrogram, shown in figure 3.7 (b),
exhibits power variations at different frequencies. Baseline normalization also helps untangle the task
related activity from the non-task related background information. Power in spectrograms normalized
using log10 is normally distributed as shown in figure 3.8.

The baseline normalized spectrogram show regions with high power (red patches) and other regions
(blue patches) in the spectrogram refer to decrease in energy. Important information in the signal can be
shared among different frequencies, therefore extracting components of interest from spectrogram can
bring forth important information (features) and help distinguish between different classes.
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(a) (b)

FIGURE 3.8: Distribution of power (a) shows non-normalized power distribution; (b)
taking logarithm-base-10 of spectrograms distributes the data normally.

3.6 Summary

This chapter presented a new EEG dataset recorded for analysis and recognition of speech in brain.
EEG signals for overt and covert speech were recorded from human participants. EEG signals for visual
imagination and perception were also recorded, which has been associated with language-based thinking.
In comparison to previous research, this study recorded EEG signals for larger vocabulary (i.e., 10 words)
and the subject repeated the word mentally and oral only once. The words used as stimulus belong two
grammatical class of noun and verb, allowing to investigate nature of EEG signals produced by two
different grammatical classes. Important factors that were taken into consideration in order to design
experiment for recording EEG signals are highlighted. The experimental protocol for all the modalities
is presented. Further, in order to improve the signal quality for further analysis, EEG signals were
processed using artifact rejection method, digital filtering, and electrode interpolation. Finally, the EEG
signals were transformed into time-frequency form which can better represent characteristics of EEG
signals in both temporal and spectral domain. The following chapter will investigate different techniques
to recognize imagined speech using EEG signals.
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Chapter 4

Discriminating between Imagined Speech
and Other Speech Related Activities

In this chapter, classification was performed between imagined speech and two other speech related
activities: visual imagery and overt speech. In the first part of this chapter, the temporal dynamics
were investigated in the EEG signals recorded during covert speech, overt speech, and visual imagery
task using temporal decoding method. Investigative analyses were performed using multi-variate pattern
analysis (MVPA), to find the best time window and frequency range for distinguishing between two
(covert & overt speech and covert speech & visual imagery) cognitive tasks. In the second part of this
chapter, a framework is proposed for recognizing the cognitive activity from EEG signals. The proposed
framework uses the K-means clustering for electrode selection and the convolutional-attention network
for classification.

4.1 Introduction

Words or concepts in the brain can be produced by many different cognitive activities, such as imagined
speech, visual imagery (imagining the picture associated with the word), and overt speech. In chapter 3,
EEG signals were recorded for imagined words, spoken words, and imagination of the concept associated
with word. The neural events produced by in these activities are triggered by the same concepts. This
chapter investigates whether the events produced by different cognitive activities are dissociable. In order
to achieve this, EEG signals from three cognitive activities are used in this chapter; covert (imagined)
speech, visual imagery, and overt speech. This is important as covert (imagined) speech based BCI
system should be able to distinguish between EEG signals produced by different cognitive activities.

When exploring mental representation in the brain, we refer to the brain’s ability to create visual
imagery during cognitive tasks (Petsche et al., 1992). These cognitive tasks are processed in a top-down
manner i.e., visual images generated from the memory (Dentico et al., 2014). On the other hand, bottom-
up processes are cognitive processes based on modal processing of external stimulus. These processes
are taking place during perception and have shown to not vastly differ in terms of brain activity, for
example when perceiving written words or images (Dentico et al., 2014; Petsche et al., 1992; Schendan
& Ganis, 2012).

Although, these cognitive tasks have been proven to show dissociability between processing of overt
and covert speech (Tian & Poeppel, 2010), the authors found that different areas in the brain were ac-
tivated for the overt speaking task, responses were recorded on the bilateral frontal areas, assumed to
be in relation to activity in the primary motor cortex, due to tongue movement when speaking aloud.
In contrast, the parietal cortex was activated during the covert (imagery speech) task (Tian & Poeppel,
2010). However, the study did not distinguish the two tasks based on the temporal dynamics of neu-
ral activity. Similarly, even if visual imagery and covert speech have been shown to recruit similar or
overlapping brain circuits and neural dynamics (Martin et al., 2014; Xie et al., 2020), yet the temporal
dynamics identified by using electroencephalography (EEG) for exploring these neural mechanics are
still less utilized and understood (Xie et al., 2020).
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Therefore, to examine the temporal events of these processes, the dynamics in EEG signals are inves-
tigated for covert speech (imagined speech), visual imagery, and overt speech tasks. MVPA was used on
the raw EEG data to find the most discriminative time and frequency information. In addition, a frame-
work is proposed for discriminating between EEG signals produced by visual imagery & covert speech
and overt & covert speech tasks using K-mean clustering and the CNN-attention network. The proposed
framework used K-means clustering to select electrodes and evaluated the network on electrodes in dif-
ferent clusters. The electrodes selected using K-mean achieved an average accuracy of 82.9% and 77.7%
for 12 subjects.

4.2 Dataset

The electroencephalogram (EEG) signals for three different modalities (tasks) were collected from 12
subjects. The three tasks were overtly spoken words, covertly spoken words, and visual imagery of the
images associated with the words who were fluent in the English language. The three tasks are defined
as :

• Overt speech: This was the first task in each session which involved subjects to speak the word
out loud as it appeared on the screen.

• Covert speech: In covert speech task the subjects mentally read the word as soon as it appeared
on the screen.

• Visual imagery: In visual imagery task subjects had to imagine the picture shown in the “Image
Perception task” which was associated with the words in the overt and covert speech task.

Ten words, five nouns, and five verbs were randomly shown to the subjects. Each subject was given
ten trials for each word, giving a total of one hundred trials for each modality. A trial lasted 3sec and was
recorded at a sampling rate of 1000Hz, resulting in an EEG signal of length 3000ms per electrode. For
further details on the experimental protocol and EEG recording please refer to section 3.2.

4.3 Methods

In this chapter, several techniques are used for investigation of the difference between neural activity
of different cognitive tasks. Methods such as MVPA and temporal generalization (TG) were used to
investigate the neural behavior in time domain. EEG signals are recorded from multiple electrodes,
processing of such high dimensional EEG data requires more resources and training time. Therefore, this
analysis used K-means clustering to select electrodes and evaluated the proposed network on different
group (clusters) of electrodes. This section provides an overview of these methods.

4.3.1 Temporal Decoding using MVPA

The central goal of neuroscientific research is to understand the processing of cognitive task in time (King
& Dehaene, 2014). Therefore, in this chapter, MVPA was used to distinguish between three cognitive
tasks. MVPA has the ability to decode information from multi-dimensional dataset and has been used
extensively in neuroimaging research (King & Dehaene, 2014). MVPA has been used in several fMRI
studies to provide insight about patterns triggered in different brain regions by the cognitive behavior.
It processes the information at different time points separately which increase the signal-to-noise ratio,
this offers advantage in comparison to event related potential (ERP) estimated by averaging (King &
Dehaene, 2014). MVPA uses sliding window approach which can help detect temporal segment for
optimal decodability.
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4.3.2 Temporal Generalization (TG)

Further, the idea of temporal decoding can be extended to generalization across time, also known as
temporal generalization (TG) (King & Dehaene, 2014), which can predict if the decodable information
reoccurs at different time segments. TG is a comprehensive strategy for recognizing how mental pro-
cesses are adjusted and notably altered (King & Dehaene, 2014). TG method trains a classifier to predict
stimuli or conditions using the brain activity on a single time point in the EEG data and then evaluating
the trained classifier across all conceivable time points. This is repeated for all potential training points
in order to get a complete matrix of accuracy for each potential train/test points combination. The find-
ings of this analysis can indicate when brain activity patterns are consistent (i.e., when the trained model
works well across multiple time windows) and when they are inconsistent, allowing the user to follow
the neural representations over time (Fyshe, 2020). A significant advantage of this technique is the use
of pattern classifiers to time-resolved brain activity data (e.g., EEG or MEG) recordings. Accordingly,
the TG technique determines at which moment a specific mental content becomes decodable within the
brain activity, characterizing the time course of cognitive events. Most importantly, the trained classifiers
generalize across time and illuminate the temporal structure of the various stages of information process-
ing (King & Dehaene, 2014). This is a major advantage, as understanding how mental activities unfold
might be considered one of the core goals within cognitive neuroscience (Dehaene & King, 2016).

4.3.3 K-Means Clustering

Clustering is a popular exploratory data analysis tool for understanding the structure of the data. It can
be defined as the process of discovering sub-groups within the data, e.g., that data points belonging
to the same sub-group (cluster) are similar, whereas, the data points belonging to different sub-groups
(clusters) are dissimilar. For clustering, the K-means algorithm (MacQueen et al., 1967) was selected.
The K-means algorithm partitions the data into K non-overlapping clusters. The K-means algorithm tries
to find a partition between the clusters by minimizing the squared error between the mean of a cluster
and the data points in it (Jain, 2010). The squared error is given as:

J(ck) = ∑
xi∈ck

||xi−µk||2 (4.1)

where xi, i, ...,n are d-dimensional points that are to be divided into K-clusters. ck is the kth cluster and
µk is the mean of the cluster ck. The K-mean algorithm aims to minimize the sum squared overall the K
clusters, given as:

J(C) =
K

∑
k=1

∑ ||xi−µk||2 (4.2)

K-means begins to divide the data into K clusters and assigns patterns to clusters in order to minimize
the squared error.

4.4 Decoding Temporal Points with Task Discriminative Information

4.4.1 Distinguishing between Covert Speech and Visual Imagery Tasks

For decoding analysis, the length of the EEG signal used was 3000ms, -500 ms from stimulus onset to
2500 ms (1000Hz sampling rate). A logistic regression (linear) classifier was trained and tested on each
time point in the EEG signals separately, to classify all the trials under binary classification conditions.
Therefore, the input to the classifier was a vector of length 64, i.e., time point from 64 electrodes. The
evaluation was carried out in a leave-one-out cross validation manner, with 80% of the data used for
training and 20% for testing. The decoding accuracy was averaged across all subjects for each time
point, which provided a grand average temporal decoding vector. The temporal decoding accuracy is
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shown in figure 4.1. The decoding accuracy provided information about the time when EEG signals for
two cognitive activities could first be distinguished, and the time when each cognitive task was most
distinct in terms of linear separability. For this analysis the performance of the classifier is assessed at
chance level of 55.0% rather than 50.0%, this was done to have a stricter threshold for the performance
evaluation.

FIGURE 4.1: The timing of grand average decoding was above chance level at 69 ms,
with a peak at 138 ms and 220ms. A smaller peak above chance level was observed

between 2131 ms and 2457 ms.

Prior to and immediately following stimulus presentation, the grand average decoding accuracy fluc-
tuated about chance level. At 69 ms the accuracy increased quickly and attained significance, followed
by peaks at 138 ms and 220 ms and then a progressive decline.

Further, MVPA was used to investigate the contribution of different frequency bands in discriminat-
ing covert and visual imagery task. Raw EEG signals were band-pass filtered using FIR filter for different
frequency bands: delta (0.5-3.5Hz), theta (4-7Hz), alpha (8-12Hz), beta (13-30Hz), gamma (31-80Hz),
high-gamma (81-120Hz), and ripple (121-250Hz). The results are shown in figure 4.2. As can be seen,
the highest accuracy of temporal decoding attained for each frequency band varies. The delta band had a
peak at 408 ms and second peak at 2473 ms, accuracy at all time points for delta band was above chance
level although the highest accuracy was 66.4%, whereas the theta band achieves the highest accuracy of
81.4% at 138 ms and a second peak at 2263 ms. However, the accuracy drops to chance level at around
780 ms. Accuracy for the alpha band (79.1%) peaked at 199 ms, followed by a decline to chance level
shortly after 500 ms of the stimulus onset. Peak accuracy for the beta band was lower than for the alpha
and theta bands (69.5%) at 120 ms and there was not a second peak after 200 ms as observed in other
frequency decoding accuracy. The peaks in this decoding measure correspond to temporal points when
the signals produced in the brain for two cognitive tasks (visual imagery and covert speech) varied the
most. The decoding accuracy indicated linear separability of the two conditions in the different frequency
bands, which means that visual imagery and covert speech for an object (concept) varies mostly in the
theta frequency band. The highest accuracy was achieved by the theta band, the alpha and beta band also
achieved high recognition rate. Higher frequencies, i.e., gamma and high-gamma frequencies achieved
chance-level recognition, with no particular temporal region of high accuracy.

4.4.2 Temporal Behavior of Neural Activity for Visual Imagery and Covert Speech Task

The nature of neural oscillation was also estimated over time for covert speech and visual imagery task.
A logistic regression classifier was trained to discriminate between covert speech and visual imagery
from the EEG signals at time point tx and tested on a time point ty. In this manner a vector of accuracy
(decoding) was obtained for each training time point, these vectors were concatenated to create a TG
matrix. Each row of the TG matrix corresponds to the time the classifier was trained and each column
to the time it was tested. Classification for all subjects was performed separately and the TG matrix was
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(a) (b)

(c) (d)

FIGURE 4.2: Temporal decoding between covert speech and visual imagery for different
frequency bands. (a) Delta (b) Theta (c) Alpha (d) Beta.

FIGURE 4.3: A logistic regression classifier was trained at time point tx and was evaluated
on its ability to generalize on another time point ty. In this manner the classifier was
evaluated for all trials and at all time points. The figure shows time-time decoding matrix

averaged over all the subjects.

averaged. As best decoding results were achieved using the theta band activity, therefore calculating the
time generalization matrix, we used EEG signals from the theta band. The TG matrix is shown in figure
4.3.

The brain activity between 0-0.5 ms in the TG matrix showed oscillatory behavior, i.e., an oscillatory
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FIGURE 4.4: Temporal generalization matrix for some subjects showing strong oscilla-
tory behaviour.

or reversing behavior of brain signals results in transient performance below chance level. Sustained
oscillatory activation was observed. The classifier performed effectively, (55-64% decoding accuracy)
when trained for time points between ∼ 600–2400 ms and tested on time points between ∼ 0-300 ms.
This effect was time-limited to 500 ms testing time, but was also observed later between testing time
points ∼ 2000-2400 ms. Some participants showed stronger oscillatory behavior during 0-500 ms after
the stimulus onset. The theta band oscillation is known to indicate periodic reactivation (“replay”) of the
preserved information in the memory (Fuentemilla et al., 2010).

FIGURE 4.5: Grand average temporal decoding accuracy when discriminating between
overt and covert speech task using MVPA. The peak accuracy was achieved at 215ms.
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(a) (b)

(c) (d)

FIGURE 4.6: Temporal decoding between covert and overt speech for different frequency
bands. (a) Delta (b) Theta (c) Alpha (d) Beta.

4.4.3 Decoding Temporal Points with Task Discriminative Information for Covert and
Overt Speech

In the second analysis, temporal decoding was estimated to distinguish between covert and overt speech.
A logistic regression (linear) classifier was trained and tested on each time point in the EEG signals
separately. The data was split into 80% training and 20% testing. Input to the classifier was a vector
of length 64, containing a time point from 64 electrodes. The decoding accuracy vector was measured
for all participants separately, which were later averaged to obtain the global decoding accuracy vector.
The decoding accuracy provided the temporal points when EEG signals produced during the overt and
covert speech where most distinct. The temporal decoding vector is illustrated in 4.5. The grand average
decoding accuracy ranged around chance level prior to the stimulus onset and above chance level after the
stimulus presentation. At 0 ms, the decoding accuracy increased rapidly and peaked at 215 ms following
a gradual drop.

Further, we evaluated the decoding accuracy for different frequency bands, where the delta band
achieved highest recognition rate (approximate 75%). This could be due to the fact that the delta band’s
oscillations may reflect the processing of abstract language (Zhou et al., 2016a). Accuracy for delta band
was always above chance level and had a longer peak latency. The decoding performance for different
frequency bands are shown in figure 4.6. Decoding accuracy for beta band was below the chance level
throughout.



50 Chapter 4. Discriminating between Imagined Speech and Other Speech Related Activities

4.4.4 Temporal Behavior of Neural Activity for Covert and Overt Speech Tasks

Along the decoding matrix, TG matrix was also calculated for covert and overt speech task. The TG
matrix is shown in figure 4.7. As shown, some of the neural activity during the speech processing tasks
was transient, i.e., the classifier performed well on neighboring time points, which is presented by the
highest accuracy along the diagonal (orange color). On the other hand, the classifier did not generalize
well for distant time points, lower accuracy away from the diagonal (green color). There was also
evidence of off diagonal neural activity, illustrated by orange pattern in figure 4.7.

FIGURE 4.7: Temporal Generalization matrix for covert and overt speech. The TG matrix
shows the highest accuracy along the diagonal and the sharp drop decoding accuracy away

from the diagonal.

4.5 Spatio-Temporal Feature Learning using the Convolutional Neural
Network (CNN)

This section proposes a system for identifying different cognitive tasks from EEG data, by learning
spatio-temporal patterns. The system is composed of two major steps: the clustering of electrodes into
subgroups using the K-means clustering algorithm, and classification using the CNN. The first step of
clustering served as a dimensionality reduction technique and helped in finding components associated
with different brain regions for the underlying brain activity. The second step involves feature extraction
and classification using the CNN network. A single input to the network is defined as a matrix D∈RE×T ,
where E is the number of electrodes and T is the time points. To capture short-term patterns in the EEG
signals, input was divided into N windows, then the new input was D ∈ RN×E×Tw , where Tw is the
number of time points in a given window. Each window was fed to a separate CNN and the extracted
features were combined at later stage in the network. Further, the network contains a convolutional block
attention module (CBAM) (Woo et al., 2018), which helped in highlighting the important features across
the spatial (electrodes) dimension.

Further, from the epoch of 3sec a smaller time window of 600ms was used in this analysis, with
time period −100 to 0ms before and 0 to 500ms after stimulus onset. This time period is shown to be
significant in MVPA analysis figure 4.1. Then the electrodes were divided into three groups using K-
means clustering algorithm, further, the data was standardized to zero mean and unit standard deviation.
Lastly each EEG trial of length 600ms was further divided into N windows and fed to the CNN.

4.5.1 Electrode Selection using the K-Means Clustering Algorithm

Electrode selection is a challenging task in EEG studies. Selecting fewer EEG electrodes is more con-
venient for particle applications as it reduces resource consumption, minimizes the analysis time, and
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(a) (b)

FIGURE 4.8: Patterns (clusters) in the EEG signal were observed in two electrode groups
obtained by K-means clustering. The colored lines in the plot refers to pattern from
each electrode separately (best viewed in color). The clusters were observed in two brain

regions (a) Parieto-Occipital lobe, and (b) the Frontal lobe.

avoids overfitting caused by the usage of a high number of redundant electrodes. In addition, reduc-
ing the number of electrodes is an effective method for artifact reduction. In this chapter, the K-means
clustering algorithm was used for electrode selection. The K-means algorithm was chosen because it
was found that spatio-temporal patterns produced by neighboring electrodes in a given brain area were
similar. Therefore, clusters of electrodes were used for evaluation of the proposed method.

FIGURE 4.9: Approximation of electrodes in Cluster 1 (C1) and Cluster 2 (C2).

The input to the electrode selection method is training data X ∈ Rn×E×T , where n is the total number
of training trials, E is the number of electrodes, and T is the time points in the signal (600ms). All the
training trials of 600ms time window are averaged for each electrode separately, resulting in Xavg ∈RE×T .
K-mean clustering is performed on the Xavg matrix, resulting in K electrodes group obtained from the set
of E electrodes. In this analysis, several values of K were investigated however, best results were obtained
for K = 3, i.e., the 64 electrodes were divided into three groups, where each group was associated an
underling EEG signal pattern (component). EEG patterns are shown in figure 4.8. The three components
or patterns were associated with three brain regions: (C1) Parieto-Occipital lobe, (C2) Frontal lobe, and
(C3) Superior Temporal lobe (Broca’s and Wernicke’s area). However, for some subjects the cluster (C3)
contained fewer electrodes. Subsequently, two clusters C1 & C2 and the brain regions associated with
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them were further investigated during the classification stage. An approximation of electrodes in C1 and
C2 is shown in figure 4.9.

4.5.2 Network Architecture

A single convolutional layer was used in each block. The convolutional layer in the first block filtered
the data using 32 kernels with a receptive field of size 3× 3 and stride of size 2× 2, a process that
can capture high-level spatio-temporal features from the EEG signals. The convolutional layers in the
second and third block had 64 and 128 kernels of size 1× 3 applied with a stride of size 1× 2. The
network performed spatio-temporal convolution in the first block, however, in the second and third block
performed spatial convolution (across electrodes). To assist with regularization, the network employed
dropout regularization with dropout rate of 20% and batch normalization approach (Ioffe & Szegedy,
2015; Srivastava et al., 2014). The network used Relu activation function (Nair & Hinton, 2010) in all
the three blocks to learn non-linearities in the features.

The third block contained a convolutional block attention module (CBAM) (Woo et al., 2018). The
CBAM helped the network to emphasize significant features along spatial (electrodes) information. To do
this, the CBAM apply channel and spatial attention mechanism, allowing each branch to determine which
channel and spatial region to assign more weights. CBAM leverage the inter-channel relationship to
generate a channel attention map. This is done by aggregating the spatial information by performing the
average-pooling and maxpooling across the spatial dimension, which results in average-pooled features
Fc

avg and maxpooled features Fc
max. These features are forwarded to dense layers (MLP with one layer),

then the output vectors are summed together (Woo et al., 2018). The channel attention is defined as:

Mc(F) = σ(W1(W0(Fc
avg))+W1(W0(Fc

max))) (4.3)

where σ is the sigmoid function, W0 and W1 are the weights of MLP. The number of hidden units in the
MLP are R

C
r , where C is the number of channels and r is the reduction parameter. Subsequently, the

weights of MLP becomes W0 ∈R
C
r ×C and W1 ∈RC×C

r . The second part of CBAM is the spatial attention,
which highlights the most informative region in the feature map. In order to calculate spatial attention,
maxpooling and average-pooling is applied across channel dimension and combine (concatenate) the
pooled features to produce an effective feature (Woo et al., 2018). The combined feature map is fed to a
convolutional layer which generate a spatial attention map providing more weights to the region of high
importance. The average-pooled Fs

avg and maxpooled Fs
max features across channel dimension are given

as:

Fs
avg ∈R1×E×T

Fs
max ∈R1×E×T (4.4)

where E and T refers to the dimensions of the 2D input. Therefore, the spatial attention map is defined
as:

Ms(F) = σ( f 1×3([Fs
avg,Fs

max])) (4.5)

where σ refers to the sigmoid function, f 1×3 refers to the filter size used in the convolutional layer.
The arrangement of channel-attention and spatial-attention was similar to proposed in the work by (Woo
et al., 2018). The third block contained 128 feature maps, therefore the CBAM helped the network to
perform efficient feature refinement in this block. The CBAM module was followed by the classification
block.

The final block in the network was the classifier block, which contained four dense layers. The
number of nodes within the dense layers were 256, 128, and 64, where all the layers had ReLU activation
and two in the last dense layer (classifier layer) with sigmoid f unction for classification.
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(a) (b)

FIGURE 4.10: The architecture of convolutional-attention network. (a) The overall net-
work architecture (b) three blocks used the network architecture. The spatial ordering of

electrodes was done with respective to their position number, as shown in figure 4.9.

4.5.3 Design Choices

Different design choices for the network architecture, which would impact the performance of the net-
work were investigated. Further, by varying the design choices (the activation functions, kernel size,
and filter size) some insights were developed about the components in the network. Performance of the
network was most affected by the filter size. For example, a filter of size 3× 3 in the second and third
block reduced the accuracy of the network, whereas the filter of size 1×3 led to better performance. This
indicated that using convolutional operation to estimate features led to poor approximation of the tem-
poral dynamics of the EEG signals. In addition, the ReLU activation gave the best results. Furthermore,
the dense layers were implemented without ReLU, which reduced the recognition rate. This led to the
conclusion that the ReLU function made the dense layers more robust in feature extraction towards the
end of the network. The analysis tried to be thorough in the evaluation of while designing the network,
this was done by evaluating different configurations to see which one achieves the highest performance
on the test set. However, this in itself could lead to overfitting, therefore to avoid this only on the first
test set in the leave-one-out cross validation method, this was done to avoid overfitting on the test data.

4.5.4 Network Training

The CNN network was trained at a learning rate of 0.0001 to minimize the cross-entropy loss. In order to
avoid varying gradient at deeper layers, the network was trained at a slower learning rate (Bashivan et al.,
2015). The “He” initialization (He et al., 2015) was used to initialize weights with purpose of avoiding
unstable gradient. The network was trained for 120 iterations (epochs), with a mini-batch size of 32.
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4.6 Results

Results were obtained from EEG signals for recognition of different cognitive processes in the brain.
EEG signals were used from three cognitive tasks, covert speech, overt speech, and visual imagery.
The aim of this analysis was to distinguish covert speech from overt speech and visual imagery. Each
subject had 100 EEG trials for each class (cognitive task). However, because some of the recorded trials
had to be eliminated due to excessive noise, some subjects ended up with only 90 trials. Three distinct
electrode sets were used to assess the effectiveness of the suggested framework. Three sets of results
were acquired in a subject-dependent manner, i.e., the network was trained and evaluated independently
for each individual. This analysis was only conducted in a subject-dependent manner.

Three set of results were obtained using different electrode groups. The first set of results was
obtained when all the 64 electrodes were used to train and test the network. The second and third sets
of results were obtained when network was trained and tested using electrode groups C1 & C2, retrieved
from the K-means clustering. The electrodes were arranged in sequential manner i.e., in order of the
electrode number starting as shown in figure 4.9. In this experimental setup, the results were obtained
using leave-one-out cross validation manner in which 90% of the data was used from training and 10%
for testing. Results obtained from all training and testing set were averaged for each subject separately.
The three experimental protocols are shown in Table 4.1 and described as follows:

• All: EEG signals from all the 64 electrodes were used for training and testing of the network.

• C1: EEG signals from electrodes in cluster 1 (parieto-occipital lobe) were used for training and
testing the network.

• C2: EEG signals from electrodes in cluster 2 (frontal lobe) were used for training and testing the
network.

TABLE 4.1: Three evaluation methods: first, when all the electrodes were used for train-
ing and testing the network, and second & third, when electrodes in clusters C1 & C2 are

used for training and testing.

Exp Electrodes Brain Area Selection Method

All All All -
C1 Cluster 1 Parieto-Occipital Lobe K-means clustering
C2 Cluster 2 Frontal Lobe K-means clustering

4.6.1 Classification between EEG signals for covert speech and visual imagery task

TABLE 4.2: Classification accuracy for EEG signals recorded during covert speech and
visual imagery. Results for three experiments are shown.

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

All 79.8 79.0 91.4 89.0 83.3 85.0 66.7 75.8 89.3 80.2 77.3 94.0 82.7
C1 73.0 84.8 90.2 90.7 88.5 80.3 80.1 74.7 87.8 70.0 78.1 97.6 82.9
C2 69.3 56.3 91.6 77.6 61.0 80.1 54.3 74.8 79.1 79.4 71.6 62.3 71.5

In order to discrimination between the EEG signals produced during covert speech and visual im-
agery task, the signal was band pass filtered between 4− 30Hz. This range was chosen because the
two cognitive tasks were most distinct in these frequencies in the MVPA analysis. The results are pre-
sented in Table 4.2, showing the achieved results when the electrodes in cluster 1 (C1) were used in the
analysis. The electrodes in cluster 1 performed better when compared to the performance achieved by
the network trained and tested using all (64) electrodes. This shows that the proposed method can find
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the optimal electrode group, containing the most discriminative information between visual imagery and
covert speech tasks.

4.6.2 Classification between EEG signals produced during Covert and Overt speech

TABLE 4.3: Classification accuracy for EEG signals in covert speech and overt speech.
Result for three experiments are shown.

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

All 78.0 72.0 82.5 83.2 69.0 66.6 75.6 77.2 80.8 75.3 63.1 71.3 74.5
C1 82.1 70.1 78.2 80.4 78.3 68.0 76.0 75.0 93.6 68.9 70.1 92.2 77.7
C2 65.1 69.1 82.3 71.1 61.2 66.2 57.3 80.0 73.6 69.5 57.3 72.5 68.7

In this experiment, three set of results were obtained using different electrode groups. The first set of
results was obtained when 64 electrodes were used to train and test the network. The second and third sets
were obtained, when network was trained and tested using electrode groups retrieved from the K-means
clustering. In this experimental setup, the results were obtained using leave-one-out cross validation, in
which 90% of the data was used for training and 10% for testing. Results obtained from all training
and testing set were averaged for each subject separately. The results are shown in Table 4.3. Similar to
previous experiment, electrode over the Parieto-Occipital lobe (C1) achieve best recognition rate. On the
other hand, some subjects performed better when all the electrodes were used for training and testing the
network. The average recognition rate over all subjects was lower in comparison to accuracy achieved
when distinguishing between covert speech and visual imagery tasks.

4.6.3 Comparison with complete EEG trial length

TABLE 4.4: Classification accuracy, when the network was trained and tested on EEG
signals of 3000 ms. The experimental results are evaluated only using electrodes in C1.
The recognition was performed between EEG signals from CO: covert and overt speech,

CV: covert speech and visual imagery.

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

CO 90.0 71.7 89.2 80.9 72.7 64.6 90 66.1 88.3 82.1 62.7 79.5 78.1
CV 75.1 75.5 91.8 76.8 75.0 75.1 65.8 62.5 74.6 72.9 66.7 89.6 75.1

In the previous experiment, a 600ms time window was used from the EEG signal. To validate the
effectiveness of the time window found by MVPA analysis, our framework was also evaluated on full
length EEG signals of 3000ms. This experiment used electrodes in cluster 1 (electrodes over parieto-
occipital lobe), which performed best in the previous analysis. Results are shown in Table 4.4. As can be
seen, the recognition rate achieved by EEG trials of length 3000ms is lower, in comparison to analysis
which uses 600ms time window for training and testing the network. This showed that the most task-
discriminative events occur immediately after the stimulus onset, i.e., when the subjects were asked to
perform the given task.

4.6.4 Limitation of the Methods used in this Chapter

The performance of the proposed network showed that it can distinguish between imagined speech and
other cognitive tasks. However, the proposed network failed to achieve high recognition rate. In addition,
evaluating frequency bands based on MVPA have its limitations, as MVPA considered contribution of
the frequency band based on the spatial information. The temporal variation in the EEG signals at
a particular frequency are disregarded because each time point is processed separately in the MVPA
analysis. The performance of the proposed method was evaluated in subject-dependent manner, which
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has limited applications in real life as the network will have to be trained directly on the EEG signals of
the user. This would result in a BCI system unsuitable for multiple users. However, this approach offers
privacy to the user of the BCI system.

Different network configurations were implemented to see which one achieves the highest perfor-
mance on the test set. This in itself could lead to overfitting on the test set, although the test data was
the first set in the leave-one-out cross validation. Therefore, inspecting the training loss curve can pro-
vide information potential over-fitting in the network. Therefore, learning curve for training and test sets
were used to estimate overfitting. As can be seen from the curve in figure 4.11, the network suffer from
overfitting when discriminating between covert speech and visual imagery EEG signals. It is to be noted
that the difference in the magnitude of loss between training and test curve is due to number of trials in
training and test data.

(a) (b)

FIGURE 4.11: Training (blue) and testing (orange) loss for the convolutional-attention
network. (a) covert speech and visual imagery; (b) covert and overt speech.

4.7 Conclusion

The work in this chapter investigated the difference between covert speech and two other cognitive tasks
in the brain. The two cognitive tasks were: visual imagery and covert speech, which in the past have
been associated with covert speech (Dentico et al., 2014; Schendan & Ganis, 2012). Two analysis were
conducted to investigate the difference in EEG signals of cognitive tasks: (1) MVPA and (2) TG.

The analyses showed that the 500ms time window after the stimulus onset to contain most discrimi-
native information, when distinguishing covert speech with two cognitive tasks (visual imagery and overt
speech). However, MVPA analysis of EEG signals for each frequency band separately showed the theta
band (4-7Hz) to be carrying the most discriminative information when distinguishing between covert
speech and visual imagery. Further, the TG matrix for the two cognitive tasks showed oscillatory behav-
ior, which are known to be activated when recalling information from the memory (Fuentemilla et al.,
2010). On the other hand, EEG signals for overt and covert speech were most discriminative at the delta
band (0.5-3Hz). The TG matrix revealed transient processing of neural activity at the delta band.

Further, classification was performed between two cognitive tasks and covert speech. Recognition
between each cognitive task and covert speech was performed separately. Further, the K-means clustering
algorithm was used for electrode selection, which provided best results from electrodes covering Parieto-
Occipital lobe. In addition, a comparison was made between the performance achieved by EEG signals
of 600ms time window and a complete EEG trial (3000ms). The 600ms time window achieved higher
results compared to EEG signals of 3000 ms. However, contrary to MVPA best results using CNN-
attention network were achieved when a larger frequency band was selected, 4-30Hz for recognition
between covert speech & visual imagery and 0.5-30Hz for recognition between covert and overt speech.
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4.8 Summary

Covert (imagined) speech is often associated with visual imagery, i.e., thoughts with visual imagination.
Similarly, comparison between covert and overt (loud) speech can help understand the underlying neu-
ral mechanism of covert speech processing. Therefore, this chapter investigated the difference between
temporal dynamics in EEG signals produced by covert speech & visual imagery task and covert & overt
speech task. This work examined differences in the neural activity using two different methods. First
method was temporal decoding, where a linear classifier was trained and tested on each time point sepa-
rately, to investigate the temporal window when two cognitive tasks in the brain were linearly separable.
The second method was TG, where the classifier was trained on time point tx in the EEG signal and tested
on a different time point ty. This was done for all the time points in the EEG signal, swapping training and
testing time points. This provides a two-dimensional decoding matrix which provided information about
the stages of neural processing for a given activities. The results of the analysis showed that 500 ms time
period after stimulus onset produced the best results, when comparing two activities with covert speech.
Covert speech and visual imagery where most separable in the theta band, which showed oscillatory
behavior associated with top-down processes (i.e., that is generating from memory). On the other hand,
the highest recognition between covert and overt speech was achieved in the delta band showing tran-
sient neural activity in the TG matrix. Further, we proposed a framework using the K-means clustering
algorithm and the convolutional-attention network for recognition of two cognitive tasks (visual imagery
and overt speech) from covert speech. Also results acquired in this analysis validated the discriminatory
information presented by the 600 ms window found in the first two analysis.
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Chapter 5

Imagined Speech Recognition using
Dynamic Time Warping

In the first part of this chapter, we extract time-frequency and time domain features using traditional
feature extraction method, such as the linear discriminant analysis (LDA) and common spatial patterns
(CSP) for recognition of mentally spoken words from EEG signals. The method uses classifiers such
as the K-NN and SVM for recognition task. The second half of the chapter introduces a method for
measuring similarity between imagined words using the dynamic time warping (DTW) and an electrode
fusion technique.

5.1 Introduction

As mentioned in chapter 4, BCI based on imagined speech can sever as mode of communication for
locked-in patients. For development of a speech based BCI there is need to recognize imagined speech
from EEG signals. Therefore, this chapter focuses on classification of imagined words using EEG sig-
nals under binary condition. The chapter aims to develop an optimal classification technique and also
extract most informative features in both time-frequency and time domain. In order to achieve this,
statistical features were extracted from spectrograms along with eigen values using LDA. In the past,
studies have used LDA for feature extraction and dimensionality reduction of EEG signals (Chen et al.,
2019; Kołodziej & Majkowski, 2012). The work in (Kołodziej & Majkowski, 2012) aimed at classifying
EEG signals for imagined hand movement. To achieve this the author used discrete Fourier transform
for feature extraction and LDA for dimensionality reduction of the extracted features. The method was
evaluated using K-NN classifier with K=10 under cross-validation scheme achieving above chance level
recognition rate with only eight electrodes. The work in (Chen et al., 2019) proposed an algorithm for
features extraction from EEG signals for emotion recognition. Their proposed method used fusion of fea-
tures from LDA and differential entropy. The authors tested the method on three emotion-class datasets
using five classifiers: K-NN, logistic regression (LR), (SVM), random forests (RF), and multi-layer per-
ceptron (MLP). The method achieved an average accuracy of 68%, higher than the previous method. The
focus of the work in (Wester, 2006) was to recognize unspoken speech from EEG signals. The author ex-
tracted short time Fourier transform (STFT) and delta-delta features from the raw EEG signal and LDA
was used to reduce the dimensionality of these features. In EEG studies, LDA is also used as a classifier.
The study (Chi et al., 2011), performed classification between overtly spoken phonemes using Naive
Bayes and LDA classifiers. The performance of the LDA classifiers was reported to be superior. The
work in (Alsaleh, 2019), focused towards recognition of imagined speech using EEG signals. The author
extracted time domain and spatio-spectral features such as mean, standard deviation, and components
using common spatial pattern. These features were classified using LDA classifier along with SVM and
random forest.

Further, spatial features are also extracted using CSP, which is known to perform well with EEG
data. Results from two different methods have been proposed for recognition of imagined speech of three
action words under binary classification task. To extract important time-frequency components we used
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LDA and spatio-temporal features were extracted using CSP. Further, limitations of the LDA and CSP
are discussed, along with certain conclusions drawn from the analysis. In the Second part of this chapter,
an optimal similarity matching technique based on DTW was implemented for recognition of imagined
words. This was done to solve the limitation caused by temporal variation in EEG signals. Further, to
make the similarity matching method more effective, an electrode fusion method was introduced. The
contributions of this chapters are as follows:

• Analysis with the LDA and CSP for feature extraction and classification, which were not effective
in recognition of imagined words.

• A similarity matching technique for recognition of imagined words (verbs) from EEG signals using
DTW. The results with DTW also show the effectiveness of non-linear methods in dealing with
the dynamic behavior of EEG signals.

• An electrode fusion method used after DTW to combine distances from multiple electrodes, which
leads to improved recognition of imagined words.

5.2 EEG Dataset

As the focus of this chapter is to recognize imagined speech, therefore, we used EEG data acquired from
covert speech task. EEG signals from 12 subjects were used to perform the analysis, contaminated trials
or noisy data was rejected. After artifact rejection and filtering, some subjects were left with less than
64 electrodes, therefore, the EEG signals for those subjects wer not included in order to avoid variation
in parameter when calculating spatial patterns using the CSP algorithm. The EEG signals used in the
experiment were recorded for mentally spoken “action words” which represented action or activity. The
words were: “Run”, “Swim”, and “Write”. EEG signals for these words were randomly selected from the
list of words in chapter 3. Each word had ten trials in total per subject.

5.3 Linear Discriminant Analysis (LDA)

The LDA is a classification and dimensionality reduction technique, which offers an advantage over
some other dimensionality reduction techniques. LDA increases the ratio of within class to between class
variance (Balakrishnama & Ganapathiraju, 1998) also known as Fischer ratio (5.2). LDA was chosen
over other methods such as the principal component analysis (PCA), this is because PCA changes the
feature vectors spatially, whereas the LDA does not changes the spatial information of the features, rather
it creates more class separability between the features (Balakrishnama & Ganapathiraju, 1998). Another
motivation factor for using LDA was that the direction of separation in terms of frequencies projected by
the eigen vectors could potentially be useful in classifying the underlying concept.

It is a supervised dimensionality reduction technique which project the given data to a linear subspace
which maximize the separation between classes by using the projection direction. Data separation can
be measured as:

F =
tr(Sm)

tr(Sw)
(5.1)

where F is the separation coefficient, Sm is the between class scatter matrices, and Sw is within class
scatter matrices. For C number of classes with each containing N samples xi, the with-in class scatter
matrices for one class c can be estimated as:

Sc =
N

∑
i=1

(xc
i −mc)(xc

i −mc)T (5.2)

where mc is the sample mean in xi for cth class. Therefore, with-in class scatter for all the classes can be
measured as:
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Sw =
C

∑
i=1

ni

N
Si (5.3)

where ni is the number of xi samples in each class and N is the sample size. Similarly, between class
scatter matrices for a given class c can be calculated as:

Sc
B =

C

∑
i=1

(mc
i −mc)(mc

i −mc)T (5.4)

where mi is the sample mean of all the samples xi for ith class and m is the overall mean across all the
samples xi and classes. Hence, the between class scatter metrics can be calculated as:

Sm =
C

∑
i=1

ni

N
Si

B (5.5)

where ni is the sample mean of xi each class and N is the total number of samples. The projection
direction providing optimum class separation are given by the eigen vectors with the highest eigen values
of scatter matrix S (Kołodziej & Majkowski, 2012):

S = S−1
w Sm (5.6)

Eigen vectors from the input data are collected into the S scatter matrix. The scatter matrix S is not
symmetric, this is resolved by using generalized eigenvalue problem (Kołodziej & Majkowski, 2012).
The new transformed dimensional samples in the new subspace are obtained as:

Y = xTW (5.7)

where W is the weight matrix containing eigen d eigen vectors (e1,e2, ...,ed) Each eigen vector have its
own eigen value which provide information about its length and magnitude. Eigen vectors are sorted in
accordance with the eigen values i.e., the vector with the highest value is the first and most information
containing component. Y is the transformed dimensional samples in the new subspace (the projecting
the data in the lower dimension).

5.4 Feature Extraction

In this experiment spectro-temporal features and spatial features were investigated. Statistical features
such as mean, median, standard deviation, variance, and entropy were obtained from windows of spectro-
gram. Further, eigen values representing the most important time-frequency information was evaluated
using the LDA. In addition, energy for each time window was calculated. Spatial features were com-
puted using CSP (Koles et al., 1990). The description of feature extraction is provided in the following
subsections.

5.4.1 Spectro-Temporal Features

As mentioned in chapter 3, raw EEG signals were converted into spectrograms. Therefore, spectro-
temporal input was used at the feature extraction stage. In this analysis, the spectrograms were divided
into four overlapping windows: tw1, tw2, tw3, tw4. This was done to capture time-frequency information in
a smaller time frame, because extracting single feature value for whole spectrogram might not be able to
efficiently capture spectro-temporal dynamics of underlying brain activity.
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FIGURE 5.1: Spectrogram separated into four overlapping window. Each window was of
dimension T ×F where T = 26 and F = 86. Features were extracted from each window

separately.

Each window was converted from two dimension of (T ×F) time and frequency to one dimensional
feature vector X of length N. Seven features were calculated from each window for each electrode, the
features were:

• Energy:

E =
N

∑
i=1
|Xi|2 (5.8)

• Mean:

µ =
1
N

N

∑
i=1

(Xi) (5.9)

• Standard Deviation (STD):

σ =

√
∑(Xi−µ)2

N
(5.10)

• Entropy :

H = −
n

∑
i=1

p(Xi) log2 p(Xi) (5.11)

Where H is entropy. p is the probability of observing ith value of the bin data twn

• Median:
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2

n odd
1
2

(
Xn n

2
+X n

2+1

)
n even

(5.12)

• Variance:

σ
2 =

∑(Xi−µ)2

N
(5.13)

• Root mean square (RMS):
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XRMS =

√
1
N ∑

i
X2

i (5.14)

• LDA components were calculated using (5.7). In case of LDA, the number of components for new
feature set is one-less the number of classes C−1. The eigen vector with highest eigen value bears
the most information.

Figure 5.1 shows the feature extraction method. First, the spectrogram was divided into four overlap-
ping windows of equal length with an overlap of six time points. These windows were transformed into
vectors from which features were calculated and at the later stage feature vectors from all the windows
were combined into a global feature vector.

5.4.2 Spatio-Temporal Features

FIGURE 5.2: CSP components extracted from the EEG signals.

Along with the spectro-temporal features, the spatio-temporal features were also calculated using
CSP algorithm (Koles et al., 1990). The CSP features were extracted in time domain and have been very
successful in recognition of motor imagery tasks at lower frequencies (<50Hz) (Blankertz et al., 2007).
Therefore, CSP algorithm was applied to bandpass filtered data between 4− 45Hz. The idea of using
spatial filters in the CSP algorithm is to evaluate spatio-temporal features that can optimally discriminate
different classes. Spatial filters can be used to measure the variations in the potential of EEG signals
during mental activity. Let the data X ∈RE×T with E electrodes and T time points. At a single time point
in the signal (data) is defined as x(t), therefore X is defined as:

X = [x(t),x(t + 1), ....,x(t +T −1)] (5.15)

The decomposition of the signal along the sensor dimension to CSP component matrix is evaluated using
the following transformation:

xcsp(t) =W T x(t) (5.16)

where W is known as de-mixing or the projection matrix of dimensions E×E and rows of xcsp con-
tains CSP components. The de-mixing or projection matrix is computed by simultaneous diagonalization
of the covariance matrices from the two conditions (classes) (Ramoser et al., 2000). The features were
calculated using (5.14), but only a defined number (n) of spatial filters were used for feature extraction,
in this study n = 4. For signal xcsp(t)(t = 1, ...,n), the feature vector was calculated as:

F = log(
var(xcsp(t))

∑
n
t=1 var(xcsp(t))

) (5.17)

5.4.3 Classification

Three classifiers were used for the classification of imagined speech EEG signal. All the three classifiers
were trained and tested on the extracted spatio-temporal and spectro-temporal features. The classifiers
used were SVM, K-NN, and decision tree (DT).
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Support vectors are based on the predictors that are closest to the decision boundary creating sepa-
ration among different classes (Subasi & Gursoy, 2010). The decision boundary does not only separate
classes, but also have clear separation from closest predictor value, which have maximum impact on the
decision made by the classifier. The SVM can be optimized or designed to suit input features, SVM
can perform hard margin and soft-margin classification. The hard margin classification works well with
linearly separable data. This is not suitable for classification of EEG dataset, which is non-linear and
non-stationary in nature. However, if soft-margin classification is used, then hyper-plane can be much
more flexible, it can be adjusted accordingly. To achieve better performance, the SVM classifier was
used with polynomial regression. 3th order polynomial regression was chosen as it achieved results.

A K-NN classifier is non-parametric, which means that the parameters are evaluated based on training
data and that no prior assumption about the data distribution is made to create the model (Abu Alfeilat
et al., 2019). The prediction is made based on a vote of similar samples in the nearest neighbor closest to
input sample. K-NN with euclidean distance has been ineffective in several BCI experiments because of
its sensitivity to high-dimensionality of the data (Siuly et al., 2016), however it performs efficiently with
low dimensional features. In this work correlation distance was used as a distance measure in the K-NN
algorithm.

A Decision Tree is a non-parametric algorithm, used for classification and regression. It divides
the dataset into smaller subsets using binary partitioning while making several simpler decisions. The
structure of a DT contains nodes, branches, and leaves nodes. Decision Trees are good for mapping
non-linear trends in the data which can be effective in analyzing EEG signals (Aydemir & Kayikcioglu,
2014; Guan et al., 2019).

5.5 Results

The proposed features were extracted only on EEG signals acquired during the covert speech task, the
dataset contained action words: “Run”, “Swim”, and “Write”. Binary classification was performed for
three word pairs, “Run and Swim”, “Run and Write”, and “Swim and Write”. Classification was per-
formed in subject-dependent manner i.e., recognition of imagined speech from EEG signals for each
subject was done separately. For experimental, evaluation of two groups of features (spectro-temporal
and spatio-temporal) was done in two different manners. In the first method, the features were used
for training and testing the classifier separately and the results were evaluated. In the second method,
both the features were combined for training and testing the classifiers. Most subjects had 10 trials for
each word, however some subjects had less trials after artifact reduction. Therefore, cross-validation was
performed for eight times. The EEG dataset was divided into 90% training and 10% testing data and
classification was performed using leave-one-out (LOO) cross validation method.

5.5.1 Classification using Spectro-Temporal Features

The spectrograms were sliced into four spectro-temporal windows and from each window seven spectro-
temporal features were extracted, as described in section 5.4.1. Features were extracted from each elec-
trode separately and later the feature vectors from each electrode were concatenated together. These
features were split into 90% training and 10% testing data, which were normalized to be on the same
scale with zero mean and unit standard deviation. Mean and standard deviation of testing features were
normalized to training features.

Three different sets of results were obtained for 12 subjects using three classifiers, SVM, K-NN, and
Decision Tree. The results are shown in Table 5.1. Average accuracy achieved using each classifier for
three binary pairs were 53.7% (SVM), 53.4% (K-NN), and 52% (DT). The average accuracy obtained by
all the three classifiers was above chance level, however all classifiers failed to achieve high recognition
rate. Further, the results between subjects varied, for example K-NN for word pair “Run, Swim” achieves
high accuracy for subject 7, whereas it failed to achieve chance level accuracy for subject 2. On the other
hand, DT classifier performs better on subject 2 than most of the the other subjects. Further, variation
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TABLE 5.1: Classification accuracy for EEG signals of three word pairs using the spectro-
temporal features.

Subject (Run, Swim) (Run, Write) (Swim, Write)
K-NN SVM DT K-NN SVM DT K-NN SVM DT

1 62.5 56.2 68.7 56.2 56.2 68.7 43.7 62.0 43.7
2 37.5 56.2 75.0 62.5 25.0 56.2 50.0 50.0 37.5
3 62.5 56.2 43.7 68.7 37.5 68.7 56.2 56.2 75.0
4 62.5 50.0 56.2 43.7 43.7 43.7 50.0 37.5 43.7
5 62.5 56.2 37.5 43.7 50.0 62.5 56.2 37.5 62.5
6 56.2 50.0 43.7 37.5 43.7 56.2 56.2 68.7 50.0
7 87.5 50.0 56.2 43.7 50.0 50.0 50.0 93.7 62.5
8 50.0 37.5 50.0 43.7 62.5 43.7 43.7 68.7 50.0
9 62.5 50.0 37.5 56.2 50.0 50.0 43.7 43.7 43.7
10 37.5 56.2 56.2 62.5 56.2 68.7 50.0 56.2 37.5
11 56.2 43.7 43.7 56.2 56.2 50.0 43.7 56.2 37.5
12 56.2 68.6 43.7 50.0 50.0 62.4 62.5 93.7 37.5

Average 57.8 52.6 51.0 52.0 48.4 56.7 50.4 60.3 48.4

in accuracy is also observed when comparing different word pairs. The SVM generalized well for word
pair “Swim, Write”.

5.5.2 Classification using Spatio-Temporal features

The spatial feature extracted using the CSP algorithm were evaluated in similar manner as the spectro-
temporal features. Three classifiers were trained and tested using LOO cross-validation. The accuracy
achieved by the CSP features was tested by varying the number of components, best results were achieved
by using four spatial components. The training and test feature were normalized to same scale with zero
mean and unit standard deviation. The average accuracy for three binary pairs with spatial features is
lower than spectro-temporal features. The results are shown in Table 5.2. The average accuracy for the
three classifiers were; K-NN: 49.2%, SVM: 53.5%, DT: 51.2%.

TABLE 5.2: Classification accuracy using the spatio-temporal features extracted using
CSP.

Subject (Run, Swim) (Run, Write) (Swim, Write)
K-NN SVM DT K-NN SVM DT K-NN SVM DT

1 56.3 68.7 50.0 25.0 56.3 43.7 56.2 43.7 56.3
2 75.0 50.0 50.0 56.3 50.0 43.7 43.7 31.3 37.5
3 62.5 43.7 25.0 50.0 56.3 56.2 62.5 50.0 50.0
4 62.5 62.5 75.0 62.5 68.7 56.2 75.0 62.5 56.3
5 43.7 43.7 56.2 43.7 56.3 50.0 18.7 62.5 56.3
6 25.0 50.0 50.0 59.0 62.5 68.7 62.5 56.3 50.0
7 37.5 56.3 37.5 25.0 50.0 43.7 43.7 31.5 25.0
8 56.3 43.7 50.0 37.5 62.5 56.3 50.0 56.2 56.3
9 68.7 75.0 50.0 50.0 62.5 56.3 50.0 31.5 25.0
10 43.7 56.3 56.2 43.7 56.3 56.3 62.5 81.3 81.2
11 62.5 43.7 50.0 50.0 56.3 62.5 43.7 43.7 50.0
12 43.7 43.7 56.2 31.3 75.0 62.5 62.5 43.7 56.3

Average 52.4 51.7 50.5 42.8 59.4 54.6 52.5 49.5 48.5

5.5.3 Combining Spectro-Temporal and Spatio-Temporal Features

Further, the performance of combined features was investigated from spectro-temporal and spatio-temporal
domain. We trained and validated three classifiers using LOO cross-validation. Four CSP components
were used in the spatial features. Both the training and test features were normalised to the same scale,
with a mean of zero and a standard deviation of one unit. The results are shown in Table 5.3. The average
accuracy for the three classifiers were; K-NN: 51.8%, SVM: 52.2%, DT: 52.2%.
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TABLE 5.3: Classification accuracy achieved by combining the spatio-temporal and
spectro-temporal features.

Subject (Run, Swim) (Run, Write) (Swim, Write)
K-NN SVM DT K-NN SVM DT K-NN SVM DT

1 50.0 68.7 50.0 50.0 43.7 43.7 56.2 37.5 56.3
2 56.2 50.0 50.0 62.5 56.2 43.7 43.7 50.0 37.5
3 87.5 31.2 25.0 62.5 37.5 56.2 62.5 43.7 50.0
4 50.0 62.5 75.0 43.7 68.7 56.2 75.0 62.5 56.3
5 31.2 56.2 56.2 50.0 62.5 50.0 18.7 50.0 56.3
6 56.2 56.2 50.0 43.7 43.7 68.7 62.5 31.2 50.0
7 50.0 50.0 37.5 43.7 56.2 43.7 43.7 50.0 25.0
8 43.0 62.5 50.0 62.5 50.0 56.3 50.0 25.0 56.3
9 68.7 50.0 50.0 37.5 50.0 56.3 50.0 81.2 25.0
10 25.0 62.5 56.2 37.5 56.2 56.3 62.5 50.0 81.2
11 68.7 43.7 50.0 56.5 68.7 62.5 43.7 37.5 50.0
12 43.7 56.2 56.2 56.2 56.2 62.5 62.5 62.5 56.3

Average 52.4 54.1 50.5 50.5 54.1 54.6 52.5 48.4 48.5

5.5.4 Limitations of the Features

As can be seen from the results, the statistical, eigen, and spatial features are not effective enough to
capture distinctive information from imagined speech. A reason for LDA and statistical features not
achieving below chance level (55%) accuracy could be due to the fact that task specific events between
spectrograms cannot be calculated directly. As events (frequency columns of the spectrogram) caused by
same concepts may vary temporally in the compared spectrogram i.e., each trial. Further, spatial features
captured using CSP algorithm achieved even lower accuracy which suggests that event during imagined
speech in temporal domain are not consistent and alone cannot help distinguish imagined speech from
the EEG signals. Further, some of the statistical features such as mean, median, and standard deviation
contained correlated information which limits the representation of the data, subsequently reducing the
performance of the overall system.

5.6 Similarity Matching with Dynamic Time Warping (DTW)

An important conclusion can be drawn from the analysis with spectro-temporal features is that the simi-
larities between spectrograms cannot be evaluated directly due to inter-trial variations, which lead to the
events varying temporally in the compared spectrograms. In order to solve this problem, the events in
the given spectrograms need to be aligned, in other words temporal alignment of EEG features could be
important for improving the discrimination between different mentally spoken words (classes). DTW
is a non-linear alignment technique (Sakoe & Chiba, 1978), based on dynamic programming, famously
used in speech recognition to reduce the effects of time delay and distortion between two time series.
Therefore, DTW can be used to compensate for the differences in time of occurrence of these events and
can serve as a measure of dissimilarity between two trials.

DTW has been used successfully in applications such as speech and gait recognition (Ismail et al.,
2020; Rong et al., 2007). Also, DTW has been used for processing of brain signals. Previous studies
have used DTW to align the high gamma ECOG activity with audio output and the aligned signals were
used to create a template for each sentence (Zhang et al., 2012). For evaluation, correlation between test
and the template was calculated followed by classification using SVM. Further, DTW has been proposed
for estimating ERP, which help overcome the limitations faced by standard methods (Zoumpoulaki et al.,
2015). The author tested their method for single participant and at group level, which provided results
that outperformed the existing methods. In the past, improved recognition rate has been achieved by
aligning the brain signals (ECOG) produced by imagined and overt speech using DTW (Martin et al.,
2014). This is because time warping of two different signal synchronizes associated events. Similarly,
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the research in (Martin et al., 2016) used DTW in SVM kernel function to form a non-linear alignment
technique. ECOG signals from different trials were aligned using DTW.

5.6.1 Dynamic Time Warping

DTW is an non-linear technique used for measuring similarity between two time series or vectors and it
calculates the best alignment path among them. The method uses non-linear warping function to estimate
the time differences between two vectors or time series. Let the two vectors be:

A = a1,a2, · · · ,as, · · · ,an

B = b1,b2, · · · ,bs, · · · ,bm
(5.18)

The distance between as and bs is estimated using a distance measure (e.g., correlation distance), and a
distance metric D(n,m) is calculated which stores the distance between point as and bs in the two vectors
(time series). Next, a set of elements are mapped through the distance metric D which defines minimum
distance between two vectors A and B by finding the warping path given as:

P = p1, p2, p3, · · · , ps, · · · , pk

where ps=(as,bs) and P is also known as the warping function. The distance between A and B is given by:

DTW (A,B) = minP[
∑

k
s=1 d(ps) ·ws

∑
k
s=1 ws

] (5.19)

where d(ps) is the distance between as and bs, and ws is weighting coefficient. The warping path needs
to satisfy to following constraints:

1. Boundary conditions: The warping path should start and end at diagonal opposite corner cells of
the distance metric. p1 = (1,1) and pk = (n,m).

2. Continuity: This restricts the warping path to have one step at a time. Given ps = (x,y) then
ps−1 = (x′,y′), where x− x′ ≤ 1 and y− y′ ≤ 1.

3. Monotonicity: This constraints the points in warping path to go back in time index. pk = (x,y)
then wk−1 = (x′,y′) where x− x′ ≥ 0 and y− y′ ≥ 0.

4. Slope Constraint: This constraint propose that the slop of the warping path should neither be too
gentle nor too restricted in order to avoid unrealistic alignment.

The path is find using dynamic programming. The distance between two points as ∈ A and bs ∈ B can be
estimated as:

Dc(as,bs) = minDc(as−1,bs−1),Dc(as−1,bs),Dc(as,bs−1)+ d(as,bs) (5.20)

where Dc is the cumulative distance and Dc(a1,b1) = d(a1,b1). The final distance between two vectors
or time series is equal to the distance at the end of the optimal path:

DTW (A,B) = Dc(an,bm) (5.21)

5.7 Similarity Matching of Spectro-Temporal Features using DTW

DTW is performed on the sequence of frequency vectors (columns of spectrogram) in the spectrogram
, Sx : x1,x2, ...,xt , ...XT . Spectrograms are compared based on the dissimilarities between the frequency
vectors, these dissimilarities are measured using a distance metric. To calculate the distance metric,



68 Chapter 5. Imagined Speech Recognition using Dynamic Time Warping

FIGURE 5.3: Warping path between reference spectrogram for mentally spoken word
“write” with test spectrogram for mentally spoken word “write” using correlation dis-

tance.

correlation and cosine distance was used instead of using Euclidean distance, this is because spectral
power in the spectrograms is expressed in decibels and Euclidean distance based on decibels values did
not provide any useful conclusions. Correlation distance (Borgatti, 2019) between two vectors x and y is
defined as:

corr(x,y) =
1
n ∑i xiyi−µxµy

σxσy
(5.22)

where x and y are the reference and test spectrograms, µx, µy and σx, σy are the mean and standard
deviation of x and y respectively. Correlation distance does not assume linear relationship between two
variables. Similarly, the cosine distance is defined as:

cosine(x,y) = 1− ∑i xiyi√
∑

n
i x2

i

√
∑

n
i y2

i

(5.23)

DTW used to calculate the distance between the spectrogram of a test trial and all reference spectro-
grams (of all the classes). Equation (5.19) shows the time axis of the reference and test spectrograms,
mapped using a warping function, a trellis matrix W consisting of distances δ between two spectrograms
calculated using correlation were used to find the warping function. The path (shown in figure-5.3) that
yields the minimum distance is the warping function F . Therefore, the minimum cumulative distance is:

I = minm[Dm] (5.24)

5.7.1 Electrode Fusion

The distance between trials was calculated using DTW on an electrode-by-electrode basis. This distance
was calculated for all pairs of test and reference trials (spectrograms). Since we have M classes in total
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FIGURE 5.4: Block diagram of the proposed system. Each reference and test signal
comprises of 64 channels (from 64 electrodes).

and N reference trials for each class, the total number of reference trials are L = M×N. As the number
of electrodes is 64, the total number of distances calculated is L× 64.

For classification based on the calculated distances, a fusion technique was applied. In this technique,
the distance dmn between the test trial and the nth reference trial from the mth class is given as the median
of the 64 distances calculated for all available electrodes. Therefore,

dmn = median(d1
mn,d2

mn,d3
mn, ...,de

mn) (5.25)

where di
mn is the electrode-by-electrode distance and i denotes the electrode index. Median is more suit-

able than the mean once the distance between the test and all reference trials has been calculated, because
it rejects the noise in some of the electrodes. The trial-to-class difference is subsequently calculated as:

Dm = median(dm1,dm2, ...,dmN)

m = 1,2,3...,M
(5.26)

where m is the class index and M is the number of classes. Each test trial was classified by determining
the class label that yields the minimum distance Dm

I = minm[Dm] (5.27)

5.8 Recognition

For the experimental evaluation of our method, we used Action words: “Run”, “Swim”, and “Write”. The
results were estimated using three word pairs from the database “Run and Swim”, “Run and Write”, and
“Swim and Write” for binary classification. In general, 10 trials for each class were recorded from each
subject, however some subjects were left with only 9 trials as a result of artifact rejection. This study
focuses on subject-dependent classification, therefore, only ten trials for each class could be used. We
evaluated the system by splitting the data in two different manners. In the first evaluation, 50-50 split was
used to create test and reference spectrogram, whereas the second evaluation was conducted using leave-
one-out cross validation and the results from each trial were averaged for each subject separately. As each
electrode provides signal of different amplitude range, the reference signal from all the electrodes were
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FIGURE 5.5: Warping path for the temporal alignment between a reference spectrogram
and a test spectrogram for the three imagined words in our experiments.

z-scored (Kokoska & Zwillinger, 2000) in the time domain before performing time-frequency trans-
formation. This improved the effectiveness of fusion when distances from different electrodes were
calculated. Test data was also z-scored with respect to training data.

5.8.1 Classification of Imagined Speech

TABLE 5.4: Classification accuracy on Action words in 50-50 split.

Words 1 2 3 4 5 6 7 8 9 10 11 12 Average

(“Run”, “Swim”) 70 75 87.5 50 62.5 70 60 70 80 50 62.5 62.5 66.7
(“Run”, “Write”) 80 50 75 50 50 90 70 60 60 60 62.5 62.5 64.2

(“Swim”, “Write”) 70 75 100 90 100 70 40 50 90 60 37.5 75 71.4

TABLE 5.5: Average accuracy of 12 subjects using correlation and cosine distance in
DTW on Action words in 50-50 split.

Words Cosine Correlation

(“Run”, “Swim”) 60.0 66.7
(“Run”, “Write”) 63.4 64.2

(“Swim”, “Write”) 64.2 71.4
Average (%) 62.3 67.4

Four sets of results were obtained for 12 subjects, covert speech. DTW of time-frequency signal
measured the level of energy in the given frequency band for the reference and test spectrograms, the
frequency range of 6− 330Hz was used in this analysis. Mean of test spectrogram was normalized
according to reference spectrogram to bring values of test and reference data to same order, small dif-
ferences in features can influence distance calculation. Each reference and test signal comprises of 64
channels (from 64 electrodes) and DTW is applied on an electrode-by-electrode basis. The purpose of
this work was to recognize unspoken words by means of EEG spectrogram, therefore we tried two dis-
tance measures in our DTW method cosine and correlation distances. The comparison is shown in Table
5.5.

DTW was applied under normal constraints (Sakoe & Chiba, 1978). Classification was initially per-
formed using the minimum distance for each electrode, although the combined results were not good
for all electrodes. To improve recognition performance, the proposed fusion techniques, presented in
the section 5.7.1 was used to combine distances from different electrodes and improve overall classifi-
cation performance. First the method was evaluated using 50-50 train-test data split test, where the final
distance matrix contains five distances from each class for an electrode. Distances were evaluated for
each electrode separately and were later combined using fusion method. Results are shown in Table 5.4.
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TABLE 5.6: Classification accuracy on Action words in leave-one-out cross validation
manner.

Words 1 2 3 4 5 6 7 8 9 10 11 12 Average

(“Run”, “Swim”) 75 68.7 50 56.2 81.2 50 50 68.7 56.2 50 75 56.2 61.4
(“Run”, “Write”) 75 62.5 68.7 50 68.7 37.5 50 62.5 62.5 56.2 75 56.2 60.4

(“Swim”, “Write”) 50 56.2 62.5 75 56.2 56.2 37.5 81.2 75 68.7 43.7 50 59.3

From the results it can be inferred that the trials of an imagined word have similarity in frequency pat-
terns, which can be exploited for recognizing covert speech from EEG signals. As correlation distance
performed the best, therefore, for rest of analysis in this chapter we used correlation distance.

The performance of the proposed method was better in comparison to the previous method with LDA
and CSP features. However, DTW and electrode fusion failed to achieve high recognition rate in subject-
dependent manner. Therefore, the method was not evaluated in subject-independent manner, where the
recognition task become more challenging due to inter-subject variability (Bashivan et al., 2015).

5.8.2 Region Based Classification

In the above experiment, distances from all the electrodes were used to calculate the dissimilarities
between the test and reference spectrograms. As can be seen in (5.26), median is calculated using all
the electrodes, however only the electrodes chosen by calculating median are used as the final distance
value.

TABLE 5.7: Electrodes in different brain areas.

Area 1: F5, F7, FT7, FC5, T7, TP7, P3
Area 2: F3, F1, FZ, F2, F4, F6, FC1, FCZ, FC2, FC4, FC6, FP1, FPZ, FP2, AF3, AF4
Area 3: P3, P1, PZ, P2, P4, PO7, PO5, PO3, POZ, PO4, PO6, PO8, O1, OZ, O2, TP7

Therefore, we investigated the electrodes that were used in the distance calculation to make correct
prediction of the test input. Electrodes for all the trials and subjects were investigated, total of 468
instances were estimated for electrode selection 288 in leave-one-trial out manner and 180 for 50-50
split. Electrodes that were repeatedly (≥ 10 times) used by the fusion calculation across 64 channels
were selected as important electrodes. These electrodes were mainly spread over three main brain areas.
The three brain areas were Broca's area, Wernicke's area, and temporal lobe as Area 1, Frontal lobe
as Area 2 and Occipital, superior parietal lobe and superamarginal gyrus as Area 3. Electrodes from
different regions of the brain can provide crucial information about the areas playing important role in
though recognition. Electrodes from frontal part of the brain could suggest decision making aspect of the
brain. Most of the areas cover the left hemisphere and middle part of the brain which have been known to
play an important role in language processing and production (Al-Fahoum & Al-Fraihat, 2014; Flinker
et al., 2015; Pei et al., 2012).

Further, results were calculated for three brain areas separately using DTW. Results in figure 5.6
shows area 3 that is electrodes covering Wernicke’s area, Superamarginal gyrus, Occipital lobe and Su-
periorperital lobe achieved best recognition with 66.2% accuracy compared to the other two regions.
These results are supported by some of the previous studies, it is known that a silent reading task in-
volves Parietal lobe (Petsche et al., 1992) and Wernicke 's area is involved in speech production and
comprehension (Pei et al., 2012). Further, speech in mind can be conceptually considered an impression
or visual imagery of sentences. This has been proven in (Suppes et al., 1999), which showed that, on
certain occasions, brain responses to images resembled responses to the verbal representation of those
images.

Another important fact is that Occipital, Parietal, and Temporal lobes are known to play an important
role in word processing, when written words are presented visually (von Stein et al., 1999). As visually
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FIGURE 5.6: Average classification accuracy for three word pair from electrode groups
from three brain areas.

perceived information flows from occipital lobe to the parieto-frontal region of the brain (Dentico et al.,
2014), electrodes from those areas, therefore conclusion can be drawn that most useful information can
be extracted from these regions of the brain. Specifically, signals from Wernicke's area, Superamarginal
gyrus, Occipital lobe, and Superiorparietal lobe have recognition rate above chance rate with only 16
electrodes. The respective head model is shown in figure 5.7 (the image was taken from (Torres, 2017)
and edited), these regions have been known to play role in speech processing, (De Benedictis et al., 2014;
Pei et al., 2011). Signals from all the electrodes and classes (imagined words) were normalized so that
they have zero mean and unit standard deviation.

FIGURE 5.7: Electrodes covering Area 3, Wernicke's area, Superamarginal gyrus, Occip-
ital lobe and Superiorperital lobe.

An alternation to (5.26) was made by taken the mean across the regions rather than the median, as
it was assumed to have given better results, however, it did not increase the recognition rate. Although,
electrodes covering Wernicke’s area, Superamarginal gyrus, Occipital lobe, and Superiorperital lobe
provides sufficient information for recognizing imagined speech. However, the recognition rate with
area 3 was low compared with accuracy achieved when all electrodes were used for fusion.

5.8.3 Frequency based classification

An important part of the experiment was to investigate the frequency range that play an important role in
better recognition of imagined speech. Several frequency bands of interest were investigated, frequencies
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FIGURE 5.8: Average classification accuracy for three word pair for different frequency
bands. As can be seen best results are achieved when all the frequency bands are used

together. Whereas, gamma band performs better than alpha and beta.

containing information from alpha (6−12Hz), beta (13−30Hz), and gamma (31−330Hz) were inves-
tigated. Raw EEG signals were filtered using FIR (zero-phase) bandpass filter with Hamming window
to extract the frequency band of interest. DTW and electrode fusion were applied to the spectrograms
from each band separately. The results are shown in figure 5.8. As shown, the best results were achieved
when all the frequency bands were used together. In other words, our system performed best when more
frequency information was present. These results are in consistency with finding in a recent study (Dash
et al., 2021). Where best performance was obtained when all the frequency bands were used together.

5.8.4 Limitations of the Proposed Method using DTW

The proposed method using DTW achieved better accuracy in recognition of imagined words from EEG
signals compared to the CSP and LDA method. However, the proposed methodology have limitations;
for example, DTW is computationally expensive and slow to be implemented in real time.

5.9 Conclusion

In this chapter, linear and non-linear machine learning methods were evaluated for feature extraction and
classification of imagined words (covertly spoken words). First, the performance of spectro-temporal
and spatio-temporal features were evaluated using LDA, statistical features, and CSP. The performances
of the features were evaluated separately and when combined together. For classification, three different
classifiers were used, SVM, KNN, and DT. Where SVM achieved highest average (60.3%) accuracy with
a best of 93.7% recognition rate for a subject and word pair (swim, write). Spectro-temporal features
performed slightly better than spatio-temporal features. This showed that the importance of spectral
information in the input for achieving better recognition rate for imagined words. However, average
accuracy achieved by combination of different feature set was around chance level, failing to achieve
high recognition rate. Low performance with feature extracted using LDA and CSP indicated to the
unaligned inter-trial events of the imagined words. Further, lack of muscle activity in covert speech task
made it even more difficult to capture discriminative events, especially in spatio-temporal patterns. This
analysis demonstrated that linear methods such as the LDA are ineffective in recognition of imagined
speech.

To overcome this problem of unaligned inter-trial events in EEG signals, we used DTW for similar-
ity matching of imagined words from EEG signals. The DTW achieved better results in comparison to



74 Chapter 5. Imagined Speech Recognition using Dynamic Time Warping

previous techniques for feature extraction. This suggests that by overcoming the problem of inter-trial
variation we can improve the accuracy for recognition of imagined speech. From DTW experiment,
two sets of results were obtained, first, using 50-50 train-test split and other using leave-one-out cross
validation. It was found that performance of the method with 50-50 split was better, whereas the perfor-
mance of the proposed system slightly reduced when evaluated under leave-one-out manner. This showed
the limitation of proposed methods in dealing with spectro-temporal variations in larger training-testing
data. Further, using the proposed electrode fusion technique we found three regions of interest: Area 1:
Broca’s area, Wernicks’s area, and temporal lobe, Area 2: Frontal lobe, and Area 3: Wernicke’s area, Su-
peramarginal gyrus, Occipital lobe and Superiorperital lobe. When the performance of three area’s was
evaluated separately, Area 3 achieved highest recognition. Finally, the analysis with different frequency
bands did not provide any useful information and the best recognition was achieved with all frequencies
combined together. The improvement in recognition rate using DTW showed that linear methods ap-
plied in the previous experiment were unable to capture meaning information from EEG signals due to
inter-trial variability.

5.10 Summary

Recognition of imagined speech may be the most practical brain-computer interface for individuals with
locked-in syndrome and speech disabilities. As a result, studies have investigated various techniques for
recognition of imagined speech from EEG signals. In this chapter, linear and non-linear methods were
investigated for recognition of imagined words. The LDA and statistical methods were used to extract
time-frequency features from spectrogram of EEG signals. Also, spatio-temporal features were extracted
using CSP algorithm. For classification, three classifiers were used: SVM, KNN, and DT. The evaluation
involved classification of three pair of imagined words, recorded from 12 subjects. Three set of features
were investigated for recognition of imagined speech (1) time-frequency features, (2) spatio-temporal
features, and (3) combined. The classification results achieved from all the features and classifiers were
around chance level.

Therefore, a non-liner method was evaluated using DTW for measuring similarity between imagined
words from EEG signals. In addition, this chapter proposed a simple yet effective method for combining
distances from multiple electrodes. The proposed system was evaluated using two different train-test
splits: (1) 50-50 split, (2) leave-one-out cross validation. The results achieved in both the splits were
above chance level and outperformed feature extraction methods used earlier in the chapter. Further, this
chapter presented an investigation of the electrodes from different brain areas that play an important role
in language production and processing.



75

Chapter 6

Classification of Imagined Words using
Convolutional Neural Network

In the first part of this chapter, classification was performed between covert speech (words) and non-
speech activity from EEG signals. In addition, recognition of covertly spoken words was performed.
In order to discriminate between the different tasks, a convolutional neural network (CNN) was used
to learn spatio-temporal features. The proposed CNN architecture performed well in recognition of
imagined speech vs non-speech (silence) tasks. However, the performance of the CNN with spatio-
temporal feature was low in recognizing imagined words. Therefore, in the second part of this chapter
we proposed a CNN-attention network that learns spectro-temporal features for recognition of imagined
words. In addition, an electrode selection method is proposed for choosing the electrodes with most
task-discriminative information.

6.1 Motivation

A thought-to-text BCI system should be able to discriminate brain signals (EEG signals) produced during
imagined speech and non-speech tasks such as visual perception and no-activity (i.e., relaxing state
EEG signals). A limited number of studies have performed classification between imagined speech
and non-speech activity from EEG signals. Some of those studies compared vowel imagery with a
control state (no-activity) (DaSalla et al., 2009b; Yoshimura et al., 2011), whereas others compared EEG
signals produced during mental repetition of words with resting state EEG signals (Sereshkeh et al.,
2017). A more recent work compared imagined words and syllables with visual attention and relaxing
(resting state) tasks using EEG signals (Alsaleh, 2019). In the first part of this chapter, we performed
classification between imagined speech and non-speech activity.

The main focus of this chapter is recognition of imagined words. Therefore, we performed clas-
sification between two imagined words. However, recognizing words (speech) from EEG signals is
difficult because EEG signals suffer variation in time, frequency, and electrodes information. During
normal speech, humans can produce a word in about 0.33-0.5 seconds (Alsaleh, 2019), thus detecting
event related to a given word becomes difficult, considering such short time of word processing in the
brain. Moreover, the temporal occurrence of an event produced by covert speech does not involve motor
movement and suffers from inter-trial variations, making it even more complex to detect. Furthermore,
EEG signals have multiple electrodes, which can lead to increase in processing time and resources. In
addition, not all the electrodes contribute equally to recognition of a given activity (word). Therefore, in
order to design a text-to-speech BCI it is important to construct a method that can choose electrodes with
task discriminative information and a method for pattern learning that is robust to variations in the EEG
signals.

Many techniques have been proposed for feature extraction such as the Fourier transform, auto-
regressive (AR) modeling, eigen-analysis, CSP (Al-Fahoum & Al-Fraihat, 2014; DaSalla et al., 2009a),
and the wavelet transform. However, most of these techniques suffer from limitations and are invariant
to deformations in EEG signals. Although, the DTW-fusion method in the Chapter 5 achieved decent



76 Chapter 6. Classification of Imagined Words using Convolutional Neural Network

results, it did not take into account the class relevant components present in the time-frequency informa-
tion. In other words, certain frequency components which did not contribute to class discrimination were
also included in measuring similarity between different EEG signals of mentally spoken words.

To avoid these problems, this chapter used deep learning technique for feature learning and classifi-
cation. Deep learning has been successful in many fields and have also achieved state-of-the-art results
in recognition of motor movement and motor imagery from EEG signals (Bashivan et al., 2015; Donahue
et al., 2015; Tabar & Halici, 2016). Further, deep learning techniques such as attention and self-attention
mechanism accomplish the state-of-the-art results in dealing with sequential data (Bahdanau et al., 2014;
Vaswani et al., 2017).

This chapter propose an application of convolutional network for recognizing covert speech and non-
speech activity from EEG signals. Further, in order to achieve better recognition of imagined words, an
electrode selection method and CNN-attention architecture are proposed for learning spectro-temporal
patterns from EEG spectrograms. The following are the contributions of this chapter:

• An electrode selection method, which select electrodes based on mean power calculated from
spectrograms. The proposed method helps in reducing the dimensionality of the EEG data and
reducing the training time of the network.

• Application of CNN-attention network to recognize imagined words by learning spectro-temporal
components from the input spectrograms. The performance of the proposed network is tested
against a baseline CNN-LSTM-attention network. The combination of the proposed electrode
selection technique and CNN-Attention on 12 participants, achieved high accuracy in recognition
of covertly spoken words.

• Classification of imagined speech and non-speech activity from EEG signals using convolutional
neural networks (CNNs) and comparison with previous work.

6.2 EEG Data-sets

FIGURE 6.1: The sequence of single trial EEG recording. In total, 100 trials were
recorded for each subject.

The focus of the first part of this chapter is to discriminate between imagined speech and non-speech
tasks. Therefore, for experimental evaluation, we used EEG data acquired from imagined speech and two
non-speech tasks. EEG signals from 12 subjects were used to perform the analysis, contaminated trials
or noisy data were rejected. Each word had ten trials in total for each subject. However, after artifact
rejection and filtering some subjects had only nine trials for each class. For evaluation of electrode
selection method and the CNN-attention network proposed in this chapter, EEG signals were used from
three mentally spoken words:“Run”, “Swim”, and “Write”. Further, to discriminate between imagined
and non-speech activity, we used EEG dataset from three tasks:

• Imagined Speech: Words were presented in random order on a computer screen for 2 seconds and
subject was asked to mentally read the word once as soon as it appeared.



6.3. Discrimination between of Imagined speech and Non-speech from EEG signals 77

• Visual Perception: Subjects were presented with an image for 2 seconds, the image was associ-
ated with word presented in imagined speech task. The participants were instructed to watch the
presented image.

• Resting State: The participants were presented with blank screen and were asked to perform no
mental or physical activity. This is also known as the relaxing state task which lasted 1 second.

The recording procedure and time of each task is shown in figure 6.1. Where EEG signals recorded
during the “Visual perception” and “Resting State” tasks were used as non-speech activity in the first part
of this chapter. Detailed information about the recording procedure is provided in chapter 3.

6.3 Discrimination between of Imagined speech and Non-speech from EEG
signals

The aim of this section is to discriminate between imagined words (imagined speech) and non-speech
activity using EEG signals. We used the CNN to perform feature learning and classification on raw EEG
data. The CNN offer a desirable attribute for end-to-end learning without prior feature extraction, which
has been exploited in variety of past applications (Schirrmeister et al., 2017). This property of CNN is
most useful for designing a BCI system.

However, CNNs have been most effectively used for recognition tasks involving images,i.e., a two
dimensional input. In comparison, EEG signals are dynamic time series derived from multiple channels
on the scalp. To deal with this issue, we used EEG data as a two dimensional matrix of size T ×C, where
C is the number of electrodes (channels) and T refers to the time points in the EEG signals. Further,
to deal with the dynamics in the EEG signals, we divided T time points into smaller window frames
Wtn, where n is the number of windows. The network contains n parallel CNNs to process each window
separately. Where each frame is a two dimensional matrix (similar to an image) of size Wt ×C. Each
window, Wt is an input to a separate CNN for local feature learning. These local features from each
window are combined at a latter stage to create global features. Processing of the input is shown in figure
6.2.

6.3.1 Network Architecture

The architecture of the model used in this experiment had three main components: (1) windowed CNN
which performs spatio-temporal feature learning on multiple time windows in parallel, (2) combination
of global average pooling and dense layer for learning distinct representation of features, and (3) dense
layers for extraction of high level features. The network architecture is shown in figure 6.2.

TABLE 6.1: The parameters used in the architecture of the network. GAP: global average
pooling; K/N/DR: kernel/neurons/dropout rate.

Layer K/N/DR Filter Stride Activation

CNN (Block 1) 64 3 ×3 2 ×2 ReLU
Dropout (Block 1) 20% - - -

CNN (Block 2) 128 3 ×3 2 ×2 ReLU
Dropout (Block 2) 20% - - -

GAP-Dense (Block 3) 128 - - ReLU
Dense (Block 3) 128 - - ReLU

Dense 64 - - ReLU
Dense 2 - - Sigmoid

To obtain short-term features, the input was partitioned into numerous windows Wtn and used n
parallel CNNs to extract spatio-temporal features from each window Wt . The network consist of two
convolutional blocks, with each block containing single convolutional layer, batch-normalization, and



78 Chapter 6. Classification of Imagined Words using Convolutional Neural Network

FIGURE 6.2: Architecture of the convolutional network used for recognition between
imagined speech and non-speech activity. The spatial ordering of the electrodes was in

accordance with their position in the cap, as shown in figure 4.9.

dropout layer. Where the convolutional layer in the first block filtered the data using 64 kernels with a
receptive field of size 3× 3 and stride of size 2× 2. The convolutional layers in the second block have
128 kernels of size 3× 3 applied with a stride of size 2× 2. where the number of kernels is k = 64 or
128 in (2.1). For convolution we used “same” (zero) padding in order to preserve the spatial resolution
of the input. The output features from the parallel CNNs were concatenated and fed to block 3, which
contains two separate layers: a dense layer and 1 dimensional global average pooling layer followed by
dense layer. Reason for using two separate layers was to obtain distinct feature representations. One
dimensional global average pooling was used to combine spatial activity in the input. Dense layers in
block 3 had 128 nodes and the ReLU activation. Further, the two feature representations were added
together, and the summed features were passed to a dense layer with 64 nodes and the ReLU activation.
In the classification layer, the number of nodes was two (classifier layer) with the sigmoid function (2.5)
for classification.

6.3.2 Training

The network was trained for 120 epochs, with mini-batch gradient descent of size 32. Cross entropy loss
was minimized using the Adam optimization algorithm (Kingma & Ba, 2014) with learning rate of 0.001.
In order to avoid overfitting, the network used batch-normalization as well as dropout regularization
(Srivastava et al., 2014) with dropout rate of 20%. Dropout enables robust feature learning by setting
output from some hidden neurons to zero for an input. Therefore, with each input, the network samples
a different architecture, but weights are shared among all these architectures (Krizhevsky et al., 2012).

6.3.3 Design Choices

Different design choices were investigated for the network architecture which would impact its perfor-
mance. By varying the design choices, the activation functions, the kernel size, and the filter size, we
tried to develop some insights into the network. Performance of the network was most affected by the
activation function. For example, the ReLU gave the best results. Furthermore, dense layers were im-
plemented without the ReLU activation, which resulted in reduced recognition rate. This leads to the
conclusion that the non-linearity makes dense layers more robust in feature extraction towards the end of
the network. In addition, the network performance was assessed using filters of different sizes, among
which the 3×3 filter performed best. This is because in a small spatio-temporal window, a larger filter
(i.e., 7× 7 or 9× 9) can over-look important features and skip essential details. Further, the network’s
performance was also evaluated by removing the 1D global average pooling layer, which led to reduced
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overall performance. However, the network performed even worst when the parallel dense layer was re-
moved in block 3. The parameters used in the network architecture are shown in Table 6.1. The network
performance reduced by increasing the depth i.e., the convolutional, dense and/or pooling layers in the
network, with best results being achieved by two convolutional layers.

6.4 Results

In order to discriminate between imagined speech (mentally spoken words) with non-speech task, EEG
signals were acquired from three activities: imagined speech, visual perception, and black screen/resting
state. Where resting state and visual perception task were regarded as non-speech activity. The imagined
speech activity contained EEG signals produced during mentally spoken words. The proposed network
was evaluated on 12 subjects, where each subject performed 100 trials for each class. However, some
subjects ended up with less trials due to the removal of contaminated trials. Two different experiments
were conducted to discriminate imagined speech with non-speech activity. In the first experimental proto-
col, imagined speech activity was discriminated against visual perception, whereas the second evaluation
was performed between imagined speech and resting state (blank screen). The experimental evaluation
was performed in subject-dependent manner. The results were evaluated using leave 10% out cross-
validation method for each subject, where the network was trained on 90% of the dataset and tested on
10% of the dataset. The results obtained by varying training and test set were averaged.

6.4.1 Classification between Imagined Words and Visual Perception

TABLE 6.2: Discriminating imagined speech with visual perception for different time
windows in the EEG signals. The network was evaluated on EEG signals bandpass filtered

between 1-80Hz frequency range.

Subject 0-500ms 500-100ms 1000-1500ms 1500-2000ms
1 92.3 53.8 52.7 54.3
2 68.3 48.8 54.6 51.1
3 84.8 50.6 64.7 63.1
4 71.3 52.5 50.5 43.1
5 87.3 49.5 45.5 53.2
6 74.0 51.0 56.4 48.2
7 86.8 56.9 48.2 51.2
8 84.5 57.9 50.4 51.6
9 86.2 54.2 55.0 58.8

10 82.3 52.1 53.5 56.3
11 81.6 60.1 57.1 52.8
12 91.3 57.7 51.8 48.8

Average 82.5 53.7 53.3 52.8

In the first evaluation step, EEG signals were band pass filtered between 1-80Hz using a zero phase,
non-causal FIR filter. Discrimination of imagined words with visual perception (non-speech activity)
was performed on four separate windows each of 500ms, obtained by splitting the 2000ms trial. The
network was evaluated on each window separately to investigate the time window which provides best
recognition rate. Therefore, the size of each window used for this analysis was T ×C, where C = 64 is
the number of channels and T = 500 is the number of time points in the EEG window. Therefore, the
input to the network was n = 10 small windows frames of size Wt×C, with Wt = 50 and n is the number
of parallel CNNs used in the network. The input was a multi-dimensional matrix of size n×Wt×C. The
results are shown in Table 6.2. As shown, the highest recognition rate was achieved by the 0-500ms time
window.

Further, the networks performance on different frequency range was also investigated. This evalua-
tion used the 0-500ms time window, which performed best in the earlier evaluation. First, the network
was evaluated for a broader frequency range, 1−80Hz. In the second evaluation, where high frequency
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TABLE 6.3: Evaluation of the network’s performance for discriminating imagined speech
and visual perception using different frequency ranges. The performance was evaluated

using 0-500ms time window.

Range S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

1-80Hz 92.3 68.3 84.8 71.3 87.6 74 86.8 84.5 86.2 82.3 81.6 91.3 82.5
1-30Hz 91.7 68.5 88 69.9 89.9 77.5 87 86 83.4 82.5 81.8 90.9 83
4-30Hz 93.1 72.3 91.8 78.5 75 80.4 88.5 81.6 84.8 75.9 86.2 95.8 83.6

information 31-80Hz was removed which led to slight improvement in the recognition rate. Another
analysis included evaluation of EEG signals by removing low frequency information 1-4Hz which led to
further increase in the recognition rate. The results are shown in Table 6.3. The best recognition rate of
83.6% was achieved using EEG signals with frequencies between 4-30Hz. Although, performance for
other two frequency range were also comparable.

6.4.2 Classification between Imagined Speech and Resting State

TABLE 6.4: Classification accuracy for recognition of imagined speech and resting state.

Range S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

1-80Hz 90.1 83 88.6 84.4 82.6 83 86.9 94.7 84.3 81.1 95 95.7 87.4
1-30Hz 89.5 80.8 91.6 84.7 84.7 84.3 86.9 92.2 84.9 80.4 95.6 95.5 87.6
4-30Hz 88.6 66.1 86.4 88.8 74 86.2 89.4 90.2 83.2 96.4 72.6 86.9 84

To classify between imagined speech and non-speech activity (blank screen), EEG signals of 0-
500ms time window were used for training and testing the network. This window was chosen based on
the results obtained from classification between imagined speech and visual imagery task. In the first
evaluation step, EEG signals contained frequency range between 1-80Hz. In the second evaluation, high
frequencies (gamma band, 31−80Hz) were removed from EEG signals and the network was evaluated
on EEG signals containing frequencies between 1-30Hz. For the imagined speech class, the network was
trained on EEG data from N−1 words and Nth word was used for testing. In other words, the network
was trained on EEG signals from nine mentally spoken words and tested on the 10th word. The results
are shown in Table 6.4. As can be seen, EEG signals containing 1-30Hz frequencies perform best.

Comparing the results in Table 6.3 and 6.4 shows that classifying imagined speech (words) vs no-
activity is much easier than imagined speech vs visual imagery. Further, the results suggests that initial
time window of 0-500ms are provide the most task discriminative information. Although, 1-30Hz per-
formed well for both the recognition tasks, but was not the best performing frequency range for distin-
guishing visual perception and imagined words.

TABLE 6.5: Comparison with other methods for classification of imagined speech and
no-activity.

Method Subjects Trials per Subject Channels Accuracy

(Sereshkeh et al., 2017) 12 60 per class 64 75.7%
Proposed 12 100 per class 64 87.6%

Comparison: Results obtained by the proposed method were also compared with previous studies
which performed classification between imagined speech and resting state (no activity). The comparison
is shown in Table 6.5. Although, a direct comparison cannot be made because EEG dataset used in
past studies were not publicly available. The results achieved by the proposed architecture significantly
out-performed previously proposed methods.
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6.4.3 Recognition of Imagined words

In this section, classification was performed between two imagined words from EEG signals. EEG
signals were used for three imagined words: “Run”, “Swim”, and “Write”. Binary classification was
performed between two words and therefore we obtained results for three word pairs, shown in Table
6.6. Each subject had 10 trials for each word, we evaluated the network performance for three frequency
range using 0-500ms time window. The results are shown in Table 6.6. The average accuracy achieved
by the network is just below the chance level, where the chance level is considered to be 55.0%. This
shows that spatio-temporal features extracted by the CNN were not robust enough to recognize imagined
words from EEG signals.

TABLE 6.6: Classification accuracy for recognition of imagined words in subject depen-
dent manner.

Range (“Run”, “Swim”) (“Run”, “Write”) (“Swim”, “Write”) Average
1-80Hz 55.4 47.1 52.0 51.6
1-30Hz 56.2 49.7 51.9 52.6
4-30Hz 53.7 48.5 50.9 51.0

6.4.4 Limitations of Spatio-Temporal Information and CNN for Imagined Word Recog-
nition.

From the above analysis it can concluded that the method of extracting spatio-temporal features with the
CNN is effective in classification between imagined speech (words) and non-speech activity. However,
spatio-temporal features extracted by the CNN are not robust enough to recognize the imagined words
from EEG signals. Poor performance of the network could be a result of limited training data. Further, the
CNN networks are known to learn spatial patterns and cannot effectively learn temporal dependencies.
In addition, the covert nature of imagined speech activity does not involve muscle movement and makes
the spatio-temporal pattern in EEG signals more difficult to learn. Lack of spectral information can also
be associated with low recognition rate for imagined words, because EEG signals in the time domain
can sufferer from several limitations due to its non-stationary nature. Therefore, in the next part of this
chapter we use time-frequency features in recognition of imagined words.

Further, the proposed CNN network suffers from overfitting, when differentiating imagined speech
and visual perception task, which is evident from the learning curve presented in the figure 6.3. This
shows that the network performs well on the training data however, fails to achieve high performance on
test data.

(a) (b)

FIGURE 6.3: The training (blue) and test (orange) curve for the CNN network for (a)
imagined speech and visual perception; (b) imagined speech and resting state. The train-

ing curve (a) imagined speech and visual perception indicate overfitting.
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6.5 Spectro-Temporal Feature learning using a CNN-Attention Network

This section, propose a framework for recognizing imagined words from EEG signals using a mean
power-based electrode selection technique and CNN-Attention network shown in figure 6.4. The frame-
work contains two main components; a channel selection method which provides with electrodes con-
taining the most task discriminative information and a CNN-Attention network. The EEG signals for
each word were converted into spectrograms. This was done by performing STFT using windowing
function on EEG signals for each electrode, STFT performed using windowing avoids the assumption
of stationarity in an EEG signal (Cohen, 2014). Spectrograms from all electrodes were used to select
most informative electrodes which would reduce the dimensionality of the data and increase recognition
rate. The spectrograms from multiple electrodes presents time, frequency, and spatial information to the
network for optimal feature learning.

An application of the CNN-attention network is proposed to learn spectro-temporal patterns from
the input spectrograms. The network treats the input spectrograms as a time-varying information, where
CNNs extract important frequency components from each time point separately. Incorporating CNNs at
initial stage has the advantage of reducing the input size. Further, the use of CNN allows our system to
handle correlations between neighboring frequencies. The proposed network used a dense layer after the
CNN block to perform dimensionality reduction on the spatio-spectral features extracted from the CNN
blocks. The dense layers had the ELU activation to learn non-linear trends in the extracted features.
Further, the network used attention mechanism to focus on the most informative temporal-features in
the output produced by the CNN-dense layers. The self-attention mechanism also helps the network to
learn sequential relationship between the extracted features. This makes the network capable of learning
important components at each time point. The proposed techniques have some interesting properties:

• The electrode selection method provides electrodes that helps in achieving high recognition rate
and reduces the dimensionality of the EEG data. This also helps in reducing the training and
testing time of the network.

• The proposed CNN-attention architecture learn important spectral components at each time point
separately from the input spectrograms using the CNNs. Therefore, treating it as a time varying
input.

• The proposed architecture uses the attention mechanism rather than using the LSTM to learn the
temporal dynamics in the spectrogram. This avoids the problems suffered by LSTM such as the
memory limitations and slow learning rate (Monesi et al., 2020).

By using the electrode selection method and the CNN-attention network for feature learning and
classification, we present a framework which is more powerfully in recognition of imagined speech from
EEG signals. The method is evaluated on our EEG dataset for imagined speech.

6.5.1 Electrode Selection using Mean Power

EEG signals are captured by multiple electrodes from different sites on the scalp which increases the
dimensionality of data. The EEG signals from large number of electrodes requires more resources and
processing time. Further, not all electrodes add to high recognition rate. Therefore, it is essential to
reduce the dimensionality of data by using an appropriate method for selecting electrodes. In the EEG
studies, selection of electrodes is a challenging task. Aggregating features calculated from temporal and
spectral domain for each individual electrodes into a vector is a standard procedure in EEG studies; how-
ever this method is not very effective (Bashivan et al., 2015). Instead, we propose an electrode selection
method. The proposed electrode selection method (Algorithm 1) takes spectrograms as input from all the
electrodes and choose top-K electrodes that are most informative to the recognition of imagined words,
where K is a pre-defined value.
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Algorithm 1 Select Top-K Electrodes

Requires: A matrix X ∈Rn×C×T×F , where T ×F are dimensions of a spectrogram xt, f belonging to an
electrode C of the nth trial. K the no of electrodes to be selected, and m j the vector length.

1: Calculate mean across T for each spectrogram
2: create an empty array X f of size n×C

LOOP through all trials n and electrodes C
3: for n ∈ 1, ...,n do
4: for C ∈ 1, ...,C do
5: x f = Mean(St, f , axis=0) {Mean across time axis}

Create vector of varying length from the frequency vector x f .
6: x f ′1

, x f ′j ,..., x f ′j = x f−n1 , x f−n2 ,..., x f−n j

{where length of x f ′j > x f ′2
> x f ′1

}
7: m1, m2,..., m j = Mean(x f ′1

), Mean(x f ′2
),..., Mean(x f ′j )

8: if (m1 > 0 or m2 > 0 or m j > 0) then
9: X f (n,C) = 1 {Cth position in X f (n,C) is 1}

10: else
11: X f (n,C) = 0 {Cth position in X f (n,C) is 0}
12: end if
13: end for
14: end for

Create an array containing the number of times an electrode C was 1
15: L = Sum(X f (n,C), axis=0) {sum across n trials}
16: L = Argsort(L) {Arrange indices of values in descending order}
17: topK = L(1 : K) {Retrieve first K electrodes from the list L}
18: return topK

Given the training data X ∈ Rn×T×F×C as input, where n is the number of training trials, T is the
number of time points in the spectrogram, F is the number of frequency points in the spectrogram, and
C is the number of electrodes. In the first step, the spectrograms are averaged along the time axis. Mean
over time is calculated as it provides with a baseline normalized power estimate, which helps avoid the
1/f phenomenon. This is done for all the electrodes and trials separately. This provides with a frequency
vector for each electrode for a given trial, defined as:

x f =
1

NT

T

∑
t

xt, f (6.1)

where xt, f is the input spectrogram for an electrode of a given trial and NT is the total number of time
points in the spectrogram. The training data X is transformed to X f ∈Rn×x f×C. Further, for each elec-
trode in a trial, x f is divided into overlapping windows of different size, where single window is given
as:

x f = x1, ...,xN (6.2)

where N is the length of frequency vector x f , and a divided window is given as:

x f ′ = x f−n (6.3)

where f − n is the length of the new vector x f ′ . Therefore, a new matrix X f ′ ∈ Rn×x f ′×C is obtained.
Each frequency vector is divided into smaller overlapping window to provide power representations at
different frequency bands. In this analysis, parameter n in (6.3) was varied j=3 times using different
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values of n, which provided three x f ′ of varying lengths: x f ′1
, x f ′2

, x f ′j . Mean for single x f ′ is calculated
as:

m =
1

N f ′

F ′

∑
f ′=1

x f ′ (6.4)

(6.4) is used to calculate j mean values; m1, m2, and m j from x f ′1
, x f ′2

, x f ′j for a single electrode. A
matrix X f is estimated of size n×C, an electrode is added to the matrix if m j > 0 for an electrode of a
given trial (Algorithm 1, step 8). The Cth position of the matrix had a 1 or 0 value, where 1 refers to
a selected electrode and 0 refers to a rejected electrode. The matrix X f (n,C) was amended along the
rows, i.e., n axis. The n rows were added to calculate an array, from which indices of K highest values
were retrieved. These K electrodes were estimated to provide the most discriminative information about
imagined words. The electrode selection was performed using training data and same electrodes were
selected in the test data for classification purposes.

6.5.2 Architecture of CNN-Attention Network

The proposed network architecture has two CNN blocks and a dense block followed by the self-attention
mechanism and the dense layers, where the last dense layer uses the sigmoid function for the binary
classification task. The network architecture is shown in figure 6.4 and the parameters are presented in
Table 6.7. Each block has T parallel 1-dimensional (1-D) CNN layers and batch normalization layers,
where T is the number of time points in the spectrogram. The feature learning was performed by 1-D
convolution at each time point (frequency vectors) in the spectrogram. Both the blocks contained a single
CNN layer. The convolutional layer in the first block filters the data using 64 kernels with a receptive
field of size 3 and a stride of size 2. This process can capture high-level features from the frequency
vectors of the spectrogram. The convolutional layers in the second block have 128 kernels of size 3,
applied with a stride of size 2.

TABLE 6.7: The parameters used in the CNN-attention network. K/N/DR: ker-
nel/neurons/dropout rate.

Layer K/N/DR Filter Stride Activation

CNN (Block 1) 64 3 2 ELU
Dropout (Block 1) 20% - - -

CNN (Block 2) 128 3 2 ELU
Dropout (Block 2) 20% - - -
Dense (Block 3) 256 - - ELU

Attention - - - tanh, So f tmax
Dense 128 - - ELU
Dense 64 - - ELU
Dense 2 - - Sigmoid

Deep learning models can benefit from strategically designed layers endowed with non-linearities
(Donahue et al., 2015). Therefore, to learn non-linear patterns from the EEG spectrograms, two activa-
tion functions the sigmoid and the exponential linear unit (ELU) (Clevert et al., 2015) were used in the
network. The CNN and dense layers had the ELU function. The ELU was considered over the ReLU
function because ReLU suffers from the dying ReLU problem (Lu et al., 2019), whereas the classification
layer had the sigmoid function 2.5. Batch-normalization was used in every block, which helped speed
up the learning process by centering the data (Clevert et al., 2015).

6.5.3 Using Self-Attention Mechanism for learning Temporal Dynamics

It is known that the event associated to a particular task last few milliseconds in the brain (Butts et al.,
2007). Therefore, not all the time points in the EEG signals are informative for detecting imagined
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FIGURE 6.4: The architecture of proposed CNN-Attention network. Input is a multi-
dimensional tensor in form of T ×F×C, i.e, spectrogram from different electrodes com-
bined to form three-dimensional input. The spatio-spectral of size F ×C (F = 86) con-
tent at each time point is processed separately by T =86 parallel one-dimensional CNNs.
Frequency features are extracted using a chain of two blocks containing the CNNs and
batch-normalization layers. The output features from the CNN block as fed to the dense
layers used for dimensionality reduction and then to attention layer for learning temporal

patterns.

speech. Therefore, we used self-attention mechanism to focus on the most informative temporal-features
in the output produced by the CNN-dense layers. To implement the attention in our network, we used
the self-attention layer, where the output from parallel dense layers were used as input to attention layer
to create a more informative global feature map g. The resultant global feature map has more weights
assigned to discriminative information which contributes to classification of imagined words. The global
feature vector produced by the attention layer. The self-alignment layer is trained using back-propagation
algorithm and learn important time points in the feature-map using the gradient of the cost function (Bah-
danau et al., 2014). The self-attention layer was followed by two dense layers with 128 and 64 neurons,
respectively. Dense layers used the ELU as activation function, which made the network capable of
non-linear features passed from previous layers. The last layer used the sigmoid function for binary
classification.

6.5.4 Network Training

Both the networks were implemented in Keras (Chollet et al., 2015) with Tensorflow backend (Abadi
et al., 2016). For subject dependent evaluation, the network was trained with the Adam optimization
algorithm for 200 epochs, and mini-batch gradient descent of size 5. Whereas for subject independent
evaluation, the network was trained for 200 epochs with mini-batch gradient descent of size 32. For
both evaluations, the cross-entropy loss was minimized with learning rate of 0.0001 (Kingma & Ba,
2014). Due to weight sharing in convolutional networks, the gradient at different layers can vary widely
(Bashivan et al., 2015). Therefore, a slower learning rate was used for training the network. Further,
in order to avoid the problem of unstable gradient (Simonyan & Zisserman, 2014), we used He weights
initialization method (He et al., 2015).

6.6 Classification of Imagined Words

For the experimental evaluation of our method, EEG signals were used from the dataset presented in
chapter 3. EEG signals were used for three words, i.e., “Run”, “Swim”, and “Write”. Three pairs of
words were used for classification purposes. Raw EEG signals were transformed into spectrograms and
used as input to the CNN-attention network. The spectrograms were converted into multi-dimensional
input of dimensions T ×F ×C, where T = 86 is the number of time points in the input, F = 86 is the
number of frequency points, and C is the number of electrodes. To evaluate the effectiveness of the
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proposed framework we used three evaluation methods presented in Table 6.10. Three approaches are
described as follows:

1. In the first approach, the results were obtained in subject-independent manner. Where data from
all but one subject was used for training the network and was tested on a different subject which is
not part of the training data.

2. The second approach was also conducted in subject-independent manner. However, 90% of the
data from all the subjects were used for training and 10% was used for testing in cross-validation
manner. Results obtained for different training and testing sets were later averaged.

3. The third approach for calculating results was subject-dependent, the network was trained and test
on the data from same subject. Results for each subject were evaluated separately. Further, for
subject dependent classification, we also evaluated different values of C, i.e., number of electrodes
on our proposed method. The three evaluation methods have been shown in Table 6.10.

TABLE 6.8: Three evaluation method: leave trial out (LTO) is done on subject-by-subject
basis, i.e., training and testing take place using different data from the same subject;
leave subject out (LSO) and subject-independent leave trial out (SI-LTO) are subject-

independent experiments.

Exp Training Testing
Subjects Trials Subjects Trials

LSO All but one All One All
SI-LTO All 90% All 10%

LTO - 90% - 10%

6.6.1 Subject-Independent Evaluation

The first experimental evaluation was conducted in subject-independent manner, where EEG data from
all the subjects were used in recognition of imagined words. For this experiment, 108 EEG trials were
available for each class. In order to perform subject-independent experiment, raw EEG data from all
the subjects was z-scored, this was done in order to remove variations in EEG signals recorded from
different subjects. In the subject-independent study, the network was trained using mini-batch size of
32. Recognition of imagined words in a subject independent study is difficult because EEG signals vary
from subject-to-subject. Therefore, the subject independent evaluation was conducted in two different
approaches, discussed as follows:

Leave Subject Out Cross Validation (LSO)

In this evaluation technique, the network was trained on all but one subject and tested on EEG data
from the left-out subject i.e., 11 subjects were used to train the network and tested on EEG data from
a different subject. This method was repeated several times in a leave-one-subject-out (LSO) cross-
validation manner. The subject independent results for three-word category are presented in Table 6.9
and average accuracy achieved for selected C is shown in Table 6.10. The proposed system was tested for
different C values i.e., the number of electrodes selected using the proposed electrode selection method.
The best results were obtained by C = 15 C = 9, i.e., by top C electrodes that showed most power across
all trials of subjects used in training the network. From the results obtained it is evident that our proposed
method can recognize imagined word even if the system is not trained on the users EEG data. The figure
6.5 shows the electrodes that showed most power across all the trials for 12 subjects.
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TABLE 6.9: Classification accuracy for three word pairs with the proposed CNN-
Attention network with different number of selected electrodes C using mean power

method. The results are presented in subject-by-subject manner.

Subject (“Run”, “Swim”) (“Run”, “Write”) (“Swim”, “Write”)
C=15 C=9 C=6 C=15 C=9 C=6 C=15 C=9 C=6

1 65.5 71.0 69.5 45.0 45.5 53.0 58.0 61.0 55.9
2 59.5 66.4 68.5 50.0 57.5 52.0 53.5 50.0 43.5
3 60.0 58.3 56.1 62.7 60.0 55.0 61.6 61.1 56.7
4 93.8 86.6 67.2 72.7 77.8 78.8 69.5 57.8 63.3
5 81.1 76.6 76.1 71.1 67.8 66.1 61.1 57.8 66.1
6 83.8 80.0 72.2 61.1 72.2 56.6 67.8 68.3 69.4
7 50.5 51.0 50.0 56.5 63.0 57.5 53.5 58.5 54.5
8 53.7 55.6 57.5 53.1 59.4 53.7 54.4 53.2 51.8
9 50.5 50.0 58.5 50.0 50.0 50.0 50.0 50.0 57.5

10 61.0 71.5 72.0 53.0 59.0 57.0 60.0 51.0 54.0
11 88.8 76.1 76.6 72.7 80.5 73.0 68.3 61.2 55.5
12 67.5 60.0 67.5 46.0 52.0 55.5 50.0 45.0 53.5

Average 67.9 66.9 65.9 57.8 61.9 59.0 59.0 56.2 56.8

TABLE 6.10: Comparison of average accuracy achieved by C selected electrodes.

Word Pair C=15 C=9 C=6
(“Run”, “Swim”) 67.9 66.9 65.9
(“Run”, “Write”) 57.8 61.9 59.0

(“Swim”, “Write”) 59.0 56.2 56.8
Average 61.5 61.6 60.5

FIGURE 6.5: The electrodes that showed most power across 12 subjects. Where the
electrodes showing most power across all the trials were considered most informative

electrodes for recognition of imagined words.

Classification of Spectrograms of Shorter Time Frame

As it was inferred earlier in this chapter, that most task discriminative features are present few millisec-
onds after the stimulus onset, i.e., when the subject was asked to mentally read the presented word.
Therefore, the performance of the proposed method was also evaluated on spectrograms with shorter
temporal length. The dimensions of spectrogram window used in this analysis was T ×F ×C, where
T = 50 is time points in the spectrogram, and F = 86 is the frequency points. The evaluation was only



88 Chapter 6. Classification of Imagined Words using Convolutional Neural Network

carried out for C = 15 and C = 9. The subject-by-subject results are shown in Table 6.11 and average
accuracy is shown in Table 6.12. As shown the results achieved with spectrogram representing 1000 ms
post stimulus activity is better than spectrogram representing the whole trial. In addition, recognition rate
of 63.7% achieved with C = 15 is better than C = 9, which can be attributed to each subject having differ-
ent set of electrodes providing task discriminative information. In other words, a smaller set of electrodes
selected from training subjects does not account for most discriminate features for word recognition in
the test subject. This is caused by inter-subject variations in EEG signals. Hence, in subject-independent
evaluation it is important to have large C. Therefore, the network’s performance was also evaluated with
C = 64,i.e., all the electrodes used during the recording. The network achieved best accuracy of 65.9%
when all the electrodes were used in training and testing.

TABLE 6.11: Accuracy for three word pairs with spectrogram 1000 ms activity post
stimulus onset. The evaluation was performed with C = 15,9. The results are presented in

subject-by-subject manner.

Subject (“Run”, “Swim”) (“Run”, “Write”) (“Swim”, “Write”)
C=64 C=15 C=9 C=64 C=15 C=9 C=64 C=15 C=9

1 56.0 64.0 63.5 67.5 51.0 44.0 61.5 60.5 52.5
2 56.5 64.5 57.5 60.0 56.0 55.0 61.0 55.0 53.5
3 57.2 61.6 60.0 63.3 65.0 60.0 71.6 55.0 55.5
4 92.7 97.2 93.8 95.5 90.5 78.3 71.1 61.1 66.1
5 92.2 85.5 85.5 85.5 72.2 71.1 62.7 63.8 58.8
6 78.8 79.9 86.1 91.1 82.7 72.7 66.1 68.3 67.7
7 51.0 52.5 50.5 57.0 57.5 61.9 50.5 53.9 59.0
8 50.0 52.5 60.0 51.8 51.5 56.2 54.2 53.1 53.7
9 53.5 57.5 50.0 53.0 51.5 51.0 51.0 50.5 50.0

10 53.9 55.0 67.5 63.5 63.5 61.5 64.5 60.0 47.5
11 86.6 90.5 91.6 83.3 85.6 77.7 65.0 66.1 55.6
12 69.0 65.5 69.0 69.5 45.5 50.5 57.5 51.4 44.5

Average 66.5 68.9 69.5 70.0 64.4 61.4 61.4 58.2 56.4

TABLE 6.12: Average accuracy for three word pairs with spectrogram 1000 ms activity
post stimulus onset with C = 15,9.

Word Pair C=64 C=32 C=9
(“Run”, “Swim”) 66.5 68.9 69.5
(“Run”, “Write”) 70.0 64.4 61.4

(“Swim”, “Write”) 61.4 58.2 56.4
Average 65.9 63.6 62.4

6.6.2 Subject-Independent Leave Trial Out (SI-LTO)

In this experiment, the network was trained on N−1 trails from each subject and tested on the Nth trial,
where N is the total number of trials for a given subject. This was performed in a leave-trial-out from each
subject manner, which can be referred to subject independent leave trial out cross validation (SI-LTO).
This method of evaluation is easier in comparison to (LSO) performed earlier which is evident from the
results, shown in Table 6.13. As shown, C = 9 performed best in recognition of imagined words with
an accuracy of 72.9% for this subject independent evaluation. Despite the fact that the dataset contained
EEG signals from multiple subjects, the proposed method achieved recognition rate of 72.9% for the
imagined words.

6.6.3 Leave Trial Out (LTO) Evaluation

The third experiment focused on subject-dependent classification, only trials from one subject could
be used for training and testing of the system. The proposed method was tested for the (two-class)
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TABLE 6.13: Recognition of imagined word in SI-LTO manner with different number of
electrodes (C).

Word Pair C=64 C=32 C=9
(“Run”, “Swim”) 77.0 75.8 78.0
(“Run”, “Write”) 72.9 77.7 72.6

(“Swim”, “Write”) 66.3 63.0 68.8
Average 72.0 72.1 72.9

TABLE 6.14: Classification accuracy for three word pairs with different number of elec-
trode C selected using the proposed electrode selection method. The evaluation was per-

formed in subject dependent manner.

Subject (“Run”, “Swim”) (“Run”, “Write”) (“Swim”, “Write”)
C=64 C=15 C=9 C=6 C=64 C=15 C=9 C=6 C=64 C=15 C=9 C=6

1 52.0 78.0 83.0 85.0 54.0 65.0 80.0 71.0 72.0 81.0 90.0 89.0
2 76.0 90.0 91.0 92.0 68.0 77.0 83.0 83.0 53.0 88.0 84.0 82.0
3 68.0 67.0 60.0 57.0 66.0 77.0 80.0 79.0 74.0 74.0 88.0 83.0
4 99.0 100 100 100 100 100 99.0 100 74 78.0 70.0 76.0
5 84.0 73.0 76.0 73.0 68.0 69.0 61.0 72.0 60.0 55.0 68.0 63.0
6 77.0 68.0 57.0 60.0 84.0 83.0 81.0 87.0 60.0 61.0 42.0 60.0
7 47.0 51.0 63.0 57.0 53.0 68.0 81.0 90.0 45.0 41.0 53.0 43.0
8 89.0 86.0 77.0 79.0 86.0 66.0 61.0 51.0 85.0 87.0 85.0 76.0
9 58.0 52.0 53.0 81.0 68.0 53.0 64.0 59.0 34.0 55.0 69.0 56.0

10 98.0 72.0 76.0 81.0 95.0 90.0 90.0 83.0 74.0 76.0 84.0 70.0
11 71.0 93.0 88.0 87.0 97.0 93.0 95.0 85.0 82.0 68.0 57.0 62.0
12 80.0 80.0 87.0 37.0 83.0 91.0 88.0 83.0 66.0 85.0 52.0 53.0

Average 74.9 75.8 75.9 74.0 76.4 77.6 80.2 78.5 64.9 70.7 70.2 67.5

TABLE 6.15: Comparison of average accuracy achieved by different number of selected
electrodes C.

Word Pair C=64 C=15 C=9 C=6
(“Run”, “Swim”) 74.9 75.8 75.9 74.0
(“Run”, “Write”) 79.5 77.6 80.2 78.5

(“Swim”, “Write”) 64.9 70.7 70.2 67.5
Average 73.1 74.6 75.4 73.3

TABLE 6.16: Accuracy for three word pairs with spectrogram 1000ms activity post stim-
ulus onset. The evaluation was performed with C = 15 and C = 9

Subject (“Run”, “Swim”) (“Run”, “Write”) (“Swim”, “Write”)
C=15 C=9 C=15 C=9 C=15 C=9

1 78.0 77.0 65.0 79.0 81.0 88.0
2 90.0 91.0 77.0 82.0 88.0 84.0
3 67.0 65.0 77.0 74.0 74.0 87.0
4 100 100 100 100 78.0 72.0
5 73.0 84.0 69.0 76.0 55.0 68.0
6 68.0 62.0 83.0 89.0 61.0 57.0
7 51.0 62.0 68.0 84.0 41.0 45.0
8 86.0 84.0 66.0 55.0 87.0 85.0
9 52.0 52.0 53.0 69.0 55.0 71.0

10 72.0 64.0 90.0 85.0 76.0 84.0
11 93.0 98.0 93.0 97.0 68.0 61.0
12 80.0 85.0 91.0 86.0 85.0 56.0

Average 75.8 77.0 70.7 81.3 77.6 71.5

classification of imagined words within pairs formed from the above three words. As the three words
can be combined in three pairs, three sets of results were obtained from 12 subjects. In general, 10 trials
for each class were recorded from each subject. However, after artifact rejection some subjects had only
9 trials. Results for each subject were obtained using leave-one-out cross validation, where the dataset
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was divided into 90% training and 10% testing data. The model was evaluated by varying the training
and test data, and the respective classification results were averaged for each subject. In order to evaluate
effectiveness of the proposed electrodes selection method, we tested our system for different values of C.
Further, these results were compared with the accuracy achieved by the network when trained and tested
using all the electrodes C = 64. The results are presented in Table 6.14 and average accuracy is shown
in Table 6.15. As shown, the accuracy achieved by using electrodes selected by the proposed method
is higher compared to when the system is trained and tested using all electrodes. Therefore, it can be
concluded that the proposed electrode selection method chose electrodes that provides discriminative
information for recognition of imagined words. High recognition rate achieved in subject dependent
manner can be attributed to each subject have different set of electrodes containing task discriminative
information.

TABLE 6.17: Comparison of average accuracy achieved by selected electrodes C.

Word Pair C=15 C=9
(“Run”, “Swim”) 75.8 77.0
(“Run”, “Write”) 70.7 81.3

(“Swim”, “Write”) 77.6 77.6
Average 74.7 76.6

Similar to the previous evaluation in LSO, we tested our method for spectrogram representing 1000
ms activity after stimulus onset. This evaluation was only performed for C = 9 and C = 15. The subject-
by-subject results are shown in Table 6.16 and average accuracy is shown in Table 6.17. Similar to
subject-independent classification the results are better with spectrogram representing 1000ms post stim-
ulus activity.

Attention Weights Visualization

(a) (b)

(c)

FIGURE 6.6: Global attention weights for three imagined words: (a) Run; (b) Swim; (c)
Write.
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The self-attention mechanism used in the network can provide with the time points containing im-
portant features extracted by the CNN blocks. Features that are more task discriminative are assigned
higher weights by the self-attention layer. We averaged attention weights from the networks trained in
subject dependent manner (leave-one-out cross validation) for C=9, which provided the best results. Fur-
ther, the attention weights across all the subjects were averaged together to create the global attention
weights. The global attention weights are shown in figure 6.6. The attention weights for imagined words
“Run” and “Write” shows time points around 1s & 1.5s (i.e., 500ms & 1000ms after the stimulus onset)
to contain the most discriminative features, figure 6.6 (a) and (C). The attention weights for the word
“Write” contains several time points with high weights. On the other hand, imagined word “Swim” con-
tains multiple time points providing important features, figure 6.6 (b). As can be seen from figure 6.6
the attention weights at the pre-stimulus time period are not the same this can be associated with trial-
to-trial fluctuation in subjects concentration leading to new features (Macdonald et al., 2011). However,
the proposed network is designed to extract features which associated with imagined words; therefore,
highest weights are given to the time period post stimulus onset when the word was spoken silently.

6.6.4 Comparison of the Proposed Network with the Baseline

TABLE 6.18: Comparison of average accuracy achieved by the proposed network with
the baseline networks in three experimental protocols; SI: subject-independent, SD:
subject-dependent, and SI-LTO: subject-independent leave trial out. CLA: CNN-LSTM-

Attention; CWA: CNN without Attention.

Exp SI SI-LTO SD
C=64 C = 32 C=9 C=64 C = 32 C=9 C=64 C = 32 C=9

CLA 62.3 59.6 59.7 67.9 69.5 67.4 66.0 68.3 75.3
CWA 62.5 61.6 61.9 66.3 68.3 66.7 64.0 64.8 66.7

Proposed 65.9 63.6 62.4 72.0 72.1 72.9 73.1 73.7 75.4

The performance of the proposed architecture was evaluated in comparison with two baseline mod-
els: (1) CNN-LSTM-attention; and (2) CNN network without attention mechanism. This was done
to emphasize the effectiveness of including the dense layers for dimensionality reduction and the self-
attention mechanism for learning temporal dynamics in the proposed network. The details of the two
networks are as follows:

• CNN-LSTM-Attention: We added bidirectional LSTM as it is known to be effective in learning
temporal dynamics and when combined with attention mechanism has produced state-of-the-art
performance in many recognition tasks (Singh et al., 2020; Zhou et al., 2016b). The CNN-LSTM-
attention network had a similar architecture as the proposed CNN-attention network shown in
figure 6.4, except it did not have parallel dense layer after the CNN blocks. Therefore, features
extracted by the CNN were passed to the LSTM for temporal learning. The bidirectional LSTM
layer had 128 units and output from the LSTM was passed to the self-attention layer to learn
important temporal features.

• CNN without Attention: In order to show the effectiveness of the attention mechanism in con-
junction with the convolutional blocks, we also evaluated tested a baseline network without atten-
tion mechanism, with the remaining network architecture similar to the proposed network in figure
6.4.

All the networks were evaluated using the three experimental protocols; SD, SI, and SI-LTO manner
with different C as the number of selected electrodes. The network in a similar manner as to the proposed
network. The average accuracy for 12 subjects is presented in Table 6.18. As shown the performance
of the proposed network is superior to the other two networks. Further, the CNN-LSTM-attention net-
work had 1600835 trainable parameters and required 35s for training. On the other hand, CNN without
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attention had 1625026 trainable parameters and required 26s for training. However, the proposed CNN-
attention network had 822467 trainable parameters and the training time of 20s, in subject dependent
manner. Similarly, the number of parameters and the training time was less for the proposed network in
SI & SI-LTO method. In addition, comparison suggests that proposed network learns temporal features
without the LSTM layer.

Comparison with Previous Work

TABLE 6.19: Comparison of performance achieved by existing methods with the pro-
posed method on our EEG dataset.

Method C SD SI SI-LTO
Sereshkeh et al., 2017 64 50.1% 66.9% 72.0%
Panachakel et al., 2019 64 55.5% 50.5% 50.6%

Proposed 64 73.1% 65.9% 72.0%
Proposed 9 76.6% 62.4% 72.9%

Results obtained using the proposed method were compared with existing methods. All the methods
were assessed on our EEG dataset for the three word pairs and different experimental protocol. The
following methodologies were evaluated in this work:

• In (Panachakel et al., 2019) representations were extracted from temporal and wavelet domain, and
classification was performed individually on each channel using a multi-layer perception followed
by hard voting to get the final result.

• (Sereshkeh et al., 2017) decomposed EEG signals into several levels using the discrete wavelet
transform (DWT). Features such as standard deviation (SD) and root mean square (RMS) were
calculated from all electrodes, which were combined into a vector. Further, these vectors were fed
into a regularised neural network for classification of imagined word.

As can be seen from the results in Table 6.19, the proposed method outperformed the existing meth-
ods in recognition of imagined words from EEG signals in SD and SI-LTO manner; however, the perfor-
mance (Sereshkeh et al., 2017) is better for SI evaluation.

6.6.5 Comparison of Electrode Selection Method with the State-of-the-art Optimization
Methods

TABLE 6.20: Evaluation of performance achieved by the proposed electrode selection
technique in comparison with the state-of-the-art optimization algorithms for selecting
electrodes to recognize of imagined words. The three methods were evaluated for in
the following manner; SD: Subject-Dependent; SI: Subject-Independent; and SI-LTO:

Subject-Independent Leave-one-out.

Method Accuracy Processing Time
SI SI-LTO SD SI SI-LTO SD

PSO 64.5 70.6 70.4 3.6 min 3.6 min 2.6 min
GA 63.7 69.2 73.2 2.4 min 2.4 min 1.1 min

Proposed 62.4 72.9 76.6 40 sec 41 sec 8 sec

We also compared the proposed electrode selection method to state-of-the-art optimization tech-
niques such as genetic algorithms (GA) and particle swarm optimization (PSO). GA and PSO are both
meta-heuristic algorithms that have been demonstrated to be successful in tackling complicated engi-
neering optimization issues (Konak et al., 2006). As a result, we employed GA and PSO to choose
electrodes that were then used to train a convolutional attention network for imagined word recognition.
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We chose a population size of 500 for the GA which converged after the 20th generation, as used in
(Albasri et al., 2019). The fitness metric was calculated using a logistic regression classifier. For the
PSO, we employed a swarm of 20 particles with an inertial mass of 0.3. The objective function served as
a proxy for accuracy when the logistic regression classifier was used, and the algorithm completed 500
iterations. The GA and PSO both were fed a two-dimensional matrix X ∈Rn×C, where n represents the
number of training trials and C = 64 represents the number of electrodes. The input was determined by
averaging spectrograms for each electrode across the time and frequency axes. As shown in Table 6.20,
our electrode selection approach outperformed the PSO and GA optimization techniques in SI-LTO and
SD evaluation manner. Furthermore, our technique is significantly faster, requiring less processing time,
which makes it suitable for BCI applications. However, PSO method outperform the proposed method
in SI evaluation, proving to be more effective in group-level analysis.

6.6.6 Comparison with Chapter 4 and 5

TABLE 6.21: Comparison between the work in Chapter 6 and Chapter 4, 5

Chapter Task Methods Results

4

Classification was performed between
imagined speech and two other speech

related activities: visual imagery and overt
speech.

K-NN for electrode selection,
CNN-CBAM network for feature

learning and classification.

CV:82.9%, CO:
77.7%

5 Recognition of covertly spoken words.

LDA, CSP, and statistical features for
feature extraction and SVM, K-NN

and D-Tree for classification.
Distance measure and classification
using DTW and electrode Fusion.

SVM:53.7%,
K-NN:53.4,
DT:52.0%;

DTW-Fusion: 67.4%
(50-50 split), 60.3%

(leave-one-out)

6

Classification was performed between
covert speech (words) and non-speech
activities: visual perception and resting

state from EEG signals.

CNN network with dense layers. CVP: 83.6%,
CRS:87.6%

6 Recognition of covertly spoken words. TopK electrode selection,
CNN-Attention.

SI: 63.6%, SD:
75.4%, SI-LTO:

72.9%

The tasks performed in Chapter 4, 5, and 6 involved recognition of covertly spoken words, and
recognition of covertly spoken words from other activities using EEG signals. The work in Chapter 5
and second part of chapter 6 are directly comparable, whereas work in chapter 4 and 5 are not. Table
6.21 summarizes the comparison between work in these three chapters.

6.6.7 Limitations

The proposed electrode selection method performed well when used in subject dependent and subject
independent-LTO manner. The proposed method in combination with CNN-attention network achieved,
72.7% for SI-LTO and 75.4% for subject dependent and SI-LTO task. However, for subject independent
LSO evaluation, the electrode selection method failed to achieved high recognition rate. Although, the
performance achieved 63.9% with C=15 is comparable, was not better than recognition rate of 65.9%
with C=64. Therefore, it can be concluded that the electrode selection method is not robust in feature
selection from a subject which is not part of the training data. In SI evaluation, the proposed CNN-
attention network suffered from overfitting, as shown in figure therefore the network’s performance was
lower compared to SI-LTO and SD evaluations. Therefore, future work would include using early stop-
ping for training the network.
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(a) (b)

(c)

FIGURE 6.7: Training (blue) and testing (orange) loss curves indicating towards overfit-
ting in (a) SI evaluation, where as network fits well in (b) SI-LTO ; (c) SD evaluation.

6.7 Conclusion

The study discussed in this chapter examined the feasibility of recognition between imagined words using
the deep learning methods. Also, in this chapter classification was performed between imagined speech
and two types of non-speech tasks, which were either visual perception or resting state (no activity). In
the first part of the chapter, windows of EEG signals were used as input to the CNN to learn spatio-
temporal patterns for classification between imagined speech and non-speech activity. The average ac-
curacy achieved for 12 subjects was 87.6% and 83.6%. However, the combination of spatio-temporal
input and the CNN did not perform effectively in recognition of imagined words. This concludes that
spatio-temporal patterns are effective in discriminating between different activities, however the method
does not perform well for recognition of imagined words. Using only the CNN had a limitation, that the
temporal dynamics could not be modeled in the EEG signals. Further, EEG signals used in time domain
did not contain spectral information for the particular word.

To recognize the imagined word, the second part of the chapter proposed an application of CNN-
attention network from spectrograms of EEG signals. In addition, to reduce the dimensionality of
the EEG data, we proposed an electrode selection method that choose electrodes by calculating mean
power in the spectrogram. The combination of the proposed electrode selection technique and the CNN-
attention network showed its effectiveness in recognition of imagined words. Further, the event in time-
frequency domain spectrogram representing 1000msec post-stimulus activity produced better results.
The average accuracy for three word pair across 12 subjects was 76.6% in subject dependent evaluation
and 63.5% for subject dependent evaluation. Comparison with baseline network also suggested that the
proposed CNN-attention architecture is successful in learning temporal features and requires less training
time than the CNN-LSTM-attention.
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6.8 Summary

A thought-to-text brain computer interface (BCI) technology should be able to recognize imagined words
from EEG signals. Further, a practical BCI system should also be able to discriminate between imag-
ined speech and non-speech activity, such as silence and visual perception. Therefore, in this chapter
classification was performed between EEG signals recorded during imagined words and two non-speech
tasks, visual perception, and non-activity (silence). In order to classify between imagined speech and
non-speech activity, a CNN network was used which learned spatio-temporal features from raw EEG
data. The input was divided into n windows and parallel CNNs were used for features extraction, at a
later stage these features were combined and fed to dense layers (multi-layer preceptron) for classifica-
tion. The proposed framework outperformed previous methods which discriminated between imagined
speech and non-speech activity. Although, the method performed well in recognition between imagined
speech and non-speech activity, the network performance was low in recognizing imagined words. This
low performance in recognizing imagined words was associated with small number of trials available in
order to train the network and inter-trial variability in spatio-temporal data. To achieve better recogni-
tion rate from imagined words, we proposed optimization to the CNN network by adding self-attention
mechanism and used time-frequency features as input. In addition to reduce the spatial dimension of
EEG data, we proposed an electrode selection method which choose electrodes based on mean power in
the EEG spectrogram. The pipeline of spectrograms with electrode selection method and proposed CNN
self-attention architecture results in better recognition rate of imagined words.
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Chapter 7

Grammatical Class Recognition from
Imagined Speech

In the first part of this chapter, a multi-channel CNN (MC-CNN) is proposed for recognition of gram-
matical class from EEG signals of imagined words. The proposed framework process the input time-
frequency information for different regions of the brain separately and this information is combined at
a later stage to achieve better recognition of imagined speech. The method achieves better recognition
rate compared to the previously proposed method in Chapter 5. The second half of the chapter describes
the optimization of the proposed MC-CNN to a multi-level framework for multi-class classification of
imagined words.

7.1 Introduction

A brain-to-text BCI should be able to successfully decode imagined word from a dictionary of words
i.e., predicting a class from multiple classes. From chapter 5 and 6, we can conclude that even under
binary condition achieving high recognition rate can be difficult. Further, achieving high performance
under multi-class classification task is very challenging especially considering the non-stationary nature
of EEG signals. In order to solve this problem, in this chapter we draw inspiration from language
processing in the brain. Linguistic interactions have objects and properties associated with those objects,
which might be lexically reflected by the grammatical classes (Crepaldi et al., 2011). At a fundamental
level, grammatically objects are regarded as nouns which promote the primary concept, whereas verbs
provide context to the concept (Crepaldi et al., 2011). Subsequently, it is known that processing of verbs
and nouns assume hierarchical neural circuits which depends on the semantic-features of the words,
where the semantic-features could belong to sub-classes (e.g., action noun or object noun) within a given
grammatical class (Popp et al., 2019; Pulvermüller, 2018). Therefore, in order to design a thought-to-
speech BCI which can predict mentally spoken words, it is important to design a multi-level classification
method. In such a model the first level recognizes the grammatical class of the word, and the second level
recognizes the word within the recognized grammatical class.

Further, processing of language in the brain is not limited to the brain Broca’s and Wernicke’s area,
also known as the classical language regions. In fact, information flow between areas from the left
inferior frontal (Broca’s area) and the premotor cortex, with auditory areas in the superior temporal lobe
(Wernicke’s area) have been known to be a link between language and action (Pulvermüller, 2005). On
the other hand, the processing of verbs is not limited to the frontal and central (motor) region of the
brain. Sound-related verbs activated auditory regions (temporal lobe) of the brain and action-related
nouns activates the frontal and parietal brain areas (Popp et al., 2019). Therefore, it is important to use
information from multiple brain areas in order to achieve recognition of imagined speech from EEG
signals. This can be done by exploiting the spatial information from the multi-dimensional EEG signals,
which are recorded using multiple electrodes covering the head.

Indeed, methods have been proposed to capture spatio-temporal information from EEG signals. An
example of such algorithm is the common spatial patters (CSP) (Koles et al., 1990) which have achieved
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high recognition rate for motor imagery task (Ang et al., 2008). Similarly, deep learning methods have
also been proposed for capturing spatial information using the CNNs (Lawhern et al., 2018; Zhang
et al., 2019a). The CNNs employed for classification of motor imagery (hand movement) from EEG
signals have resulted in impressive performance. However, so far these methods have been proposed
for recognition of motor actions or motor imagery from EEG signals. These methods will likely not
be effective in recognition of mentally spoken words, which do not have defined events (event related
synchronizes (ERS) and event related de-synchronizes (ERD) (Martin et al., 2016). Further, capturing
important patterns from EEG signals in time domain containing high frequencies becomes more difficult
due to presence of noise, even after pre-processing.

Therefore, this chapter propose a framework using the multi-channel CNN (MC-CNN) method for
recognition of grammatical class from EEG signals of imagined (covert) speech. The MC-CNN was used
in the previous studies for text recognition and has been used for multi-variate time series classification
(Kim, 2014; Zheng et al., 2014). However, unlike previous models which were aimed at processing
vectors, the MC-CNN proposed in this chapter is designed for extracting features from spectro-temporal
information from electrodes groups. Thorough evaluation of our model on two EEG dataset contain-
ing imagined words from two grammatical classes (nouns and verbs), show that our proposed method
achieves the state-of-the-art recognition under binary classification task. The idea of noun and verb
classification is extended to a multi-level classification framework for recognition of imagined words in
multi-class setting. At the first level (level-1), grammatical class of the given word is recognized. At the
next stage (level-2), multi-class classification is performed to find the input word within the grammat-
ical class selected at level-1. Evaluation of the proposed multi-level method shows that it outperforms
the standard method, where the network was trained and tested on all the 10 classes at the same time.
Further, we also compared our results with the state-of-the-art methods for multi-class classification of
imagined words. The following are the contributions of this chapter:

• A multi-channel CNN (MC-CNN) framework for recognition of grammatical class of the imagined
words from EEG signals. To the best of our knowledge, our work with nouns and verbs is the first
to distinguish between two grammatical classes using machine learning techniques.

• Multi-level framework for classification of imagined words from EEG signals under multi-class
classification task.

• Evaluation of the proposed method on two EEG datasets.

FIGURE 7.1: The proposed method for recognition of grammatical class from EEG sig-
nals acquired during imagined speech.
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7.2 EEG Dataset

For the purpose of distinguish between mentally spoken nouns and verbs, two EEG database were used,
our Imagined Speech dataset recorded for this research and the publicly available Kara-one EEG dataset
(Zhao & Rudzicz, 2015). Details of both the datasets are provided below.

7.2.1 Imagined Speech Database

EEG signals for mentally spoken words were recorded from 12 participants, fluent in English language.
The subjects were presented with 10 words, five nouns and five verbs in a random order. This was done to
avoid temporal effects (Porbadnigk et al., 2009). A subject performed 10 trials for each word, in total 100
trials were recorded from each subject. Length of a trial was 3sec recorded at sampling rate of 1000Hz
resulting in an EEG signal of 3000 samples per electrode. The Details of experimental protocol and trial
recording are described in section 3.2. In order to have equal number of EEG signals for nouns and verbs
word class, in the experiment we used ten words (stimulus), with each grammatical class having five
words. The words used are presented in Table 7.1.

TABLE 7.1: Words presented as stimulus during recording of EEG signals for covert
speech.

Noun: “Apple” “Bottle” “Football” “Laptop” “Orange”

Verb: “Carry” “Run” “Swim” “Laugh” “Write”

7.2.2 Kara-One Database

Validation of the proposed system was also conducted on a publicly available EEG dataset Kara-one
(Zhao & Rudzicz, 2015). EEG signals were acquired using the 64 electrode Neuroscan Quik cap, with
electrodes placed in the 10-20 system at a sampling rate of 1000Hz. Subjects were presented with
11 prompts (stimuli) with 7 phoneme/syllables (/iy/, /uw/, /piy/, /tiy/, /diy/, /m/, /n/ ) and 4 words (pat,
pot, gnaw, and knew). For each word and phoneme/syllable 12 trials were recorded. EEG dataset was
recorded from 12 participants, however data from four participants was discarded due to corrupted sig-
nals. This chapter used EEG signals recorded for imagined speech task from 8 subjects. Detailed infor-
mation of the database can be found in 3.3. Words presented as stimulus to record the EEG signals are
presented in Table 7.2.

TABLE 7.2: Words presented as stimulus during recording of EEG signals for covert
speech in (Zhao & Rudzicz, 2015).

Noun: “Pat” “Pot”

Verb: “Gnaw” “Knew”

7.3 ERP Associated with Nouns and Verbs

The Event Related Potential (ERP) for two speech parts were also investigated, i.e., nouns and verbs.
Based on the literature, EEG signals from three brain region were investigated the frontal lobe, Broca’s
& Wernicke’s area, and Occipital & Parietal lobe. However, ERP from Broca’s & Wernicke’s area were
found to be most informative (Table 7.3). ERP was estimated by averaging trials for the same class
(nouns and verbs) over all the subjects. The average ERP is shown in figure 7.2. There were four main
events of interest in the ERP. The first event was a positive peak between 0.70-0.80s post stimulus. The
second event was a negative peak around 0.110s which is known to be the evoked response (N100) to
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FIGURE 7.2: Event related potential (ERP) for nouns and verbs estimated from the 12
subjects. Four main components are observed, negative deflection between 0.2-0.3sec is
the ERP component associated with processing of nouns and verbs in the brain. Image

taken from (Datta & Boulgouris, 2021).

a stimulus (Sur & Sinha, 2009). The two events P70 and N100 are results of early processing of the
visual stimulus presented (Preissl et al., 1995). The third event, at 0.200s, was a very strong positive
deflection known as P200, which is known to reflect the sensation-seeking behavior in humans (Sur &
Sinha, 2009). The fourth event was a negative deflection around 0.250s and was estimated to be produced
in response to imagined nouns and verbs. This amplitude of the event was higher for verbs in comparison
to nouns which is in agreement with past studies (Preissl et al., 1995; Pulvermüller et al., 1999; Tsigka
et al., 2014), where similar temporal event (ERP) was observed. This validates the presence of distinct
activity produced during processing of mentally spoken nouns and verbs. These events were observed
within 0.500s of the stimulus onset. Therefore, only ERPs from that time range are presented.

FIGURE 7.3: Topographical map for the two grammatical classes.

Along with the ERP, topographical maps are shown in figure 7.3. The topographical maps show
that covertly spoken nouns resulted in reduced power at the temporal regions of the head and slightly
increased power at the Occipital area. In contrast, the processing of the covertly spoken verbs resulted
in reduced power in the frontal lobe. A similar observation was made by (Khader & Rösler, 2004).
Association of noun and verb processing with different brain areas is in agreement with previous studies
(Damasio & Tranel, 1993). As can be seen in figure 7.2, the ERPs do not provide any discriminatory
information about the two grammatical classes. However, the topographical maps (figure 7.3) indicate
processing of nouns and verbs at different areas of the head.
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7.4 Multi-Channel CNN for Combining Information from Different Re-
gions of the Brain

The electrode groups used in this chapter are the one found in section 5.8.2 (chapter 4). As the brain
areas covered by these electrode groups are known to play important roles in the processing of nouns
and verbs (Damasio & Tranel, 1993; Khader & Rösler, 2004; Popp et al., 2019). However, the number
of electrodes has been reduced in two electrode groups: electrode group 1 and electrode group 2. This
was done because the network performed better with fewer electrodes in these two groups.

TABLE 7.3: Groups of electrodes used as input channels to the MC-CNN network.

Electrode Group 1: F5, F3, FC3, FC5, C5, CP5, P1
Electrode Group 2: F1, FZ, F2, F4, F6, F7, FCZ, FC2, FPZ, FP2, AF3, AF4
Electrode Group 3: P1, PZ, P2, P4, POZ, PO4, PO6

7.4.1 Model Architecture

This section describes the proposed MC-CNN, designed to recognize grammatical class of mentally
spoken words from EEG signals. The proposed MC-CNN is different from the ones used in past studies
for natural language processing and time-series classification (Kim, 2014; Zheng et al., 2014). Instead,
the proposed network was designed to learn task-specific events in spectrograms created from EEG
signals and to extract information from spatial, temporal, and spectral domain. The proposed network
uses the CNNs ability to learn abstract non-linear features which can adapt to the inter-trial variations
in EEG signals (Bashivan et al., 2015). The filters in the CNN can help the network learn amplitude
modulation patterns in the spectrograms.

Figure 7.4 shows the proposed network architecture. The network contains three channels, where
input to each channel is a three-dimensional tensor. Input dimensions for each channel are T ×F ×C,
where T refers to the number of time points, F denotes the number of frequency points, and C is the
number of electrodes. The parameter C depends on the size of an electrode group i.e., the brain area,
detailed in Table 7.3. In this study each channel’s input was processed separately to learn important
feature maps for the particular brain area and at the end of three blocks the resultant feature maps were
flattened into vectors. The flattened vectors from the three channels were then combined (concatenated)
and used as input to the fully connected layer.

Each channel has sequence of the convolutional blocks, and the network has three fully connected
layers. The architecture of all three channels was the same. However, the input from channel 2 contained
spectrograms from 12 electrodes, whereas inputs to channels 1 and 3 were comprised by spectrograms
from 7 electrodes. Each block contained a single convolutional layer. The Convolutional layer in each
block used small receptive field of size 3× 3 that can capture local features from the spectrogram and
down-sampling was performed using stride of size 2×2. The first block filtered the data with 32 kernels,
whereas second and third block used 64 and 128 kernels. These layers learned hierarchical features
essential for class discrimination.

The performance of the network was assessed by varying the receptive field size, among which the
3× 3 filter achieved the best performance. The ability of the CNN to extract features from different
time-frequency patches in the EEG spectrogram was particularly useful, as different feature maps can
represent activity at different time-frequency windows. The value of the feature on the ith row and jth

column of the kth feature map at a given layer is obtained using 2.1, with k = 1,2, ...,K, K = 32, 64 or
128. For the convolution operation, zero padding was used in order to preserve the spatial resolution of
the input.

However, the sigmoid function was not used in the hidden layers because it suffers from vanishing
gradient problem when used in the deeper layers (Goodfellow et al., 2016). To alleviate the vanishing
gradient problem in the network, we used the ELU activation function over the more popular choice the
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FIGURE 7.4: The architecture of the proposed MC-CNN. Each channel contains se-
quences of the three blocks, where each block has convolutional, batch-normalization
(Ioffe & Szegedy, 2015) and dropout layers. The number of convolutional filters in each

block varied.

ReLU activation function (Clevert et al., 2015; Lu et al., 2019). The ELU was considered a better choice
over the ReLU function because the latter does not perform optimally when placed after the sigmoid
function (Nikhil, 2018). Therefore, the rest of the network used the ELU activation function (Clevert
et al., 2015), which endows the network with the ability to learn non-linear features.

Batch-normalization was used in the network for regularization purposes and to help speed training
of the network (Clevert et al., 2015; Ioffe & Szegedy, 2015). In the fully connected layers, the number
of nodes were 256, 128, and 2, with the last dense layer (classification layer) containing the sigmoid
function (2.5) for binary classification. The dense layers were endowed with the ELU function to make
the network capable of learning non-linearities at high-level features.

Hyper-parameters of the MC-CNN architecture were set after various experimentation, by varying
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the activation functions, the kernel size, the filter size, and the number of input channels in the network
(i.e., using more electrodes from different areas). In other words, more than three electrode groups were
used to feed information to the MC-CNN through separate channels. This was done to evaluate the model
performance with information from more than three brain regions. Another approach was to add more
electrodes to electrode groups 2 & 3, i.e., input channel 2 & 3 of the MC-CNN network, covering more
areas of the head at the Frontal and Parieto-Occipital lobe. However, both the cases resulted in reduced
recognition rate. This shows the importance of electrodes from the brain areas that play an important
role in the processing of nouns and verbs.

7.4.2 Network Training Parameters

The Adam optimizer (Kingma & Ba, 2014) was used for weight optimization with learning rate of 0.0001
to minimize the cross-entropy loss. In order avoid varying gradient at deeper layers in the network, a
slower learning rate was selected (Bashivan et al., 2015). The network was trained for 500 iterations
(epochs), with a mini-batch size of 64 in case of SI study and batch gradient descent for SD study (i.e.,
the batch consisted of all the samples in the training data). Over fitting was avoided, by using the batch-
normalization and dropout regularization (Srivastava et al., 2014) with dropout rate of 20%.

7.5 Recognition of Grammatical Classes

In order to distinguish between mentally spoken nouns and verbs, we used EEG signals produced during
imagined speech task for ten words, i.e., five nouns and five verbs. In general, 50 trials for each class
(noun, verb) were recorded from each subject. However, some subjects had only 45 trials left after
artifact rejection and reduction.

Three different evaluation protocols were used to validate the effectiveness of the proposed network.
That is, two evaluation protocols were conducted in a subject-dependent manner, i.e., evaluation of the
network’s performance was done separately for each subject. On the other hand, a third experiment was
performed, in which the network’s performance was evaluated in a subject-independent manner, i.e., the
network was trained on data from N−1 subjects and tested on the data from left out subject. Where, N
is the total number of subjects. The three experimental protocols are summarized in Table 7.4.

TABLE 7.4: Three experimental protocols: leave one subject out (LSO) is a subject-
independent experiment; leave trial out (LTO) and leave one word out (LWO) are done on
subject-by-subject basis, i.e., the training and testing took place using different data from

the same subject.

Exp Training Testing
Subjects Trials Words Subjects Trials Words

LSO All but one All All one All All
LTO - 80% All - 20% All
LWO - All All but one - All All but one

7.5.1 Leave One Subject Out (LSO)

The first experimental approach assessed our network’s performance in a subject-independent manner,
by training the MC-CNN on EEG data from 11 participants and testing it on EEG data from a different
subject. The network was trained for 100 epochs using mini-batch gradient descent with a size of 64.
The recognition rate for determining whether an EEG signal corresponds to an imagined noun or verb
are summarized in Table 7.5. As can be observed, the average classification rate is 80.6%, indicating
that our system is capable of accurately classifying EEG data from subjects not included in training the
network.
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TABLE 7.5: Classification accuracy for EEG signals recorded during imagined speech of
Nouns and Verbs. Results for three experimental protocols are shown.

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

LSO 85.4 62.2 87.8 69.2 88.0 85.5 84.1 90.5 74.8 87.0 91.3 62.1 80.6
LTO 93 91.6 82.6 73.9 86.5 77.8 78.0 94.3 80.0 91.9 81.8 89.0 85.0
LWO 91.2 94.2 88.3 84.5 89.3 72.7 80.6 94.6 84.0 93.4 87.1 88.0 87.3

7.5.2 Leave Trial Out (LTO)

In the LTO evaluation protocol, 80% of the trials were used to train the network, whereas 20% were used
for testing. For both training and testing, EEG data was used from all imagined words. Training and
testing were conducted in a subject-dependent manner (subject-by-subject basis), and the outcomes of
all the test trials were averaged for each subject. In order to eliminate variations caused in the network
parameters by the stochastic nature of learning algorithm (Brownlee, 2016), the network was trained and
tested ten times for each trial. The outcomes of the tests were averaged. The results for each subject are
summarized in Table 7.5. As shown, the network achieved an average accuracy of 85.6%. This indicates
that by observing a subject’s EEG signals, it is possible to deduce whether the subject is thinking of a
noun or a verb.

7.5.3 Leave One Word Out (LWO)

Another experimental approach for evaluating network performance involved training the MC-CNN net-
work with EEG signals from four words, and testing it with EEG signals from the leftover (fifth) word
from the noun or verb classes. In this scenario, 80% of the data was used for training and 20% for testing.
This technique will hereafter be referred to as Leave one Word Out (LWO) cross validation. The network
was evaluated using EEG data from each word separately, and the recognition rates were averaged for
each subject. The classification results are shown in Table 7.5. As can be observed, the mean classifi-
cation rate is 87.3%, indicating that the network is capable of classifying previously unseen nouns and
verbs.

7.5.4 Evaluation on Kara-One Dataset

TABLE 7.6: Classification accuracy of our proposed model on nouns and verbs in Kara-
one dataset (Zhao & Rudzicz, 2015).

Exp S1 S2 S3 S4 S5 S6 S7 S8 Average

LSO 76.7 69.4 93.8 61 88.1 89.8 91.5 81.9 81.5
LTO 97.7 96.8 99.6 82.3 99.3 98.1 100 79.8 94.1

We also validated the networks performance using the publicly available Kara-one (Zhao & Rudzicz,
2015) EEG dataset of covertly spoken words.We analyzed the EEG data from eight people during imag-
ined speech of four words, two nouns (“Pat”, “Pot”) and two verbs (“Gnaw”, “Knew”). The raw signals
were band pass filtered between 0.01Hz and 475Hz, a notch filter was used to eliminate the 60Hz line,
and other artefacts and noise were removed as detailed in section 3.4. Each class (noun, verb) received 24
trials, with 22 trials used to train the network and two trials utilized for testing. The training and testing
trial sets were swapped in a Leave One Trial Out (LTO) cross validation procedure, with the results for
each test trial calculated separately and then averaged for each subject. The results are shown in Table
7.6. As can be seen, our model attained an average accuracy of 94.1%. Additionally, we used the Kara-
one database to evaluate our network’s performance in a subject-independent manner. The system was
trained using EEG data from seven participants and tested using data from one (different) participant,
i.e., the experiment was conducted using Leave One Subject Out (LSO) cross validation. The average
accuracy was 81.5%.



7.5. Recognition of Grammatical Classes 105

7.5.5 Transfer Learning

TABLE 7.7: When the network was trained on our Imagined Speech database and tested
on Kara-one database. Results were evaluated in subject dependent (SD) and subject

independent (SI) manner.

Exp S1 S2 S3 S4 S5 S6 S7 S8 Average

SD 94 50 54 93.7 83.3 62.5 92.7 50 72.5
SI 61.7 76.7 71 70.4 72.5 53.1 76.5 68.1 68.7

In order to evaluate the robustness of the proposed network, it was trained on spectrograms from our
Noun-Verb EEG database and was tested on Kara One database as a transfer learning model. The pre-
trained network was adjusted on Kara-One dataset using fine-tune last-k (Long et al., 2015; Tajbakhsh
et al., 2016), where k = 3 in our analysis. The weights of the network were frozen, which had learned
spectro-temporal patterns in the EEG spectrograms, and only the weights of the last 3 (k=3) dense layers
were trained to fine tune the model on the new database. The fully connected layers had the ELU
activation function. The network was fine-tuned with a slow learning rate of 10−4 to avoid over-fitting
(Goodfellow et al., 2016). The network was evaluated in two different approaches, subject dependent;
where the last layers were fine-tuned and tested for each subject separately. In the second approach,
the network was fine tuned on the data from one subject and tested on data from all the other subjects.
The results are shown in Table 7.7, and as can be seen the network achieved good recognition rate on a
new dataset. This shows the robustness of the proposed method in recognizing grammatical classes from
EEG signals.

7.5.6 Comparison

Although previous research (e.g., (Bierwisch, 1999; Crepaldi et al., 2011; Schilling et al., 2020)) has
examined distinct brain activity related with the processing of words of various grammatical classes, to
the best of our knowledge, no previous work has performed the grammatical class (noun or verb) recog-
nition of mentally spoken words. As a result, we compared our findings to those of previously published
algorithms for binary categorization of imagined speech. A direct comparison may not be completely
conclusive due to the disparate datasets which were not publicly available. In our comparison, we include
the method described in (Saha & Fels, 2019), which performed classification between two long words:
“cooperate” and “independent”, as well as the method described in (Sereshkeh et al., 2017), which per-
formed classification between words: “yes” and “no”. Additionally, we compared our findings to the
state-of-the-art method described in (Nguyen et al., 2017). As shown in Table 7.8, our method surpasses
the other methods in the two-class situation, despite the fact that we employed data from 16 participants,
a population that is far larger than that of previous studies, which included only a few subjects. This
shows the robustness of the proposed system. Additionally, despite the fact that our method utilized
several nouns and verbs, which increases intra-class variation and complicates recognition, our system
obtained great results across three separate experimental protocols, with a maximum classification rate
of 86.4%.

TABLE 7.8: Comparison of our method with past studies in a binary classification task.

Method Word Length Channels Subjects Trials per Subject Accuracy
Sereshkeh et al., 2017 Short 64 12 60 per class 63%
Saha and Fels, 2019 Long 64 6 100 per class 79.9%
Nguyen et al., 2017 Short & Long 64 6 100 per class 80.1%

Proposed Short 64 12 50 per class 85.3%
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7.6 Multi-Level Recognition System

Multi-level classification system is inspired from the hierarchical classification method such as Random
Forrest. The hierarchical CNN networks have been proposed in the past (Roy et al., 2020), however
most of the previous work has been done on image recognition. Therefore, in this study we introduced
a hierarchical multi-class classification model for recognition of imagined words from EEG signals. As
mentioned earlier, words can be divided into grammatical classes such as nouns or verbs, where each
grammatical class contains multiple words which can be considered as sub-classes. Multi-class classifi-
cation was done in two stages; at the first stage (level 1), system performed recognition of grammatical
class of the input EEG signal. At the second stage (level 2), the recognition was performed under multi-
class setting, among the words present in the given grammatical class. The multi-level structure of the
proposed method is shown in figure 7.5. Due to limited data availability, words were divided into two
grammatical categories. Further, different implementations of the system were investigated, for example,
using the network at level 1 for feature extraction at level 2 as a transfer learning model. In other words,
network used the representations learned at level 1 in word recognition at level 2. This was done by
freezing the weights and adding new fully-connected layers, which enabled the network to use grammat-
ical class specific features at level 2. The other implementation of the network was when both the level’s
used separate MC-CNN networks for training and testing, i.e., the network at level 2 had independent
parameters.

7.6.1 Multi-level Architecture

MC-CNN architecture is similar to the MC-CNN, however the Convolutional layer in the first block
of the network used the ELU activation. The same network architecture is used for level 1 and level
2 classification, however at level 2 the final layer of the network has the so f tmax activation function
which represents the probability that the input belongs to noun or verb class. The network at level 2 was
evaluated in two different manners, independent network at level 2 and transfer learning model at level
2.

• Independent Network at Level 2 (INL2): In the first method, a new MC-CNN was trained and
tested at level 2, this network was independent of MC-CNN at level 1. In other words, the networks
at two levels were trained and tested separately, no parameters were shared between them. In the
second method, the network trained at level 1 was used as a transfer learning model at level 2.
The network was trained using the Adam optimization algorithm for 300 epochs with mini-batch
gradient decedent of 64 at level 1, for recognition of grammatical class. At level 2, the network
was trained for 300 epochs with batch gradient-descent of 64 and learning rate of 0.0001.

• Transfer Learning Network at Level 2 (TLL2): In this implementation, the MC-CNN trained
at level 1 was used as a transfer learning model at level 2. All the layers of the network at level 1
were frozen and three new dense (fully connected) layers were added on top with 256, 128 and 5
neurons. The fully connected layers with 256 and 128 neurons had the ELU activation function.
At the classification stage, the network has the so f tmax activation function which represents the
probability that the input belongs to noun or verb class. The network was trained using the Adam
optimisation algorithm for 300 epochs with mini-batch gradient decedent of 64 at level 1, for
recognition of grammatical class. At level 2, the network was trained for 50 epochs with batch
gradient-descent of 64 and learning rate of 10−4.



7.7. Multi-Class Classification of Imagined Speech 107

FIGURE 7.5: Proposed multi-level recognition system. At level 1, the grammatical class
of the EEG signal of imagined word is recognized. At level 2, word level classification is

performed from the sub-classes present in the given grammatical class.

7.7 Multi-Class Classification of Imagined Speech

In order to evaluate the proposed method for multi-class classification task, two EEG datasets were used,
our own imagined speech data and Kara One data, described in section 7.2. In our imagined speech
dataset each subject had 50 trials for each grammatical class and 10 trials for each mentally spoken word.
However, after the artifact rejection some subject had only 45 trials. Similar to section 7.5, the results
were obtained for both the datasets using two experimental evaluation, subject-dependent performed in
leave-trial-out cross validation (LTO) manner and subject-independent performed in leave-one-subject
out (LSO) manner. However, subject-dependent evaluation contained three sets of results, two set of
results were obtained by using two different implementation of the multi-level system, discussed in
section 7.6.1. The third set of results were obtained from a baseline method for multi-class classification.

7.7.1 Subject Dependent

TABLE 7.9: Multi-class classification accuracy of 10 imagined words from EEG signals
using Multi-level recognition system. Results for two implementations of multi-level
system: Independent Network at Level 2 (INL2), Transfer Learning Network at Level 2

(TLL2).

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

INL2 60.8 62.3 46.8 39.7 60.4 44.9 48.2 55.2 43.2 66.9 47.3 59.5 52.9
TLL2 48.4 38.5 22.2 38.8 16.4 19.6 35.9 67.2 43.3 46.7 29.4 38.9 37.1

In the subject dependent evaluation, two different implementations of the multi-level network were
evaluated; Independent Network at Level 2 (INL2), Transfer Learning Network at Level 2 (TLL2) as
described in section 7.6.1. In both the implementations, 90% of the trials were used for training the
network, while 10% were used for testing, this was done in a leave-one-trial out manner. EEG data from
all covertly spoken words were used for both training and testing. Training and testing took place for
each subject separately and results from all the test trials were averaged together for each subject. The
network was trained and tested 10 times on the same input and the results were averaged. This was done
to avoid variation in network parameters, caused by the stochastic nature of the deep learning algorithms
(Brownlee, 2016). Subject-by-subject results are shown in Table 7.9. As seen, the best recognition rate
of 52.9% was achieved when the network is implemented in INL2 manner, with highest recognition rate
of 66.9% for a single subject. The recognition rate achieved by TLL2 implementation is also above
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chance level 10% for 10 classes. As best results are obtained by INL2, further experimental evaluation
was conducted using INL2 implementation.

Comparison with Baseline

TABLE 7.10: Multi-class classification for 10 class, performed using single level (base-
line) classification in leave-trial-out (LTO) manner.

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

LTO 12.8 12.0 17.0 31.2 13.0 14.6 28.6 56.8 33.4 45.6 24.0 37.8 27.2

Further, the performance of the proposed multi-level classification methods was compared with the
single level classification. In other words, the standard classification method where the network is trained
and tested on all the classes at once. The network’s performance was only evaluated in subject de-
pendent manner (LTO). The results are shown in Table 7.10. Although, the average accuracy is above
chance level, the recognition achieved in this manner is lower when compared to the proposed multi-level
recognition method. Both implementations of the proposed multi-level recognition system outperformed
single level classification, as can be seen from Table 7.9 and Table 7.10.

7.7.2 Subject Independent

TABLE 7.11: Multi-class classification for 10 class, performed in leave-one-subject-out
(LSO) cross validation manner.

Exp S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Average

LSO 10.5 45.4 39.3 28.9 41.5 36.0 45.0 22.7 37.5 42.3 41.9 26.5 34.7

In a subject independent experimental protocol, the MC-CNN was trained on EEG spectrograms
from 11 subjects and tested using EEG spectrogram from a different subject. The network was trained
using INL2 implementation. The training and testing approach was repeated for all the subjects in a
leave-one -subject-out (LSO) cross validation manner. At level 1, a total of 565 trials were used for
grammatical class recognition and at level 2, 113 trials were available for each class for recognition of
imagined word. The classification results, that is recognizing the imagined word from list of 10 words,
are shown in Table 7.11. As can be seen, the average classification rate is 34.7%, with chance level of
10% for 10 classes. This shows that the proposed system can classify EEG signals under multi-class
condition, from subjects that have not been used in the training of multi-level MC-CNN.

7.7.3 Kara-One Data-set

TABLE 7.12: Multi-class classification accuracy of our proposed model on 4 classes in
Kara-one dataset (Zhao & Rudzicz, 2015).

Exp S1 S2 S3 S4 S5 S6 S7 S8 Average

LSO 55.4 47.3 67.2 67 79.3 72.6 81.3 83.7 69.2
LTO 92.6 89.9 72.9 99 93.4 100 93.3 97 92.2

Further, the method was also tested on publicly available Kara One dataset. The dataset contains four
words where two words belong to noun and two to verb grammatical class. Therefore, for multi-class
classification four classes were available. Each word had 12 trials in total for one subject. The method
was evaluated for 8 subjects in subject dependent and subject independent manner. The results are shown
in Table 7.12.
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7.7.4 Comparison

TABLE 7.13: Comparison of accuracy for multi-class word recognition with previous
works. Despite more classes, our results are highest.

Method Class Type Classes Channels Subjects No of Trials Accuracy
Nguyen et al., 2017 Short Words 3 6 64 100 per class 50.1%

Pawar and Dhage, 2020 Short Words 4 6 64 50 per class 49.7%
Proposed Short Words 10 12 64 50 per class 52.9%

We also made a comparison of our results with previous work that performed multi-class classifi-
cation of imagined words. The comparison is performed in Table 7.13. Although a direct comparison
with other studies is not always conclusive due to several factors; different data sets which were not pub-
licly available, number of participants, number of classes used for the analysis. As shown our method is
comparable to other methods with fewer classes.

7.8 Limitations of MC-CNN

The proposed MC-CNN achieved high recognition rate in predicting grammatical classes. In addition,
it performed well in multi-level recognition system. However, MC-CNN suffer from overfitting in LSO
and LWO evaluation method, as can be seen in figure 7.6. The learning curve for LTO evaluation method
suggest slight overfitting, whereas LSO method with loss increases with number of epochs. Therefore,
the future work will involve using methods such as early stopping.

(a) (b)

(c)

FIGURE 7.6: Training (blue) and testing (orange) loss curves for network trained in three
experimental protocol (a) LSO; (b) LTO; (c) LWO. The learning curves indicate that the

network trained in LWO and LSO manner suffer from over-fitting.
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7.9 Conclusion

This chapter demonstrated recognition of grammatical class of imagined words from EEG signals. In
addition, the chapter conducted experiments performing multi-class classification of imagined words.
The evaluation of the proposed MC-CNN on two EEG dataset shows that our method is capable of
recognizing grammatical class of the imagined words. Further, the analysis also demonstrates that better
recognition rate can be achieved by processing information from different regions of the brain separately
and combining them later. The second experiment in this chapter, showed that dividing multi-class
classification of imagined words into multiple levels can achieve better accuracy of 52.9% and 37.1%
compared to the standard classification method with 27.2% accuracy. However, section 7.7.1 shows
that the features learned in discriminating grammatical classes does not provide much discriminative
information about the underlying word. Better performance of the proposed method can be attributed to
its tree like structure i.e., the multi-level processing of imagined words. The presented results shows that
the proposed multi-level method is robust in classifying multiple imagined word.

7.10 Summary

A thought-to-speech brain computer interface (BCI) system should be able to predict wide range of
words. However, multi-class classification of imagined words from a large dictionary of words is a
challenging task.Therefore, an intuitive approach is required in classification of imagined words. In all
languages, words belong to different grammatical classes. At a fundamental level, words can be divided
into two basic grammatical classes of nouns and verbs. Recognizing words by first learning which
grammatical class they belong to can help optimizing the accuracy of thought-to-speech BCI with large
vocabulary. Therefore, this chapter first examined grammatical class recognition from EEG signals of
imagined words.

In this chapter, two main experiments were performed: (1) recognition of grammatical class of imag-
ined words from EEG signals, (2) multi-class classification of imagined words using multi-level recog-
nition system. In the first experimental analysis, imagined words belonged to two grammatical classes
of noun and verb. The network was trained and tested under several different evaluation conditions.
The evaluation condition involved recognition of grammatical class of words that was not used during
network training. In order to extract local features from each brain region separately, we propose an
application multi-channel CNN. The proposed method was evaluated using data from 17 subjects. The
proposed method is also evaluated on publicly available EEG dataset. In the second experiment, multi-
class recognition of imagined words was performed. A multi-stage recognition system was proposed
to recognize the imagined words from EEG signals. The proposed method recognized the grammatical
class of the imagined words at level 1 and recognizes the imagined word within the grammatical class at
level 2.



111

Chapter 8

Conclusion

This chapter presents the findings from the studies in this research. It then discusses the contributions
made to the domain of recognition of imagined speech from EEG signal. Finally, it makes recommenda-
tions for future research based on the findings of this thesis.

8.1 Review of Main Findings

The purpose of this thesis was to understand the challenge of predicting covert speech from EEG signals,
to propose frameworks for alleviating this difficulty, and to demonstrate that using these frameworks it
is possible to build a thought-to-speech brain computer interface (BCI). Using the recorded EEG dataset
and proposed methods, these studies have been able to predict imagined words from EEG signals for
many challenging tasks: imagined word recognition, grammatical class recognition of imagined words,
and predicting if the user (subject) was performing imagined speech or other cognitive tasks. The analysis
performed in this thesis conclude that a thought-to-speech BCI can be implemented using deep learning
methods which can achieve reliable response time and accuracy in offline analysis.

Chapter 3 achieved the first objective defined in chapter 1. This chapter presents a new EEG data
recorded four imagined speech and three other cognitive tasks from 17 subjects. However, only 12
subjects were used in the analysis in the later chapters because of contaminated data from five subjects.
Most of the previous studies had recorded EEG signals for imagined phonemes and syllables, however
the EEG dataset in this study is recorded for mentally spoken words. Further, the words presented as
stimulus belonged to two grammatical classes of nouns and verbs. In addition, subjects were instructed
to mentally speak the presented word only once, whereas past studies have recorded EEG signals while
subject mentally repeated the presented the words/phoneme/syllables multiple times. Further, advantages
of using EEG signals in time-frequency domain have been summarized.

Chapter 4 demonstrated that EEG signals produced during imagined speech can be discriminated
when compared with EEG signals during other cognitive tasks, such as visual imagery and overt speech.
This chapter investigated the temporal window and frequency bands using multivariate pattern analysis
(MVPA). This provided temporal information about the most discriminative behavior between imag-
ined speech and other cognitive tasks. Further, the nature of neural activity between two cognitive task
was also investigated, using the most discriminative frequency band. The most discriminative time win-
dow was just after the stimulus onset, and lower frequency range (<30Hz) performed best. Using this
knowledge, we proposed a framework for recognition of cognitive tasks from EEG signals. The pro-
posed method used K-means clustering algorithm for selecting electrodes and a CNN-attention network
for spatio-temporal feature learning. The framework achieved high recognition rate and was evaluated
on EEG signal of length 3000s and 600ms (obtained using MVPA), with later achieving high recogni-
tion rate. Chapter 4 along with chapter 5 shows that best performance is achieved using electrode from
Parieto-Occipital lobe, this consistent performance in different experimental evaluation highlights the
importance this brain region plays in recognition of imagined speech from EEG signals.

Chapter 5 addressed second objective of comparing different methods for recognition of imagined
speech EEG signals. We showed that methods such as eigen features, time-frequency statistical features
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and common spatial pattern features are unable to predict imagined speech EEG signals due to their trial-
to-trial variability and non-stationary nature. Further, in order to overcome inter-trial variability within
same class we used dynamic time warping (DTW) method to measure similarity. The DTW method
with proposed electrode combining method outperformed the recognition rate achieved by features used
earlier. In addition, brain areas contributing to correct recognition were also reported using DTW method.
Although, DTW achieved better performance it failed to achieve high recognition rate and response time
of the method was slow to be implemented in a practical BCI solution. The problem we believe made
recognition difficult was inconsistency in features learned by the proposed network due to inter-subject
variability in the EEG signals.

In chapter 6, a third object was achieved as deep learning methods for recognition of imagined
speech from EEG signals were investigated. This introduced an electrode selection method, based on
mean window power in frequency domain. Further, a CNN-attention network was proposed to learning
features in frequency domain and map temporal dynamics (similar to DTW) in time domain. The network
outperformed both the methods previously used in chapter 4. Further, the performance of the network
was optimized by using the following methods: (1) reducing the number of electrodes used in training
and testing the network, (2) reducing the size of the input spectrograms along the temporal dimension.
The network performed well for subject dependent method, however the performance reduced in subject
independent task.

Chapter 7 performed recognition of grammatical class of imagined words from EEG signals achiev-
ing the fourth objective. For achieving this, the chapter proposed an application of MC-CNN network
for extracting local features from different brain region. The proposed method achieved high recognition
rate in predicting the grammatical classes of the imagined words. Further, this method was extended to a
multi-level recognition system with two levels. Level 1, recognize the grammatical class of the imagined
word and level 2 performs classification among the given words within the grammatical class selected at
level 1. The proposed method outperformed standard multi-class classification technique and achieved
high recognition rate on two EEG dataset.

8.2 Contribution

The main contributions of this research are as follows:

• A new database containing EEG signals recorded for four tasks: imagined speech, overt speech,
visual imagery, and visual perception. The dataset was recorded from 17 subjects. The imagined
speech and overt speech task contain EEG signals for words belonging to noun and verb grammat-
ical class.

• Evidence that deep learning methods outperform standard features extraction and classification
techniques for recognition of imagined speech from EEG signals. The two methods were examined
for EEG signals for imagined words.

• A novel multi-level recognition system which first recognize the grammatical class for recognition
of imagined word from EEG signals.

• A novel electrode selection method and convolutional attention network for spectro-temporal fea-
ture learning for recognition of imagined words from EEG signals.

• Successful discrimination between imagined speech task and non-speech tasks, visual imagery and
overt speech.

1. The analysis showed that EEG signals for imagined speech were most discriminative of other
cognitive tasks during the 0-500ms time window after the stimulus onset.
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2. A novel framework for classifying imagined speech task from other language based cogni-
tive tasks from EEG signals. The framework uses K-means clustering algorithm for electrode
selection and convolutional-attention network for spatio-temporal feature extraction and clas-
sification.

8.3 Research Limitations

The current study focused developing methods for recognition of imagined words (speech) from EEG
signals. Findings of this thesis suggests that deep learning models are better suited for developing a
though-to-speech BCI system. Further, this work has proposed new methods for achieving high recogni-
tion rate for imagined speech from EEG signals. However, this work has some limitations:

• For imagined speech task, only 10 trials were recorded for each word from each subject. This is a
small sample-size, when it comes to training and testing deep learning models for a subject depen-
dent study. Limited dataset for each subject could negatively effective the network performance.

• The EEG signals were recorded for each subject in a single session, therefore the performance
evaluation of the proposed methods is only validated on single session EEG signals. However,
we acknowledge that training and testing of the proposed methods on EEG signals from different
sessions could have provided better evaluation.

• EEG signals were recorded for imagined speech of 10 words. However, for a practical though-to-
text BCI a larger vocabulary needs to be investigated.

• For recording EEG signals we used a 64 channel EEG cap which was connected with an external
amplifier. However, such devices are not suitable for designing a though-to-text BCI for daily
use. Thus, it is recommended that for future research we use a wireless mobile device with fewer
electrodes.

• The repeated presentation of the blank screen for a fixed period of 1s during the data acquisition
is a limitation because expectation of a stimulus can lead to improved performance of the task at
hand (Meijs et al., 2019). Therefore, in future the experimental design should contain blank screen
of random intervals between (0.5s to 1.5s)

8.4 Future Work

As discussed in the previous section, there are several problems in the current work that can be improved.

8.4.1 Experimental Design

In chapter 4, 6, and 7, it is shown that event related activity occurs between 0-500ms window. Hence, the
experimental design could be improved by reducing the time for imagined speech task to 1s. Further, it
would be better to use a wireless EEG headset such as Emotive epoch capable of transferring signals to
a computer at high speed. Also, the number of trials for each word could be increased and the recording
can be done in multiple sessions for the same subject.

8.4.2 Methodology

The proposed CNN-attention network for learning spectro-temporal features from EEG signals of imag-
ined words in chapter 6. On the other hand, it is known that attention mechanism in itself is capable of
modeling events and features that are task discriminative (Vaswani et al., 2017). Therefore, it is impor-
tant to investigate potential of purely attention-based networks, to capture spectro-temporal features from
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EEG signals. Further, events in EEG signals are unaligned and using alignment techniques such as DTW
improved the performance of the system (chapter 5). Therefore, a deep-learning based alignment of
EEG signals could possibly improve the recognition by reducing inter-trial and inter-subject variations,
especially when using spatio-temporal features.

In addition, the multi-level recognition system proposed in chapter 7 can be improved by making
it an end-to-end model, similar to network proposed in (Nguyen et al., 2020; Roy et al., 2020). Also,
interpretation of the features learned by MC-CNN network can provide information about the impor-
tant patterns within the spectrograms. Investigation of features learned by the MC-CNN can provide
important temporal or spectral information.

The networks designed and evaluated in this work suffer from overfitting, such problems can be
avoided using methods such as early stopping or using a separate training, validation, and test data when
evaluation the network’s performance

8.5 Conclusion

The work in this thesis proposed deep learning methods for recognition of imagined speech. The work
propose an electrode selection method to reduce dimensionality of EEG data and improve performance
in recognition of imagined words. This results suggest that a communication based BCI system can be
implemented using the deep neural networks. The ability of deep learning models to learn robust fea-
ture because of the multiple layers offer an advantage compared to standard feature extraction methods.
Specifically, the networks designed using the convolutional operation can efficiently used in learning
representations from the EEG signals. Although, the results indicate that the methodology is still far
from real-world use, but they suggest interesting lines of future research and add relevant knowledge to
the-state-of-the-art.







117

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467.

Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L., Penn, G., & Yu, D. (2014). Convolutional neu-
ral networks for speech recognition. IEEE/ACM Transactions on audio, speech, and language
processing, 22(10), 1533–1545.

Abdelnabi, S., Huang, M. X., & Bulling, A. Towards high-frequency SSVEP-based target discrimination
with an extended alphanumeric keyboard. In: 2019 IEEE international conference on systems,
man and cybernetics (SMC). IEEE. 2019, 4181–4186.

Abu Alfeilat, H. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal Salman,
H. S., & Prasath, V. S. (2019). Effects of distance measure choice on K-nearest neighbor classifier
performance: A review. Big data, 7(4), 221–248.

Al-Fahoum, A. S., & Al-Fraihat, A. A. (2014). Methods of EEG signal features extraction using linear
analysis in frequency and time-frequency domains. ISRN neuroscience, 2014.

Albasri, A., Abdali-Mohammadi, F., & Fathi, A. (2019). EEG electrode selection for person identification
thru a genetic-algorithm method. Journal of medical systems, 43(9), 1–12.

Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007). Brain–computer interface systems: Progress and
prospects. Expert review of medical devices, 4(4), 463–474.

Alsaleh, M. (2019). Toward an imagined speech-based brain computer interface using EEG signals
(Doctoral dissertation). University of Sheffield.

Amit, E., Hoeflin, C., Hamzah, N., & Fedorenko, E. (2017). An asymmetrical relationship between verbal
and visual thinking: Converging evidence from behavior and fMRI. NeuroImage, 152, 619–627.

Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. Filter bank common spatial pattern (FBCSP) in brain-
computer interface. In: 2008 IEEE international joint conference on neural networks (IEEE
world congress on computational intelligence). IEEE. 2008, 2390–2397.

Angrick, M., Herff, C., Mugler, E., Tate, M. C., Slutzky, M. W., Krusienski, D. J., & Schultz, T. (2019).
Speech synthesis from ECoG using densely connected 3D convolutional neural networks. Jour-
nal of neural engineering, 16(3), 036019.

Antoniades, A., Spyrou, L., Took, C. C., & Sanei, S. Deep learning for epileptic intracranial EEG data.
In: 2016 ieee 26th international workshop on machine learning for signal processing (MLSP).
IEEE. 2016, 1–6.

Arjestan, M. A., Vali, M., & Faradji, F. Brain computer interface design and implementation to identify
overt and covert speech. In: Biomedical engineering and 2016 1st international iranian confer-
ence on biomedical engineering (ICBME), 2016 23rd iranian conference on. IEEE. 2016, 59–
63.

Aydemir, O., & Kayikcioglu, T. (2014). Decision tree structure based classification of EEG signals
recorded during two dimensional cursor movement imagery. Journal of neuroscience methods,
229, 68–75.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473.

Bakhshali, M. A., Khademi, M., Ebrahimi-Moghadam, A., & Moghimi, S. (2020). EEG signal classifica-
tion of imagined speech based on riemannian distance of correntropy spectral density. Biomedi-
cal Signal Processing and Control, 59, 101899.



Balaji, A., Haldar, A., Patil, K., Ruthvik, T. S., Valliappan, C., Jartarkar, M., & Baths, V. EEG-based
classification of bilingual unspoken speech using ANN. In: 2017 39th annual international con-
ference of the IEEE engineering in medicine and biology society (EMBC). IEEE. 2017, 1022–
1025.

Balakrishnama, S., & Ganapathiraju, A. (1998). Linear discriminant analysis-a brief tutorial. Institute for
Signal and information Processing, 18, 1–8.

Bashashati, A., Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A survey of signal processing al-
gorithms in brain–computer interfaces based on electrical brain signals. Journal of Neural engi-
neering, 4(2), R32.

Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning representations from EEG with deep
recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448.

Bierwisch, M. (1999). Words in the brain are not just labelled concepts. Behavioral and Brain Sciences,
22(2), 280–282.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., & Curio, G. (2007). The non-invasive berlin

brain–computer interface: Fast acquisition of effective performance in untrained subjects. Neu-
roImage, 37(2), 539–550.

Bocquelet, F., Hueber, T., Girin, L., Savariaux, C., & Yvert, B. (2016). Real-time control of an articulatory-
based speech synthesizer for brain computer interfaces. PLoS computational biology, 12(11),
e1005119.

Borgatti, S. (2019). Distance and correlation. https://cmci.colorado.edu/classes/INFO-1301/
files/borgatti.htm

Bostanov, V. (2004). Bci competition 2003-data sets ib and iib: Feature extraction from event-related
brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans-
actions on Biomedical engineering, 51(6), 1057–1061.

Bowers, A., Saltuklaroglu, T., Harkrider, A., & Cuellar, M. (2013). Suppression of the µ rhythm during
speech and non-speech discrimination revealed by independent component analysis: Implica-
tions for sensorimotor integration in speech processing. PloS one, 8(8), e72024.

Brigham, K., & Kumar, B. V. Imagined speech classification with EEG signals for silent communication:
A preliminary investigation into synthetic telepathy. In: 2010 4th international conference on
bioinformatics and biomedical engineering. IEEE. 2010, 1–4.

Brigham, K., & Kumar, B. V. Subject identification from electroencephalogram (EEG) signals during
imagined speech. In: Biometrics: Theory applications and systems (BTAS), 2010 fourth ieee
international conference on. IEEE. 2010, 1–8.

Brownlee, J. (2016). Deep learning with python: Develop deep learning models on Theano and Tensor-
Flow using Keras. Machine Learning Mastery.

Butts, D. A., Weng, C., Jin, J., Yeh, C.-I., Lesica, N. A., Alonso, J.-M., & Stanley, G. B. (2007). Temporal
precision in the neural code and the timescales of natural vision. Nature, 449(7158), 92–95.

Chen, D.-W., Miao, R., Yang, W.-Q., Liang, Y., Chen, H.-H., Huang, L., Deng, C.-J., & Han, N. (2019).
A feature extraction method based on differential entropy and linear discriminant analysis for
emotion recognition. Sensors, 19(7), 1631.

Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T.-P., & Gao, S. (2015). High-speed spelling with a
non-invasive brain–computer interface. Proceedings of the national academy of sciences, 112(44),
E6058–E6067.

Chi, X, Hagedorn, J., Schoonover, D, & D’Zmura, M. (2011). EEG-based discrimination of imagined
speech phonemes. International Journal of Bioelectromagnetism, 13(4), 201–206.

Chollet, F. et al. (2015). Keras.
Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by

exponential linear units (ELUs). arXiv preprint arXiv:1511.07289.
Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. MIT press.

https://cmci.colorado.edu/classes/INFO-1301/files/borgatti.htm
https://cmci.colorado.edu/classes/INFO-1301/files/borgatti.htm


Coles, M. G., & Rugg, M. D. (1995). Event-related brain potentials: An introduction. Oxford University
Press.

Crepaldi, D., Berlingeri, M., Paulesu, E., & Luzzatti, C. (2011). A place for nouns and a place for verbs? a
critical review of neurocognitive data on grammatical-class effects. Brain and language, 116(1),
33–49.

Damasio, A. R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural
systems. Proceedings of the National Academy of Sciences, 90(11), 4957–4960.

Das, K., Giesbrecht, B., & Eckstein, M. P. (2010). Predicting variations of perceptual performance across
individuals from neural activity using pattern classifiers. Neuroimage, 51(4), 1425–1437.

DaSalla, C. S., Kambara, H., Koike, Y., & Sato, M. Spatial filtering and single-trial classification of
EEG during vowel speech imagery. In: Proceedings of the 3rd International Convention on
Rehabilitation Engineering & Assistive Technology. ACM. 2009, 27.

DaSalla, C. S., Kambara, H., Sato, M., & Koike, Y. (2009b). Single-trial classification of vowel speech
imagery using common spatial patterns. Neural networks, 22(9), 1334–1339.

Dash, D., Ferrari, P., & Wang, J. (2020). Decoding imagined and spoken phrases from non-invasive
neural (MEG) signals. Frontiers in neuroscience, 14.

Dash, D., Ferrari, P., & Wang, J. Role of brainwaves in neural speech decoding. In: 2020 28th european
signal processing conference (EUSIPCO). IEEE. 2021, 1357–1361.

Datta, S., & Boulgouris, N. V. (2021). Recognition of grammatical class of imagined words from eeg
signals using convolutional neural network. Neurocomputing, 465, 301–309.

De Benedictis, A., Duffau, H., Paradiso, B., Grandi, E., Balbi, S., Granieri, E., Colarusso, E., Chioffi, F.,
Marras, C. E., & Sarubbo, S. (2014). Anatomo-functional study of the temporo-parieto-occipital
region: Dissection, tractographic and brain mapping evidence from a neurosurgical perspective.
Journal of anatomy, 225(2), 132–151.

Dehaene, S., & King, J.-R. (2016). Decoding the dynamics of conscious perception: The temporal gen-
eralization method. Micro-, meso-and macro-dynamics of the brain, 85–97.

Demanuele, C., James, C. J., & Sonuga-Barke, E. J. (2007). Distinguishing low frequency oscillations
within the 1/f spectral behaviour of electromagnetic brain signals. Behavioral and Brain Func-
tions, 3(1), 62.

Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya, C. J., Glover, G. H., & Gabrieli, J. (1995). Seman-
tic encoding and retrieval in the left inferior prefrontal cortex: A functional mri study of task
difficulty and process specificity. Journal of Neuroscience, 15(9), 5870–5878.

Dentico, D., Cheung, B. L., Chang, J., Guokas, J., Boly, M., Tononi, G., & Van Veen, B. (2014). Reversal
of cortical information flow during visual imagery as compared to visual perception. Neuroim-
age, 100, 237–243.

Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical lin-
guistic structures in connected speech. Nature neuroscience, 19(1), 158–164.

Donahue, J., Anne H., L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T.
Long-term recurrent convolutional networks for visual recognition and description. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2015, 2625–2634.

D’Zmura, M., Deng, S., Lappas, T., Thorpe, S., & Srinivasan, R. Toward EEG sensing of imagined
speech. In: International conference on human-computer interaction. Springer. 2009, 40–48.

Encyclopaedia Britannica, I. (2020). Broca area. https://www.britannica.com/science/Broca
-area

Esfahani, E. T., & Sundararajan, V. (2012). Classification of primitive shapes using brain–computer
interfaces. Computer-Aided Design, 44(10), 1011–1019.

Farina, D., Do Nascimento, O. F., Lucas, M.-F., & Doncarli, C. (2007). Optimization of wavelets for
classification of movement-related cortical potentials generated by variation of force-related pa-
rameters. Journal of neuroscience methods, 162(1-2), 357–363.

https://www.britannica.com/science/Broca-area
https://www.britannica.com/science/Broca-area


Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., Dronkers, N. F., Knight, R. T., &
Crone, N. E. (2015). Redefining the role of broca’s area in speech. Proceedings of the National
Academy of Sciences, 112(9), 2871–2875.

Fonken, Y. M., Kam, J. W., & Knight, R. T. (2020). A differential role for human hippocampus in novelty
and contextual processing: Implications for P300. Psychophysiology, 57(7), e13400.

Fuentemilla, L., Penny, W. D., Cashdollar, N., Bunzeck, N., & Düzel, E. (2010). Theta-coupled periodic
replay in working memory. Current Biology, 20(7), 606–612.

Fyshe, A. (2020). Studying language in context using the temporal generalization method. Philosophical
Transactions of the Royal Society B, 375(1791), 20180531.

Gadhoumi, K., Lina, J.-M., Mormann, F., & Gotman, J. (2016). Seizure prediction for therapeutic de-
vices: A review. Journal of neuroscience methods, 260, 270–282.

Ganis, G., Kutas, M., & Sereno, M. I. (1996). The search for “common sense”: An electrophysiological
study of the comprehension of words and pictures in reading. Journal of Cognitive Neuroscience,
8(2), 89–106.

García, A. A. T., García, C. A. R., & Pineda, L. V. Toward a silent speech interface based on unspoken
speech. In: Biosignals. 2012, 370–373.

gaurdian. (2021). Elon Musk startup shows monkey with brain chip implants playing video game. Re-
trieved September 30, 2010, from https://www .theguardian .com/technology/2021/
apr/09/elon-musk-neuralink-monkey-video-game

Gernsbacher, M. A., & Kaschak, M. P. (2003). Neuroimaging studies of language production and com-
prehension. Annual review of psychology, 54(1), 91–114.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Graimann, B., Allison, B., Mandel, C., Lüth, T., Valbuena, D., & Gräser, A. Non-invasive brain-computer

interfaces for semi-autonomous assistive devices. In: Robust intelligent systems. Springer, 2008,
pp. 113–138.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M.,
Brooks, T., Parkkonen, L., et al. (2013). Meg and eeg data analysis with MNE-Python. Frontiers
in neuroscience, 7, 267.

Graves, A., Mohamed, A. R., & Hinton, G. Speech recognition with deep recurrent neural networks. In:
2013 IEEE international conference on acoustics, speech and signal processing. IEEE. 2013,
6645–6649.

Guan, S., Zhao, K., & Yang, S. (2019). Motor imagery eeg classification based on decision tree frame-
work and riemannian geometry. Computational intelligence and neuroscience, 2019.

Guenther, F. H., Brumberg, J. S., Wright, E. J., Nieto-Castanon, A., Tourville, J. A., Panko, M., Law, R.,
Siebert, S. A., Bartels, J. L., Andreasen, D. S., et al. (2009). A wireless brain-machine interface
for real-time speech synthesis. PloS one, 4(12), e8218.

Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F., & Edlinger,
G. (2009). How many people are able to control a P300-based brain–computer interface (BCI)?
Neuroscience letters, 462(1), 94–98.

Guo, D., Zhang, S., Wright, K. L., & McTigue, E. M. (2020). Do you get the picture? a meta-analysis of
the effect of graphics on reading comprehension. AERA Open, 6(1), 2332858420901696.

Hartmann, K. G., Schirrmeister, R. T., & Ball, T. (2018). EEG-GAN: Generative adversarial networks
for electroencephalograhic (EEG) brain signals. arXiv preprint arXiv:1806.01875.

He, K., Zhang, X., Ren, S., & Sun, J. Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification. In: Proceedings of the ieee international conference on computer
vision. 2015, 1026–1034.

Heger, D., Herff, C., Pesters, A. d., Telaar, D., Brunner, P., Schalk, G., & Schultz, T. Continuous speech
recognition from ECOG. In: Sixteenth annual conference of the international speech communi-
cation association. 2015.

https://www.theguardian.com/technology/2021/apr/09/elon-musk-neuralink-monkey-video-game
https://www.theguardian.com/technology/2021/apr/09/elon-musk-neuralink-monkey-video-game


Herff, C., Heger, D., De Pesters, A., Telaar, D., Brunner, P., Schalk, G., & Schultz, T. (2015). Brain-
to-text: Decoding spoken phrases from phone representations in the brain. Frontiers in neuro-
science, 9, 217.

Herff, C., & Schultz, T. (2016). Automatic speech recognition from neural signals: A focused review.
Frontiers in neuroscience, 10, 429.

Herff, C. E. (2016). Speech processes for brain-computer interfaces (Doctoral dissertation). University
of Bremen, Germany.

Herwig, U., Satrapi, P., & Schönfeldt-Lecuona, C. (2003). Using the international 10-20 EEG system for
positioning of transcranial magnetic stimulation. Brain topography, 16(2), 95–99.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–
1780.

Hong, B., Guo, F., Liu, T., Gao, X., & Gao, S. (2009). N200-speller using motion-onset visual response.
Clinical neurophysiology, 120(9), 1658–1666.

Hornero, R., Abásolo, D., Escudero, J., & Gómez, C. (2009). Nonlinear analysis of electroencephalo-
gram and magnetoencephalogram recordings in patients with alzheimer’s disease. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
367(1887), 317–336.

Hu, L., Xiao, P, Zhang, Z., Mouraux, A., & Iannetti, G. D. (2014). Single-trial time–frequency analysis
of electrocortical signals: Baseline correction and beyond. Neuroimage, 84, 876–887.

Huang, J., Carr, T. H., & Cao, Y. (2002). Comparing cortical activations for silent and overt speech using
event-related fMRI. Human brain mapping, 15(1), 39–53.

Hwang, G., Jacobs, J., Geller, A., Danker, J., Sekuler, R., & Kahana, M. J. (2005). Eeg correlates of
verbal and nonverbal working memory. Behavioral and Brain Functions, 1(1), 20.

Hwang, H.-J., Choi, H., Kim, J.-Y., Chang, W.-D., Kim, D.-W., Kim, K., Jo, S., & Im, C.-H. (2016). To-
ward more intuitive brain–computer interfacing: Classification of binary covert intentions using
functional near-infrared spectroscopy. Journal of biomedical optics, 21(9), 091303.

Insights, C. (2019). 21 Neurotech Startups to watch: Brain-machine interfaces, implantables, and neuro-
prosthetics. Retrieved September 30, 2010, from https://www.cbinsights.com/research/
neurotech-startups-to-watch/

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167.

Ismail, A., Abdlerazek, S., & El-Henawy, I. M. (2020). Development of smart healthcare system based
on speech recognition using support vector machine and dynamic time warping. Sustainability,
12(6), 2403.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651–
666.

Jenson, D., Bowers, A. L., Harkrider, A. W., Thornton, D., Cuellar, M., & Saltuklaroglu, T. (2014). Tem-
poral dynamics of sensorimotor integration in speech perception and production: Independent
component analysis of EEG data. Frontiers in psychology, 5, 656.

Jiang, W., & Yin, Z. Human activity recognition using wearable sensors by deep convolutional neural
networks. In: Proceedings of the 23rd ACM international conference on multimedia. 2015, 1307–
1310.

Khader, P., & Rösler, F. (2004). EEG power and coherence analysis of visually presented nouns and verbs
reveals left frontal processing differences. Neuroscience Letters, 354(2), 111–114.

khan academy. (2016). Overview of neuron structure and function. Retrieved 9, from https://www
.khanacademy .org/science/biology/human -biology/neuron -nervous -system/a/
overview-of-neuron-structure-and-function

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: The temporal

generalization method. Trends in cognitive sciences, 18(4), 203–210.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

https://www.cbinsights.com/research/neurotech-startups-to-watch/
https://www.cbinsights.com/research/neurotech-startups-to-watch/
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function


Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area
involved in eye movements during mental arithmetic. Science, 324(5934), 1583–1585.

Kokoska, S., & Zwillinger, D. (2000). CRC standard probability and statistics tables and formulae. Crc
Press.

Koles, Z. J., Lazar, M. S., & Zhou, S. Z. (1990). Spatial patterns underlying population differences in the
background EEG. Brain topography, 2(4), 275–284.

Kołodziej, M., & Majkowski, A. (2012). Linear discriminant analysis as EEG features reduction tech-
nique for brain-computer interfaces.

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms:
A tutorial. Reliability engineering & system safety, 91(9), 992–1007.

Kösem, A., & Van Wassenhove, V. (2017). Distinct contributions of low-and high-frequency neural os-
cillations to speech comprehension. Language, Cognition and Neuroscience, 32(5), 536–544.

Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature reviews
neuroscience, 2(9), 635–642.

Kouijzer, M. E., de Moor, J. M., Gerrits, B. J., Buitelaar, J. K., & van Schie, H. T. (2009). Long-term
effects of neurofeedback treatment in autism. Research in Autism Spectrum Disorders, 3(2),
496–501.

Krishna, G., Tran, C., Carnahan, M., & Tewfik, A. Advancing speech recognition with no speech or with
noisy speech. In: 2019 27th european signal processing conference (EUSIPCO). IEEE. 2019,
1–5.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. Imagenet classification with deep convolutional neural
networks. In: Advances in neural information processing systems. 2012, 1097–1105.

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018).
EEGNET: A compact convolutional neural network for EEG-based brain–computer interfaces.
Journal of neural engineering, 15(5), 056013.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lee, S.-H., Lee, M., Jeong, J.-H., & Lee, S.-W. Towards an EEG-based intuitive BCI communication
system using imagined speech and visual imagery. In: 2019 ieee international conference on
systems, man and cybernetics (SMC). IEEE. 2019, 4409–4414.

Leech, G., Rayson, P. et al. (2014). Word frequencies in written and spoken english: Based on the british
national corpus. Routledge.

Levy, W. J. (1987). Effect of epoch length on power spectrum analysis of the EEG. Anesthesiology, 66(4),
489–495.

Li, J., Tang, Y.-y., Zhou, L., Yu, Q.-b., Li, S., & Dan-ni, S. (2010). EEG dynamics reflects the partial
and holistic effects in mental imagery generation. Journal of Zhejiang University SCIENCE B,
11(12), 944–951.

Linden, D. E. (2005). The P300: Where in the brain is it produced and what does it tell us? The Neuro-
scientist, 11(6), 563–576.

Long, M., Cao, Y., Wang, J., & Jordan, M. Learning transferable features with deep adaptation networks.
In: International conference on machine learning. PMLR. 2015, 97–105.

Lotte, F. (2008). Study of electroencephalographic signal processing and classification techniques to-
wards the use of brain-computer interfaces in virtual reality applications (Doctoral dissertation).
INSA de Rennes.

Lu, L., Shin, Y., Su, Y., & Karniadakis, G. E. (2019). Dying relu and initialization: Theory and numerical
examples. arXiv preprint arXiv:1903.06733.

Luck, S. J. (2005). An introduction to the event-related potential technique MIT press. Cambridge, Ma,
45–64.

Macdonald, J. S. P., Mathan, S., & Yeung, N. (2011). Trial-by-trial variations in subjective attentional
state are reflected in ongoing prestimulus EEG alpha oscillations. Frontiers in psychology, 2, 82.



MacQueen, J. et al. Some methods for classification and analysis of multivariate observations. In: Pro-
ceedings of the fifth berkeley symposium on mathematical statistics and probability. 1. (14).
Oakland, CA, USA. 1967, 281–297.

Maier-Hein, L., Metze, F., Schultz, T., & Waibel, A. Session independent non-audible speech recogni-
tion using surface electromyography. In: IEEE workshop on automatic speech recognition and
understanding, 2005. IEEE. 2005, 331–336.

Majumder, S., Guragain, B., Wang, C., & Wilson, N. On-board drowsiness detection using eeg: Cur-
rent status and future prospects. In: 2019 ieee international conference on electro information
technology (eit). IEEE. 2019, 483–490.

Martin, S., Brunner, P., Holdgraf, C., Heinze, H.-J., Crone, N. E., Rieger, J., Schalk, G., Knight, R. T.,
& Pasley, B. N. (2014). Decoding spectrotemporal features of overt and covert speech from the
human cortex. Frontiers in neuroengineering, 7, 14.

Martin, S., Brunner, P., Iturrate, I., Millán, J. d. R., Schalk, G., Knight, R. T., & Pasley, B. N. (2016).
Word pair classification during imagined speech using direct brain recordings. Scientific reports,
6, 25803.

Matsumoto, M., & Hori, J. (2014). Classification of silent speech using support vector machine and
relevance vector machine. Applied Soft Computing, 20, 95–102.

Meijs, E. L., Mostert, P., Slagter, H. A., de Lange, F. P., & van Gaal, S. (2019). Exploring the role of
expectations and stimulus relevance on stimulus-specific neural representations and conscious
report. Neuroscience of consciousness, 2019(1), niz011.

Monesi, M. J., Accou, B., Montoya-Martinez, J., Francart, T., & Van Hamme, H. An LSTM based archi-
tecture to relate speech stimulus to EEG. In: ICASSP 2020-2020 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE. 2020, 941–945.

Muller, K.-R., Anderson, C. W., & Birch, G. E. (2003). Linear and nonlinear methods for brain-computer
interfaces. IEEE transactions on neural systems and rehabilitation engineering, 11(2), 165–169.

Münßinger, J. I., Halder, S., Kleih, S. C., Furdea, A., Raco, V., Hösle, A., & Kubler, A. (2010). Brain
painting: First evaluation of a new brain–computer interface application with ALS-patients and
healthy volunteers. Frontiers in neuroscience, 4, 182.

Nair, V., & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In: Icml. 2010.
Nguyen, C. H., Karavas, G. K., & Artemiadis, P. (2017). Inferring imagined speech using EEG signals: A

new approach using riemannian manifold features. Journal of neural engineering, 15(1), 016002.
Nguyen, X.-P., Joty, S., Hoi, S. C., & Socher, R. (2020). Tree-structured attention with hierarchical

accumulation. arXiv preprint arXiv:2002.08046.
Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25). Determination press San Francisco,

CA.
Nijboer, F., Sellers, E., Mellinger, J., Jordan, M. A., Matuz, T., Furdea, A., Halder, S., Mochty, U.,

Krusienski, D., Vaughan, T., et al. (2008). A P300-based brain–computer interface for people
with amyotrophic lateral sclerosis. Clinical neurophysiology, 119(8), 1909–1916.

Nikhil, N. (2018). Is ReLU after sigmoid bad? [Online Available: https://towardsdatascience
.com/is-relu-after-sigmoid-bad-661fda45f7a2].

on Deafness, N. I., & communication Disorder, O. (2019). Statistics on voice, speech, and language.
https://www.nidcd.nih.gov/health/statistics/quick-statistics-voice-speech
-language

Palmer, E. D., Rosen, H. J., Ojemann, J. G., Buckner, R. L., Kelley, W. M., & Petersen, S. E. (2001). An
event-related fMRI study of overt and covert word stem completion. Neuroimage, 14(1), 182–
193.

Panachakel, J. T., Ramakrishnan, A., & Ananthapadmanabha, T. Decoding imagined speech using wavelet
features and deep neural networks. In: 2019 ieee 16th india council international conference (in-
dicon). IEEE. 2019, 1–4.

Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner’s approach. " O’Reilly Media, Inc."

https://towardsdatascience.com/is-relu-after-sigmoid-bad-661fda45f7a2
https://towardsdatascience.com/is-relu-after-sigmoid-bad-661fda45f7a2
https://www.nidcd.nih.gov/health/statistics/quick-statistics-voice-speech-language
https://www.nidcd.nih.gov/health/statistics/quick-statistics-voice-speech-language


Paul, Y., Jaswal, R. A., & Kajal, S. Classification of EEG based imagine speech using time domain
features. In: 2018 international conference on recent innovations in electrical, electronics &
communication engineering (ICRIEECE). IEEE. 2018, 2921–2924.

Pawar, D., & Dhage, S. (2020). Multiclass covert speech classification using extreme learning machine.
Biomedical Engineering Letters, 10(2), 217–226.

Pei, X., Hill, J., & Schalk, G. (2012). Silent communication: Toward using brain signals. IEEE pulse,
3(1), 43–46.

Pei, X., Leuthardt, E. C., Gaona, C. M., Brunner, P., Wolpaw, J. R., & Schalk, G. (2011). Spatiotemporal
dynamics of electrocorticographic high gamma activity during overt and covert word repetition.
Neuroimage, 54(4), 2960–2972.

Petsche, H., Lacroix, D., Lindner, K., Rappelsberger, P., & Schmidt-Henrich, E. (1992). Thinking with
images or thinking with language: A pilot EEG probability mapping study. International Journal
of Psychophysiology, 12(1), 31–39.

Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of clinical neurophys-
iology, 9(4), 456–479.

Popp, M., Trumpp, N. M., Sim, E.-J., & Kiefer, M. (2019). Brain activation during conceptual processing
of action and sound verbs. Advances in Cognitive Psychology, 15(4), 236.

Porbadnigk, A., Wester, M., & Jan-p Calliess, T. S. (2009). EEG-based speech recognition impact of
temporal effects.

Preissl, H., Pulvermüller, F., Lutzenberger, W., & Birbaumer, N. (1995). Evoked potentials distinguish
between nouns and verbs. Neuroscience Letters, 197(1), 81–83.

Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature reviews neuroscience,
6(7), 576–582.

Pulvermüller, F. (2018). Neurobiological mechanisms for semantic feature extraction and conceptual
flexibility. Topics in Cognitive Science, 10(3), 590–620.

Pulvermüller, F., Lutzenberger, W., & Preissl, H. (1999). Nouns and verbs in the intact brain: Evidence
from event-related potentials and high-frequency cortical responses. Cerebral cortex, 9(5), 497–
506.

Qian, S., Liu, H., Liu, C., Wu, S., & San Wong, H. (2018). Adaptive activation functions in convolutional
neural networks. Neurocomputing, 272, 204–212.

Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG
during imagined hand movement. IEEE transactions on rehabilitation engineering, 8(4), 441–
446.

Roehm, D., Schlesewsky, M., Bornkessel, I., Frisch, S., & Haider, H. (2004). Fractionating language
comprehension via frequency characteristics of the human EEG. Neuroreport, 15(3), 409–412.

Rong, L., Jianzhong, Z., Ming, L., & Xiangfeng, H. A wearable acceleration sensor system for gait
recognition. In: 2007 2nd IEEE conference on industrial electronics and applications. IEEE.
2007, 2654–2659.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological review, 65(6), 386.

Roy, D., Panda, P., & Roy, K. (2020). Tree-CNN: A hierarchical deep convolutional neural network for
incremental learning. Neural Networks, 121, 148–160.

Saha, P., Abdul-Mageed, M., & Fels, S. (2019). Speak your mind! towards imagined speech recognition
with hierarchical deep learning. arXiv preprint arXiv:1904.05746.

Saha, P., & Fels, S. Hierarchical deep feature learning for decoding imagined speech from EEG. In:
Proceedings of the aaai conference on artificial intelligence. 33. 2019, 10019–10020.

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recogni-
tion. IEEE transactions on acoustics, speech, and signal processing, 26(1), 43–49.

Sarmiento, L., Lorenzana, P, Cortes, C., Arcos, W., Bacca, J., & Tovar, A. Brain computer interface
(BCI) with EEG signals for automatic vowel recognition based on articulation mode. In: 5th



ISSNIP-IEEE biosignals and biorobotics conference (2014): Biosignals and robotics for better
and safer living (BRC). IEEE. 2014, 1–4.

Schendan, H. E., & Ganis, G. (2012). Electrophysiological potentials reveal cortical mechanisms for
mental imagery, mental simulation, and grounded (embodied) cognition. Frontiers in psychol-
ogy, 3, 329.

Schilling, A., Tomasello, R., Henningsen-Schomers, M. R., Zankl, A., Surendra, K., Haller, M., Karl, V.,
Uhrig, P., Maier, A., & Krauss, P. (2020). Analysis of continuous neuronal activity evoked by
natural speech with computational corpus linguistics methods. Language, Cognition and Neuro-
science, 1–20.

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tanger-
mann, M., Hutter, F., Burgard, W., & Ball, T. (2017). Deep learning with convolutional neural
networks for EEG decoding and visualization. Human brain mapping, 38(11), 5391–5420.

Schultz, T., Wand, M., Hueber, T., Krusienski, D. J., Herff, C., & Brumberg, J. S. (2017). Biosignal-based
spoken communication: A survey. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 25(12), 2257–2271.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE transactions on
Signal Processing, 45(11), 2673–2681.

Sereshkeh, A. R., Trott, R., Bricout, A., & Chau, T. (2017). EEG classification of covert speech using reg-
ularized neural networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
25(12), 2292–2300.

Shapiro, K. A., Pascual-Leone, A., Mottaghy, F. M., Gangitano, M., & Caramazza, A. (2001). Grammat-
ical distinctions in the left frontal cortex. Journal of cognitive neuroscience, 13(6), 713–720.

Sharon, R. A., & Murthy, H. A. (2020). Correlation based multi-phasal models for improved imagined
speech EEG recognition. arXiv preprint arXiv:2011.02195.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556.

Singh, S. P., Sharma, M. K., Lay-Ekuakille, A., Gangwar, D., & Gupta, S. (2020). Deep ConvLSTM with
self-attention for human activity decoding using wearable sensors. IEEE Sensors Journal, 21(6),
8575–8582.

Siuly. (2012). Analysis and classification of eeg signals (Doctoral dissertation). UNIVERSITY OF SOUTH-
ERN QUEENSLAND.

Siuly, S., Li, Y., & Zhang, Y. (2016). EEG signal analysis and classification. IEEE Trans Neural Syst
Rehabilit Eng, 11, 141–144.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. The journal of machine learning research,
15(1), 1929–1958.

Staljanssens, W. (2013). Brain-computer interfaces based on imaginary hand movement using EEG
beamforming and a real-time cursor control application (Master’s thesis). Ghent University.

Stephan, F., Saalbach, H., & Rossi, S. (2020). Inner versus overt speech production: Does this make a
difference in the developing brain? Brain Sciences, 10(12), 939.

Sturm, I., Lapuschkin, S., Samek, W., & Müller, K.-R. (2016). Interpretable deep neural networks for
single-trial EEG classification. Journal of neuroscience methods, 274, 141–145.

Su, Y., Qi, Y., Luo, J.-x., Wu, B., Yang, F., Li, Y., Zhuang, Y.-t., Zheng, X.-x., & Chen, W.-d. (2011). A
hybrid brain-computer interface control strategy in a virtual environment. Journal of Zhejiang
University SCIENCE C, 12(5), 351–361.

Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector
machines. Expert systems with applications, 37(12), 8659–8666.

Sun, S., & Zhang, C. (2006). Adaptive feature extraction for EEG signal classification. Medical and
Biological Engineering and Computing, 44(10), 931–935.



Suppes, P., Han, B., Epelboim, J., & Lu, Z.-L. (1999). Invariance of brain-wave representations of sim-
ple visual images and their names. Proceedings of the National Academy of Sciences, 96(25),
14658–14663.

Suppes, P., Han, B., & Lu, Z.-L. (1998). Brain-wave recognition of sentences. Proceedings of the Na-
tional Academy of Sciences, 95(26), 15861–15866.

Suppes, P., Lu, Z.-L., & Han, B. (1997). Brain wave recognition of words. Proceedings of the National
Academy of Sciences, 94(26), 14965–14969.

Sur, S., & Sinha, V. (2009). Event-related potential: An overview. Industrial psychiatry journal, 18(1),
70.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Tabar, Y. R., & Halici, U. (2016). A novel deep learning approach for classification of EEG motor im-

agery signals. Journal of neural engineering, 14(1), 016003.
Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B., & Liang, J. (2016).

Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE
transactions on medical imaging, 35(5), 1299–1312.

Tian, X., & Poeppel, D. (2010). Mental imagery of speech and movement implicates the dynamics of
internal forward models. Frontiers in psychology, 1, 166.

Tonin, L., Carlson, T., Leeb, R., & Millán, J. d. R. Brain-controlled telepresence robot by motor-disabled
people. In: 2011 annual international conference of the ieee engineering in medicine and biology
society. IEEE. 2011, 4227–4230.

Torres, A. S. (2017). Mudbox activity 1 (head and skull) homework. https://www.artstation.com/
artwork/R6rlA

Torres-García, A., Reyes-García, C., Villaseñor-Pineda, L, & Ramírez-Cortés, J. (2013). Análisis de
senales electroencefalográficas para la clasificación de habla imaginada. Revista mexicana de
ingeniería biomédica, 34(1), 23–39.

Tsigka, S., Papadelis, C., Braun, C., & Miceli, G. (2014). Distinguishable neural correlates of verbs and
nouns: A MEG study on homonyms. Neuropsychologia, 54, 87–97.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I.
(2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., & Cappa, S. F. (2011). Nouns and verbs in the brain:
A review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuro-
science & Biobehavioral Reviews, 35(3), 407–426.

von Stein, A., Rappelsberger, P., Sarnthein, J, & Petsche, H. (1999). Synchronization between temporal
and parietal cortex during multimodal object processing in man. Cerebral Cortex, 9(2), 137–150.

Wang, L., Zhang, X., & Zhang, Y. Extending motor imagery by speech imagery for brain-computer
interface. In: 2013 35th annual international conference of the IEEE engineering in medicine
and biology society (embc). IEEE. 2013, 7056–7059.

Wang, L., Zhang, X., Zhong, X., & Zhang, Y. (2013b). Analysis and classification of speech imagery
EEG for BCI. Biomedical signal processing and control, 8(6), 901–908.

Wester, M. (2006). Unspoken speech-speech recognition based on electroencephalography. Master’s
Thesis, Universitat Karlsruhe (TH).

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–
computer interfaces for communication and control. Clinical neurophysiology, 113(6), 767–791.

Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. Cbam: Convolutional block attention module. In: Proceed-
ings of the european conference on computer vision (ECCV). 2018, 3–19.

Xiang, J., & Xiao, Z. (2009). Spatiotemporal and frequency signatures of noun and verb processing: A
wavelet-based beamformer study. Journal of clinical and experimental neuropsychology, 31(6),
648–657.

Xie, S., Kaiser, D., & Cichy, R. M. (2020). Visual imagery and perception share neural representations
in the alpha frequency band. Current Biology.

https://www.artstation.com/artwork/R6rlA
https://www.artstation.com/artwork/R6rlA


Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., & Bengio, Y. Show, attend
and tell: Neural image caption generation with visual attention. In: International conference on
machine learning. PMLR. 2015, 2048–2057.

Yamaguchi, H, Yamazaki, T, Yamamoto, K, Ueno, S, Yamaguchi, A, Ito, T, Hirose, S, Kamijo, K,
Takayanagi, H, Yamanoi, T, et al. (2015). Decoding silent speech in japanese from single trial
EEGS: Preliminary results. Journal of Computer Science & Systems Biology, 2015.

Yang, H., Lin, Q., Han, Z., Li, H., Song, L., Chen, L., He, Y., & Bi, Y. (2017). Dissociable intrinsic
functional networks support noun-object and verb-action processing. Brain and language, 175,
29–41.

Yoshimura, N., Satsuma, A., DaSalla, C. S., Hanakawa, T., Sato, M.-a., & Koike, Y. Usability of EEG
cortical currents in classification of vowel speech imagery. In: 2011 international conference on
virtual rehabilitation. IEEE. 2011, 1–2.

Yu, X., Bi, Y., Han, Z., Zhu, C., & Law, S.-P. (2012). Neural correlates of comprehension and production
of nouns and verbs in chinese. Brain and language, 122(2), 126–131.

Zabidi, A, Mansor, W, Lee, Y., & Fadzal, C. C. W. Short-time fourier transform analysis of EEG signal
generated during imagined writing. In: 2012 international conference on system engineering and
technology (ICSET). IEEE. 2012, 1–4.

Zhang, D., Yao, L., Chen, K., Wang, S., Chang, X., & Liu, Y. (2019a). Making sense of spatio-temporal
preserving representations for EEG-based human intention recognition. IEEE transactions on
cybernetics, 50(7), 3033–3044.

Zhang, D., Gong, E., Wu, W., Lin, J., Zhou, W., & Hong, B. Spoken sentences decoding based on
intracranial high gamma response using dynamic time warping. In: 2012 annual international
conference of the IEEE engineering in medicine and biology society. IEEE. 2012, 3292–3295.

Zhang, G., Davoodnia, V., Sepas-Moghaddam, A., Zhang, Y., & Etemad, A. (2019b). Classification of
hand movements from EEG using a deep attention-based LSTM network. IEEE Sensors Journal,
20(6), 3113–3122.

Zhang, X., Yao, L., Wang, X., Monaghan, J., Mcalpine, D., & Zhang, Y. (2019c). A survey on deep
learning based brain computer interface: Recent advances and new frontiers. arXiv preprint
arXiv:1905.04149.

Zhao, S., & Rudzicz, F. Classifying phonological categories in imagined and articulated speech. In: 2015
IEEE international conference on acoustics, speech and signal processing (icassp). IEEE. 2015,
992–996.

Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. Time series classification using multi-channels deep
convolutional neural networks. In: International conference on web-age information manage-
ment. Springer. 2014, 298–310.

Zhou, H., Melloni, L., Poeppel, D., & Ding, N. (2016a). Interpretations of frequency domain analyses
of neural entrainment: Periodicity, fundamental frequency, and harmonics. Frontiers in human
neuroscience, 10, 274.

Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., & Xu, B. Attention-based bidirectional long short-term
memory networks for relation classification. In: Proceedings of the 54th annual meeting of the
association for computational linguistics (volume 2: Short papers). 2016, 207–212.

Zoumpoulaki, A., Alsufyani, A., Filetti, M., Brammer, M., & Bowman, H. (2015). Latency as a region
contrast: Measuring ERP latency differences with dynamic time warping. Psychophysiology,
52(12), 1559–1576.





129

Appendix A

Documentation for the Experiment

This section lists the research ethics approval from the Brunel Research Ethics Committee along with
participants information sheet and consent form provided to the participants. The documents are in the
following order:

1. Letter of approval by Research Ethics Committee to record EEG signals from human participants.

2. Information sheet provided to the participants providing instruction and explain them about the
experimental details.

3. Participant Consent form provided to participants before the EEG recording which was used to
collect personal information.



College of Engineering, Design and Physical Sciences Research Ethics Committee 
Brunel University London 

Kingston Lane
Uxbridge
UB8 3PH

United Kingdom

www.brunel.ac.uk

11 September 2017 

LETTER OF APPROVAL (CONDITIONAL)

Applicant:        Mr Sahil Datta 

Project Title:    Brain Signal Processing 

Reference:      7361-LR-Sep/2017- 8301-1 

Dear Mr Sahil Datta

The Research Ethics Committee has considered the above application recently submitted by you.

The Chair, acting under delegated authority has agreed that there is no objection on ethical grounds to the proposed study. Approval is given on the
understanding that the conditions of approval set out below are followed:

The agreed protocol must be followed. Any changes to the protocol will require prior approval from the Committee by way of an application for an
amendment.

Ref Point A14. Please ensure a risk assessment is completed prior to the activity
Ref Point A14. Please agree with your supervisor who the participants are likely to be (will they be fellow students for example) how many you will be
recruiting, and how you intend to recruit them
Ref Point A19 - The Committee recommends that you complete the Ethics Training module via Blackboard Learn prior to commencing your research
project. Please click on the link below and complete the course online. https://blackboard.brunel.ac.uk/webapps/blackboard/content/listContent.jsp?
course_id=_8579_1&content_id=_322757_1

Please note that:

Research Participant Information Sheets and (where relevant) flyers, posters, and consent forms should include a clear statement that research
ethics approval has been obtained from the relevant Research Ethics Committee.
The Research Participant Information Sheets should include a clear statement that queries should be directed, in the first instance, to the Supervisor
(where relevant), or the researcher.  Complaints, on the other hand, should be directed, in the first instance, to the Chair of the relevant Research
Ethics Committee.
Approval to proceed with the study is granted subject to receipt by the Committee of satisfactory responses to any conditions that may appear above,
in addition to any subsequent changes to the protocol.
The Research Ethics Committee reserves the right to sample and review documentation, including raw data, relevant to the study.
 You may not undertake any research activity if you are not a registered student of Brunel University or if you cease to become registered, including
abeyance or temporary withdrawal.  As a deregistered student you would not be insured to undertake research activity.  Research activity includes the
recruitment of participants, undertaking consent procedures and collection of data.  Breach of this requirement constitutes research misconduct and
is a disciplinary offence.

 

Professor Hua Zhao 

Chair

College of Engineering, Design and Physical Sciences Research Ethics Committee 
Brunel University London 
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College of Engineering, Design and Physical Sciences
Department of Electronic and Computer Engineering 

PARTICIPANT INFORMATION SHEET- 2017

Study title:  Brain Signal Processing 

 No persons with a history of neurological disease can participate.
 No persons under 18 years can participate.
 No persons with speech-related conditions can participate.

What is the purpose of the study? 

This research aims to record signals from a participant, captured using EEG headset, in order to
recognise difference between loud speech (normal speech) and imagined speech or speech of the
brain.

Do I have to take part?  

No – you have the option to withdraw from the study at any point. 

What will happen to me if I take part?  

1. You will wear an EEG sensor. This will involve application of gel on the participant’s hair.
2. You  will  be  asked  to  sit  on  a  chair  1  meter  away from computer  a  screen  and  will  be

presented with sequence of stimuli, in form of words, objects and numbers that appear on the
screen. 

3. There will be 4 kinds of tasks for all the stimuli: speaking loud (overt speech) speaking in mind
(covert speech), watching an image and imagine the image. You will have to speak the word/
object/number that you see on the screen in both manners above.

4. Each trial will last 2 minutes.

What sort of equipment will be used?

The Brain signal generated by speaking loud and imagined speech can be sensed and recorded (in
the form of brain signals) using an EEG headset, which records the electrical activity of the brain. It is
a  safe,  non-invasive  procedure,  which  involves  wearing  a  cap  that  contains  electrodes.  Each
electrode is a small ceramic disc with a sintered silver coating sitting in a small rubber cup. A saline
gel (similar to hair gel) will be injected into the electrodes. The gel is hypoallergenic and harmless to
the normal hair and skin and is certified to use.

How much time will the whole procedure take?

There will be 10 trials and each trial will last 2 minutes, so the experiment will last approximately 20
minutes. There will be breaks in between where the subject can move around, stretch legs and talk,
drink water, etc. The total length of the whole procedure could last 30-40 minutes. 

Do I need to prepare for the recording?

There is no preparation required for the recording, but we cannot record from people wearing hijab or
other head covering, with hair extensions, weave, thick plaited hair, or hair styled using wax, hair
spray or similar product.

What do I have to do? 



Sit on a chair and speak the words, objects and numbers presented on the screen loud and in mind.

What are the possible disadvantages and risks of taking part? 

Not much can go wrong by sitting on a chair and speaking.  There are no disadvantages or risks in
taking part, other than devoting forty five minutes of your time. Headset will be placed on participants
head and transfer signal through the USB port of a PC or laptop; so there is practically no risk of
electrical shock. 

What if something goes wrong? 

The ethical guidelines and procedures put in place ensure that there is very little that can go wrong. 

Will my taking part in this study be kept confidential? 

All data collected will be anonymised and can be deleted upon request before 31 January 2020. The
data may be later  compiled as a research database and shared with researchers outside Brunel
University London. Beyond that point, you will not be able to request that your data are deleted from
the database. It is currently believed that the specific information to be captured under the recording
protocol  cannot be  used  for  diagnosis  of  medical  conditions  that  would  otherwise  remain
undiagnosed. It is currently believed that the captured information is not discriminative enough to be
used for identification among general public. 

What will happen to the results of the research study? 

The result of the study may be presented in scientific journals and/or conferences. 

Who is organising and funding the research?  

At present, research is undertaken as part of PhD project. So currently there is no formal internal or 
external funding arranged. The project does not have external funding. 

Who has reviewed the study?  

The study has received ethics approval from Brunel University, according to universities ethic 
approval policy. 

Brunel University is committed to the UK Concordat on Research Integrity. 

The University seeks to ensure that  good practice in research is  an integral  part  of  its  research
strategy and associated policies. This code states that the general principle of integrity should inform
all  research activities.  Honesty should  be central  to  the relationship  between the researcher,  the
participant and other interested parties.

Contact for further information and Enquiry.

For further information on the research study please contact Dr Nikolaos Boulgouris 
(Nikolaos.Boulgouris@brunel.ac.uk) or Sahil Datta (Sahil.Datta@brunel.ac.uk).



Participants Consent Form

PARTICIPANTS CONSENT FORM: Brain Signal Processing

The participant should complete the whole of this sheet him/herself

YES NO

Have you read the Research Participant Information Sheet?

Have you had an opportunity to ask questions and discuss this study? 

Have you received satisfactory answers to all your questions?

Who have you spoken to?

Do you understand that you will not be referred to by name in any report
Concerning the study?

Do you understand that signals captured from your participation will 
be anonymised and may be later compiled and made available to researchers 
Outside Brunel University London as a research database of such signals? 

Do you understand that you are free to withdraw from the study:

 Any time during the experiment?

 Without having to give a reason for withdrawing?

Do you agree to take part in this study?

Signature of Research Participant: 

Name in capitals: Date:
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